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Abstract

Powdery mildews are among the most important plant pathogens worldwide, which are often attacked in the field by mycoparasitic

fungi belonging to the genus Ampelomyces. The taxonomy of the genus Ampelomyces is unresolved, but well-supported molecular

operational taxonomic units were repeatedly defined suggesting that the genus may include at least four to seven species. Some

Ampelomyces strains were commercialized as biocontrol agents of crop pathogenic powdery mildews. However, the genomic

mechanisms underlying their mycoparasitism are still poorly understood. To date, the draft genome of a single Ampelomyces strain,

designatedasHMLAC05119,hasbeen released.Wereportahigh-quality, annotatedhybriddraftgenomeassemblyof A. quisqualis

strain BRIP 72107, which, based on phylogenetic analyses, is not conspecific with HMLAC 05119. The constructed genome is

40.38 Mb in size, consisting of 24 scaffolds with an N50 of 2.99 Mb and 96.2% completeness. Our analyses revealed “bipartite”

structure of Ampelomyces genomes, where GC-balanced genomic regions are interspersed by longer or shorter stretches of AT-rich

regions. This is also a hallmark of many plant pathogenic fungi and provides further evidence for evolutionary affinity of

Ampelomyces species to plant pathogenic fungi. The high-quality genome and annotation produced here provide an important

resource for future genomic studies of mycoparasitisim to decipher molecular mechanisms underlying biocontrol processes and

natural tritrophic interactions.
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Introduction

Powdery mildews (Erysiphaceae), common obligate biotro-

phic plant pathogens, are often attacked in the field by myco-

parasitic fungi belonging to the genus Ampelomyces. As

powdery mildews are themselves parasites, Ampelomyces

spp. are also considered as hyperparasites (Kiss 2001;

Parratt and Laine 2016). The natural tritrophic interactions

between host plants, powdery mildews, and Ampelomyces

Significance

Mycoparasitic fungi belonging to the genus Ampelomyces attack powdery mildews, which are important plant path-

ogenic fungi worldwide. Despite their ecological significance, and importance as biocontrol agents of crop pathogenic

powdery mildews, limited genetic resources are available for Ampelomyces. The first high-quality assembly and an-

notation of the A. quisqualis genome produced here will provide an invaluable resource for genomic studies of

mycoparasitism and points to possible evolutionary origin of Ampelomyces from plant pathogenic fungi.
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spp. have been intensively studied in the field from an eco-

logical context (Kiss 2008; Kiss et al. 2011; Tollenaere et al.

2014; Pintye et al. 2015; Numminen et al. 2019). Some

Ampelomyces strains have been commercialized as biocontrol

agents of crop pathogenic powdery mildews (Boddy 2015;

Legler et al. 2016). The taxonomy of the genus Ampelomyces

is unresolved, but well-supported molecular operational tax-

onomic units (MOTUs) were defined suggesting that the ge-

nus may include at least four to seven species (Liang et al.

2007; Park et al. 2010; Kiss et al. 2011; Angeli et al. 2012;

Pintye et al. 2012; Liyanage et al. 2018; N�emeth et al. 2019;

N�emeth, Mizuno, et al. 2021). All strains belonging to the

genus Ampelomyces are hyperparasites of powdery mildews

just like the type species A. quisqualis. The name A. quisqualis

has been applied to phylogenetically diverse Ampelomyces

hyperparasites belonging to different MOTUs (Park et al.

2010; Angeli et al. 2012; Liyanage et al. 2018), which high-

lights the need for a taxonomic reassessment of this binomial

(Kiss et al. 2004; Legler et al. 2016). Experiments with

Ampelomyces transformants exhibiting the green fluorescent

protein (GFP) indicated that these hyperparasites cannot

thrive as saprobes; living powdery mildew colonies constitute

their primary niche (N�emeth et al. 2019).

The GFP study has established a framework for a molecular

genetic toolbox for Ampelomyces strains (N�emeth et al.

2019), which was later applied in a gene knock-out project

(N�emeth, Li, et al. 2021). In terms of genomic resources, these

hyperparasites are largely unexplored: to date, the draft ge-

nome of a single Ampelomyces strain, designated as HMLAC

05119, has been released (Haridas et al. 2020). The strain was

isolated from an undetermined powdery mildew infecting

Youngia japonica in China (Liang C, personal communica-

tion). The transcriptome of another Ampelomyces strain,

CNCM I-807 or M-10, which was commercialized as the ac-

tive ingredient of the AQ10 Biofungicide product in the

United States and the European Union (Legler et al. 2016),

is the only other genomic resource available to date for the

genus Ampelomyces. The AQ10 strain was isolated from an

undetermined powdery mildew infecting Catha edulis in Israel

(Legler et al. 2016). The analysis of its transcriptome during

the early and the late stages of parasitism revealed the upre-

gulation of some genes related to toxin biosynthesis, together

with other potentially mycoparasitism-related proteins such as

secreted proteases and putative virulence factors during

mycoparasitism (Siozios et al. 2015). However, approximately

50% of the Ampelomyces transcripts did not point to any

known protein sequences (Siozios et al. 2015). This may indi-

cate that a part of the Ampelomyces proteome is unique, or

this type of mycoparasitism has not been studied in sufficient

detail in other interfungal parasitic relationships.

Here, we present a high-quality, annotated hybrid draft

genome assembly of A. quisqualis strain BRIP 72107. Our

phylogenetic analysis presented here revealed that BRIP

72107 is not conspecific with HMLAC 05119, the only

Ampelomyces strain with a known genome (Haridas et al.

2020). BRIP 72107 is, however, conspecific with the commer-

cial AQ10 strain, and both belong to the MOTU that has

included many Ampelomyces strains newly isolated from

the field in diverse studies in China, Europe, Japan, the

United States, and Korea (Liang et al. 2007; Park et al.

2010; Kiss et al. 2011; Pintye et al. 2012; Liyanage et al.

2018; N�emeth, Mizuno, et al. 2021). Therefore, this genome

will be useful to decipher molecular mechanisms underlying

both biocontrol processes and natural tritrophic interactions.

Results and Discussion

Genome Assembly and Annotation

Ampelomyces quisqualis strain BRIP 72107 was assembled

into 24 scaffolds with a total assembly size of

40,378,121 bp and genome completeness of 96.2% (table

1). Of the total of 3,786 Dothideomycetes Benchmarking

Universal Single-Copy Orthologs (BUSCOs) searched, BRIP

72107 included 3,641 complete (96.2%), 16 fragmented

(0.4%), and 129 missing (3.4%) BUSCOs. Based on a genome

size of 42 Mb estimated by Jellyfish, and a total of 8.8 and

8 Gb of sequence data generated by MinION and Illumina

MiSeq platforms, respectively, we estimate a genome cover-

age of 400�. A combination of ab initio and evidence-based

gene modeling with two additional rounds of gene predic-

tions after training SNAP in Maker pipeline resulted in 22,470

predicted exons within 10,439 genes (including 7,255

evidence-supported gene models), including 4,203 with 3’-

UTRs and 4,345 with 5’-UTRs.

Bipartite Genome of A. quisqualis

The genome of BRIP 72107 has a bimodal GC content, due to

the presence of gene-rich, GC-balanced regions interspersed

by long or short stretches of AT-rich, gene-sparse regions (fig.

1). This phenomenon was observed in almost all the assem-

bled contigs, with AT-rich regions varying in size from 15 to

270 kb. The “bipartite” feature of the genome is also a hall-

mark of many plant pathogenic fungi that is hypothesized to

arise when duplicated DNA, such as transposons, undergoes

C to T transitions by the process of repeat-induced point mu-

tation (Testa et al. 2016). This substantial proportion of repet-

itive and AT-rich regions has been proposed to result in the

“two-speed” evolution of these genomes, where genes lo-

cated close to the AT-rich regions (mostly secreted proteins)

have higher rates of evolution (Dong et al. 2015). Recent

analyses revealed a surprisingly close phylogenetic relationship

between Ampelomyces mycoparasites and plant pathogens

such as Parastagonospora nodorum and Leptosphaeria mac-

ulans (Haridas et al. 2020), and the Ampelomyces genus is

classified in the Leptosphaeriaceae family that includes many

plant pathogens and other plant-associated species. These

results, together with the bipartite genome structures of all

Huth et al. GBE
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these fungi, may point to the evolutionary origin of

Ampelomyces from plant pathogenic fungi.

Phylogenetic Analysis

Phylogenetic analysis of 28 Ampelomyces strains based on the

internal transcribed spacer (ITS) region of the nuclear ribo-

somal DNA (nrDNA), including the 5.8S rRNA gene, revealed

a high level of diversity within the genus Ampelomyces, with

nine well-supported MOTUs (fig. 1E), which highlighted the

need for a taxonomic reassessment of the genus

Ampelomyces. Strain BRIP 72107 belonged to the strongly

supported clade/MOTU 1, together with the commercial

strain AQ10, whereas HMLAC 05119 was part of MOTU 4.

This indicated that the two strains are not conspecific.

Another strain, 94013, commercialized as Q-fect in Korea

(Park et al. 2010), also belonged to MOTU 4. Previous phylo-

genetic analyses of Ampelomyces strains also concluded that

the genus consists of multiple species (Liang et al. 2007; Park

et al. 2010; Kiss et al. 2011; Angeli et al. 2012; Pintye et al.

2012; Liyanage et al. 2018).

Materials and Methods

Sample Collection and Culturing

Strain BRIP 72107 was isolated from Golovinomyces bolayi

infecting Cestrum parqui collected in Toowoomba,

Queensland, Australia. The strain is available from the

Queensland Plant Pathology Herbarium (BRIP), which includes

a large collection of living fungal and bacterial strains, in ad-

dition to herbarium specimens. The isolation process was

done as described by Liang et al. (2007). The identity of strain

BRIP 72107 as Ampelomyces was confirmed via sequencing

the nrDNA ITS region using universal primers ITS1-F (Gardes

and Bruns 1993) and ITS4 (White et al. 1990). Four-week-old

mycelia of BRIP 72107 grown in potato dextrose broth were

lyophilized overnight. One hundred milligrams of lyophilized

mycelia were flash-frozen in liquid nitrogen and ground with

stainless steel beads (2.8 mm diameter; Sigma–Aldrich) in a

FastPrep-24 (MP Biomedicals, Australia) at 6.5 m/s for 30 s

and stored at �80 �C until DNA extraction.

DNA and RNA Extraction

For long-read sequencing, high-molecular weight (HMW)

DNA was extracted using a chloroform/isoamyl alcohol extrac-

tion method with an isopropanol precipitation as described by

Feehan et al. (2017). Briefly, ground mycelia were lysed in

700ml lysis buffer (potassium metabisulfite 0.25 M, Tris 0.2

M pH 7.5, ethylenediaminetetraacetic acid 50 mM, NaCl 2 M,

2% CTAB, ddH2O) pre warmed to 65 �C with 300ml 5%

Sarcosyl prewarmed to 65 �C and incubated for 30 min at

65 �C. DNA was isolated by chloroform/isoamyl alcohol ex-

traction and subsequent isopropanol precipitation. RNaseT
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FIG. 1.—The first 1,400,000bp of BRIP 72107 contig-4 is demonstrated here as an example showing GC-balanced regions interspersed by longer or

shorter stretches of AT-rich regions (A). The GC content distribution of Ampelomyces spp. (B and C) show striking similarity to the plant pathogenic fungus,

Leptosphaeria maculans (D). Vertical blue lines show the GC cut-off points selected by OcculterCut (Testa et al. 2016) to classify genome segments into

Huth et al. GBE
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(10 mg/ml) treatment was performed for 2 h at 37 �C and

finally the DNA was cleaned with AMPure XP beads

(Beckman Coulter). HMW DNA was purified using the

Qiagen Genomic-tip 20/G kit according to manufacturer’s

instructions and quantified using the Qubit v.3.0 fluorometer

(ThermoFisher Scientific, Australia). Quality ratios were

checked using the Denovix DS-11 series (Life Science

Technologies) and the integrity was assessed through electro-

phoresis on a 0.8% agarose gel containing 1:20,000 GelRed

(Biotium, Australia), then stored at �20 �C. For Illumina

MiSeq sequencing, DNA was extracted from lyophilized fun-

gal mycelia using a DNeasy Plant Mini Kit (Qiagen, Australia)

according to manufacturer’s instructions, except for the final

step where DNA was eluted in 10 mM filter-sterilized Tris–HCl

(pH 8.5).

Total RNA from fresh fungal mycelia flash-frozen and

ground in liquid nitrogen was extracted using an RNeasy

Plant Mini Kit (Qiagen) following the manufacturer’s instruc-

tions using the purification of total RNA from plant cells and

tissue and filamentous fungi. The final product was checked

via agarose gel electrophoresis and quantified using a Qubit

v.3.0 fluorometer (ThermoFisher Scientific, Australia) and sub-

mitted to the Australian Genome Research Facility

(Melbourne, Australia) for total mRNA sequencing.

Genome Sequencing

Long-read sequencing was performed using Oxford

Nanopore Technology (ONT). A MinION library was con-

structed from 1,000 ng DNA using a Genomic DNA by

Ligation kit (SQK-LSK109; ONT, Oxford, United Kingdom)

according to the standard protocol. The library was loaded

onto a MinION FLO-MIN 106 R9.4.1 flow cell and sequenced

for 39 h. Read quality statistics were assessed using Nanoplot

v.1.28.2 on Galaxy Australia Portal (Afgan et al. 2018). For

Illumina short-read sequencing, library preparation was con-

ducted on 150 ng DNA using an Illumina DNA Prep kit and

Nextera DNA CD Indexes (Illumina, Singapore) according to

manufacturer’s instructions. The library was sequenced on an

Illumina MiSeq platform using a 600-cycle paired-end V3

reagents kit. Read quality statistics were assessed using

FastQC v.0.11.8 (Andrews 2010) on Galaxy Australia Portal.

Read Preparation, Genome Assembly, and Annotation

All raw data were screened and filtered for bacterial contam-

ination using Kraken v.2.1.1 (Wood and Salzberg 2014).

Adapter removal from Illumina reads was conducted using

BBduk from the BBmap suite v.36.86 (Bushnell 2014). The

Kmer counting software Jellyfish v.2.3.0 (Marçais and

Kingsford 2011) was implemented to estimate the genome

size using the Illumina reads. Porechop v.0.2.4 (Wick 2017)

was used for adapter removal from the raw MinION reads.

The hybrid assembler MaSuRCA v.3.3.3 (Zimin et al. 2013)

was used. Raw Illumina reads without barcode-removal and

quality filtering were used for MaSuRCA assembly as recom-

mended by the developer. The completeness of the genome

assembly was evaluated via Benchmarking Universal Single-

Copy Orthologs (BUSCO) v.1.2 (Sim~ao et al. 2015). Genome

statistics of the generated assembly were compared with that

of HMLAC 05119 (Haridas et al. 2020) using Quast v.2.0.5

(Gurevich et al. 2013). The program OcculterCut v.1.1 (Testa

et al. 2016) was used to scan the genome of A. quisqualis

strain BRIP 72107, Ampelomyces sp. strain HMLAC 05119

(Haridas et al. 2020), and Leptosphaeria maculans strain

v.23.1.3 (Rouxel et al. 2011) to determine their percent GC

content distribution.

Transcriptome assembly was conducted using Trinity

v.2.10.0 (Grabherr et al. 2011). Genome annotation was con-

ducted using Maker v.2.31.9 (Cantarel et al. 2008). A repeat

library was generated with RepeatModeler v.2.0.1 (Smit and

Hubley 2008) and repeats were masked prior to annotation. A

first round of RNA-evidenced gene prediction was conducted

using Maker. The resulting annotation was used to produce a

hidden Markov model (HMM) profile for A. quisqualis, which

was further refined with a second round of SNAP training and

used for the final annotation (Cantarel et al. 2008).

Phylogenetics Analyses

To depict the molecular diversity within the genus

Ampelomyces and phylogenetic relationship of strains BRIP

72107 and HMLAC 05119, a Bayesian phylogram was con-

structed using MrBayes v.3.2.4 (Ronquist et al. 2012) based

on the GTRþIþG nucleotide substitution model selected us-

ing PAUP v.4.0b10 (Swofford and Sullivan 2003) and

MrModeltest v.2.3. (Nylander 2004). ITS sequences of refer-

ence isolates were obtained from NCBI GenBank database.

An ITS sequence was not available for strain HMLAC 05119;

therefore, ITS sequence of BRIP 72107 was used as a query

against its published genome (GenBank accession number:

VOSX00000000.1) to extract the ITS region of HMLAC

05119 and include in the phylogenetic analysis.

distinct AT-rich and GC-balanced regions. The percentage values shown on the left and right sides of the vertical blue lines indicate the percentage of the

genome classified as AT-rich and GC-balanced, respectively. (E) The majority rule consensus Bayesian phylogram inferred from the internal transcribed spacer

sequences of the nuclear ribosomal DNA and the intervening 5.8S region (TreeBASE no. 28185). Tip labels include Ampelomyces strain number, the powdery

mildew host, the plant host, and the country of origin. NCBI GenBank accession numbers used to construct the tree are provided in parentheses. The tip

labels in bold represent Ampelomyces strains with available whole genome assemblies: BRIP 72107 sequenced in the current study and HMLAC 05119

(Haridas et al. 2020). Bayesian posterior probability values are shown at the branches. The tree is rooted to Phoma herbarum strain CBS 276.37. The scale bar

represents nucleotide substitutions per site.
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