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Abstract—Federated Learning (FL) is an emerging research area that produces a globally trained model using numerous local users’
data and maintains their privacy. Heterogeneous or non-Independent and Identically Distributed (non-IID) data affect the global model’s
convergence and, therefore, cause high communication costs. These are because traditional FL approaches often disregard an
adaptive regularized objective for the user-side training and utilize conventional arithmetic mean on the locally trained models for the
server-side aggregation. To alleviate these issues, we propose a novel FL scheme in this paper. In particular, we propose an adaptive
regularization approach to add to the classical objective function of the users’ local models during training and a resilient estimation
approach to the locally trained models during aggregation. The adaptive regularization approach is derived using the users’ local and
global performance diversification while the resilient estimation scheme uses a modified geometric mean aggregation over the local
models’ parameters. We provide consolidated theoretical results and perform extensive experiments on the IID and non-IID settings of
MNIST, CIFAR-10, and Shakespeare datasets with various deep networks. The results manifest that our FL scheme outperforms the
state-of-the-art approaches in terms of communication speedup, test-set performance, training convergence stability, and resiliency
against attacks.

Index Terms—Distributed Learning, Federated Learning, Parallel Optimization, Data Parallelism, Communication Efficiency, Adaptive
Regularization, Resilient Aggregation.
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1 INTRODUCTION

THE rise in popularity of smartphones, tablets, and wear-
able users has resulted in an overwhelming of rich

data, such as images taken and text inputted by users. On
the one hand, there is a potential scope to improve user
experience and empower intelligent programs (e.g., analysis
of user’s activity, analysis of user’s sentiment, analysis of
image content, clinical care analysis of diabetes and heart
disease, burglary analysis in a smart residential area, etc.).
On the other hand, it poses privacy concerns, where a
user’s personal information has to be kept concealed. In
this scenario, the users can be prepared with additional data
computations rather than direct sharing of the private raw
data as they are usually built with large processing and
storage resources. As such, Federated Learning (FL) has
been recently introduced to meet this purpose [1], [2], [3],
[4].

In FL, each user locally uses a stochastic learning method
to learn from its data, and a coordinating server globally
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updates its model parameters based on an element-wise
weighted Arithmetic Mean (AM) of the model parameters
from all of the local users. Local training and global aggre-
gation phases are replicated until a predetermined training
convergence is achieved, illustrated in Fig. 1. In this way, a
user’s private data do not leave its device and the individual
model parameters are not shown to other users [1], [2], [5],
[6], [7]. Due to its privacy protection virtue, FL is being
utilized as a successful privacy-preserving distributed-edge
machine learning platform on a broad scale [8], [9], [10] and
is likely to be implemented in several privacy-sensitive real-
life applications [10], [11], [12].

Heterogeneous or non-Independent and Identically Dis-
tributed (non-IID) data issue among FL users is the most
critical barrier to developing a decent global model toward
real-life application development. Non-IID data is mainly
divided into two categories: class imbalance and size im-
balance. In FL, users’ local data are often acquired based
on their usage preferences. As an outcome, each user’s
local collection will not be fundamentally descriptive of
all users’ overall data distribution, resulting in the class
imbalance issue. Likewise, the users acquire their data in
different degrees using their applications or services. In
this instance, the quantity of the gathered training data
can differ dramatically from one user to the next, result-
ing in the size imbalance issue. Such non-IID data greatly
affect the training progress of the local model and the
aggregation of the global model. In particular, non-IID data
create more strictness to the convergence of the training
model and, therefore, demand more communication rounds
between the users and the server to produce the final decent
global model. Because the communication network can be
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unreliable with limited upload rates, and the associated
expenses (computation, management, etc.) are still high, the
communication rounds should be reduced to a minimum.
Note that although the FL and the classical data-center
distributed machine learning scheme [13], [14] formulate
a very close objective, traditional optimization approaches
of data-center distributed machine learning [13], [14], [15],
[16] are unworkable in FL setup as thoroughly analyzed in
[1], [6], [17], [18]. The key reasons are that these techniques
presume IID data partitioning and a very limited number
of users (workers). As such, Federated Averaging (FedAvg)
[1], the baseline FL algorithm, was proposed that performs
the conventional Stochastic Gradient Descent (SGD) opti-
mization to train the local model on the user-side, then
applies the AM on the locally trained models’ parameters
to produce the aggregated global model on the server-side.
Along with FedAvg, Federated Stochastic Variance Reduced
Gradient (FedSVRG) [2] is considered as another baseline FL
method that employs Stochastic Variance Reduced Gradient
(SVRG) optimizer for local model training on the user-side
and AM to aggregate the local models as the updated global
model on the server-side. These two benchmark studies take
a broad look at communication costs and non-IID data is-
sues. Subsequently, Momentum FedAvg (MomFedAvg) was
proposed in [19] that substitutes traditional Gradient De-
scent (GD) by the momentum GD for local model training.
Federated Proximal, FedProx in short, was presented in [20]
that adds a proximal term (regularizer) to the local objective
function during local model training. Both MomFedAvg
and FedProx utilize the same AM scheme of FedAvg for
server-side aggregation. [21] presented Federated Matched
Averaging (FedMatAvg) via improving the previous work
[22] that keeps the traditional SGD-based local model train-
ing of FedAvg but proposes a layer-wise model averaging
strategy instead of the coordinate-wise model averaging
scheme of FedAvg for the global model aggregation. [23]
recently proposed a Robust FedAvg (RFedAvg) technique
that preserves the same FedAvg training procedure for the
local models while trimming a little portion of the top and
lowest weights at each model node before AM-based aggre-
gation. However, these FL works are not formulated enough
to alleviate the above FL difficulties significantly. The key
reasons are they (i) do not consider an adaptive regularized
objective function for local model training; (ii) utilize the
classical AM scheme for the global model aggregation; and
(iii) contribute to either local model training module (e.g.,
[2], [19], [20] etc.) or global model aggregation module (e.g.,
[21], [22], [23] etc.) at a time, rather than considering to both
of them in parallel.

To address the above-discussed FL challenges (non-
IID data and communication overhead), we propose an
adaptive and resilient FL scheme in this paper, based on
the following observations. (i) The regularization (prox-
imal term) added to the local objective function during
the training phase regulates the convergence of the global
model, and (ii) the classical AM of the local models during
the aggregation phase seizes the stable convergence of the
global model. In specific, first, it is observed that adding a
regularization term weighting by a regularization coefficient
to the objective function usually leads to faster convergence
of the deep models [24], [25]. However, an improperly fixed

Fig. 1: Traditional FL scheme. The server selects m users
at each round, t for training the global model, wt on their
private data. Each user uploads the updated local model,
wk

t+1 to the server for deriving the new aggregated global
model. Then, the server resends the aggregated model to
other m users for retraining. Such training and aggregation
phases are repeated until convergence.

regularization coefficient can hinder the progress of faster
convergence in the FL setup. As such, we propose to add
an adaptive regularization term to the objective function
of the local model in the FL training module that deals
with non-IID data issues by restricting local updates such
that they are closer to the initial (global) model. Secondly,
due to the obvious heterogeneous or malicious data among
the clients, the local models’ training results can vary, and
some of their weights can be outliers in terms of the overall
training objective. The conventional AM aggregator can be
prone to improper and irregular updates for aggregation.
Therefore, we propose a resilient averaging scheme for the
aggregation of the local models that minimizes the impact of
imbalanced model updates. We obtain the theoretical results
of the proposed local model training and global model
aggregation schemes and conduct a series of experiments
to assess them on both IID and non-IID settings of diverse
datasets (MNIST, CIFAR-10, and Shakespeare). The results
show that the developed FL approach outperforms the in-
vestigated techniques in terms of communication speedup,
testing accuracy enhancement, and training convergence.
The following are our most important technological contri-
butions in this paper.

• We propose a federated optimization approach that
combines an adaptively regularized local model up-
date scheme and a resilient aggregation scheme.

• We derive an optimal regularization coefficient tun-
ing mechanism for local objective regularization dur-
ing local model training.

• We present a novel resilient model aggregation strat-
egy by minimizing the consequence of imbalanced
local model updates.

• We provide a theoretical result analysis of the pro-
posed local model training and global model aggre-
gation schemes.

The remainder of this paper is structured in the fol-
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lowing manner. Section 2 discusses the related FL works.
After that, we explain our proposed FL approach in Section
3. In Section 4, the experimental results are examined and
compared, and the work is summarized in Section 5.

2 RELATED WORK

Although FL has emerged recently, it has attracted a lot of
attention. We go through the most essential methods related
to our work in this section. FedAvg, the baseline FL method,
leverages SGD parallelism for local model training and
coordinate-wise weighted AM for global model aggregation
[1]. FedSVRG utilizes SVRG for local model updates and the
same AM for global model aggregation, like FedAvg.

FedProx enhances FedAvg by adding a proximal term to
the user’s objective function with a fixed regularized coeffi-
cient but keeps the same AM of FedAvg for the aggregation
[20]. In contrast to FedAvg, MomFedAvg increases model
training speed by using momentum GD rather than conven-
tional GD but uses the same aggregation scheme as FedAvg
[19]. Astraea seeks to alleviate global and local imbalance by
downsampling data augmentation and use of mediators but
employs the FedAvg’s AM for aggregation [26]. Although
FedMatAvg [21] improves on [22] by averaging the local
learned models layer-wise rather than coordinate-wise, as
FedAvg does, it finally adopts the same direct AM scheme
of FedAvg on the layers’ parameters. Mutual Information
directed FL (MIFL) updates local objective by adding a
regularizer, derived for the optimal use of the user’s existing
local model to train the global model and picks up the top
effective local models for aggregation [27]. However, it also
accomplishes the direct AM of FedAvg on the selected local
models’ parameters. All of these approaches, however, (i) do
not adaptively regularize the local objective function during
user-side training; (ii) do not effectively minimize the impact
of the outlier model updates during server-side aggregation;
and (iii) develop either a local model training approach or
a global model aggregation approach at a time, rather than
taking both into account simultaneously.

On the other hand, a robust aggregation method, known
as Robust Federated Aggregation (RFA) [28], is designed
based on the geometric median to enhance the resiliency
of FL in scenarios where a portion of the clients might
transmit flawed updates to the server. The Krum approach,
proposed in [29], compares FL clients’ model outputs, ex-
cludes outliers, and selects the model closest to others as
the key model for robust aggregation. Another aggregation
rule, denoted as Trimmed Mean (TM), is introduced in [30],
which modifies the version of the classical arithmetic mean
rule, notable for selectively trimming certain values before
performing the averaging process. Lastly, RFedAvg employs
the same training method as FedAvg but trims a small
portion of the largest and smallest weights at each model
node before aggregation [23]. However, this direct removal
of the top and lowest weights at each model node may
potentially hinder the intended robust aggregation process.

3 PROPOSED APPROACH

3.1 Approach Overview
Local model update and global model aggregation are the
two stages of our proposed FL scheme. In the first stage, we

suggest updating the local models by adding an adaptive
regularization term to the local subproblem, which we name
“Adaptive Regularization-based Update” (“ARU” in short).
This is to achieve an effective and stable learning conver-
gence by optimally adding the regularization term to the
local objective function at each training round. In the second
stage, we propose to aggregate the local models’ weights by
applying a resilient estimation against the outlier updates,
which we call “Resilient Estimation-based Aggregation”
(“REA” in short). This is to obtain a robust aggregation
by formulating an Estimated Geometric Mean (EGM) using
the Inverse Hyperbolic Sine (IHS) transformation on the
local model parameters. This way of aggregation leads to
a more stable training convergence of the global model. We
call the overall FL paradigm “ARU-REA” driven FL, whose
generalized working flow and implementable framework
view are depicted in Fig. 2 and Fig. 3, respectively.

Fig. 2: An overview of the proposed ARU-REA FL scheme.
To update the individual local model, each user executes the
proposed ARU approach. The server then implements our
REA approach to aggregate the locally trained models. The
ARU and REA approaches are iterated until convergence is
achieved.

3.2 Local Model Update
3.2.1 Objective Formulation
Our ARU scheme seeks to minimize the following cumula-
tive objective function, f(w) in the federated setting.

min
w∈Rdf(w) =

K∑
k=1

Nk

N
lk(w), (1)

where lk(w) represents the kth user’s local objective func-
tion. Now, lk(w) is computed using Eq. (2) across the losses
(denoted by ls()) of the samples i.e., how the predicted
probabilities differ from the actual labels.

lk(w) =
1

Nk

Nk∑
i=1

ls(w, x(i)). (2)

As defined in Eq. (1) and Eq. (2), the ARU scheme
minimizes the cumulative loss function f(w) by minimizing
the weighted average of users’ local losses lk(w) with the
change of the model’s weight, w.

3.2.2 Objective Regularization
The design of the local objective function is the key to the
model convergence on different data behaviors among the
users. In particular, we observe that individual users might
differ considerably from one another in terms of diverse
data characteristics, which limits the benefit of generalizing
the objective (loss) across users. In the worst-case scenario,
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Fig. 3: An implementable framework view of the proposed
ARU-REA FL paradigm. Each of the m selected users per-
forms the proposed ARU method to train the server-sent
global model over its Nk (k ∈ [1,m]) data samples at each
round, t. After that, the server executes our REA scheme
to generate a new aggregated global model using the up-
loaded local users’ trained models over the N samples
(N =

∑m
k=1 Nk). Other m users train the new aggregated

model using ARU and the server accomplishes the aggre-
gation of the newly uploaded locally trained models using
REA. Such applications of ARU and REA are repeated until
convergence.

sample distribution between users can be incredibly biased,
necessitating the use of a significantly weighted regularized
objective, which is difficult to tune by a classical approach.
Therefore, as the model could favor divergence due to
the severe data heterogeneity, regularization of the local
objective by embedding a proximal term helps get rid of
the divergence [20]. As such, we propose to add a proper
proximal term, calculated using the previous and current
model’s gradients, to the kth user’s local objective function
(denoted by lkr

) for minimization as follows.

min
w∈Rd lkr (w

k
t+1, wt) = lk(w

k
t+1) +

µk

2
||wk

t+1 − wt||2, (3)

where µk > 0 is the regularizing coefficient that controls the
impact of the proximal term during the loss minimization.
This way of utilizing the regularization forces local model
updates to be closer to the previous global model. In specific,
the updated weights of the locally trained model could not
be too far off from the weights of the preceding global
model. However, larger µk gives high importance to the
regularization but can decelerate the convergence while
lower µk could not visualize any difference. As such, a
proper µk can limit the trajectory of the iterates by confining
the iterates to be closer to that of the global model, allow-
ing for varying quantities of local updates while ensuring
convergence. To do this, we propose to utilize the user’s
local model and the server’s global model’s progress to
adaptively set a proper value to µk. Specifically, we evaluate
the local model’s progress after each local epoch over its

previous progress and the global model’s progress and set
three different criteria to adaptively adjust µk. First, we look
at the difference between the current training performance
after every local epoch of the local model and its prior
round’s performance. If the user’s current local loss exceeds
its previous global round’s or local epoch’s loss (which
indicates that the model is far from the convergence), then
we increment µk to a somewhat large figure based on the
current and prior loss diversification as follows.

µinc = µk + ˜|lc − lp| ∗ µk, (4)

where lc and lp represent the user’s current loss and pre-
vious loss respectively, and the operator ˜ refers to the
normalizing to [0, 1] operation.

Second, we utilize the user’s P (1 < P ≤ 5) local losses
and the server’s P global losses. If P prior local losses of the
user and P previous global losses drop sequentially (which
indicates that the model is converging at a decent pace), then
we decrement µk to a reasonably tiny value depending on
the current and previous rounds’ performances, as specified
below.

µdec = µk − ˜|l̄l − l̄g| ∗ µk, (5)

where ll and lg denote the local loss and global loss respec-
tively, and the operator ¯ represents the AM operation.
At last, if none of the aforementioned conditions apply
(indicating that the model is convergent on average), we
assign µk to a value that is halfway between them (Eq. (4)
and Eq. (5)), as formulated below.

µave =
µinc + µdec

2
. (6)

These criteria are for allocating a decent amount of reg-
ularization (µk) in the user’s local objective function, based
on the user’s current and previous loss dissimilation, or the
user’s previous average loss and previous global average
loss dissimilation, so that the local model does not drift too
far from the previous global model and, thus, any potential
divergence is avoided. We now present the pseudocode for
the ARU scheme with the adaptive computing mechanism
of µk in Algorithm 1. It is worth noting that the proxi-
mal term comes from the conventional machine learning
paradigm [24], [25], and it is used to adaptively reformulate
the kth user’s local objective. In comparison to traditional
machine learning, the presented usage of the proximal term
varies in that we aim to handle data heterogeneity with
various local users in our ARU-REA FL paradigm.

3.2.3 Theoretical Result
Let ϕ be a representative of the local epochs (E) and be
measured in the scale of [0, 1] of E. Then, given the lkr

and
∇lkr

, we can state that w⋆ is the ϕ-approximate solution of
minw lkr

(wk
t+1, wt) if ||∇lkr

(w⋆, wt)|| ≤ ϕ||∇lkr
(wt, wt)||.

Again, let A(wk
t+1) =

√
Ek[||∇lk(wk

t+1)||2]
||∇f(wk

t+1)||2
for ||∇f(wk

t+1)|| ≠
0 and Ek[.] denotes the expectation over the users with
Nk

N and
∑K

k=1
Nk

N = 1. Then, we call lk(w
k
t+1) at

wk
t+1 to be A-locally asymmetrical if Ek[||∇lk(w

k
t+1)||2] ≤

||∇f(wk
t+1)||2A2. Now, we assume the following in context

of FL [20]: (i) lk is non-convex and L-Lipschitz smooth,
and there exists L_ > 0 such that ∇2lk ⪰ −L_I with
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Fig. 4: AM vs GM. (a) AM and GM on two balanced inputs (d1 = 1.2 and d2 = 1.5). AM (=1.35) and GM (=1.34) behave
similarly on such balanced inputs. (b) and (c): AM and GM on two sets of unbalanced but proportioned inputs (d1 = 0.05
and d2 = 50; and d1 = 0.5 and d2 = 5). AM produces 25.03 for the first set of d1 = 0.05 and d2 = 50 and 2.75 for
the second set of d1 = 0.5; and d1 = 5 while GM produces 1.58 for both sets of inputs. As such, it is obvious that AM
misbehaves with the unbalanced input sets but GM still offers a robust and resilient aggregation on them.

Algorithm 1 ARU Approach.
Input: wt (server-sent global model at global round t for

kth user), E (local epochs), η (learning rate), µ (regulariza-
tion coefficient)

Output: wk
t+1 (updated local model)

1: procedure ARU (wt, E, η, µ) : ▷ Run on kth FL user
2: Set user’s local model, wk

t+1 :=wt

3: Set µk = µ
4: Bring previous local losses and assign them to ll
5: Bring previous global losses and assign them to lg
6: Assign last value of ll to lp
7: ß:= Split local training set into batches of size B
8: for each local epoch i from 1 to E do
9: for each batch b ∈ ß do

10: w := ∇wk
t+1

(ls(wk
t+1, b) +

µk

2 ||wk
t+1 − wt||2)

11: wk
t+1 := wk

t+1 − ηw
12: end for
13: Assign current epoch loss to lc
14: if lc>lp then
15: µk = µinc = µk + ˜|lc − lp| ∗ µk

16: else if ll’s and lg’s last P values are in decrea-
sing order then

17: µk = µdec = µk − ˜|l̄l − l̄g| ∗ µk

18: else
19: µinc = µk + ˜|lc − lp| ∗ µk

20: µdec = µk − ˜|l̄l − l̄g| ∗ µk

21: µk = µave =
µinc+µdec

2
22: end if
23: Update lp by lc
24: end for
25: return wk

t+1

26: end procedure

µ̄ = µ − L_ > 0., (ii) lk is A-locally asymmetrical i.e.,
A(wt) ≤ A and wt is an unstationary solution, and (iii)
Aϵ exists for ϵ > 0 such that {w| ||∇f(wk

t+1)||2 > ϵ},
A(wk

t+1) ≤ Aϵ. As such, the anticipated decrease of the
global objective function can be determined as follows [20].

EU [f(wt+1)] ≤ f(wt)− γ||∇f(wt)||2, (7)

where U are the chosen users at round t, γ = ( 1µ − ϕA
µ −

A(1+ϕ)
√
2

µ̄
√
K

− LA(1+ϕ)
µµ̄ − L(1+ϕ)2A2

2µ̄2 − LA2(1+ϕ)2

µ̄2K (2
√
2K+2)) >

0 on the chosen K and ϕ, and the dynamically adjusted µ.

Algorithm 2 REA Approach.

Input: wk
t+1 (m local models)

Output: wt+1 (aggregated model)
1: procedure REA (wk

t+1) : ▷ Run on FL server
2: Assign total number of layers of wk

t+1 to tl
3: for each layer l from 1 to tl do
4: Set total number of nodes (including bias) to tn
5: for each node n from 1 to tn do
6: for each model k from 1 to m do
7: w := wk

t+1

8: wsnl := wnl

9: wsegmnl,k := log(wsnl,k +
√
wsnl,k2 + 1)

10: end for
11: wegm

nl(t+1) :=
∑m

k=1
Nk

N wsegmnl,k

12: w⋆
nl(t+1) :=

e
w

egm
nl(t+1)−e

−w
egm
nl(t+1)

2
13: end for
14: end for
15: Organize all w⋆

nl(t+1) and set them to wt+1

16: return wt+1

17: end procedure

Algorithm 3 ARU-REA Meta Algorithm.
Input: Tacc (targeted test accuracy)
Output: wt+1 (final global model)

1: procedure ARU-REA(Tacc) :
2: Initialize w1, η, µ and E
3: for each communication round t from 1 to T do
4: if Tacc has not been achieved then
5: Select m := ⌈(C ×K)⌉ users, 0 < C ≤ 1
6: Set U := m randomly picked users
7: for each user k ∈ U in parallel do
8: wk

t+1 := ARU (wt, E, η, µ)
▷ Training of the local models

9: end for
10: wt+1 := REA(wk

t+1)
▷ Aggregation of the local models

11: else
12: wt+1 is the final aggregated model
13: break
14: end if
15: end for
16: end procedure
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For the full proof, refer to Appendix A.1 [20]. The cru-
cial stages consist of employing the locally asymmetrical
assumption and our idea of ϕ-approximate for each sub-
problem while allowing for just m users to be active at
each round. In particular, the last step introduces EU , an
expectation on the selection of users, U , at round t.

3.3 Global Model Aggregation

The local models’ training outcomes might differ because of
the obvious heterogeneity of the data, and some of their
updates may be outliers in terms of the overall training
goal. As such, the AM used at the aggregation phase
in the classical FL algorithms might be prone to such
outlier updates and, therefore, can hamper the conver-
gence of the global model. To better interpret, let wsnl =
[w1

nl(t+1), w
2
nl(t+1), ..., w

m
nl(t+1)] be the weight-vector at node

n of layer l for aggregation in which wk
nl(t+1) represents the

weight at node n of lth layer for the kth user. Then, the AM
is applied to calculate the aggregated weight, w∗

nl(t+1) on
wsnl as follows.

w∗
nl(t+1) =

m∑
k=1

Nk

N
wsnl,k. (8)

From Eq. (8), it can be seen that the traditional AM
treats every weight in wsnl indiscriminately, which can,
therefore, be vulnerable to erroneous and irregular updates.
As a result, we propose a robust and resilient averaging
strategy, called REA, for the aggregation of the local models
that reduces the impact of imbalanced model updates. To
do this, we propose to reformulate the classical Geometric
Mean (GM) strategy, as defined in Eq. (9), for the node-wise
aggregation.

wgm
nl(t+1) = e(

∑m
k=1

Nk

N logwsnl,k∑m
k=1

Nk

N

) (9)

A typical pictorial analysis of the difference between AM
and GM is illustrated in Fig. 4, where it can be seen that GM
offers a more robust and resilient central tendency over AM
on the imbalanced inputs during aggregation. However, the
conventional GM cannot cope with the negative and zero
values and the model updates can contain a mixture of
positive, negative, and zero values. As such, we modify it,
called EGM, to cope with any levels of positive, negative,
and zero values using the IHS conversion [31] on wsnl, as
defined in Eq. (10).

wsegmnl,k = IHS(wsnl,k) = log(wsnl,k +
√
wsnl,k2 + 1)

for 1 ≤ k ≤ m.
(10)

Now, the average of the wsegmnl,k is accomplished using
Eq. (11) and then the Hyperbolic Sine (HS) transformation
(Eq. (12)) is applied on the averaged result to get the final
aggregation value (w⋆

nl(t+1)) in the original space.

wegm
nl(t+1) =

m∑
k=1

Nk

N
wsegmnl,k . (11)

w⋆
nl(t+1) = HS(wegm

nl(t+1)) =
ew

egm
nl(t+1) − e−wegm

nl(t+1)

2
. (12)

We provide the pseudocode for our entire EGM-based
REA scheme in Algorithm 2. The new aggregated global
model, wt+1 is sent to users who are selected for im-
mediate training using the ARU algorithm (Algorithm 1).
New users are chosen at random as a tiny fraction of the
entire user base, just like FedAvg. Then, the aggregation is
accomplished via the REA approach. The ARU and REA
operations are performed until the desired learning conver-
gence is achieved, as illustrated in the ARU-REA FL meta-
algorithm (Algorithm 3).

3.3.1 Theoretical Analysis
Assumption. Each chosen user transmits its learned model
to the server for aggregation within the pre-defined time-
frame.
Proposition. Let w⋆

t+1 and w∗
t+1 be the EGM and GM-based

aggregated model at round t, respectively. Considering
the aggregation output is in conv{w1, w2, ..., wK } for all
w1, w2, ..., wK ∈ Rd and the aforesaid assumption holds,
the output (i.e., w⋆

t+1) of REA (i) satisfies the following
inequality: w⋆

t+1 < w∗
t+1; and (ii) assures that local users

would not be drawn to various attractions that are far from
the global model.
Proof. Let ωk = Nk

N > 0, ω =
∑m

k=1 ωk, and xk be the non-
negative weight-vector at node n of layer l for aggregation
using the classical AM and our proposed REA scheme for
convenience. Then, the aggregated weight at node n of
layer l using an AM-based aggregation scheme and our
REA approach can be calculated in Eq. (13) and Eq. (14),
respectively.

w∗
nl(t+1) =

m∑
k=1

ωkxk. (13)

w⋆
nl(t+1) = e(

∑m
k=1 ωk log xk∑m

k=1 ωk
) = ω

√
xω1
1 xω2

2 · · ·xωm
m (14)

The following can be assumed to be true since an xk with
ωk = 0 does not affect the inequality. All xk must be equal for
equality to hold. If they are not all equal, then it is still nec-
essary to demonstrate strict inequality. As the natural loga-
rithm is strictly concave, the finite form of Jensen’s inequal-
ity and the functional equations of the natural logarithm
indicate the following: log

(
ω1x1+···+ωmxm

ω

)
> ω1

ω log x1 +

· · · + ωm

ω log xm = log ω
√
xω1
1 xω2

2 · · ·xωm
m . Now, due to the

strict monotonic behavior of natural logarithm, we can
write ω

√
xω1
1 xω2

2 · · ·xωm
m < ω1x1+···+ωmxm

ω i.e., w⋆
t+1 < w∗

t+1,
which proves the Proposition (i).

Now, it is noticeable that including a proximal compo-
nent in the user’s local objective function forces the local
model update to be closer to the original (global) model [20].
In particular, the locally trained model’s updated weights
could not deviate too much from the weights of the preced-
ing global model. As a result, the global model aggregated
with the parameters of these local models stays closer to
the prior global model, which is not the case when using
no proximal component. The global model (w⋆

t+1), which
is obtained by using the reformulated EGM in the REA
scheme, is comparable to the results of using this regular-
ization term in the user’s local objective function. Therefore,
w⋆

t+1 might constrain the local updates to be more similar to
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the original global model and aid in minimizing the effects
of data heterogeneity. This establishes Proposition (ii) and,
therefore, we can conclude that REA offers reliable stability
of the convergence of the global model.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setting
We choose to improve the usage of mobile users by creating
high-quality global models for tasks like image classification
and language modeling. To further understand the benefits
of our proposed ARU-REA FL technique, we replicate the
benchmark FedAvg [1] approach on the MNIST image clas-
sification and the Shakespeare (SP) language modeling chal-
lenge, and we conduct more experiments on the CIFAR-10
image classification task than FedAvg. We use three types of
DNN models, identical to FedAvg, namely the Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN),
and Long Short Term Memory (LSTM) neural networks. We
apply our proposed scheme in three different manners: ARU
(where the model update module of FedAvg is replaced
with our proposed ARU scheme and the same aggregation
strategy as FedAvg is maintained), REA (where the same
model update strategy as FedAvg is held and the aggre-
gation module of FedAvg is substituted with our proposed
REA scheme), and ARU-REA (where both the model update
and aggregation modules of FedAvg are substituted by our
ARU and REA approaches, respectively). We carry out two
types of experiments to demonstrate the advantage of the
FL paradigm: (i) increasing user parallelism (increasing user
participation from 10% to 100%), and (ii) increasing compu-
tation per user (varying number of local epochs and local
batch size per user) and extensively make a comparison
with FedAvg [1] and FedProx [20]. At last, we compare our
proposed ARU-REA to the significant classical FL works to
broaden the scope of the evaluation, and to the attack-robust
FL approaches to demonstrate the resiliency of our method
against attacks. Notice that Appendix A of the supplemental
document has a full description of the local users and server
resources utilized in the experiments.

Dataset and data distribution. MNIST is a typical
dataset for recognizing 10 handwritten digits (0-9), whereas
CIFAR-10 is a more complicated dataset for classifying
10 real-world vehicles and animals. The next dataset is
SP’s character prediction for language modeling. We take
both IID and non-IID data distributions into account to
demonstrate the validity of the FL techniques, as recom-
mended in [1]. We do this by creating IID and non-IID
MNIST, IID CIFAR-10, and non-IID SP datasets. We sham-
ble the 60,000/50,000 training samples and assign 600/500
instances to each of the 100 users to prepare IID MNIST/IID
CIFAR-10. In the case of non-IID MNIST, we split the
training data into 200 chunks of size 300 after categorizing
them depending on the number of classes (digits). Then, we
allocate two chunks to each of the 100 users, ensuring that
each user only receives samples from two classes. In Fig. 5,
we show IID and non-IID MNIST data configurations for 10
users. The SP dataset for language modeling is built using
The Complete Works of William Shakespeare. Each speaking
position in each play is assigned to a user dataset, resulting
in a spontaneous non-IID partition. The users with fewer

(a) (b)

Fig. 5: Data distribution for 10 typical users using the
MNIST dataset. (a) IID partitioning, and (b) Non-IID par-
titioning.

than 10K data points are then filtered away, and 66 users are
chosen at random. We use 80 percent of the data for training
and combine the rest into a global test set, resulting in a
training set of 1,117,274 characters and a test set of 118,967
characters. Table 1 contains significant information about
the experimental datasets (MNIST, CIFAR-10, and SP).

TABLE 1: Dataset information.

Dataset Training
samples

Testing
samples Classes Channels Resolution

or features
MNIST 60,000 10,000 10 1 28×28

CIFAR-10 50,000 10,000 10 3 32×32
SP 1,117,274 118,967 80 1 8

Model architecture. On the MNIST dataset, we effectu-
ate (i) a two hidden layers MLP neural network (represented
as 2NN) with a size of 784 - FC(200, 200, ReLU) - FC(200,
200, ReLU) - FC(200, 10, softmax) (parameters: 199,210); and
(ii) a CNN with a structure 28×28 - CONV(5×5, 32, ReLU)
- POOL(2×2, max) - CONV(5×5, 64, ReLU) - POOL(2×2,
max) - FC(7*7*64, 128, ReLU) - FC(128, 10 softmax) (pa-
rameters: 454,922). For the CIFAR-10 dataset, we implement
a CNN with an architecture of 32×32×3 - CONV(3×3,
32, ReLU) - POOL(2×2, max) - CONV(3×3, 64, ReLU) -
POOL(2×2, max) - CONV(3×3, 64, ReLU) - POOL(2×2,
max) - FC(3*3*64, ReLU) - FC(64, 10, softmax) (parameters:
122,570). On the SP dataset, we build a stacked character-
level 1-layer LSTM of structure Encoder(80×8)-LSTM(8-256-
1, RNN)-Decoder(256×80) (parameters: 293,584). The LSTM
predicts every next character upon reading each charac-
ter in a line from the SP dataset. The model receives a
group of characters and encapsulates each character in an
8-dimensional space that it has learned. The encapsulated
characters are then passed through the LSTM layer with
256 nodes, and the LSTM layer’s result is finally sent to
a softmax output layer with one node for each of the 80
characters.

Hyperparameter. The user fraction (C), local epochs (E),
and local batch size (B) are the existing crucial FL scheme-
centric hyperparameters, while the regularizing coefficient
(µ) is the added local objective-centric hyperparameter in
our proposed ARU-REA FL paradigm. We conduct experi-
ments on C using distinct user percentages (10%-100%) of
the overall user population and different combinations of E
and B to contribute to the global learning stage, identical
to FedAvg. In our ARU-REA FL scheme, we dynamically
adjust µ from its initial value (0.01) for each selected local
user after every local epoch. We assign η to 0.1 for images
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TABLE 2: Impact of extending user fraction (C) over 2NN MNIST. The cell values show the highest degree of accuracy that
the relevant techniques are capable of attaining as well as the number of communication rounds required to get the requisite
test-set accuracy (i.e., maximum accuracy achieved by FedAvg for the specific experimental setup). The communication
speedups are shown by the figures in parentheses.

Dataset B Method
Testing accuracy (%) Communication round (speedup)

C C
0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

IID
MNIST

∞

FedAvg 85.90 85.96 85.90 85.91 1790 1786 1781 1778
FedProx 88.13 88.10 88.11 701 681 (2.63×) 713 (2.50×) 691 (2.58×) 701 (2.54×)

ARU 93.63 93.60 93.61 510 508 (3.52×) 517 (3.45×) 507 (3.51×) 510 (3.49×)
REA 86.52 86.58 86.52 1368 1333 (1.34×) 1342 (1.33×) 1358 (1.31×) 1368 (1.30×)

ARU-REA 95.38 95.35 95.36 354 351 (5.10×) 359 (4.97×) 346 (5.15×) 354 (5.02×)

10

FedAvg 96.52 96.81 96.78 96.86 97 95 96 100
FedProx 96.68 96.91 96.95 97.01 89 (1.09×) 90 (1.06×) 89 (1.08×) 86 (1.16×)

ARU 96.88 97.11 97.15 97.22 74 (1.31×) 78 (1.22×) 72 (1.33×) 77 (1.30×)
REA 97.06 97.31 97.38 97.27 69 (1.41×) 68 (1.40×) 61 (1.57×) 64 (1.56×)

ARU-REA 97.71 97.86 97.92 97.92 51 (1.90×) 53 (1.79×) 52 (1.85×) 51 (1.96×)

Non-IID
MNIST

∞

FedAvg 86.05 86.01 85.93 85.91 1789 1769 1775 1778
FedProx 88.30 88.24 88.17 88.06 642 (2.79×) 601 (2.94×) 665 (2.67×) 701 (2.54×)

ARU 93.81 93.74 93.67 93.56 328 (5.45×) 325 (5.44×) 446 (3.98×) 510 (3.49×)
REA 86.67 86.63 86.55 86.53 1320 (1.36×) 1273 (1.39×) 1305 (1.36×) 1368 (1.30×)

ARU-REA 95.55 95.49 95.42 95.31 285 (6.28×) 294 (6.02×) 347 (5.12×) 354 (5.02×)

10

FedAvg 97.50 97.54 97.41 97.43 633 647 481 647
FedProx 97.90 97.80 97.67 97.61 393 (1.61×) 404 (1.60×) 389 (1.24×) 385 (1.68×)

ARU 97.98 97.88 97.82 97.84 371 (1.71×) 361 (1.79×) 287 (1.68×) 272 (2.38×)
REA 98.07 98.05 97.94 97.92 329 (1.92×) 251 (2.58×) 195 (2.47×) 193 (3.35×)

ARU-REA 98.71 98.65 98.58 98.57 215 (2.94×) 172 (3.76×) 165 (2.92×) 156 (4.15×)

TABLE 3: Effect of increasing computation (E and/or B) in each user. The value of u = (NE)/(KB) indicates the expected
number of local updates per CR. (a) Over IID and non-IID MNIST datasets using CNN. (b) over Non-IID SP dataset using
LSTM.

Data dis-
tribution E, B, u Testing accuracy (%) Communication round (speedup)

FedAvg FedProx ARU REA ARU-REA FedAvg FedProx ARU REA ARU-REA

IID

1, ∞, 1 97.68 95.21 98.13 98.11 98.68 388 113 (-) 340 (1.14×) 360 (1.08×) 306 (1.27×)
5, ∞, 5 98.49 98.49 98.54 98.66 98.74 364 372 (0.98×) 280 (1.30×) 279 (1.30×) 125 (2.91×)
1, 50, 12 98.73 98.74 99.32 99.15 99.53 226 372 (0.61×) 129 (1.75×) 141 (1.60×) 93 (2.43×)

20, ∞, 20 98.52 98.64 98.84 98.57 98.82 395 291 (1.36×) 179 (2.21×) 336 (1.18×) 167 (2.37×)
1, 10, 60 98.66 98.82 99.02 98.89 99.20 75 70 (1.07×) 53 (1.42×) 62 (1.21×) 42 (1.79×)
5, 50, 60 98.67 98.94 99.04 99.05 99.19 93 52 (1.79×) 47 (1.98×) 45 (2.06×) 30 (3.10×)

20, 50, 240 98.69 98.88 99.08 99.11 99.27 67 51 (1.31×) 39 (1.72×) 34 (1.97×) 28 (2.39×)
5, 10, 300 98.64 98.64 98.87 98.70 99.10 59 26 (2.27×) 20 (2.95×) 25 (2.36×) 14 (4.21×)

20, 10, 1200 98.84 99.03 99.11 99.13 99.56 59 57 (1.04×) 37 (1.59×) 36 (1.64×) 13 (4.54×)

Non-IID

1, ∞, 1 98.53 97.76 98.96 98.95 99.87 1077 372 (-) 881 (1.22×) 833 (1.29×) 590 (1.83×)
5, ∞, 5 98.35 98.71 99.02 99.70 99.95 1036 534 (1.94×) 374 (2.77×) 221 (4.67×) 203 (5.10×)
1, 50, 12 97.54 97.71 98.92 98.76 99.24 1068 578 (1.85×) 141 (7.57×) 161 (6.63×) 112 (9.54×)

20, ∞, 20 98.55 96.03 98.92 98.74 99.14 1077 152 (-) 542 (1.99×) 872 (1.24×) 371 (2.90×)
1, 10, 60 96.66 95.83 96.83 96.85 97.42 384 134 (-) 284 (1.35×) 266 (1.44×) 100 (3.84×)
5, 50, 60 98.65 98.75 98.95 99.08 99.28 385 315 (1.22×) 218 (1.77×) 151 (2.55×) 134 (2.87×)

20, 50, 240 98.51 98.77 99.17 98.92 99.48 375 184 (2.04×) 89 (4.21×) 151 (2.48×) 71 (5.28×)
5, 10, 300 95.59 95.71 96.08 96.19 96.21 375 288 (1.30×) 92 (4.07×) 165 (2.27×) 79 (4.75×)

20, 10, 1200 89.69 98.97 99.15 98.85 99.54 41 39 (1.05×) 33 (1.24×) 35 (1.17×) 28 (1.46×)
(a)

E, B, u Testing accuracy (%) Communication round (speedup)
FedAvg FedProx ARU REA ARU-REA FedAvg FedProx ARU REA ARU-REA

1, ∞ (500), 33.86 55.04 55.47 55.82 55.69 56.038 290 207 (1.40×) 165 (1.76×) 147 (1.97×) 127 (2.28×)
5, ∞ (500), 169.28 52.71 52.34 52.91 52.81 52.96 267 68(-) 213 (1.25×) 226 (1.18×) 101 (2.64×)

1, 50, 338.58 46.42 46.55 46.68 46.52 46.67 225 250 (0.9×) 168 (1.34×) 183 (1.23×) 121 (1.86×)
1, 10, 1692.84 47.22 44.09 47.32 47.42 47.52 225 16 (-) 183 (1.23×) 148 (1.52×) 114 (1.97×)
5, 50, 1692.84 46.36 46.48 47.06 46.46 46.61 143 95 (1.51×) 48 (2.98×) 50 (2.86×) 35 (4.09×)
5, 10, 8464.20 47.22 47.06 47.26 47.31 47.41 143 25 (-) 71 (2.01×) 61 (2.34×) 42 (3.40×)

(b)
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datasets and 0.8 for language modeling dataset, based on the
naive-strategy suggestion and few promising approaches
[32], [21], [27] and [23]. We perform all experiments using
Pytorch with SGD optimizer and classical cross-entropy loss
function.

Evaluation metric. We assess the FL approaches in terms
of training communication rounds to attain the specified
test-set accuracy and training losses to produce a steady
convergence behavior, similar to FedAvg. We investigate
communication round reduction in particular to obtain the
targeted test-set accuracy for demonstrating the alleviation
of communication overhead for any data split (IID or non-
IID); in the meanwhile, we tacitly alleviate the influence of
heterogeneous (non-IID) data. As an example of the hurdles
with heterogeneous data, the non-IID data arrangement
poses an imbalance in data allocation among users by
adding more difficulty to the training procedures and need-
ing more training communication rounds than IID data to
reach convergence. Providing faster learning convergence is
a realistic way of proving that the heterogeneous (non-IID)
data challenge has been handled. As a result, the decrease
in communication rounds serves the goal of reducing data
heterogeneity as well. Furthermore, the training loss graphs
depict the global model’s convergence behavior for the
proposed and current FL approaches. Because the proposed
approaches ARU and REA improve the local model training
and global model aggregation processes of the benchmark
FedAvg method, our proposed ARU-REA approach has no
additional overall burden when compared to the standard
FedAvg. As a result, our ARU-REA retains the convergence
rate of up to O( 1

T ) [33]. Nevertheless, according to our ob-
servations, the modified model training and aggregation in
our ARU-REA scheme require a few additional operations,
which may incur some negligible computing.

4.2 Increasing Parallelism

First, we investigate with the user fraction C , which es-
tablishes the level of multi-user parallelism for our ARU-
REA technique and its two variations (ARU and REA),
and the FedAvg and FedProx benchmark methods. For
2NN MNIST, we run 1800 communication rounds on both
IID and non-IID datasets with B=∞ (full local batch size,
i.e., 600 samples per user) and E = 1, and 100 and 700
communication rounds on IID and non-IID data settings,
respectively, with B=10 and E = 1. For CNN MNIST,
we run 400 and 1100 communication rounds on IID and
non-IID datasets, respectively, with B=∞ and E = 5, and
100 and 400 communication rounds on IID and non-IID
data settings, with B=10 and E = 5. The total number of
communication rounds required to obtain the desired test-
set accuracy (i.e., FedAvg’s highest accuracy possible under
a given experimental configuration) is then noted. Table 2
shows the quantitative results of expanding C in terms of
test-set accuracies and communication speedups for 2NN
MNIST, while the results using CNN MNIST are provided
in Table 1 of Appendix B of the supplemental document.
Fig. 6 shows the corresponding test-set accuracies vs com-
munication rounds plots. Additionally, the training losses
versus communication rounds charts in Fig. 7 show how
the global model convergence behaves. In Appendix B of the
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Fig. 6: Test-set accuracies versus communication rounds on
increasing user parallelism. (a) C = 20 with B = ∞ over
2NN IID MNIST. (b) C = 10 with B = ∞ over CNN IID
MNIST. (c) C = 10 with B = ∞ over 2NN non-IID MNIST.
(d) C = 100 with B = 10 over 2NN non-IID MNIST. (e)
C = 20 with B = 10 over CNN non-IID MNIST. (f) C = 10
with B = ∞ over CNN non-IID MNIST.
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Fig. 7: Training losses versus communication rounds on
increasing user parallelism. (a) C = 100 with B = ∞ over
2NN IID MNIST. (b) C = 20 with B = ∞ over 2NN IID
MNIST. (c) C = 50 with B = 10 over 2NN IID MNIST. (d)
C = 10 with B = ∞ over CNN IID MNIST. (e) C = 100
with B = ∞ over 2NN non-IID MNIST. (f) C = 20 with
B = 10 over 2NN non-IID MNIST.
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supplemental document, there are additional result graphs
(testing accuracies and training losses vs communication
rounds plots).

It is obvious that our proposed ARU-REA scheme and
its two variations: ARU and REA perform better than the
traditional FedAvg and FedProx in terms of lowering com-
munication rounds, improving test-set accuracy, and better
stabilizing the convergence of the global model for both
large (i.e., B=∞) and small (i.e., B=10) batch sizes over
the varied C . In particular, the proposed ARU-REA obtains
communication speedups using 2NN and CNN over the
IID MNIST dataset of up to 5.15× and 5.82×, respectively,
as well as 6.28× and 4.40×, respectively, over the non–IID
MNIST dataset. In light of these results, we set C to 0.1
for the remaining MNIST and CIFAR-10 experiments since
it reaches a good level of parallelism and strike a nice
balance between convergence and computation. However,
we choose C = 1 for the SP experiments to permit the
highest parallelism.

4.3 Increasing Computation Per User

In this experiment, we raise the number of SGD operations
(u = (E[Nk]/B)E = (NE)/(KB) specifies the amount of
SGD updates) per user at every communication round and
set C to 0.1 for the MNIST dataset and 1.0 for the SP dataset.
To do this, we either increase E, decrease B, or do both. For
IID MNIST, we execute more communication rounds (400
for CNN and 1800 for 2NN) on the first four lower values
of u than its other values (100 for both CNN and 2NN). For
non-IID MNIST, the number of communication rounds on
the first four u values is 1100 for CNN and 1800 for 2NN,
while 400 for CNN and 1000 for 2NN on the remaining
values of u. For the non-IID SP dataset, we perform 300
global rounds for the first three u values and 150 for its
remaining values.

In Table 3, we present the quantitative communication
speedups and test-set accuracies using CNN MNIST and
LSTM SP, while the results using 2NN MNIST are provided
in Table 2 of Appendix C of the supplemental document.
We present the test-set accuracies vs communication rounds
plots in Fig. 8, and the convergence behavior of the global
model using the training losses vs communication rounds
in Fig. 9. In Appendix C of the supplemental document,
additional testing accuracy, and training loss plots are pro-
vided. The results show how altering B and E to boost
SGD updates u per user is advantageous in reducing com-
munication costs and stabilizing the convergence of the
global model. In particular, the communication speedups
realized by our ARU-REA approach are up to 4.61× and
5.56× over IID and non-IID MNIST, respectively, using the
2NN, and 4.54× and 9.54× over IID and non-IID MNIST,
respectively, using the CNN. The communication speedup
using ARU-REA for the LSTM non-IID SP experiment is
up to 4.09×. Additionally, with rising u, ARU and REA
separately beat the baselines FedAvg and FedProx. It can
now be determined that our proposed ARU-REA has a good
possibility of being implemented in real-world applications
based on these encouraging communication speedups and
accuracy enhancements.
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Fig. 8: Test-set accuracies versus communication rounds on
extending computation per user. (a) Over 2NN IID MNIST.
(b) Over CNN IID MNIST. (c) Over CNN non-IID MNIST.
(d) Over LSTM non-IID SP.
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Fig. 9: Training losses versus communication rounds on
extending computation per user. (a) Over 2NN IID MNIST.
(b) Over 2NN IID MNIST. (c) Over 2NN non-IID MNIST. (d)
Over LSTM non-IID SP.
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Fig. 10: Extending computation per user on CIFAR-10. (a)
Testing accuracies. (b) Training losses.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3332703

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern Queensland. Downloaded on November 20,2023 at 00:13:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SERVICES COMPUTING 11

TABLE 4: Numbers of communication rounds required to reach a targeted test-set accuracy using the existing FL methods
and our proposed ARU-REA over CNN MNIST (IID and non-IID).

Method

Testing accuracy (%) Communication round (speedup) Training wall-time (seconds)

E, B E, B E, B

1, 50 5, 10 1, 50 5, 10 1, 50 5, 10

IID Non-IID IID Non-IID IID Non-IID IID Non-IID IID Non-IID IID Non-IID

FedAvg [1] 98.73 97.54 98.64 95.59 226 1068 59 375 1912 19892 2792 39610

FedSVRG [2] 98.75 97.59 98.69 95.02 180 (1.26×) 1250 (0.85×) 75 (0.79×) 250 (1.50×) 12501 22506 17808 96490

FedProx [20] 98.74 97.71 98.64 95.71 372 (0.61×) 578 (1.85×) 26 (2.27×) 288 (1.30×) 2508 36414 3259 46597

MomFedAvg [19] 98.05 97.59 98.20 94.59 219 (1.03×) 976 (1.09×) 65 (0.91×) 328 (1.14×) 2149 22712 3178 42789

FedMatAvg [21] 97.26 96.40 98.49 94.54 248 (0.91×) 1080 (0.99×) 74 (0.80×) 346 (1.08×) 17985 36971 24789 67950

MIFL [27] 98.71 97.62 98.66 94.69 203 (1.11×) 997 (1.07×) 53 (1.11×) 284 (1.32×) 2807 39741 3549 47923

ARU 99.32 98.92 98.87 96.08 129 (1.75×) 141 (7.57×) 20 (2.95×) 92 (4.07×) 2263 24125 2945 41258

REA 99.15 98.76 98.70 96.19 141 (1.60×) 161 (6.63×) 25 (2.36×) 165 (2.27×) 2052 20147 2895 41023

ARU-REA 99.53 99.24 99.10 96.21 93 (2.43×) 112 (9.54×) 14 (4.21×) 79 (4.75×) 2563 24785 3690 45623

TABLE 5: Test-set accuracy using our proposed ARU-REA
and the existing robust FL methods for different percentages
of attacks over 2NN IID MNIST.

Method

Testing accuracy (%)

Attack (%)

10 20 50

FedAvg [1] without Byzantine Attack 96.86

FedAvg [1] with Byzantine Attack 84.87 80.98 78.91

RFA [28] 93.96 91.87 90.59

Krum [29] 92.89 91.16 90.12

TM [30] 92.88 90.94 89.59

RFedAvg [23] 93.05 91.98 90.47

ARU-REA 94.15 92.36 91.12

4.4 Experiment on CIFAR-10
After achieving notable results on the MNIST digit recog-
nition dataset and the SP language modeling dataset, we
apply our proposed ARU-REA approach to the complex
CIFAR-10 image classification dataset. Compared to Fe-
dAvg, we take more combinations of E and B into account
to determine how they regulate the test-set performance
and communication overhead. For the first four u values,
we perform 4,000 global rounds, and for the remaining
u values, 2000. The test-set accuracies and corresponding
communication speedups are summarised in Table 3 of
Appendix C of the supplemental document. However, the
test-set accuracies and training losses are shown in Fig. 10
while additional result graphs are provided in Appendix C
of the supplemental document. These findings show that
ARU-REA offers up to 10.54× communication speedups to
reach the required test-set accuracies and improves conver-
gence stabilization. ARU and REA also outperform FedAvg
and FedProx in terms of communication speedup, test-set
accuracy improvement, and stability of training loss for the
global model.

4.5 Extensive Comparison
In addition to the previous experiments and results on
our proposed ARU-REA, along with its two variants, and

the vanilla FedAvg [1] and FedProx [20] on three differ-
ent datasets (MNIST, CIFAR-10, and SP), we now extend
the evaluation of the ARU-REA approach by comparing
it with other four promising FL techniques: FedSVRG [2],
MomFedAvg [19], FedMatAvg [21], and MIFL [27]. We still
keep FedAvg and FedProx as the standard FL methods in
this comparative study. For FedSVRG, we set C = 1 for
all datasets as this technique necessitates complete user
participation to compute the whole gradient at each training
round. We set B and E to {1, 5, 10} and {10, 50}, respectively.
The communication speedups needed to achieve the speci-
fied test-set accuracies using CNN MNIST are displayed in
Table 4 while the results using 2NN MNIST, CNN CIFAR,
and LSTM SP are provided in Table 4 of Appendix D
of the supplemental document. We also provide the total
wall-clock training times for the proposed and compared
methods in these result tables using HPC system 1. As can
be shown, our proposed ARU-REA paradigm and its two
variants greatly outperform the investigated approaches
for all three datasets in terms of communication rounds
reduction and test-set accuracy improvement. When con-
sidering training time, we observe that our ARU and REA
individually require nearly the same amount of training
time as FedAvg. In contrast, the other investigated meth-
ods demand significantly more training time than FedAvg.
Furthermore, our ARU-REA necessitates less training time
than FedSVRG, FedProx, FedMatAvg, and MIFL, and only
slightly more time than the MomFedAvg method, with the
difference being negligible.

4.6 Robustness-Accuracy Tradeoff
Lastly, to validate the robustness of our proposed ARU-
REA approach against Byzantine attacks, we compare our
method with four potential robust FL approaches: RFA [28],
Krum [29], TM [30], and RFedAvg [23]. As before, we use the
FedAvg method without attacks as the baseline [28], [30], and
we also consider FedAvg with attacks as another compara-
tive method. In this case, we test the label-flipping attack,
which is the most common Byzantine attack used in FL
[34]. To generate the label-flipped local datasets, we follow
the symmetric approach [35], where the original class label
is flipped to any wrong class label with equal probability.
Specifically, we consider flipping different proportions (10%,
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20%, and 50%) of the labels in clients’ local training datasets
to the wrong labels while keeping the test dataset constant
to observe the model’s robustness. We conduct four different
experiments using all previously mentioned models and
datasets as follows: (i) 2NN IID MNIST with E=1, B=10,
and C=1.0 for 100 communication rounds; (ii) CNN non-IID
MNIST with E=5, B=10, and C=1.0 for 400 communication
rounds; (iii) CNN IID CIFAR with E=5, B=10, and C=1.0
for 200 communication rounds; and (iv) LSTM non-IID
Shakespeare with E=1, B = ∞ (500), and C=1.0 for 300
communication rounds. We present the results for the first
type of experiment in Table 5, and the results for the other
types of experiments can be found in Table 5, Table 6, and
Table 7 of Appendix E in the supplemental document.

From these results, it is evident that our proposed ARU-
REA approach offers better robustness by producing higher
accuracy in the presence of attacks compared to the in-
vestigated robust FL algorithms while performing almost
the same as the baseline FedAvg without attacks. This phe-
nomenon underscores a critical aspect of our work—the
ability to strike a balance between achieving high accu-
racy and maintaining robustness, even when subjected to
malicious attacks. Furthermore, our approach consistently
outperforms existing approaches as the level of attacks
increases, thereby providing a compelling illustration of the
accuracy-robustness tradeoff inherent in our FL framework.
As the intensity of attacks rises, our method not only sus-
tains its accuracy but also exhibits a remarkable capacity to
adapt and resist the detrimental effects of malicious clients.
This adaptability and resilience, demonstrated through our
experiments, reaffirm the effectiveness of our approach in
mitigating the impact of attacks while upholding accuracy.

5 CONCLUSION

This paper presents an adaptive regularized and outlier
resilient FL paradigm. First, we have provided an adaptive
local model method considering the dynamic regularization
of the federated objective function at each local training
round. The final local models that are updated in this way
aid in the rapid and steady convergence of the global model
and improve generalization performance during training
on the non-IID data. Secondly, we have provided a re-
silient model aggregation approach considering the impact-
minimization of the outlier weights from the locally trained
models at each round of global aggregation. Along with the
adaptive model update scheme, this approach of aggregat-
ing local models increases training convergence to improve
the generalization capabilities of the global model. To prove
the superiority of our FL technique, we have provided
theoretical results and conducted extensive experiments on
the IID and non-IID data partitioning from three different
datasets in varied contexts. The findings manifest that our
FL scheme outperforms the state-of-the-art FL approaches
in reducing communication overhead, increasing test-set ac-
curacy, effectively stabilizing the convergence of the global
model, and producing better robustness against attacks.

From the results and findings, it can be inferred that
the adaptive regularization-based local model update and
resilient estimation-based global model aggregation could
be a potential research area in the FL sector. Additionally,

as in the baseline FL framework, the use of additional
privacy-preserving methods, such as differential privacy
[36], encryption strategy [37], [38], and secure multi-party
computation [39] in the ARU-REA paradigm is still on the
rise.
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