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Abstract 

The John Deere 7760 (JD7760) cotton picker is used worldwide on mechanised cotton 

farms. More than 80% of Australian cotton farmers use it. A modified version, called 

CTF7760, was also adapted to controlled traffic farming (CTF) systems. The JD7760 

has improved operational safety and efficiency, and requires less operating and labour 

costs. However, its weight (≈32 tonnes) is about twice that of previous models which 

raises concerns about soil compaction.  

Vertosols are widely used for cotton production globally. It constitutes about 75% of 

soils under cotton production in Australia. However, Vertosols are highly susceptible 

to compaction even with one pass of machinery, especially under wet soil conditions. 

Soil compaction could translate into significant losses in crop yield and farm returns. 

The magnitude and distribution of soil compaction is dependent on factors such as 

wheel load, soil-tyre contact area, tyre inflation pressure and soil conditions. 

Controlled traffic farming, recently adopted by some Australian cotton farmers, is one 

of the effective solutions for reducing soil compaction. Nevertheless, the majority of 

Australian cotton farmers continue to use the conventional random traffic farming 

system (RTF).  

Previous studies on soil compaction due to JD7760 traffic focused on cotton crop 

response across the overall field. None appears to have investigated compaction and 

cotton response at the single row level. Thus, the aim of this study was to investigate 

the influence of soil compaction due to JD7760 and CTF7760 traffic on a row by row 

basis. This study involved field trials in 2016 and 2017. These trials were also used to 

validate the soil compaction model (SoilFlex) and cotton yield model (OZCOT- 

APSIM).  

Three farms with different traffic systems located at Koarlo (RTF), Undabri (RTF) and 

Yambacully (CTF) in Queensland, Australia were examined as study sites. Soil water 

content (Swc), dry bulk density (Pb) and soil penetration resistance (SPR) were 

measured before and after harvester traffic to a depth of 80 cm to assess the degree of 

soil compaction. These parameters were measured in cotton rows numbered Row 1, 

Row 2 and Row 3. At the RTF sites, Row 2 was located between the front dual-wheels 

of the JD7760 while Row 1 and Row 3 were located on the outer and inner sides of 
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the wheels, respectively. At the CTF site, CTF7760 wheel traffic was between Row 2 

and Row 3. Row 1 was separated from the wheel by Row 2 and a furrow due to 

harvester modification.  

Vertosol response to rainfall and seasonal climatic variability was also monitored from 

October 2016 to May 2017 after harvest. Two novel approaches were introduced for 

row by row yield data collection from the JD7760: (1) harvesting of a single row at a 

time and (2) use of harvester CAN-BUS to extract yield data for each row. Harvester 

efficiencies based on yield losses were also determined.  

It was found that increasing Swc due to rainfall in early October 2016 resulted in 

Vertosol swelling in the topsoil under both RTF and CTF. This led to a slight decrease 

in Pb and SPR and provided some compaction alleviation. High temperature in 

January 2017 resulted in Vertosol shrinkage which led to a significant increase in both 

Pb and SPR in the topsoil at all sites. The site under CTF exhibited lower sensitivity 

to seasonal variability with a lower rate of moisture loss (7%) in the topsoil for the 

period between January 2017 and May 2107, as compared to the RTF sites (18%). 

Significant compaction was observed after one pass of the JD7760 in the depth of 0–

30 cm under both RTF and CTF. Compaction due to CTF7760 traffic in the cultivated 

area was however significantly lower than that of the JD7760.   

Traffic over the furrows led to significant compaction which spread to neighbouring 

cotton rows and directly affected cotton yield. At the RTF sites, the 0–20 cm soil layer 

of Row 2 was the most affected by harvester traffic as it showed the highest Pb and 

SPR compared to Row 1 and Row 3. There was no impact on Row 1 after one pass of 

the CTF7760 harvester throughout the 0–80 cm depth. Traffic from the CTF7760 

harvester covered 33% of the farm compared to 66% for the RTF sites. This means 

that CTF provided protection to about two-thirds of the farm in terms of soil structure 

preservation and reduced compaction effects compared to RTF. 

Furthermore, it was found that Row 1 produced a higher yield than Row 2 and Row 3 

with both the CAN-BUS and hand-picking under RTF and CTF. Row 2 at the RTF 

sites was the most sensitive to harvester traffic, leading to 21% and 14% lower cotton 

yields with machine and hand-picked methods, respectively, than at the CTF site. 
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Cotton yield under CTF was up to about 33% higher than under RTF. The CTF7760 

harvester had a superior performance to the JD7760 harvester with 47%, 72% and 74%  

lower losses in Row 1, Row 2, and Row 3, respectively. The findings obtained with 

the soil compaction (SoilFlex) and yield (OZCOT-APSIM) models agreed well with 

field experimental results. 

Overall, both field experiments and computer simulation models were employed to 

achieve the aim of this study. It was found that harvester traffic caused significant 

compaction in cotton rows and furrows located between, adjacent to, and in wheel 

tracks under both RTF and CTF in both the topsoil and subsoil, which consequently 

led to decline in cotton yield. However, this impact was less under CTF. The main 

original contributions of this study are that it has provided new knowledge and a deeper 

understanding of the impact of the JD7760 on both soil compaction and cotton yield 

at the single row level. This information is crucial, not only to Australian farmers, but 

for improvements in management practices in cotton and other crop farming systems 

globally. This study has also introduced two new approaches for measuring row by 

row cotton yield. The findings presented in this thesis represent an important scholarly 

contribution to the growing body of knowledge related to soil compaction and cotton 

yield. 
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Chapter 1. Introduction 

 Overview 

This study investigated the soil compaction from a John Deere 7760 harvester and the 

impact of this compaction on cotton yield both across the field and at the single row 

level. This chapter presents a brief overview of the research topic. It provides 

background to the research problem and identifies the research questions. It also 

presents the main aim, hypothesis and research objectives. Finally, an outline of the 

thesis is presented to provide a brief description of the content of each chapter in the 

thesis.  

 Research background 

Cotton (Gossypium hirsutum L.) is an important industrial crop of considerable 

economic value to many countries. The major cotton producers include China, the 

USA, India, Pakistan, and Brazil. Jointly they produce about 75% of global production 

(Yadav et al., 2018). In recent years, Australia has become one of the leading cotton 

producers and the third-largest exporter, with the highest average yield per hectare in 

the world (Eskandari et al., 2017; Eskandari et al., 2018).  

Cotton performs well on Vertosols, earning the worldwide title “Black Cotton Soil” 

(Virmani et al., 1982; Forster et al., 2013). This reputation is due to cotton’s vertical 

root system which is not damaged by the cracking of the Vertosols (IUSS Working 

Group WRB, 2015). In Australia, cotton is mainly grown in New South Wales and 

Queensland on soil types such as Vertosol, Chromosol, Dermosol, and Sodosol 

(Hulugalle & Scott, 2008). Vertosols constitute around 75% of the soils under cotton 

production in Australia (McKenzie et al., 2003). Vertosols have high clay content and 

a strong shrink-swell capacity (Hulugalle & Scott, 2008). However, Vertosol is 

susceptible to compaction, especially under wet conditions (Chan et al., 2006). With 

just one pass of heavy machinery, a significant degree of compaction reaching deep 

into sub-surface layers can occur (Bennett et al., 2019).   
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Soil compaction is a major global challenge in mechanised crop production, and this 

is mainly due to machinery traffic. This challenge is exacerbated as machinery size 

and weight continue to increase in the quest to increase production (Hamza & 

Anderson, 2005; Glab, 2014). Traffic of larger and heavier machinery is the primary 

source of both surface and sub-surface compaction (Lipiec & Hatano, 2003; Zhang et 

al., 2006). Increasing compaction results in long-term soil structure damage and 

declining crop yield (McKenzie, 2010). More than 68 million hectares of the world’s 

soils have been affected by compaction (Oldeman et al., 2017). Compaction could cost 

the Australian agriculture sector approximately AUD850 million annually (Walsh, 

2002). One of the ways to prevent or minimise soil compaction in a highly mechanised 

farming system, is the adoption of a farming system that minimises machinery traffic.  

The farming systems, in terms of machinery traffic, employed by cotton growers 

around the world can broadly be classified as either random traffic farming (RTF) or 

controlled traffic farming (CTF). RTF is the conventional system of traffic in which 

there are no specified paths for machinery traffic. This implies that soil compaction 

due to machinery traffic occurs haphazardly on the cultivated field. Trafficking under 

RTF can cover 85% and above of the field whenever a crop is produced (Kroulik et 

al., 2009). Under CTF, dedicated permanent lanes are used year in and year out, 

restricting machinery passage to specific uncultivated paths (Tullberg et al., 2007; 

Antille et al., 2016). The main motivation for the adoption of CTF is that it 

considerably minimises the area of soil compaction and ensures the maintenance of 

soil properties of the cultivated portions of the farm, thereby enhancing crop yield and 

reducing energy requirements (Chamen 2011; Kingwell & Fuchsbichler, 2011; 

McPhee et al., 2013; ACTFA, 2017). CTF is capable of reducing the influence of 

compaction by more than 50% relative to RTF (Bennett et al., 2016; Galambosova et 

al., 2017). Furthermore, repeated traffic on permanent lanes may not normally permit 

natural soil alleviation; therefore, deep tillage may be required between crop cycles, 

which could aggravate the problem (Antille et al., 2019). 

Extensive field trial studies have revealed that soil compaction under RTF results in a 

significant change in soil properties (Nawaz et al., 2013). For instance, in silty clay 

loam soils, the random traffic of a sugarcane harvester caused significant compaction 
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resulting in an increase of approximately 9% in the dry bulk density of surface soil 

(Braunack & Peatey, 1999). In contrast, the traffic of a sugarcane harvester under CTF 

with 1.5 m row spacing, caused less deterioration in the physical properties of sandy 

clay loam soil on both seedbeds and plant-rows (Esteban et al., 2019). On the other 

hand, repeated traffic on the same track, regardless of light or heavy equipment could 

result in subsoil compaction and soybean grain yield reductions (Botta et al., 2004). 

CTF is currently adopted by the Australian cotton industry to restrict the impact of 

compaction on Vertosol soils, and increase yield (Tullberg, 2001). However, harvester 

traffic, regardless of RTF or CTF, remains the primary source of compaction leading 

to soil structure degradation and decline in yield (Bartimote et al., 2017; Bennett et al., 

2017).  

Around the world, farmers employ a variety of harvesters and pickers to harvest cotton. 

Australia and the USA are the main countries in the world where all cotton harvesting 

is fully mechanised (Muthamilselvan et al., 2007). One of the most popular cotton 

pickers in these countries is the John Deere 7760 cotton picker (JD7760). As present, 

this cotton picker is used by more than 80% of Australian cotton farms (Bennett  et al., 

2014; Roberton & Bennett, 2015). Its high adoption rate could be attributed to its 

improved operation safety, efficiency, and operating costs relative to previous models 

(Bennett et al., 2015). It also eliminates the need for module builders, boll buggies and 

tractors which help reduce labour cost (Martin & Valco, 2008; Willcutt et al., 2010; 

Bennett et al., 2017).  

With all these improvements, however, this cotton picker weighs approximately 32 

tonnes which makes it about two times as heavy as its previous model, the basket 

picker (Braunack & Johnston, 2014; Bennett et al., 2015). In an attempt to minimise 

compaction risk due to increased axle weight, its front axle has been fitted with dual-

wheels and larger tyres (520/85R42 R1R2) (John Deere, 2016). Nevertheless, traffic 

of the inner and outer front dual-wheels have been identified as a major cause of 

compaction to depths of up to 80 cm in Vertosols (Bennett et al., 2015; Bennett et al., 

2017). This leads to increased compaction in the wheel tracks, especially, in the topsoil 

(Bennett et al., 2015), which can also spread to adjacent rows (Braunack & Johnston, 

2014).  
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A modified version of the JD7760 picker adapted for harvesting under CTF is called 

the CTF7760. The modifications include an increase in the frontage width from 6 to 9 

m and the replacement of the front dual-wheels with single 620/70R42 wheels (Antille 

et al., 2016). Bennett et al. (2017) stated that the main difference between the use of 

the JD7760 and CTF7760 is that about 66% and 50% of cotton furrows are subjected 

to harvester wheel traffic under RTF and CTF, respectively. However, harvest traffic 

from the JD7760 picker, regardless of RTF or CTF, results in increased soil penetration 

resistance and bulk density in the wheel track at different soil depths (Bennett et al., 

2016). 

Harvest traffic is often a serious issue, particularly when soils are subjected to 

trafficking without annual ripping operations (Hamza & Anderson, 2005). Given that 

Vertosols readily experience significant compaction even due to a single pass, 

trafficking with the heavier JD7760 and CTF7760 worsens the compaction (Bennett 

et al., 2017). Daniells (1989) stated that the yield of cotton grown in Vertosol could be 

reduced by more than 33% when the soil is subjected to harvest traffic, particularly 

under wet conditions. Coelho et al. (2000) observed a significant decline in cotton 

yield due to compaction when dry bulk density increased to 1.60-1.70 g/cm3. Also, 

compaction resulting from the random traffic of a harvester is found to be the main 

reason for the significant decrease (24%) in cotton yield reported by Braunack (2013).  

A substantial amount of research (Bennett et al., 2013; Braunack, 2013; Braunack & 

Johnston, 2014; Antille et al., 2016; Bartimote et al., 2017; Bennett et al., 2017; 

Roberton & Bennett, 2017; Bennett et al., 2019) has identified the effect of compaction 

due to JD7760 traffic on soil structure and cotton yield. However, these results are 

usually represented as the overall results across the field. There appears to be a lack of 

studies presenting row by row impact of the JD7760 cotton picker traffic on soil 

compaction and cotton yield. Additionally, several studies have evaluated the 

efficiency of various cotton pickers and strippers based on yield loss. However, the 

efficiency of the JD7760 (standard configuration) and the CTF7760 (modified) cotton 

pickers have not been investigated. 
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Due to the wheel arrangement of the JD7760 and CTF7760 cotton pickers relative to 

cotton rows, the degree of compaction caused by wheel traffic will not be uniform for 

all rows. Braunack and Johnston (2014) stated that compaction caused by harvester 

wheel traffic could spread to adjacent rows. This makes it necessary to investigate the 

row by row variations in the impact of the JD7760 and CTF7760 traffic on soil 

compaction in Vertosol and on cotton yield. Understanding the row by row variation 

will enable cotton farmers to be more specific in their application of compaction 

treatment to different rows which can potentially translate to savings in finances and 

time. 

 Aim and hypothesis   

The aim of this research was to investigate soil compaction due to the JD7760 cotton 

picker and its influence on individual cotton rows under RTF and CTF. The hypothesis 

of this research was formulated as: 

Traffic of modern harvester (JD7760) increases soil compaction problems and has a 

negative impact on cotton yield at the single row level. 

 Research questions 

To address the stated research problem, the main research question was formulated as: 

What is the impact of the JD7760 cotton picker traffic on Vertosol soils compaction 

and cotton yield of individual rows under RTF and CTF? 

Based on the statement above, five research sub-questions were subsequently 

formulated: 

 How can the impact of the JD7760 traffic on soil compaction be measured? 

 Is it possible to employ existing on-board cotton picker sensors to collect cotton 

yield data at a single row scale under different levels of soil compaction? 

 What is the difference in harvest efficiency between the JD7760 standard 

configuration and the CTF7760?  
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 Which soil compaction models can be best used to simulate the impact of 

harvester traffic on Vertosol soils? 

 How can row by row cotton yield under different levels of soil compaction 

under CTF and RTF be predicted? 

  Research objectives 

The previous hypothesis was addressed through the following specific objectives: 

 To obtain and compare the parameters of soil compaction due to JD7760 traffic 

at a single row scale in different fields under RTF and CTF 

 To develop and evaluate different methods for estimating row by row cotton 

yield data 

 To compare the harvest efficiencies (harvest losses) of JD7760 and CTF7760  

 To select and utilise an appropriate soil stress model to simulate soil 

compaction due to JD7760 and CTF7760 traffic 

 To utilise a crop model to predict the impact of JD7760 and CTF7760 traffic 

on row by row cotton yield.  

The above objectives are linked with the research questions as follows: Objective 1 

addressed Question 1, Objective 2 addressed Question 2, Objective 3 addressed 

Question 3, Objective 4 addressed Question 4 and Objective 5 addressed Question 5 

(Figure 1.1). The contributions and significance of this study will be highlighted and 

further summarised in Chapter 10.  
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 Thesis outline 

This thesis consists of ten chapters. A brief overview of the chapters is presented 

below: 

 Chapter 1 provides a general background to this research and identifies the aim, 

hypothesis, research questions and objectives of the study. 

 Chapter 2 reviews the concept of soil compaction, compaction sources, the 

influence of machinery traffic on compaction, topsoil compaction versus 

subsoil compaction, Vertosol soils, controlled traffic farming, and managing 

and alleviating soil compaction. This chapter also provides an overview of the 

cotton crop, harvest methods, cotton row configuration, the impact of 

compaction on the crop performance, estimation of yield and harvest 

efficiency. In this chapter, soil compaction and agronomy models are reviewed, 

and a summary of the current literature is presented. 

 Chapter 3 sets out the specific methodologies used to investigate the effects of 

soil compaction on cotton yield row by row due to trafficking by the JD 7760. 

This chapter presents the experimental arrangements for each objective. Site 

description, design of experiments, equipment, parameters, experimental 

procedures, and laboratory work are presented. Data collection and statistical 

analysis are also explained. 

 Chapter 4 discusses the results of the influence of rainfall, seasonal variability, 

and harvester traffic on soil properties (soil water content, dry bulk density, 

and soil penetration resistance) overall field the three farm sites. This chapter 

presents the obtained data in the form of figures, tables, and contour maps. 

 Chapter 5 discusses the results of the influence of harvester traffic on soil 

characteristics between the different individual rows of each site. 

 Chapter 6 discusses the results of the effect of harvester traffic on soil 

characteristics at different soil depths in individual rows.  
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 Chapter 7 compares the results of the individual row yield data of each field in 

both machine and hand-picked methods. It also discusses the effect of traffic 

system and row spacing on the individual yield data between the study areas. 

Harvest losses are also investigated and compared in this chapter. 

 Chapter 8 first provides a review of the available soil compaction stress 

models. The framework and the key characteristics of SoilFlex model are then 

described in great detail. The model outputs are also discussed in this chapter. 

 Chapter 9 details existing crop performance models. In this chapter, OZCOT-

APSIM software model is employed to predict the cotton yield within the 

individual rows of the study areas. The key findings and OZCOT-APSIM 

validation are discussed in this chapter. 

 Chapter 10 summarises the conclusions and the new knowledge generated from 

this study. Further research is also recommended. 

 Figure 1.1 outlines the thesis structure and the relationship between these chapters. 
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Figure 1.1: Block diagram of a thesis outline  
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Chapter 2. Literature review 

  Introduction 

This chapter reviews the literature related to the concept of soil compaction, focusing 

on compaction causes, the effect of farm machinery on soil compaction, Vertosol soils, 

controlled traffic farming, and the impact of soil compaction on crop performance. 

Several strategies that are important for managing and alleviating soil compaction are 

considered. This chapter also provides an overview of the cotton crop, cotton pickers, 

estimation of yield and harvest efficiency. In addition, soil compaction and agronomy 

models are reviewed, and a summary of the literature is presented. 

 Concept of soil compaction 

Soil compaction is a major constraint to agricultural production and is primarily caused 

by the wheel traffic of heavy equipment (Nawaz et al., 2013; Khodaei, 2015; de Lima 

et al., 2017). Compaction is defined as the compression of soil aggregates into a 

smaller volume, which decreases the bulk of pore space available for air and water 

because it alters the spatial arrangement, size and shape of clods and aggregates and 

consequently the pore spaces both inside and between these units (Seifu & Elias, 

2019). In addition, changes in the soil structure and macroscopic due to compaction 

increase soil strength (Jury & Horton, 2004). After the passage of machinery, changes 

occur within the soil structure (Hillel, 1982). The arrangement of the primary particles 

collapse, whereby fine material is squeezed between larger and silt grains (Soane & 

van Ouwerkerk, 2013). Also, mechanical deformation, such as that occurring during 

tillage operations results in shear failure characterised through realignment of particles 

(Pestana et al., 2002; Chen & Zhang, 2019). Vertosols deformation may occur with no 

change in volume, resulting in minimal changes in bulk densities while soil physical 

properties are severely affected (Bakker & Davis, 1995).  

Compaction is a global and serious problem that affects crop growth (Soane & van 

Ouwerkerk, 2013). More than 68 million hectares of the world’s arable land has been 

affected by compaction (Oldeman et al., 2017). Annually, soil compaction costs the 

Australian agricultural sector about AUD850 million (Walsh, 2002). Compaction 

issues have increased over past decades due to the increasing size of farms, equipment, 
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and the time needed for sowing and harvesting operations (Tullberg, 2018). 

Compaction is associated with most field operations such as wheel traffic and tillage 

with various implements (Hamza & Anderson, 2005). Compaction caused by farm 

machinery traffic has adverse impacts on a number of soil physical properties (Chan 

et al., 2006). Protecting the soil by considering soil compaction issues has become a 

key concern and is well- recognised in many parts of the world (Farzaneh et al., 2012).   

Excessive compaction produces undesirable impacts that may lead to a reduction in 

soil quality and crop yields (Zhang et al., 2006). Compaction reduces soil aggregates, 

which consequently causes a serious disturbance in soil porosity (Horn et al., 1995; 

Hamza & Anderson, 2005). This implies that compaction results in increasing soil 

strength, dry bulk density and a reduction in the porosity at the expense of the large 

voids (Nawaz et al., 2013; Ungureanu et al., 2019). Soil compaction can be indicated 

or assessed by a wide range of soil properties such as soil strength, dry bulk density, 

soil water content and porosity (Alakukku, 1996; Sivarajan et al., 2018).  

The identification of factors affecting strength development is important for evaluating 

the impacts of compaction on soil characteristics and crop performance (Rodríguez et 

al., 2012). The influence of soil compaction on crop yields is the key issue behind 

much compaction research (Bennett et al., 2015). Few studies have been conducted to 

determine the influence of soil compaction on yield decline or the time taken for soil 

structure to recover (Braunack et al., 2012). In summary, soil compaction due to 

agricultural equipment is a global and serious problem for arable land, which can affect 

soil properties and plant growth. Thus, soil compaction should receive more close 

attention in global surveys of soil degradation (Soane & Van Ouwerkerk, 1995).   

 Fundamentals of compaction and causes 

The weight of machinery has dramatically increased in the past several decades due to 

an increase in food demand (D’Or & Destain, 2016). Compaction is regarded as a 

global concern facing the agricultural sector, particularly when the soil is subjected to 

trafficking without annual ploughing practices (Glab, 2014). Wheeled traffic is the 

primary reason behind the occurrence of compaction, leading to redistributed soil 

pores, changing soil properties and structural deterioration (Soane & Van Ouwerkerk, 
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1994; McKenzie, 2010; Shen et al., 2016). For example, intensive compaction due to 

machinery traffic can increase the dry bulk density of soils by approximately 32% and 

decrease soil porosity up to 17% (Frey et al., 2009).  

The investigation of compaction from agricultural machinery began in the 1950's 

(Schafer et al., 1992). Many studies were undertaken to determine the impact of 

compaction on soil physical properties, and its subsequent effect on crop production 

(Destain et al., 2014). In general, soil compaction studies are divided into three areas: 

(1) equipment manufactured to compress soil or machines used purposely to do so; (2) 

incidental compaction due to machines used for other purposes; and (3) management 

practices for controlling undesired compaction (Taylor & Gill, 1984).  

The key causes of compaction are external factors which can be summarised as: (1) 

topical or comprehensive compaction that is spread from the topsoil to the subsoil due 

to machinery; (2) physical compaction induced by frequent traffic; and (3) subsoil 

compaction caused by extreme surface loadings (Spoor, 2006). Moreover, machinery 

traffic exerts three key compacting forces on soils: (1) vertical stress due to axle loads; 

(2) shear stress induced by wheels slippage; and (3) the vibration of machines 

(Kozlowski, 1999).  

Soil compaction due to farm machinery traffic is almost always accompanied by shear 

deformation. Soil deformation depends on several factors, such as initial bulk density, 

particle size distribution, soil organic matter and moisture, ground slope, type of 

harvesting, number of skidding cycles, and the caution and expertise of machine 

operators (Mouzai & Bouhadef, 2011). Wheels, Tyres and rollers occur relatively high 

stresses which, since the affected soil can move away rather easily, may induce large 

deformations (Keller, 2004). Several studies reported that compaction and shearing 

due to machinery traffic affect many soil properties and processes and lead to soil 

physical degradation (Pagliai et al., 2003). Shearing can affect the quality of soil more 

negatively than compaction, particularly in the surface soil (Horn, 2003). Agricultural 

field traffic unavoidably exerts vertical and horizontal stress components as well as 

shear forces to the soil (Spoor & Godwin, 1979).  
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In brief, it has been demonstrated in this review that field traffic is a key source of soil 

compaction and deformation. Figure 2.1 summaries the causes of compaction and their 

influences on soil characteristics, with direct impacts on soil chemistry, plant growth, 

and biodiversity of the soil, and indirect impacts on exchanges of matter with external 

compartments (Nawaz et al., 2013). 

 

Figure 2.1: Causes and effects of soil compaction on soil properties, plant growth, 

and biodiversity of soils 

Source: Adopted by the researcher from (Nawaz et al., 2013). 
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 Topsoil compaction versus subsoil compaction  

Agricultural field traffic is the primary source of topsoil and subsoil compaction (Horn 

et al., 1995). Light equipment traffic results in one form of compaction in topsoil and 

usually does not exceed a depth of 10 cm (Zhang et al., 2006; Alaoui et al., 2018). 

Topsoil compaction can be characterised by decreased infiltration rate, increased 

ponding on the surface and a decline in plant growth (Raper & Bergtold, 2007). A 

major portion of topsoil compaction is due to the first pass of machinery (Alakukku et 

al., 2003; Hamza & Anderson, 2005). Topsoil compaction cannot be considered a key 

issue because soil has the ability to reconstruct due to human activities and 

environmental factors (Gysi et al., 1999). Normal tillage and natural processes can be 

sufficient to alleviate the influence of topsoil compaction (Hamza & Anderson, 2005). 

Excessive equipment traffic is the main cause of subsoil compaction which can be 

observed below a depth of 40 cm (Hakansson et al., 1994; Brus & Van Den Akker, 

2018). Subsoil compaction normally occurs due to the cumulative traffic impact of 

heavy machinery (Gysi et al., 2000; Raper & Bergtold, 2007). It is considered to be 

permanent because pore functions are not able to be renewed after the structural 

deterioration of soil (Hoefer & Hartge, 2010). Additionally, subsoil compaction is a 

hidden risk, which threatens important soil ecosystem services, including crop yields 

and soil functions that, in turn, affect the environment. Thus, subsoil compaction 

requires more attention, particularly in clay soil conditions (Lamandé & Schjønning, 

2018). Subsoil compaction is generally alleviated through deep ripping (Hamza & 

Anderson, 2003). However, deep ripping is expensive if required annually (Raper & 

Bergtold, 2007). To conclude this section, it can be stated that farm traffic can cause 

severe topsoil and subsoil compaction, including changing soil properties and plant 

growth decrease.  
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 Vertosol soils 

Vertosol soils or dark cracking clays are a collection of soils with heavy texture, dark 

colours, and high clay content (Eswaran et al., 1988). Vertosols exist in Australia, the 

USA, India, China, Sudan, Chad and Ethiopia (Virmani et al., 1982; Ahmad, 1983; 

Zaffar & Sheng-Gao, 2015). In Australia, Vertosol soils are often found in Queensland, 

New South Wales, coastal districts of the Northern Territory, and Tasmania, which 

combined, cover about 70.5 million hectares (Virmani et al., 1982). This soil has a 

high percentage of clay content, around 40–80 g/100 g, and is normally quite dark in 

colour due to the presence of commingling calcium and high quantities of magnesium 

(Hulugalle & Scott, 2008; Kettler et al., 2009). The texture of Vertosol is mostly lighter 

in the topsoil, and the clay content increases with increasing depth towards the subsoil 

(Daniells et al., 1996). 

The major types of Vertosol are black, brown and grey (McKenzie et al., 2003). These 

soils are widely used for dryland and irrigated cotton (Jutzi, 1988; Cattle & Field, 

2014; Isbell, 2016; Knox & Griffiths, 2017). One advantage of Vertosol is its inherent 

ability to self-repair because of high clay content and clay type that governs volume 

change (McKenzie & McBratney, 2001). However, water holding capacity and 

drainage are issues (Ghosh et al., 2010). Furthermore, a unique characteristic of 

Vertosol is its shrink-swell property which is related to its cephalic characteristics and 

smectitic content (Potter & Chichester, 1993; Patil et al., 2011).   

The shrink-swell property of Vertosol is highly dependent on its soil water content 

(Kamara & Haque, 1988). Dry conditions result in shrinkage, while the wet conditions 

result in swelling (Hakansson & Lipiec, 2000). Therefore, Vertosol soils can self-

repair after multiple wet-dry cycles (Ahmad, 1983; Coulombe et al., 1996; Pillai & 

McGarry, 1999). Nevertheless, a major issue with Vertosol soil is its ability to readily 

respond to compaction, especially when wet (Chan et al., 2006). Significant 

compaction can occur in Vertosols after one pass of heavy machinery, and this impact 

can reach into sub-surface layers (Bennett et al., 2019). Compaction elimination in 

Vertosols may cost the Australian cotton industry around AUD $1.3 billion annually 

(Watson et al., 2000).  
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Overall, this section has provided a brief summary of the literature relating to Vertosol 

in terms of its’ classification, behaviour and problems. It is one of the most common 

soil in several countries. Vertosols contain high clay texture with strong high shrink-

swell capacities. It might be able to improve its structure after multiple dry-wet cycles. 

However, trafficking under wet conditions could cause soil structural damage rapidly. 

 Effect of machinery traffic on soil physical properties 

There is a wide range of soil parameters that can describe soil quality. Soil function 

parameters (e.g. physical and cultural environment, filtering and transformation of 

compounds, source of raw materials, storage, habitats for living creatures and gene 

pools, production of food and biomass, carbon pool, and archive of geological and 

archaeological heritage) are closely related to soil quality, which was defined by an 

American Soil Science Society (Karlen et al., 1997) 

There are three main categories of soil properties: chemical, physical and biological 

(Pouyat et al., 2010). Compaction due to farm machinery is an important form of 

physical soil deterioration (Batey, 2009). Several methods were used in civil and 

agricultural engineering research to ascertain the degree of soil compaction, both in 

the laboratory and in situ.  In agricultural soils, various criteria, indices and approaches 

such as soil strength, cone index, dry bulk density, soil water content, porosity, pore 

size distribution, infiltration, plant growth, root density, and plant yields have been 

employed in different studies to identify soil compaction (Kulli et al., 2003; McGarry 

2003; Keller et al., 2013; Lestariningsih & Hairiah 2013; Keller et al., 2015; Sivarajan 

et al., 2018; Seifu & Elias, 2019). Among these methods, the static cone penetrometer 

has overmuch assented between researchers in the worldwide and accepted as a 

standard method for soil compaction measurements (Perumpral, 1987). Standard 

Proctor Compaction test, Rubber-balloon test, Sand Cone test, Nuclear test and 

Penetrometer test are the major methods used by civil engineers to assess compaction 

status (Table 2.1) and rarely used by soil scientists (Park, 2010; Edwin et al., 2015). 
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Table 2.1: The methods used for measuring soil compaction by civil engineers 

Method Location of 

test 

Principle of test Comments 

Standard Proctor 

Compaction test 

Laboratory   Determine soil 

compaction properties, 

especially the relationship 

between water content 

and density of soils 

 Widely used in civil and 

agricultural engineering 

research 

 

Rubber-balloon 

test 

On-site  Measure the density and 

moisture content of 

compacted soil 

 More expensive and the 

risk of error is high 

Widely used by civil 

engineers 

Sand Cone test On-site  Determine the density of 

compacted soils 

 Inexpensive and fairly 

accurate  

Nuclear test On-site  Measure the density and 

moisture content of the 

compacted soil 

 Quick and fairly       

accurate 

  Used by civil       

engineers 

Penetrometer 

test (static and 

dynamic) 

On-site and 

Laboratory  
 Measure soil strength  Widely used in civil and 

agricultural engineering 

Compaction due to agricultural field traffic directly influences on soil physical 

properties than other soil functions (Lal, 1997; Vogel et al., 2019). Measuring physical 

properties provides information related to the soil’s ability to withstand physical forces 

associated with wheeling traffic, rapid water entry into the soil that contribute to 

aggregate breakdown, compaction, soil dispersion, and erosion (Horn et al., 1995). 

Compaction results in an increase in bulk density owing to soil particles, reduction in 

water permeability owing to a reduction in pore spaces and increase resistance 

penetration of water, nutrient, roots and soil strength (Hamza & Anderson, 2003). 

Several studies (Hakansson & Lipiec, 2000; Radford et al., 2000; Braunack & 

Johnston, 2014; McPhee et al., 2015; Bennett et al., 2017; Bennett et al., 2019) used 

soil water content, dry bulk density and soil penetration resistance to determine the 

impact of machinery traffic on soil compaction. Thus, these parameters are highlighted 

in this study. Table 2.2 summarises the studies that employed soil and agronomic 

parameters as indices for soil compaction. 
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Table 2.2a: Soil and agronomy parameters used as an indicator for soil compaction 

Author’s Country Soil type Soil parameter Agronomy 

parameter 

Meek et al. 

(1992) 

Australia Sandy loam Soil water content and 

Dry bulk density 

- 

Daniel & 

Wu (1993) 

USA Clay Soil water content and 

hydraulic conductivity 

- 

Al-Adawi & 

Reeder 

(1996) 

USA Silty clay 

loam 

Soil penetration 

resistance, dry bulk 

density and total porosity 

Corn and 

soybean yields 

(Alakukku 

1996) 

Finland Clay Total porosity and pore 

size distribution 

- 

Jansson & 

Johansson 

(1998) 

Sweden Silty loam Dry bulk density, 

penetration resistance, 

intrinsic air permeability, 

saturated hydraulic 

conductivity, porosity and 

pore-size distribution 

- 

Abu-

Hamdeh 

(2003) 

USA Clay loam Dry bulk density Plant height 

and root 

density 

Hamza & 

Anderson 

(2003) 

Australia 

 

Sandy clay 

loam 

Dry bulk density, soil 

penetration resistance, 

soil water content, 

porosity 

Wheat yield, 

chickpea yield 

Hulugalle et 

al. (2007) 

Australia 

 

Clay Total porosity and dry 

bulk density, soil water 

content 

Cotton yield 

Botta et al. 

(2009) 

Argentina Clay Soil penetration resistance - 

Braunack et 

al. (2012) 

Australia 

 

Clay Soil penetration resistance Barley growth 

Van Quang 

& Jansson 

(2012) 

Vietnam Silty clay Soil penetration 

resistance, dry bulk 

density, water content 

- 

Moraes et al. 

(2013) 

Brazil Silty clay Soil penetration 

resistance, dry bulk 

density 

- 

Braunack & 

Johnston 

(2014) 

Australia 

 

Clay Soil penetration resistance - 

Destain et 

al. (2014) 

Belgium Silt loam Cone index - 
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Table 2.2b: Soil and agronomy parameters used as an indicator for soil compaction 

(continued) 

McPhee et 

al. (2015) 

Australia 

 

Clay loam Soil penetration resistance, 

dry bulk density, porosity, 

soil water content 

Yield 

Schjønning 

et al. (2016) 

New 

Zealand 

Sandy loam Soil penetration resistance  Yield 

Roberton & 

Bennett 

(2017) 

Australia 

 

Clay Soil water content - 

Bennett et 

al. (2017) 

Australia 

 

Clay Soil water content, dry bulk 

density, soil penetration 

resistance 

Cotton yield 

Bartimote et 

al. (2017) 

Australia 

 

Clay Soil water content, dry bulk 

density 

Cotton yield 

Sivarajan et 

al. (2018) 

USA Sandy loam Soil penetration resistance Corn and 

soybean 

growth 

Bennett et 

al. (2019) 

Australia Clay Soil water content and dry 

bulk density 

- 

2.6.1. The dry bulk density of the soil  

The dry bulk density (Pb) of a soil reflects the soil’s capability to function for structural 

support, water movement and soil aeration (Dexter & Czyż, 2000; Lampurlanés & 

Cantero-Martinez, 2003). Dry bulk density is defined as the mass of dry soil per unit 

volume of the soil (Hossain et al., 2015). The dry bulk density of soil is an important 

indicator for assessing soil health and compaction status (Nawaz et al., 2013; Hugar & 

Soraganvi, 2014; Vero et al., 2014). It is inversely related to soil porosity, which gives 

an idea of the pore space left in the soil for air and water movement (Lampurlanés & 

Cantero-Martinez, 2003). The volume of a typical soil is approximately 50% solids 

and 50% pore space (25% water and 25% air) (USAD, 2017).   

Dry bulk density of soil is usually determined by direct methods (Cores, Clod and 

Excavation) and indirect methods (Radiation and Regression) (Al-Shammary et al., 

2018). Direct methods are more practical and widely used by civil engineers and 

agricultural soil scientists (Ma et al., 2013). Indirect measurements can have many 

limitations, such as proneness to large errors when sampling different locations and is 

time consuming (Xu et al., 2016). Core sampling is the most common method 

employed by scientists to measure Pb in agricultural soils because it is simple, quick 
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and inexpensive (Casanova et al., 2016; Al-Shammary et al., 2018). This method 

requires a volumetric cylinder or solid ring to be pressed or hammered into the soil to 

take a core sample (McKenzie et al., 2002). Figure 2.2 summaries the procedures for 

measuring the dry bulk density of soil using direct methods (Core, Clod, and 

Excavation) (Al-Shammary et al., 2018). 

 

 

Figure 2.2: Direct methods (Core, Clod, and Excavation) used for measurement of Pb 

Source: Adopted by the researcher from (Al-Shammary et al., 2018). 
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The Pb values of agricultural soils often range between 0.9 g/cm3 and 1.8 g/cm3 

(Erbach, 1987). There is an optimum dry bulk density at which soil pore size 

distribution results in the retention of the right amount of air and water needed for plant 

growth (Lutz, 1952). The dry bulk density of the soil in one way might reflect soil 

physical functioning, the type and arrangement of soil aggregates along with the 

distribution of pores (Osunbitan et al., 2005; Munkholm et al., 2016). Changes in Pb 

affect porosity and water movement due to changes in the pore size distribution 

(Kosugi, 1999; Bhattacharyya et al., 2006). With increased Pb (due to compaction), 

soil aggregates are packed more closely and thus, the pores between them are smaller 

than at lower bulk densities (Garey, 1954; Zhang et al., 1993).  

Compaction is the key reason for increasing soil bulk densities. When compaction 

occurs, soil particles are rearranged, leading to changes in pore size distribution and 

pore connectivity (Nagy et al., 2018). Compaction can reduce the number and size of 

large pores and increase the mechanical resistance of the soil by pressing soil particles 

more closely together (Xiao et al., 2018). Increasing compaction of soil means 

increasing Pb which in turn affects porosity, pore size distribution, infiltration, root 

penetration, plant nutrient availability, and soil microorganism activity, which impact 

key soil processes and productivity (Horn & Smucker, 2005; Carminati et al., 2008; 

Lipiec et al., 2012). Furthermore, increasing bulk density due to excessive compaction 

results in increased mechanical impedance, creating unfavourable growing conditions 

for roots as supplies of air, water, and nutrients are reduced (Daniells et al., 1996; 

Houlbrooke et al., 1997; Jansson & Johansson, 1998). Table 2.3 demonstrates the key 

relationship between dry bulk density and plant growth (USAD, 2017).  
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Table 2.3: The main relationship between Pb and root growth based on soil texture 

 

Soil Texture 

Ideal bulk densities 

for plant growth 

(g/cm3) 

Bulk densities that 

affect root growth 

(g/cm3) 

Bulk densities 

that restrict root 

growth (g/cm3) 

Sands, loamy sands < 1.60 1.69 > 1.80 

Sandy loams, loams < 1.40 1.63 > 1.80 

Sandy clay loams, clay 

loams 

< 1.40 1.60 > 1.75 

Silts, silt loams < 1.40 1.60 > 1.75 

Silt loams, silty clay 

loams 

< 1.40 1.55 > 1.65 

Sandy clays, silty 

clays, clay loams 

< 1.10 1.49 > 1.58 

Clays (> 45% clay) < 1.10 1.39 > 1.47 

Several studies described the process of soil densification during traffic on the overall 

field and its consequences on crop growth (McPhee et al., 2015; de Lima et al., 2017; 

Sivarajan et al., 2018; Bennett et al., 2019; Esteban et al., 2019). For example, traffic 

by light tractors leads to increased Pb of loam soil by approximately 15% in the surface 

layer (Al-Ghazal, 2002). Soil compaction due to equipment traffic results in a 

significant increase in Pb of clay loam soil beneath the wheel tracks; by 9% in the sub-

surface layers (Farhadi et al., 2013). Compaction caused by the passage of heavy 

machinery increases the dry bulk density of clay soils to 1.26 g/cm3 at a depth of 10–

25 cm (Nawaz et al., 2013). The use of heavy machinery under wet conditions is the 

key source of increasing Pb of sandy loam soil to about 1.72 g/cm3 in the topsoil (Meek 

et al., 1992). Compaction due to the heavy wheel traffic of tractors increases Pb of 

clay soil rapidly, by approximately 15% at a 15–25 cm depth (Chan et al., 2006). The 

Pb values of clay loam soil increases by 13% in the surface soil after four passes of 

the tractor wheel (John Deere 3350) (Ahmadi & Ghaur, 2015). 

The long-term impacts of soil compaction by harvester traffic induces an increased Pb 

of sandy loam soils to 1.74 g/cm3 at the depth of 20–25 cm (Twum & Nii-Annang, 

2015). Compaction due to one pass of harvester results in an increased Pb of silty clay 

loam by 14% in the topsoil, while frequent traffic causes a significant increase in dry 

bulk density in both surface and sub-surface layers (Hamza & Anderson, 2005; Moraes 

et al., 2013). Repeated traffic using different types of farm machinery is the key reason 
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for the increasing Pb of sandy clay loam soils; by approximately 9% in the surface 

layer (Fasinmirin & Joseph, 2012).  

Furthermore, compaction due to one pass of the JD770 cotton picker increases the dry 

bulk density of Vertosol from 1.54 to 1.62 g/cm3  at the depth of 20–30 cm (Woodhouse 

et al., 2013). The average Pb of Vertosol rapidly increases after single traffic, of a John 

Deere 7760 harvester, by approximately 11% throughout the 0–30 cm depth (Bennett 

et al., 2015). Trafficking of the JD7760 under controlled traffic farming causes lower 

compaction by 6% in the surface layer when compared to random traffic farming 

systems (CFI, 2016). However, a significant increase in the Pb of Vertosol has been 

observed after a single pass by the JD7760, irrespective of the traffic system applied 

(Bennett et al., 2017). 

Overall, this section has provided a brief summary of the literature relating to the 

process of compaction in terms of changing pb due to mechanised traffic on the overall 

field under different soil types, depths and traffic conditions. It was found that the dry 

bulk density is an appropriate index for assessing soil compaction due to harvesters 

traffic. 

2.6.2. Soil penetration resistance 

The main physical properties that control the penetration resistance (SPR) of soils are 

the degree of soil compaction, soil water content and particle size distribution (Bennie, 

1988; Ampoorter et al., 2010; Medina et al., 2012; Van Quang & Jansson, 2012). 

Penetration resistance results from cohesive forces between soil particles and their 

frictional resistance (Landsberg et al., 2003). The SPR test is widely used as an 

indicator to evaluate soil structure and compaction status (Moraes et al., 2014a). Soil 

penetration resistance has a strong correlation with Pb when the measurements are 

taken at the same soil water content (Bennie, 1988). However, dry bulk density has 

not the major impact on SPR in the short-term (Van Quang & Jansson, 2012).  

Several techniques were used to measure soil strength in situ including cutting blades, 

rectangular cutting plate, ring cutting plate and cone penetrometer (Ajdadi & Gilandeh, 

2017). The penetrometer method is widely used by researchers to quantify the soil 

quality and to identify the layers with an increased degree of compaction (Chennarapu 
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et al., 2018). Many types of cone penetrometers such as Static, Dynamic, Quasi-static 

and Dynamic, Inertial, Electric, Laboratory, and Dutch have been employed by civil 

engineers and soil scientists to assess compaction status (Perumpral, 1987; Figueiredo 

et al., 2011; Van Quang & Jansson, 2012; Lunne et al., 2014). Penetrometers are based 

on two principles of penetration: (1) static penetrometer or penetrograph: in operation, 

the whole set is pressed against the soil; and (2) dynamic or impact penetrometer: in 

operation, the rod penetrates the soil according to the impact of a weight falling from 

a constant height, in freefall (Stolf et al., 1998; Moraes et al., 2014b).    

The static penetrometer is widely used by agricultural researchers to indicate soil 

compaction at field scale (Bengough et al., 2000). It is a quick and suitable method to 

provide valuable information and is easy to repeat in situ (Ayers & Perumpral, 1981). 

However, this technique is not recommended under very wet conditions (McKenzie & 

McBratney, 2001). A static penetrometer consists of a shaft with a 'pointed or blunt 

tip' on one end that is inserted into the soil to measure soil resistance (Arriaga et al., 

2014). Two cone base dimensions are recommended by (ASAE, 1986): (1) 129 mm2, 

12.83 mm diameter (0.2 in2. , 0.505 in. diameter) with 9.53 mm (0.375 in.) diameter 

shaft for hard soils; and (2)  323 mm2, 20.27 mm diameter (0.2 in2. , 0.798 in. diameter) 

with 15.88 mm (0.625 in.) diameter shaft for soft soils.  

Static cone penetrometers were employed extensively in field trials to measure SPR 

and to assess soil compaction due to agricultural machinery traffic (Hulme et al., 1991; 

McKenzie & McBratney, 2001; Braunack & Johnston, 2014; Bennett et al., 2017). It 

has been revealed that soil penetration resistance values increase exponentially as Swc 

decreases and Pb increases (Moraes et al., 2012). For example, SPR ranged between 

3.7–4.2 MPa when Swc was approximately 16% (Jobbagy et al., 2014). SPR also 

reached up to 3 MPa when the compactness degree was of 85% (Hakansson & Lipiec, 

2000).  

The excessive use of machinery in agriculture tends to increase SPRto up to 5 MPa, 

which results limits the expansion of a crop root’s system and the absorption of water 

and nutrients (Rosolem et al., 2002; Lampurlanés & Cantero-Martinez, 2003). High 

resistance to penetration can be observed, after the single traffic of equipment, in the 

surface layer (Van Quang & Jansson, 2012). Frequent traffic causes significant 
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compaction, which leads to increased soil penetration resistance in sandy loam soils to 

2–3 MPa at the depth of 0–20 cm (Reintam et al., 2009). Table 2.4 shows the critical 

boundary of SPR for different soil types (Gebauer et al., 2012). 

Table 2.4: Critical values of penetration resistance of soil types 

Soil type Soil penetration resistance (MPa) 

Sandy loam and sand more than 4 

Sandy clay 3.7 – 4 

Silt 3.5 – 3.7 

Silty clay 3.2 – 3.5 

Clay less than 3.2 

The primary traffic from a harvester caused significant compaction, which increased 

soil penetration resistance of about 0.5 MPa in the 15–25 cm depth (Landsberg et al., 

2003). Significant compaction was observed underneath the wheel track of a combine 

harvester resulting in an increased SPR from 2.5 to 3 MPa throughout the 0–60 cm 

depth (Svoboda et al., 2016). Traffic from a sugar beet harvester induced significant 

compaction in silty clay loam soils, which increased soil penetration resistance up to 

3 MPa at the depth of 30 cm (Schafer-Landefeld et al., 2004). Repeated traffic by a 

grain harvester was the major reason for the increased resistance in clay soils in both 

surface and sub-surface layers (Moraes et al., 2013). Furthermore, traffic from a 

sugarcane harvester resulted in increasing penetration resistance of silty clay soils to 3 

MPa at the depth of 25 cm (Braunack & Peatey, 1999). 

Traffic from the JD7760 cotton picker produced significant compaction, which led to 

increased resistance of Vertosol to penetration underneath the dual-wheel, which 

expanded to reach neighbouring cotton rows (Braunack et al., 2012; Braunack & 

Johnston, 2014). Significant compaction caused by the JD7760 traffic led to an 

increase in Vertosol resistance to about 2–3 MPa at the depth of 100 cm compared to 

before the traffic occurred (Bennett et al., 2016). 

In conclusion, this section has provided a brief summary of the literature relating to 

the effect compaction due to wheeled traffic on soil penetration resistance. It has been 

identified that harvesters traffic regardless of the number of passes is a key reason for 

increasing soil penetration resistance in both surface and sub-surface layers for the 
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different soil types. Therefore, SPR is a useful indicator for assessing soil compaction 

under different traffic systems. 

 Effect of soil water content on soil compaction 

Soil water content (Swc) is a soil characteristic that plays a critical role in a large 

variety of biophysical processes such as seed germination, plant growth, and plant 

nutrition (Mosaddeghi et al., 2000; Keller, 2004). It is expressed on a volumetric or 

gravimetric basis. The definition of volumetric water content (θv) is the volume of 

water per unit volume of soil (Jury & Horton 2004). Gravimetric water content (θg) is 

defined as the mass of water per unit mass of dry soil (Hillel, 1982).  

Swc is a function of changing soil physical characteristics (Hillel, 1982). It is a factor 

that significantly influences compaction (Malizia & Shakoor, 2018). Small changes in 

the water content of soil result in a rapid increase in the potential for compaction 

(Roberton & Bennett, 2017). Compaction can be minimised or delayed when farm 

practices are carried out at the appropriate soil water content level (Hamza & 

Anderson, 2005). The standard Proctor Test is often performed by geotechnical 

engineers to determine the relationship between Swc and dry bulk density which can 

be achieved at maximum compaction (Das & Sobhan, 2013).  

The Proctor Test demonstrates that soil compaction depends on Swc, soil type and the 

compactive effort applied (Sridharan & Sivapullaiah, 2005). The compactive effort is 

related to the amount of mechanical energy that is applied to the soil mass (Das & 

Sobhan, 2013). Figure 2.2 presents an example of a typical compaction curve for a 

medium textured soil from a standard Proctor Test. Increased compactive effort results 

in greater dry unit weights because the shape of the no air voids line must occur at 

lower optimum moisture contents. This means that under higher compactive efforts, a 

lesser amount of moisture is required to compact the same soil to its maximum (but 

lower) density. Hence the compaction under the same load and machine is different in 

different soils and moisture contents (Bowles, 1979). 

Starting from the dry side in Figure 2.3, dry bulk density can be seen to increase with 

increasing soil water content until it reaches the peak called maximal density at Swc 
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value called optimum moisture, above which dry bulk density decreases (Hillel, 1982). 

This phenomenon could be explained by the fact that dry soil resists compaction due 

to its stiffness and the bonds between particles. As Swc is increasing, the water acts as 

a lubricant between soil particles, leading to reduced cohesive forces between 

particles, permitting them to slip over one another easily (Al-Shayea, 2001; Craig, 

2004; Das & Sobhan, 2013). At saturation, no amount of kneading results in increased 

in dry bulk density of the soil (Hillel, 1982). 

 

Figure 2.3: Dry bulk density-water content curve for a medium textured soil for a 

given compactive effort 

Source: Adopted by the researcher from (Das & Sobhan 2013). 

In the case of Australian soils, for example, Vertosol has a high capacity for water 

storage due to a high proportion of clay mineral (Virmani et al., 1982; Bennett et al., 

2019). More than 93% of Vertosol compaction can occur when Swc is about 24% 

(Bennett et al., 2016; Roberton & Bennett, 2017). Thus, machinery traffic on the soil 

with higher water content (≥30%) has even more adverse influences on the soil 

properties (Raper, 2005; McPhee et al., 2015). Trafficking under wet conditions 

(>60% field capacity) causes both topsoil and subsoil compaction (Allen & Musick, 

1997). Traffic from the JD7760 cotton picker produces significant compaction in the 

surface soil when Swc is at 21.4% (Bennett et al., 2017). Overall, it is critical to know 
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the appropriate level of Swc at which trafficking and farming operations cause minimal 

compaction. This helps determine the correct timing for those operations to avoid the 

risk of soil compaction however, farmers believe that cultivation and harvesting are 

more important than avoiding soil compaction (Bennett et al., 2015). 

 Relationship between machinery traffic and compaction 

With the need for machinery, completely avoiding soil compaction may be extremely 

difficult, if not impossible (Schafer et al., 1991). The problems of both topsoil and 

subsoil compaction are closely related to ground contact pressure and axle load and 

tracks (Botta et al., 2002; Keller et al., 2007). Compaction due to wheeled traffic results 

in changing soil volume through the applied loads to increase soil densities and 

decrease porosity, i.e. compress soil aggregates (Wolkowski & Lowery, 2008). 

Compaction mainly occurs when farm machinery passes over the soil surface causing 

a decline in volume pore available for water and air as the mineral components are 

compressed closer together (Raper, 2005). In other words, soil compaction occurs 

when machinery traffic damages soil structure (Chamen et al., 2015). 

Soil compaction by mechanised traffic is characterised by a reduction in total porosity 

in the area underneath the wheel track at the surface soil (Hamza & Anderson, 2005). 

The degree of soil compaction due to equipment traffic depends on the following: (1) 

soil strength, which is influenced by soil characteristics such as soil texture and organic 

matter content; (2) structure of the tilled layer at wheeling and its water status; and (3) 

loading which depends on the axle weight, tyre size, machinery velocity, and tyre-soil 

interaction (Horn et al., 1994; Horn et al., 1995; Hamza & Anderson, 2005). 

Trafficking resulting from normal farming operations is a key source of soil structure 

damage, and the occurrence of  topsoil and subsoil compaction (Voorhees et al., 1978; 

Botta et al., 2002; Ghadiri et al., 2015). Traffic from large machinery with dual wheels  

induces a significant level of compaction (Wolkowski & Lowery, 2008). Heavier 

machinery traffic changes soil structure with each passage, which leads to increased 

Pb and reduces its production capacity (Naseri et al., 2007; Ampoorter et al., 2012). 

Traffic from a combine harvester in wet conditions produces significant compaction, 

which results in poor Vertosol structure at the 40 cm depth (Radford et al., 2000; 



USQ                                                                                  Chapter 2: Literature Review  

29 | P a g e  

 

Schafer-Landefeld et al., 2004). The repeated traffic of a sugarcane harvester produced 

considerable compaction resulting in soil structure damage and reduced yield 

(Braunack et al., 2006). The influence of farm machinery traffic on soil properties (soil 

water content, dry bulk density and SPR) has been highlighted in Section 2.6. In brief, 

more studies are required for soil compaction resulting from mechanised operations 

performed under different field conditions. 

 Effect of the John Deere 7760 cotton picker traffic on 

soil compaction 

Since its introduction in 2008, the new round module builder JD7760 has been widely 

adopted by the Australian cotton industry (Bennett et al., 2013; Van der Sluijs et al., 

2015), with an adoption rate over 80% (Bennett  et al., 2014; Roberton & Bennett, 

2015). This picker is fitted with six spindles to harvest six cotton rows individually 

(Woodhouse et al., 2013). The machine has the ability to mechanically build, wrap, 

eject and drop regular and consistent modules without stopping (Bennett et al., 2015). 

However, its weight has increased to around 32 tonnes, i.e. twice  the weight of John 

Deere’s previous picker called the basket picker (Braunack et al., 2012; Gebauer et al., 

2012). Figure 2.4 shows the new generation of the John Deere 7760 cotton picker. 

  

Figure 2.4: The John Deere 7760 cotton picker, noting that the harvester on the right 

has a front dual-wheel 

Source: Adopted by the researcher from a field trial. 
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Given that over 80% of Australian cotton farms are now being harvested with the John 

Deere 7760, its weight raises a major soil compaction concern the Australian cotton 

industry (Bennett  et al., 2014; Roberton & Bennett, 2015). Several factors can directly 

affect the range and level of compaction, including machine size, number of passes, 

harvest velocity, and wheel slippage (Kolka et al., 2012).  

Many studies highlighted the effect of compaction by wheel traffic on soil, while fewer 

studies addressed its influence on crop yields (Neale, 2009). Both growers and the 

industry are seeking to maximise profits in their farming systems by employing larger 

and wider machines (CFI, 2016). The John Deere company has offered many 

advantages of using the JD7760 such as safer operation, high efficiency, and the lowest 

operating costs (Bennett et al., 2015). Unfortunately, a heavier harvester causes 

significant compaction which can reach the depth of 100 cm (Kozlowski 1999; 

Arvidsson et al., 2001; Berisso et al., 2012).  

Compaction by the JD7760 can increase soil strength rapidly and it can reach adjacent 

cotton rows (Braunack et al., 2012). Significant compaction was observed after a 

single pass of the JD7760 at the 0–80 cm soil depth (Bennett et al., 2015). However, 

the adoption of controlled traffic farming may reduce soil compaction risks 

(McKenzie, 1998; Braunack et al., 2006). Overall, the Australian cotton industry might 

need more information to overcome soil compaction hazard associated with the 

JD7760 (Bennett  et al., 2014). Figure 2.5 shows the general framework of the effect 

of the JD7760 in relation to different aspects, as suggested by Bennett et al. (2015). 
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Figure 2.5: A general framework of the effect of the JD7760 cotton picker in 

different aspects 

Source: Adopted by the researcher from (Bennett et al., 2015). 

 The influence of tyre size and inflation pressure on 

compaction 

Several external factors affect soil compaction, including the contact pressure 

generated at the tyre-soil interface, the inflation pressure of tyres, tyre size and axle 

load (Botta et al., 2009; Rodríguez et al., 2012; Idowu & Angadi, 2013; Bennett et al., 

2016). The hazard of soil compaction normally depends on the stress exerted on the 

soil (Hamza and Anderson, 2005; Arvidsson, 2014). Despite the soil mechanical 

strength, loading and soil-tyre interaction contribute substantially to soil compaction 

(Chehaibi et al., 2012). The size and distribution of stress in the soil-tyre interface is 

controlled by the tyre inflation pressure or by the wheel load which is still a source of 

dispute (Schjønning & Lamandé, 2010). The number of passes and the tyre-soil contact 

pressure in particular are the major factors contributing to soil compaction (Keller, 

2004). To reduce compaction effects, it is preferable to utilise the equipment on tyres 

with large contact areas, with ground pressure as low as possible (Chehaibi et al., 

2012). 
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Tyre inflation pressure usually has a large impact on increasing topsoil compaction 

and very little effect on the sub-surface layer, while wheel loads may have the 

dominant effect on increasing subsoil compaction (Botta et al., 2002; Arvidsson & 

Keller, 2007). Investigations show that trafficking with high tyre inflation pressure 

leads to increased vertical stress propagation, soil deformation, and soil compaction 

(Keller et al., 2007; Holthusen et al., 2018). Increasing tyre inflation pressure increases 

the risks of compaction in the surface soil (Keller & Arvidsson, 2004). Increasing tyre 

inflation pressure and the dynamic vertical load of tyre causes major compaction to a 

depth of 50 cm (Abu-Hamdeh et al., 2000). In contrast, soil compaction may be less 

when using low tyre inflation pressure (Chehaibi et al., 2012; Afzali et al., 2014). 

The use of low tyre inflation pressure (150 kPa) with wheel loads >8 Mg may reduce 

compaction of clay soils at the surface layers (Danfors, 1994). Reducing tyre inflation 

pressure to 50% of the recommended pressure offers several benefits for soil 

compaction alleviation compared to tyres operated at the recommended level (Bennett 

et al., 2015; Bennett et al., 2016). Advantages of adopting the low inflation pressure 

of farm machines include reducing tyre-soil interface, decreased external rolling 

resistance, increased tyre performance and the alleviation of soil compaction (Van et 

al., 2008).  

Tyre size and arrangement have a direct influence on the size of the contact area 

(Rodríguez et al., 2012). Recently, tyre size has increased (due to increased axle 

weight) to keep soil surface unit pressure comparatively constant and alleviate 

compaction effects (Lamandé & Schjønning, 2011). Using larger and wider tyres with 

low inflation pressure can reduce the risk of wheel sinkage and compaction (McKenzie 

et al., 2003). The use of a wider tyre may reduce soil compaction hazards under wet 

conditions (McNabb et al., 2001). Adopting wider tyres with reduced inflation pressure 

from 25 to 125 kPa decrease soil displacement, rut depth and compaction (Ansorge & 

Godwin, 2007). Furthermore, employing a larger overall diameter may be more 

beneficial than a wider tyre in terms of reducing the problems of compaction (Ansorge 

& Godwin, 2007). 

The use of dual-wheels with low tyre inflation pressure may reduce soil stress in the 

top 15 cm (Arvidsson, 2014). The John Deere company has equipped the front wheel 
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of the JD7760 cotton picker with a dual-wheel and larger tyres (520/85R42 R1R2) to 

limit the compaction risk due to the increased axle weight of the picker (John Deere, 

2016). Nevertheless, traffic of the inner and outer dual-wheel of the JD7760 is a major 

cause of compaction in the topsoil and the subsoil (Bennett et al., 2017; Bennett et al., 

2019). The subsequent section will highlight the impact of axle weight on compaction. 

In summary, it has been shown in this review that tire size and inflation pressure are 

related to the development of compaction in the topsoil and the subsoil. Trafficking 

with high tire inflation pressure can increase the risk of topsoil compaction. The use 

of a large and wider tire with low inflation pressure may be able to alleviate soil 

compaction under different field conditions.   

  The impact of machinery axle loads on compaction 

As mentioned in the previous sections, the trend towards the use of heavy machinery 

means that topsoil compaction and subsoil compaction continue to increase. More than 

30 Mg of loads are used per axle in several countries (Al-Adawi & Reeder, 1996). In 

Australia, the main reason behind compaction occurrence is that growers adopt larger 

machinery in order to obtain high efficiency and productivity (Pankhurst et al., 2003). 

An axle load of 6–10 Mg is a primary cause of compaction, leading to soil degradation 

and yield reduction (Schafer et al., 1992; Radford et al., 2001). Farm machinery traffic 

with an axle load of >10 Mg induces significant compaction which can reach the sub-

surface soil (Hakansson et al., 1994; Wolkowski & Lowery, 2008). 

Significant compaction was observed after a single pass of a heavy axle load at the 

depth of 60 cm (Schjønning & Rasmussen, 1994). Repeated traffic by an axle load of 

10 Mg can increase the compaction hazard and may reach the subsoil (Etana & 

Hakansson, 1994; Al-Adawi & Reeder, 1996). Trafficking by heavy axle loads in wet 

conditions is the major reason for subsoil compaction (Alakukku et al., 2003; Chamen 

et al., 2003). Furthermore, traffic by heavy axle load (10 Mg) with high tyre inflation 

pressure can create a high risk for deep subsoil compaction (Arvidsson et al., 2001).  

Previous studies (Voorhees et al., 1986; Abu-Hamdeh & Al-Widyan, 2000; Hamza & 

Anderson, 2005) indicated that traffic from a heavy axle load of >18 Mg results in a 
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rapid change in the soil properties. Impacts of soil compaction due to wheeled traffic 

are often determined by measuring Pb and penetration resistance of the soils 

(Alakukku, 1996). The effect of machinery traffic on soil properties was highlighted 

in Section 2.6.  

Furthermore, traffic from heaviest harvesters with a maximum load of 35 Mg can result 

in soil deterioration and compaction (Arvidsson et al., 2001). Both front and rear axle 

traffic of a combine harvester is a major source of surface soil compaction (Svoboda 

et al., 2016). From the calculated stress of homogeneous soil under different axle loads 

(Figure 2.6), it can be seen that soil stress beneath the loaded wheel decreases with 

increasing profile depth, whilst increasing with increased tyre-soil contact area 

(Alakukku, 1999). This may be explained by vertical stresses in the topsoil depending 

directly on ground contact pressure, while the stresses in the deep layers largely depend 

on the axle loads (Hillel, 1998; Alakukku, 1999). 

 

Figure 2.6: Calculated vertical stress as a function of wheel load (WL 0.5, 0.75 and 

1.0 Mg) with constant tyre inflation pressure (TIP 80 kPa) of homogeneous silty soil 

Source: Adopted by the researcher from (Alakukku, 1999). 

Once again, traffic from the JD7760 cotton picker can produce significant compaction 

in both topsoil and subsoil, which is considered to be the main concern for farmers in 

terms of eliminating deep subsoil compaction and energy requirements (Bennett et al., 

2019). During harvest time, the front axle of the JD7760 continues to be stable around 

21.5 Mg when the first round bale is formed. Thereafter, however, the load begins to 
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decrease to 20 Mg when the bale is transferred to the rear platform. The normal load 

of the rear axle is about 10.6 Mg but increases to 12.8 Mg due to the first bale, thus 

the rear axle loads have dramatically changed from 14.5 to 16.5 Mg when the second 

bale is produced (Figure 2.7) (Bennett et al., 2015). Overall, axle load is the key factor 

behind the soil compaction occurrence. The degree of soil deformation or compaction 

induced, varies from soil to soil depending on the soil conditions, type of machine and 

the frequency of passes (Naderi-Boldaji et al., 2018).  

 

Figure 2.7: Dynamic axle loads for front and rear axles of the JD 7760. The x-axis 

represents the period that is required to produce one round bale 

Source: Adopted by the researcher from (Bennett et al., 2015). 

 Controlled traffic farming  

Controlled traffic farming (CTF) is a strategy built on adopting permanent lanes for 

agricultural machinery traffic to mitigate the influence of soil compaction (Tullberg et 

al., 2007). CTF is one of the most effective approaches to dealing with the risks of soil 

compaction by means of restricting the passage of machinery in the field (Bennett et 

al., 2016). The key advantage of CTF is the preservation of soil quality, thereby 

enhancing crop performance and reducing energy requirements (Kingwell & 

Fuchsbichler, 2011; McPhee et al., 2013). Nevertheless, frequent wheeling with lighter 

equipment can result in compaction equal to or greater than with fewer passes with 

heavier equipment (Jorajuria et al., 1997). 
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Employing CTF is a vital strategy to increase crop yields and profit margins, and 

reduce soil compaction risk (Antille et al., 2015c). However, many of the reported 

benefits of CTF for the cotton crop are less clear, particularly within farming systems, 

because of fewer studies conducted (Antille et al., 2016). The framework of CTF is 

that all machinery should have, or be modified to have, the same track width in order 

to restrict the wheels traffic in the permanent lanes (Antille et al., 2015b). In Australia, 

the controlled traffic approach has played an important role in providing a solution for 

more than 0.5 Mega hectares (Tullberg, 2001). Adopting CTF could reduce 

compaction by more than 50% compared to random traffic farming (RTF) 

(Galambosova et al., 2017). However, the key challenges to an entire industry 

switching to controlled systems are a lack of matching machinery tracks, working 

widths, and tyres (Tullberg, 2010).  

Switching to CTF systems could yield improvements to soil quality attributes through 

the confinement of machinery traffic to tramlines on the farm (Godwin et al., 2015). 

For example, modifying wheel paths of a sugarcane harvester to a 2 m wheel track 

width to match CTF, resulted in improved inter-row soil properties (Souza et al., 

2012). Nevertheless, this modification may not always show significant alleviation in 

soil compaction (Braunack & McGarry, 2006).  

To limit compaction, Australia’s cotton industry has modified the current JD7760 

cotton picker use under the CTF system (Antille et al., 2016). The main modification 

to this harvester is an increase of frontage width to 9 m as shown in Figure 2.8. In 

addition, the front axle of the harvester has been modified by replacing one tyre of the 

dual-wheel with a single tyre (620/ 70R42, inflation pressure 0.34 MPa). This 

modification allows the harvester to use the same tramlines when picking the six cotton 

rows that were shown with 1.5 m row spacing (Antille et al., 2016; Bennett et al., 

2017). Figure 2.9 illustrates a comparison between RTF and CTF systems in terms of 

the wheel track of the harvester and cotton row spacing. 
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Figure 2.8: The JD7760 modified (9 m frontage with 1.5 m row spacing) 

Source: Adopted by the researcher from a field trial. 

 

Figure 2.9: The JD7760 configurations: (A) 1.0 m row spacing RTF and (B) 1.5 m 

row spacing CTF 

Source: Adopted by the researcher from (Bennett et al., 2017). 

As mentioned above, to adopt CTF, permanent paths are required to restrict machinery 

passage and avoid compaction risk (Tullberg et al., 2007; Souza et al., 2015; Bennett 

et al., 2017). Compaction induced by the CTF 7760 harvester traffic might be lower 

than the JD7760 standard at the surface soil (Bennett et al., 2019). The main difference 

between RTF and the CTF in cotton farming is that about 66% of cotton furrows are 

subjected to wheel traffic under the standard JD7760, while 50% of furrows are 

subjected to traffic under CTF7760 (Bennett et al., 2017). However, adopting 

controlled traffic farming in cotton farms is complicated and costly due to the 
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configurations of machinery wheels or the number of rows that are cultivated or picked 

(Braunack & Johnston, 2014). 

In summary, it has been demonstrated in this section that adopting CTF might be a 

useful strategy in regards to reducing the risk of compaction. The implementation of 

CTF reduces the overall coverage and intensity of spatial compaction by restricting the 

motion of all farm machinery to a permanently trafficked region within the field, called 

tramlines. Traffic from the JD7760 regardless of controlled or random system may 

incur significant compaction of both topsoil and subsoil due to the weight of the axle. 

 Influence of compaction on soil environment and crop 

performance 

In general, agricultural field traffic is one of the main causes of soil compaction which 

has damaging consequences for agriculture and the environment (Horn et al., 1995; 

Keller & Hakansson, 2010). Soil compaction affects the function of the pores to store 

and transport water and gases which is essential for plants (Ishaq et al., 2001). The 

impacts of soil compaction are often persistent, particularly in the subsoil, and they are 

intensified with repeated passes (Antille et al., 2018, Stoessel et al., 2018). Compaction 

also affects erosion, flooding, organic matter, salinization, nitrogen and carbon 

cycling, and crop growth (Nawaz et al., 2013). Furthermore, compaction-induced 

changes results in soil degradation, pollution of the atmosphere and of ground and 

surface waters, and they may also increase the consumption of finite natural resources, 

such as fuel and mineral fertiliser (O'Sullivan et al., 1995). Figure 2.1 illustrates the 

major interactions between soil physicochemical characteristics and root function and 

structure observed under conditions of soil compaction (Correa et al., 2019).  
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Figure 2.10: Block diagram of the major interactions between soil physicochemical 

characteristics and root function and structure observed under circumstances of soil 

compaction. Ψwater, water potential; RCA, root cortical aerenchyma. 

Source: Adopted by the researcher from (Correa et al., 2019). 

Plant growth and relative yield can provide a reasonable index for compaction status 

(Grzesiak, 2009). Reduction in plant growth and productivity is highly connected to 

the development of soil compaction (Azzi et al., 2017). For example, yields may be 

fall, by approximately 26.8% after two years of compaction (Abu-Hamdeh, 2003). In 

fact, wheat yields may decline significantly when Pb is 1.6 g/cm3  and soil resistance 

to penetration is up to 2.5 MPa (Hakansson & Lipiec, 2000; Vrindts et al., 2005). 

However, soil compaction is not the only factor that affects plant growth (Braunack & 

Peatey, 1999).  

Several studies showed that compaction can reduce the yield of different crops up to 

approximately 60%, by reducing crop emergence, root growth and nutrient uptake 

(Marshall et al., 2016; DeJong-Hughes, 2017). Compaction due to machinery traffic 

causes physiological disorders of in-plant performance (Gebauer et al., 2012). 

Frequent traffic by machinery with 16 Mg axle load may result in poor soil structure, 

hamper nutrient uptake, and cause root damage and yield decline, by 9% annually 

(Alakukku & Elonen, 1995; Botta et al., 2016).  
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Traffic from a sugarcane harvester can cause major compaction leading to reduced 

yields by approximately 24% (Braunack & Peatey, 1999), while compaction due to 

combine harvester decreases grain yield by 18% (Liu et al., 2017). The harmful effects 

of wheeled traffic may result in cereal yields decreasing by 22% (Lipiec et al., 2003). 

Wheat yield can decrease due to compaction when Pb and soil penetration resistance 

values increase by 15% and 47% respectively on average (Junior et al., 2014). In brief, 

from the above review of the literature, it is apparent that yield decline is a function of 

soil compaction. Compaction due to equipment traffic results in increasing dry bulk 

density, soil strength, and hampers root development and penetration into the soil, 

which decreases water and nutrient uptake by plants and can translate into reduced 

crop yield and profitability (Al-Adawi & Reeder 1996). 

 Managing and alleviating soil compaction 

Generally speaking, compaction can be found in the topsoil and subsoil. Compaction 

problems exist in a wide range of soils and cases (Alakukku et al., 2003; Batey & 

McKenzie, 2006). Mitigation of compaction mainly aims to ameliorate soil structure 

damage by decreasing soil strength and density, increasing water infiltration and air 

spaces of the soil, and promoting root penetration (Raper & Mac Kirby, 2006). This 

raises the question of how soil compaction can be detected, and then alleviated or 

avoided. 

As highlighted in previous sections, wheeled traffic resulting from normal agricultural 

operations is the primary source of soil structure deterioration, topsoil compaction and 

subsoil compaction (Voorhees et al., 1978; Botta et al., 2002; Ghadiri et al., 2015). 

Compacted layers often range between 30– 60 cm below the surface, particularly when 

the soil is subjected to frequent machinery traffic without annual ripping operations 

(Randrup, 1997; Randrup & Dralle, 1997). Soils with high clay contents are more 

susceptible to compaction (Gong et al., 2018). Thus, managing agricultural activities 

and environmental variations can play a role in improving soil structure and 

minimising compaction risk (Bronick & Lal, 2005).  

Alleviation strategies vary significantly in effectiveness depending on the range and 

depth of compaction, soil type and climate (Chamen et al., 2015). Many techniques 
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have been adopted to reduce both topsoil compaction and subsoil compaction 

including: (1) reducing the repetition of tillage operations by adopting no-till systems; 

(2) avoiding mechanical operation at high Swc; (3) adopting controlled or tramline 

systems; and (4) improving topsoil by adding organic matter (Raper, 2005; Nawaz et 

al., 2013).  

Previous studies showed that normal tillage operations can largely eliminate topsoil 

compaction (Hamza & Anderson, 2005). Nevertheless, one practice may not be 

sufficient to completely reduce compaction of the surface soil (Hakansson & 

Voorhees, 1997). Therefore, the risk of topsoil compaction could be minimised by 

adopting the following: (1) reducing tyre inflation pressure to less than allowable 

pressures or using dual tyres; (2) matching tyres with the right axle weight; and (3) 

adopting conservation tillage (Hillel, 1982; Botta et al., 2002).  

The mitigation of subsoil compaction is often left to natural processes such as soil 

wetting followed by drying, soil freezing followed by thawing and biological activities 

(Hakansson et al., 1987; De Boer et al., 2018 ). Soil recovery may be also affected by 

soil type, texture, compaction conditions (Antille et al., 2019). De Armond et al. (2019) 

reported that alleviation subsoil compaction of heavy clay soil due to natural processes 

had occurred after 24 and 30 years. Nevertheless, because the intensity and frequency 

of these processes are reduced in the deep layers, subsoil compaction may persist for 

a very long time (Alakukku, 1996; Schjønning et al., 2013).  

Adopting deep ripping implements such as subsoilers is widely used to relieve subsoil 

compaction (Singh et al., 2019). However, this is a costly operation, and is not always 

an effective or long lasting solution (Raper & Bergtold 2007). Raper (2005) 

summarised the following major strategies which may help to loosen subsoil 

compaction due to machinery traffic: 

 Avoiding traffic under wet conditions, i.e. (>60%) of field capacity  

 Reducing wheel loads by decreasing the size of the equipment 

 Employing dual wheels or using wider and radial tyres with optimum inflation 

pressure, which helps to increase the footprint of machinery 
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 Adopting CTF systems  

 Adopting precision agriculture. 

In Australia, alleviation of  the compaction of clay soils such as Vertosols can be 

complex because Vertosols have the ability to respond to the effect of compaction 

easily, particularly under wet conditions (Chan et al., 2006), and they may also be self-

repairing after frequent wet-dry cycles (Pillai & McGarry, 1999). This matter 

generated much concern among farmers, especially when they use larger and heavier 

equipment such as the JD7760 (Bennett et al., 2015). Three techniques could help to 

manage the risk of Vertosol compaction: (1) reduced axle weight; (2) adopting CTF; 

and (3) managing soil water circumstances through the timing of field operations 

(Roberton & Bennett, 2017). However, a number of passes on the same tramlines of 

light machinery can do as much or even greater damage than heavier machinery with 

fewer passes (Hamza & Anderson, 2005). 

In summary, it has been demonstrated in this review that many strategies are available 

to manage and alleviate topsoil compaction and subsoil compaction. For example, field 

practices should not conducted when soil water is at or near field capacity. Controlled 

traffic farming might be a useful technique to avoid the risk of compaction. Monitoring 

compaction should be a part of routine soil management (Batey, 2009). 

 Yield of cotton  

2.15.1. Introduction 

In Australia, cotton crop is grown on 200,000–300,000 hectares and the majority of 

production is in New South Wales and Queensland (DAF, 2015). Gossypium hirsutum 

L. and Gossypium barbadense are the two major species grown, with Gossypium 

hirsutum L. forming approximately 90% of the total production (Redfern, 2015). More 

than 80% of Australian cotton farms are irrigated (Williams et al., 2018). Crops require 

about three months of growing time between September and November, whilst 

defoliation and harvesting occur from March to May (Antille, 2018).  
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Australia is the third-largest cotton producer in the world (Chen & Baillie, 2009). 

Australian cotton production is known to have the world's lowest cost (de Garis, 2013). 

The average cotton yield has now risen more than 2 tonnes per hectare due to the 

adoption of modern technology during the growth and harvest stages (Zhao & Tisdell, 

2009). For instance, according to the Australian Bureau of Statistics (ABS, 2014), 

gross production in Queensland is estimated to be about 140,001 hectares, whilst the 

average domestic product is around 370,000 tonnes. In addition, the cotton industry 

employs a large number of Australians and contributes more than AUD1 billion to the 

Queensland economy annually (Cotton Australia, 2013). The map in Figure 2.11 

illustrates the major cotton growing regions of Australia. 

 

Figure 2.11: The main cotton growing areas in Australia 

 Source: Adopted by the researcher from (Silburn et al., 2014). 

2.15.2. Overview of cotton pickers 

Around 30% of the world’s cotton yield is currently picked with a variety of  harvesters 

or pickers (Chaudhry, 1997; Bennett et al., 2015). Farmers and contractors are 

routinely using different types of cotton pickers, including the older basket systems 

that are unloaded into boll buggies, half module systems, and round module pickers 

(Bennett  et al., 2014). The first picker was designed to harvest only one cotton row at 

a time, and was considered capable of replacing up to forty hand labourers (Gedam, 

2014). A decade ago, Case IH revealed a new six-row harvester that builds half-size 
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modules of cotton and drops the bale on the farm in less than a minute (Laws, 2006). 

However, this Case IH is expensive to operate because it requires the use of boll 

buggies, module builders, and two or three tractors for pulling (Laws, 2007). 

Recently, the new round module builder JD7760 was released by the John Deere 

Company (John Deere, 2017). This picker has the ability to mechanically build, wrap, 

eject and drop regular and consistent modules without stopping (Wattonville, 2008). 

In addition, it can provide an opportunity for farmers to reduce picking costs per 

hectare, using preferable lint, thus contributing to the reduction of gross production 

costs per bale of cotton (Van der Sluijs et al., 2015). The JD7760 has the capability to 

harvest about 95-98% of the cottonseed with high efficiency (Batey, 2009; Willcutt et 

al., 2010). However, it is costly, requiring significant investment to switch from 

conventional pickers (Chico-Santamarta et al., 2013).  

2.15.3. Effect of the soil compaction on cotton performance 

The influence of compaction on crop growth and yield is a global concern. The 

increasing use of heavy farm machinery is the major source of declining yields 

(Daniells et al., 1996; Idowu & Angadi, 2013; Wolkowski, 2017). Adverse impacts of 

compaction on cotton production can be observed in the short and long-term (Van den 

Akker et al., 1998). Furthermore, yields can actually slightly increase under moderate 

compaction (Lipiec & Hatano, 2003; Igon & Ayotamuno, 2016).  

More than one-third of actual yield loss occurs when soil structure is subjected to 

significant compaction (Daniells, 1989). Changes in soil physical properties can lead 

to long-term yield suppression of 7% (Ishaq et al., 2003). Compacted layers result in 

the reduction of cotton yields by approximately 30% (Bennett et al., 2013). The 

reduction in soil quality can also cause a 30% reduction in cotton yield (Hulme et al., 

1991). Previous research revealed that cotton yield might decline significantly when 

the dry bulk density of the soil is between 1.60 g/cm3 and 1.70 g/cm3 (Coelho et al., 

2000). Cotton yield can decrease, by approximately 15% after the first year of 

compaction occurrence (McKenzie et al., 2003; Braunack et al., 2012). Compaction, 

due to harvest traffic, is the main reason for a 23% decline in cotton growth and yield 

(Lowry et al., 1970; Neale, 2008). Traffic from the JD7760 harvester can reduce cotton 
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yield by 15%–30% and this could cost the Australian cotton industry about AUD150 

to AUD350 per hectare (CFI, 2016). Overall, adverse influences of soil compaction on 

cotton performance can occur in both the short and long-term which affects the total 

growing land profit and the net income.  

2.15.4. Cotton row configuration 

In Australia, the configuration of cotton rows plays a significant role in promoting 

production and can directly affect crop growth (Whish et al., 2005). To maintain soil 

quality and improve cotton yields, farmers employ several approaches for cotton 

growing, e.g. solid, single skip, double skip, wide row, and alternative skip (Quigley 

et al., 2015). For example, wide row spacing and skipped rows play a major role in the 

performance of dryland production, which could be employed as a management 

technique to reduce production hazards in dry periods (Routley et al., 2003; Whish et 

al., 2005). Solid row spacing can increase yield in irrigated situations by increasing 

crop leaf area and associated light interception (Routley et al., 2003; Brodrick et al., 

2010). The 1.0 m (solid) and 1.5 m (wide) row spacing are the major strategies used 

for cotton growing in irrigated and dryland farms (Bartimote et al., 2017).  

The 1.0 m row spacing is the conventional method widely employed by farmers under 

irrigated conditions (Bennett et al., 2017). CTF with 1.5 m row spacing is currently 

used by the Australian cotton industry to avoid the risk of compaction and improve 

cotton production (Tullberg et al., 2007; Tullberg, 2010). Adopting 1.5 m row spacing 

under CTF, may restrict soil compaction to only 15%–20% of the total area (Antille et 

al., 2016; Bartimote et al., 2017). In addition, 1.5 m row spacing might achieve higher 

cotton yields than 1.0 m row spacing; by 30% after several years of adoption (Quigley 

et al., 2015). Figure 2.12 shows the two main strategies that are used for cotton growing 

in Australia. In summary, by CTF the strategy, soil compaction may be lower, and this 

could translate positively on the cotton yield when compared to the conventional 

methods. 
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Figure 2.12: Cotton row configurations of 1.0 m and 1.5 m row spacing 

Source: Adopted by the researcher from (Bange et al., 2005). 

2.15.5. Methods to estimate cotton yield 

Australian cotton production has increased rapidly during the last two decades at an 

average of 10% bales/hectare annually (Constable & Bange, 2006). The reliability of 

yield estimations is based on harvest method, efficiency and the turnout of the gin 

(Goodman & Monks, 2003). Modern technologies have the ability to make a precise 

and effective estimation of the yield (Zhang et al., 2002). 

Precision agriculture is a recent technique that employs modern technology to improve 

crop production (Srbinovska et al., 2015). The major factors of precision agriculture 

include yield monitoring, remote sensing, Global Positioning System (GPS) and 

Geographical Information Systems (GIS) (Nemenyi et al., 2003). Yield monitors and 

GPS receivers are able to gather geographic data that is analysed by GIS software to 

highlight yield variations at farm scale (Andrade-Sanchez & Heun, 2013).  
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With the abovementioned modern machinery and technology, Harvest Doc, Green 

Star, and Harvest Identification are the key features of the JD7760 cotton picker (John 

Deere, 2010a). The power of these tools lies in their ability to perform yield 

monitoring, mapping, tracking and documenting functions immediately, which helps 

to make better-informed management decisions (John Deere, 2010a). Harvest Doc is 

used as the foundation and can record valuable information such as farm details, total 

harvested area, harvest hours, average yield, load weight, boundaries, soil type, and 

climate (John Deere, 2013). In addition, yield maps are generated by collecting the 

data from Mass Flow Sensors that are placed on harvest equipment (John Deere, 2004; 

Vellidis et al., 2012). 

CAN-BUS (Controller Area Network) is a serial network technology designed by 

Robert Bosch GmbH in 1983, and has since spread to the public via the Society of 

Automotive Engineers (Davis et al., 2007). The key advantage of CAN-BUS is that it 

can instantly provide useful information during peak operations (Darr, 2012). Such a 

BUS is compulsory for effective use of electronics in agriculture. It guarantees 

unimpeded information and data transmission between agricultural systems from 

different manufacturers such as harvesters, tractors and farm computers (Speckmann 

& Jahns, 1999). Furthermore, hand-picked is another approach used by several 

countries (Chaudhry, 1997). This method is inexpensive and provides a high-quality 

lint yield (Nerkar et al., 2017), but it is the slowest and most tedious. Overall, many 

methods are available for farmers estimate of cotton yield. Features of modern 

technology (JD7760) are useful and accurate techniques that can be utilised to collect 

yield data in the field directly. 

2.15.6. Harvest performance and yield losses 

Several other factors can also affect relative cotton yield. For example, both delayed 

harvesting after cotton defoliation and harvester conditions can be the main reasons 

behind for increased harvest losses, which may result in yield reduction by 

approximately 20% (Khalilian et al., 1999;  Sawan, 2017).   

While cotton pickers have the ability to harvest 95–98% of the seed cotton, there is an 

issue related to picking efficiency in the form of harvest loss, which can reach up to 
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20% (Willcutt et al., 2010). The functional performance of the spindles of the cotton 

yield is mainly dependent on the availability of open cotton bolls (Muthamilselvan et 

al., 2007). By comparison, the JD9996 picker has less efficiency, in terms of cotton 

left unpicked, than the JD7460 stripper (Faulkner et al., 2011). It was also observed 

that cotton loss to the ground may fluctuate between 1.4% and 5%, while stalk losses 

vary between 1.7%–7.8% (Erdal, 2014). On the other hand, productivity rate and 

harvest loss by cotton pickers are higher than strippers with regards to the yield quality 

and  losses (Faulkner et al., 2011).  

A comparison between picker and stripper harvesters revealed that lint turnout was 

higher under the pickers by approximately 5%, which can reduce ginning cost per 

hectare when considering the quality of yield (Wanjura et al., 2013). Field-work has 

been carried out by Sessiz and Esgici (2015) who examined different models of cotton 

harvesters to verify the impact of these models and operators’ abilities in terms of 

harvest loss and yield. Their findings are summarised in Table 2.5. Furthermore, 

harvester efficiency can be estimated by yield losses, overall yield quality, fuel 

consumption, and operators' conditions (De Baerdemaeker & Saeys, 2013). However, 

harvesting immature plants with bolls not opening due to an early frost, can also affect 

harvester efficiency (Willcutt et al., 2010). To date, it can be seen that several studies 

highlighted the efficiency between cotton pickers and strippers based on yield loss, 

while the efficiency between the JD7760 standard configuration and the CTF modified 

have not been investigated.  

Table 2.5: A comparison between different cotton pickers in terms of cotton yield 

and yield loss 

Cotton variety Machine Model 
 

 

 

Properties 

1998 2007 2011 2012 2012 

JD9970 JD9970 JD9970 JD9970 JD7760 
 

Cotton lint yield, kg da-1 486.42 443.57 458.5 346.2 487.85 

 

Mean loss, kg da-1 60.18 25.71 38.51 25 33.14 

 

Loss rate, % 12.3 5.8 8.4 7.22 6.79 
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 Modelling 

2.16.1. Soil compaction model 

Soil compaction models represent a vital approach to improving soil characteristics 

and increasing yield (Schafer et al., 1991). According to Defossez and Richard (2002), 

the framework of soil compaction models is divided into two parts. The first part is to 

determine the propagation of loading stress due to machinery, while the second is to 

identify the relationship between modelling stress and strain behaviour (Appendix 

2.1). However, cross-farm variability in soil properties and conditions are the main 

limitations leading to uncertainties in a model’s outputs (Gysi, 2000).    

Many mechanical soil compaction models are being used to predict compaction that 

occurs beneath wheel tracks. These models predict soil compaction following three 

major steps including: (1) prediction of contact area and the distribution of load; (2) 

modelling of propagation of stress at the soil surface; and (3) use of an appropriate 

equation to characterise the relationship between stress and volume alteration in the 

soil profile (O'Sullivan et al., 1999). Agronomic models (STICS) and the compactor 

model (COMPSOIL) were coupled by Defossez et al. (2014) to calculate soil stresses 

as a function of equipment characteristics and the change in Swc at the surface layer. 

However, the combined models require more investigation because they are quite 

sensitive to the input parameters of soil properties (Defossez et al., 2014).     

Soil shrinkage curves (ShC) is a model that is utilised to assess soil compaction by the 

distinction between plasma-porosity and macroporosity compaction, and to calculate 

for spatial variability in soil characteristics at field scale (Boivin et al., 2006). This 

model offers many advantages in that it is simple, accurate, and easy to operate. 

However, it has some limitations in wet soil conditions (Boivin et al., 2006). The 

hysteretic spring contact model (HSCM) and linear cohesion/adhesion model were 

integrated to model the cohesive behaviour of soil at different levels of compaction 

and its interaction with a sweep tillage tool (Ucgul et al., 2015). This model could 

predict both draft and vertical forces at different velocities, depths, water content, and 

soil compaction. The SoilFlex-LLW model has been used to predict change in the least 

limiting water range due to compaction by farm machinery (Keller et al., 2015). 
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FRIDA is a compaction model, which is employed to simulate wheel footprint using 

a super-ellipse stress allocation through a combined exponential and power-law. All 

of these compaction models may need to be validated with different machinery and 

soil conditions (Schjønning et al., 2008).  

SoilFlex is an analytical model that was developed by Keller et al. (2007) to simulate 

soil compaction due to farm machinery traffic. This model is flexible and allows for a 

realistic simulation of contact area and stress distribution in the contact area from 

easily available tyre parameters (Keller et al., 2007). A two-dimensional model is 

integrated into SoilFlex. It aims to compute soil stress, changes in dry bulk density and 

vertical displacement of the soil due to wheel traffic (Keller et al., 2007). SoilFlex 

includes three main factors: (1) description of stress in the topsoil; (2) analytical 

computation of the stress distribution over the soils; and (3) calculation of soil 

deformation as a function of stress (Keller et al., 2007). The input and output 

parameters of SoilFlex are shown in Appendix (2.2).  

The key feature of SoilFlex is its ability to employ tyre size (520/85R42 & 20.8–38) 

with tyre inflation pressure of 270 kPa as an input parameter for the JD7760 picker 

(Braunack & Johnston, 2014). In addition, SoilFlex has an advantageous feature which 

simulates the traffic of several types of machines with dual or tandem wheels (Keller 

et al., 2007). SoilFlex is considered a recent analytical model which can easily be used 

to describe upper boundary circumstances (tyre load) (Nawaz et al., 2013). However, 

this model has not been employed for a wide range of soils and thus requires more 

investigations to simulate compaction of Australian soils (Bennett et al., 2013). Further 

details about SoilFlex will be provided in Chapter 8. Table 2.6 summarises the existing 

soil compaction models that have been used by previous studies. Overall, many models 

employed to predict and manage of soil compaction. With SoilFlex, it is possible for 

researchers and agricultural advisers to simulate the traffic of machinery combinations 

that are utilised in field practices which is a considerable aspect that has been not  

addressed in previous models (Keller et al., 2007). However, the majority of 

compaction models are restricted in their implementation and required more 

investigations because they are based on several indicators, and each parameter may 

create complexities for the heterogeneous structures of soils.



51 | P a g e  
 

Table 2.6a: Summary of an existing soil compaction models 

Model Key 

references 

Origin Principle of model Key advantages Limitations 

Support 

Vector 

Machines 

(SVM) 

Perez 

Gonzalez 

(2013); 
Karamizadeh 

et al., (2014) 

Venezuela  Application of 

Polynomial, 

Gaussian and 

exponential radial 

basis function kernels 

 Offering a simple and reliable way 

of modeling the behaviour of soils 

 Enhancing the capacity in soil 

mechanics laboratories 

 Lack of 

transparency 

of results 

 Not suitable 

for large data 

sets 

Fuzzy logic 

approach 

Carman 

(2008);  

Kaufmann 

(2008) 

 

Turkey  Mamdani approach 

fuzzy modelling 

principles 

 Prediction the changes in 

penetration resistance, bulk density 

and final pressure of soil due to 

wheel traffic 

 Tedious to 

develop 

fuzzy rules  

 Not giving 

generalisable 

results 

SOCOMO Van den 

Akker (1999) 

Netherlands  Based on Boussinesq 

theory that depicts 

the propagation of 

stresses in a 

homogeneous, linear 

elastic, isotropic and 

semi-infinite solid 

mass 

 Providing useful data for adjusting 

wheel machines (number, tyre 

inflation pressure and  width) 

 Calculating soil stress under wheel 

loads 

 SOCOMO is 

based on a 

linear elastic 

behaviour of 

soil without 

volume 

change 
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Table 2.6b: Summary of an existing soil compaction models (continued) 

Model Key 

references 

Origin Principle of model Key advantages Limitations 

Finite 

element 

method 

(FEM) 

Defossez & 

Richard 

(2002) 

France  Based on the 

Boussinesq equation 

for stress propagation 

and describing stress 

distribution within 

the soil by two or 

three mechanical 

constants 

 Allowing processing 3D problems 

by using the principal stresses σ1, 

σ2, σ3 

 

 3D compaction 

problem usually 

treated as a 2D 

problem by 

supposing 

axisymmetry or 

plane 

deformation 

Three-

dimensional 

finite 

element 

Cueto et al. 

(2013) 

Cuba  Mamdani approach 

fuzzy modelling 

principles 

 Prediction the effect of inflation 

pressures, ground pressure and tyre 

load on the stresses on the contact 

and the soil profile 

 Useful for teaching and research 

 It designed for 

small tyre size 

SoilFlex Keller et al. 

(2007) 

Sweden  Based on analytical 

equations for stress 

propagation in soil 

 Allowing for a realistic prediction 

of the contact area and soil stress 

distribution in the contact area from 

easily available tyre parameters 

 Assuming soil 

profile as 

isotropic 
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2.16.2. Crop performance model 

Since the 1960s, many crop yield models have been employed to predict the theoretical 

yield of crops (Krueger 2011). Yield models are broadly divided into two groups: 

simulation models and statistical models (Dahikar & Rode, 2014). These models are 

being improved and tested with experimental data. They have significant 

methodological gaps which are reflected in the differences between experimental 

values and grower yields (Carberry et al., 2009). 

GOSSYM is a dynamic simulation model that can simulate both crop performance for 

an irrigated area and nitrogen fertilisation practices (Gertsis & Whisler, 1997). Agro-

climatic yield is another model that was developed by Bazgeer et al. (2014). It utilises 

regression models and historical data to predict cotton yield for rain-fed farming. The 

Cotton2K model can predict the mode of growth and yield under various climatic 

conditions for irrigated cotton (Lascano et al., 2013). Furthermore, Artificial Neural 

Network (ANN) models are an excellent methodology for precisely setting cotton 

yield. They depend on the non-linear connection between the influence of factors and 

yield (Zhang et al., 2008).  

The Agricultural Production Systems Simulator (APSIM) is a software model 

developed by the Agricultural Production Systems Research Unit in Australia (Keating 

et al., 2003). APSIM involves several types of plants, soil characteristics, fertilisers, 

and irrigation. The framework of the APSIM model includes: 

 A group of biophysical modules, which simulate biological and physical procedures 

in agriculture systems 

 A collection of management modules which permit the operator to determine the 

aim of management rules, which in turn describe the scenarios that are simulated 

that then dominate the behaviour of the simulation 

 Different modules to simplify information input and output to and from the 

simulation 

 A simulation factor that enforces the simulation procedures, and controls all 

messages that are passed between the independent modules (Keating et al., 2003). 
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According to McCown et al. (1996), APSIM can provide better predictive modelling 

because of its approaches: 

 Representation of the best of particular aspects of cropping systems in order to 

enable significant phenomena for superior simulation 

 Better processes in various models enabled and simply recombined to supply an 

excellent configuration for a specific function. 

In Australia, only the OZCOT model, which is a part of the APSIM model, is used to 

simulate cotton yield (Thorp et al., 2014). The model can predict theoretical yield by 

employing historical climate data and field observations (Hearn, 1994). The potential 

yield is often estimated based on average growth, radiation efficiency, and simulation 

of the OZCOT model (Constable & Bange, 2015). Through OZCOT, it is possible to 

simulate different factors that could directly affect relative yields, such as climate, 

irrigation, and fertility. The OZCOT 'top-down' strategy might achieve a simple and 

robust simulation for growth and production (Hearn, 1994). The key parameters of 

OZCOT are soil characteristics, plant indexes, and climate variables (McCarthy, 

2010). OZCOT will be discussed further in Chapter 9. Table 2.7 illustrates existing 

cotton simulation models that have been used by various research studies  (Thorp et 

al., 2014).  

Table 2.7: Summary of an existing cotton simulation models 

 

Model Origin Time Step Key References Decision Support 

Tools 

GOSSYM Greece and 

Spain 

Daily Baker et al. (1983) 

Reddy et al. (2002b) 

COMAX 

Cotton 2K USA Hourly Marami (2004) None 

COTCO2 USA   Hourly Wall et al. (1994) None 

OZCOT Australia Daily Hearn and Da Roza 

(1985) Hearn (1994) 

APSIM 

CottBASE 

HydroLOGIC 

VARIwise 

Whopper Cropper 

CSM-

CROPGRO- 

Cotton 

USA  Daily Hoogenboom al. (1992) 

Jones et al. (2003) 

DSSAT 
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Overall, this section has provided a brief summary of the literature relating to existing 

crop simulation models. APSIM is a set of models that employs by researchers and 

agricultural specialists to predict the performance of different crops. APSIM includes 

management models and interconnected biophysical to simulate systems comprising 

soil, crop, tree, and pasture processes and has the flexibility to integrate non-biological 

farm resources such as agricultural equipment and water storage (Holzworth et al., 

2018). However, agronomy models require more efforts in order to improve and assess 

in developing or modifying their capability of responding to environmental conditions 

and simulate growth and yield of cotton (Thorp et al., 2014).  

 Conclusion 

This chapter reviewed the relevant literature on the threat posed by compaction on soil 

structure and crop yield. The review discussed the main concept of soil compaction. It 

showed that there is an adverse impact of soil compaction from wheeled traffic on 

plant growth, which can be observed in the short- and long-term. The review also 

revealed that traffic from the JD7760 cotton picker causes significant compaction, 

which can negatively affect cotton yields. 

The review showed that many soil and agronomy properties can be employed as 

indicators of soil compaction status. This chapter has also attempted to provide a clear 

explanation of the literature relating to soil compaction and agronomic simulation 

models. It has shown that a number of simulation models have been developed which 

can contribute to the discovery of  optimal farming systems under different conditions.  

The following significant research gaps have been identified through this review: 

 A lack of studies into the impact of soil compaction due to JD7760 cotton 

picker traffic on row by row yield of cotton both in Australia and globally  

 None of the studies reviewed seem to have employed the features of modern 

technology (JD7760) to estimate cotton yield at a single row scale 

 No studies have evaluated and/or compared the efficiencies of the JD7760 

standard configuration and the CTF7760 modified harvester  
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 Existing simulation models require more investigation to improve or assess 

their ability to respond to agricultural conditions (soil and agricultural 

activities) to provide accurate predictions of harvester traffic effects on 

compaction in various environmental conditions and to accurately simulate 

cotton production at farm scale. 
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Chapter 3. Materials and experiment methods 

  Introduction 

This chapter outlines the specific methodologies used to investigate the effect of soil 

compaction due to the John Deere 7760 cotton picker traffic on individual cotton rows 

and furrows. In addition, the response of Vertosol soil to seasonal variability was 

monitored. This chapter particularly highlights the approaches used to address each of 

the objectives of this study. Site description, field selection, trial design, measured 

parameters, equipment used, field experiments and laboratory work are described in 

details. Data collection and statistical analysis are also explained. 

 Farm locations, plot layout and study parameters  

In this research, random traffic farming (RTF) and controlled traffic farming (CTF) 

were investigated to develop an understanding of the impact of JD7760 cotton picker 

traffic on soil characteristics and cotton yield. Random traffic was defined as any 

traffic system not conforming to true controlled traffic farming, while true controlled 

traffic is achieved where all machinery wheel tracks are equivalent and there is only a 

single wheel on either side of the axle, and multiple passes of the field occur over the 

same permanent track. The frequency of permanent tracks is a function of the smallest 

machine operation frontage, which is 6.0 to 9.0 m for a cotton picker in the cotton 

system. 

Field trials were carried out in Vertosol soils at three cotton farms located at Koarlo, 

Undabri and Yambacully in 2016 and 2017. Koarlo is located in Yelarbon while 

Undabri and Yambacully are located in Goondiwindi. They are 280 km and 350 km 

south-west of the Queensland state capital Brisbane, Australia respectively (Figure 

3.1). RTF was practiced at the Koarlo and Undabri sites, while CTF was adopted at 

the Yambacully site for two years. 

Cotton (Gossypium hirsutum L.) is widely grown in the region due to the suitability of 

the soils, access to water, and the climate. In Australia, cotton is typically planted in 

the period between September and November, and harvested in the period between 

March to May (Antille, 2018). Grey Vertosol is the predominant soil type in these 
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districts (Bennett et al., 2016) but, as these are alluvial soils, soil sequences are 

common. The farm fields were selected to be representative of Vertosols as much as 

was reasonably possible.  

 

Figure 3.1: Locations of Yelarbon and Goondiwindi, QLD 

3.2.1. Site description 

3.2.1.1. Koarlo site 

Two different fields were chosen at Koarlo in Yelarbon, QLD, (28°36'43.30"S, 

150°30'47.93"E, 235 m above sea level). They are located about 28 km from the 

Goondiwindi town centre (Figure 3.2). The first field was studied in 2016, and the 

second field in 2017. Cotton was planted with row spacing of 1.0 m at both fields and 

was irrigated using a furrow system (Figure 3.3). Both fields were planted on 1 October 

2016 and 2017. The region has a semi-arid climate according to the Australian Bureau 

of Meteorology (Queensland Government, 2018). Table 3.1 demonstrates the mean 

monthly maximum temperature for the Koarlo site during 2015-2016 and 2016-2017. 

The total amount of water used during the growth stage was about 8.1 ML in 2016 and 

7.5 ML in 2017. The total amount of rainfall during the period from September 2015 

to May 2016 was 460.9 mm, while from September 2016 to May 2017 total rainfall 

was 473.8 mm (Table 3.2). Both fields were picked using the JD7760 in standard 

configuration.   
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Figure 3.2: Koarlo site at Yelarbon 

 

Figure 3.3: Furrow irrigation system of Koarlo (1.0 m row spacing) 

Table 3.1: The mean monthly maximum temperatures for Koarlo during 2015-2016 

and 2016-2017 

Temperature (◦C) Sep Oct Nov Dec Jan Feb Mar Apr May Ave. 

2015˗ 2016 24.5 31 34 33 38 35 33 30 30 31.5 

2016˗ 2017 22 26 32 36 42 37 31 26 24 30.5 

Table 3.2: The amount of rainfall for Koarlo during 2015-2016 and 2016-2017 

Rainfall (mm) Sep Oct Nov Dec Jan Feb Mar Apr May Total 

2015˗ 2016 36.3 27.2 100.9 144.5 33.0 7.0 28.5 28.5 55.0 460.9 

2016˗ 2017 47.3 112.0 10.7 52.4 70.3 33.7 100.6 26.9 19.9 473.8 



 USQ                                                                         Chapter 3: Materials and Methods  

60 | P a g e  

 

3.2.1.2. Undabri site 

The Undabri field is located in Goondiwindi, QLD (28°23'26.78"S, 150° 9'40.54"E, 

204 m above sea level), and is 15 km from the Goondiwindi town centre (Figure 3.4). 

A centre pivot system was used to irrigate this site (Figure 3.5). Cotton  was planted 

on 5 October 2016 with row spacing of 1.0 m and harvested with a JD7760.  

The climate of this district is a semi-arid (Queensland Government, 2018). Table 3.3 

shows the mean monthly maximum temperature for Undabri during 2016-2017. The 

total amount of water applied during the growth stage was 4.5 ML, while the total 

amount of rainfall during the period between September 2016 and May 2017 was 480.4 

mm (Table 3.4). Unlike the other two sites, the farmer indicated that this site was 

subjected to severe historical compaction before the start of this study. This was 

expected to have an impact on the soil of this particular site. 

 

Figure 3.4: Undabri site in Goondiwindi 
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Figure 3.5: Irrigation system of Undabri site (centre pivot system) 

Table 3.3: The mean monthly maximum temperatures for Undabri during 2016-2017 

Temperature (◦C) Sep Oct Nov Dec Jan Feb Mar Apr May Ave. 

2015˗ 2016 24.5 31 34 33 38 35 33 30 30 31.5 

2016˗ 2017 22 26 32 36 42 37 31 26 24 30.5 

Table 3.4: The amount of rainfall for Undabri during 2016-2017 

Rainfall (mm) Sep Oct Nov Dec Jan Feb Mar Apr May Total 

2016˗ 2017 56.9 122 11.5 68.2 91.6 38.6 34.6 28.7 28.3 480.4 

3.2.1.3. Yambacully site 

This site is also located in Goondiwindi (28°27'2.40"S, 150° 9'35.27"E 206 m above 

sea level), and is 13 km from the Goondiwindi town centre (Figure 3.6). Controlled 

traffic farming with 1.5 m row spacing and overland flow (furrow) irrigation system 

were used at this site (Figure 3.7). This area also has a semi-arid climate, according to 

the Australian Bureau of Meteorology (Queensland Government, 2018). Table 3.5 

shows the mean monthly maximum temperature for the Yambacully site during 2016-

2017. The total amount of water used during the growth stage was 10.5 ML, while the 

total amount of rainfall received during the period between September 2016 and May 

2017 was 456.7 mm (Table 3.6). Cotton was planted on 5 October 2016 and harvested 

with the CTF JD7760 modified harvester. 
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Figure 3.6: Yambacully field at Goondiwindi 

 

Figure 3.7: Furrow irrigation system of Yambacully field (1.5 m row spacing) 

Table 3.5: The mean monthly maximum temperatures for Yambacully during 2016-

2017 

Temperature (◦C) Sep Oct Nov Dec Jan Feb Mar Apr May Ave. 

2015˗ 2016 24.5 31 34 33 38 35 33 30 30 31.5 

2016˗ 2017 22 26 32 36 42 37 31 26 24 30.5 

Table 3.6: The amount of rainfall for Yambacully during 2016-2017 

Rainfall (mm) Sep Oct Nov Dec Jan Feb Mar Apr May Total 

2016˗ 2017 39.4 122 8.1 55.5 102.8 30.3 44.6 24.7 29.3 456.7 



 USQ                                                                         Chapter 3: Materials and Methods  

63 | P a g e  

 

3.2.2. Field history and agronomy  

Koarlo, Undabri and Yambacully were chosen on the basis of traffic history so that a 

range of histories can be assessed. These sites had been used for agricultural 

production for over 30 years with no history of controlled traffic. Both Koarlo and 

Undabri were subjected to the JD7760 standard configuration traffic (RTF) since 2012, 

while controlled traffic farming was practised in Yambacully since 2015 and subjected 

to the CTF7760 modified harvester traffic. In this study, the measeurments in October 

2016 reflected the pre-history of earlier traffic across the field. 

Soil tillage before planting did not occur at all sites. Both Koarlo and Yambacully were 

subject to a triple-disc-hiller pass on 12 m frontage, and the 1.0 m system had a 6 m 

frontage lister, while the 1.5 m had a 9 m frontage lister pass prior to all other field 

preparation activities. No-till was used in Undabri. The variety of cotton (Gossypium 

hirsutum L. S71BR) was planted at all sites. Field preparation between cotton crops 

included mulching, root-cutting, listing, fertiliser spreading and inter-row cultivation. 

Mulching and root cutting occurred on a 6 m frontage for the 1.0 m system (Koarlo).  

Both Koarlo and Undabri have adopted cotton-wheat-cotton rotation, while cotton-

fallow-cotton rotation was practised in the Yambacully site. 

3.2.3. Experimental design 

The experiment was designed to provide a snapshot of the extent of influence of 

external factors on soil properties and cotton yield. The baseline experimental design 

was organised in a factorial design. This design allows for in identifying the impact of 

many factors as well as their interactions. The experiments were undertaken in October 

2016, January 2017, and May 2017 (before and after harvest) to: 

 Monitor Vertosols behaviour (shrink-swell), due to the impact of rainfall, seasonal 

variability and the JD7760 traffic on the overall field 

 Investigate the impact of harvest traffic by JD7760 on soil water content (Swc), dry 

bulk density (Pb), soil penetration resistance (SPR) and cotton yield row by row.  
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In this study, two blocks were chosen in each field. Each block had six sampling 

transects. The transects were randomly assigned in each block to reduce the chance of 

biased results. The block was designed so that they captured the full frontage. The 

length of each block was 324 m, while the width was 6 m for RTF and 9 m for CTF 

(Figures 3.8 and 3.9). The transect dimensions were 1.5 m in length and 6 m in width 

to correspond to the JD7760 standard frontage, while the width was 9 m to match the 

CTF traffic system. The distance between each transect was 50 m. The sites’ effect 

was considered as a fixed factor, because all the soil studied in these sites were 

Vertosols, having many similar properties. Furthermore, all experimental blocks 

served as control sites from October 2016 to May 2017 (before traffic) when there was 

no harvester traffic. This was to enable a more accurate assessment of traffic-induced 

compaction relative to potential changes in soil properties due to seasonal variability, 

the shrink-swell behaviour of Vertosol soils, and biological activities. Experimental 

arrangements are discussed further in Section 3.3.1.2.  



 USQ                                                                         Chapter 3: Materials and Methods  

65 | P a g e  

 

 

Figure 3.8: Experiment design sketch of Koarlo and Undabri (1.0 m row spacing) 

Plot 1 Plot 2 

Sample transect    

Sample point       o 



 USQ                                                                         Chapter 3: Materials and Methods  

66 | P a g e  

 

 

Figure 3.9: Experiment design sketch of Yambacully site (1.5 m row spacing) 
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3.2.4. Research parameters 

The soil properties were measured based on the current standards and methods of 

published articles. The following parameters were used to investigate the effect of soil 

compaction on cotton yield due to JD7760 traffic in the field: 

 Soil water content (Swc): Soil water is a critical factor which strongly affects 

soil characteristics and crop growth. Soil water was directly measured using a 

gravimetric approach.   

 Dry bulk density of the soil (Pb): This is the oven-dry weight of soil per unit 

of volume, which was measured in grams per cubic centimetre. An increase in 

Pb represents a reduction in soil porosity responsible for transmission of water 

and nutrients, as well as pathways for root growth. Dry bulk density was 

determined by direct sampling and segmenting of soil cores.  

 Soil penetration resistance (SPR): Cone index, measured with a cone 

penetrometer, provides a measure of soil resistance, which can be converted to 

soil strength. Changes in soil strength occur naturally with drying (i.e. soils are 

stronger when dried, without any external influence on the soil structural 

characteristics), or when soil bulk density changes. Cone index can also be 

used to infer the likelihood of root penetration for a given soil density.   

 Machine-picked yield data: This is yield data obtained by the cotton pickers to 

provide a rapid measure of yield throughout the fields. Hand-picked yield data 

was obtained by manually picking cotton which was used to calibrate the 

machine-picked yield, as the machine picked yield utilised a number of sensors 

with calibration limitations.  

 Harvest lost: The amount and quality of lint per hectare can be an indicator of 

harvest efficiency. Basically, delayed harvesting, after cotton defoliation and 

harvester conditions, represents a main source of harvest losses which may 

reach up to 20%. The estimation of yield losses is the key factor in identifying 

what additional adjustments are required for machine harvest. Hand-picking of 

machine-harvested plants was used to determine yield loss.  
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 Field experiment methods and equipment 

3.3.1. Soil sampling 

3.3.1.1. Soil sampling instruments 

A portable petrol post driver (Christie’s Engineering CHPD 78 Post Driver, 4 strokes), 

volumetric cylinder (thin-walled metal tube 1500 mm length and 52.5 mm diameter), 

and foot lever were used to collect soil samples. A plastic table, ruler (100 mm) and 

spatula were also employed. To preserve the water in the soil cores, sealed foil bags 

(213 mm length and 165 mm width) were used for storing samples. To avoid loss, 

samples were transported in sealable containers. A large oven (approximately 400 

samples capacity) was used to dry soil samples at 105˚C for at least 72 hours to 

calculate Pb and Swc (Bennett et al., 2017). A sensitive electronic scale (Max 2200 g) 

was also used to weigh soil samples before and after drying in the oven. Figure 3.10 

shows the sampling instruments that were used in this study.  

 

Figure 3.10: Sampling instruments 
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3.3.1.2. Field work 

Soil cores were collected from Koarlo, Undabri, and Yambacully in October 2016, 

January 2017 and May 2017 (before and after harvest). The incidence of sampling was 

based on the procedure outlined in McKenzie et al. (2002) method (502,03). Collection 

was done by pressing the cylinder with a jackhammer and driving it vertically into the 

soil to the depth required. Then, the cylinder was carefully removed by the lever to 

maintain a known volume of soil as it existed in situ. As the core sampling procedure 

used a hammering action to push the cylinder to the desired depth, the extracted core 

length was measured and compared against the hole depth to ensure that compaction 

had not occurred during sampling; this approach did not cause compaction of samples 

(McKenzie et al., 2002; Bennett et al., 2017). Each cylinder provided an 800 mm long 

sample which was cut into 100 mm sub-samples. Overall the field trials provided a 

total of 13728 samples during the study period as follows: 

 May 2016: The field trial only occurred in Koarlo in May 2016. It commenced 

mid-May and finished after two weeks. Rainfall occurred before the May 2016 

experiment but was not observed during this trial. Two blocks were used to 

collect soil samples at this property. Each of the blocks had six replications. 

The blocks were designed to examine six typical rows of cotton with row 

spacing of 1.0 m. Sampling transects were located across the full frontage of 

the JD7760 standard configuration. The field was divided into two blocks 

randomly. Each block had six transects. The dimensions of each transect were 

1.5 m in length and 6 m in width, to correspond to the harvester frontage. The 

distance between each transect was 50 m (see Figure 3.7). To ensure that 

accurate measurements were obtained, both plants and cotton hills were 

removed from all transects.  

The soil cores were taken from the position of each cotton row and furrow of 

each transect to a depth of soil of 80 cm (see Figure 3.7). This procedure was 

conducted before and after harvester traffic and provided a total of 312 tubes. 

Next, the tubes were divided into 10 cm sub-samples, producing a total of 2496 
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samples. Sealed bags were used to store and carry samples to the laboratory to 

prepare for further measurement. 

 October 2016: During this period, sampling was undertaken at Koarlo, 

Undabri, and Yambacully starting on 21 October 2016, and completed one 

week later. Two blocks were chosen in each field. Three transects were 

assigned randomly in each block to reduce the chance of biased results. The 

transect dimensions were 1.5 m in length and 6 m in width for Koarlo and 

Undabri. By contrast, the width and length were 1.5 m length and 9 m 

respectively in Yambacully to match the CTF traffic system (see Figure 3.8).  

As usual, soil cores were also gathered from sample points in each station to 

correspond to the positions of cotton rows and furrows. The sampling method 

used similar procedures as in the previous experiment. This experiment 

obtained a total of 1872 samples. The samples were transported to the 

laboratory for further measurements. 

 January 2017: Soil cores were taken at the above three sites on 16 January 2017 

and continued for five days. Sampling occurred in the same soil blocks that 

were organised in each field as mentioned above. There was considerable 

rainfall between January and May 2017, after January 2017 experiments were 

conducted. The core sampling method was the same as those discussed above. 

This experiment provided 1872 samples. 

 May 2017: Sampling began in May 2017 and was extended for one month. As 

mentioned, CTF was adopted at Yambacully, while RTF was applied at both 

Koarlo and Undabri. At the CTF site, two blocks were arranged to correspond 

to six rows of cotton as per row spacing of 1.5 m. Each block had six soil 

transects. The dimension of each transect was 1.5 m in length and 9 m in width 

to match the CTF7760 modified harvester frontage (see Figure 3.9). Soil 

sampling locations at the RTF sites were designed similar to the trial that 

occurred in May 2016. 
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The crop and cotton hills were removed from each transect for both systems. 

Rainfall was not recorded during the experiments. For reliability, soil cores 

were collected from the previous trials’ blocks in each site . The soil cores were 

collected before and after the harvester traffic, which provided a significant 

number of samples (7488). Laboratory work was carried out to obtain further 

measurements. Table 3.7 summarises the sampling incidents. Appendix 3.1 

shows soil cores collected during the study period. 

Table 3.7 Summary details of soil sampling during the study period 

   Trial period          Field Details 

 

 

May 2016 

 

 

     Koarlo 

1 field 

2 blocks 

6 transects in each block 

13 sample points in each transect (including 

rows and traffic furrows and centre 

differential position) 

8 soil depths within 1 sample point 

Sampling occurred before and after traffi 

Total of 2496 samples per field 

 

October 2016 

 

Koarlo,  

Yambacully, 

and Undabri 

3 fields 

2 blocks per field 

3 transects in each block 

13 sample points in each transect 

8 soil depths within 1 sample point 

Traffic none 

Samples per field (624) 

Total cores (1872) samples 

 

January 2017 

 

Koarlo,  

Yambacully, 

and Undabri 

3 fields 

2 blocks per field 

3 transects in each block 

13 Sample points in each transect 

8 soil depths within 1 sample point 

Traffic none 

Samples per field (624) 

Total cores (1872) samples 

 

 

May 2017 

 

 

Koarlo,  

Yambacully, 

and Undabri 

3 field 

2 blocks per field 

6 transects in each block 

13 sample points in each transect (including 

rows and traffic furrows and centre 

differential position. 

8 soil depths within 1 sample point 

Sampling occurred before and after traffic 

2496 samples per field 

Total of 7488 sample 
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3.3.1.3. Laboratory measurements 

Soil water content and Pb were determined at laboratories at the University of 

Southern Queensland’s (USQ). The laboratory measurements were based on the 

method outlind in International Organisation for Standardisation, 11272, ISO (2017). 

The soil samples were weighed directly after completing field experiments to estimate 

the field wet weight of each sample. To determine the proper dry weight of the 

samples, they next were placed in an oven for at least 72 hours at 105 oC (Figures 3.11 

and 3.12). The mass of the dry soil samples was weighed and then both gravimetric 

soil water content (θg) and dry bulk density (Pb) were calculated using Equations (1) 

and (2) (Hossain et al., 2015). Equation 3 was used to calculate volumetric soil water 

content (θv). For each location to a depth of 80 cm, soil texture was determined using 

the hydrometer method (Gee & Bauder 1986). The soil texture was dominated by clay 

content as shown in Table 3.8. Clay content for the soils at the study sites normally 

ranges between 40%– 80% (Kettler et al., 2009).  

𝜃g =
Weight Water (g)

Weight Dry Soil (g)
 × 100 ……………………. (1) 

𝑃𝑏 =
Weight Dry Soil (g)

Soil Volume (cm3)
   ………....……..………….. (2) 

𝜃𝑣 =  𝜃𝑔 × 𝑃𝑏 ………....……………..………….. (3) 

 

 

Figure 3.11: Soil samples placed inside the oven 105oC for 72 hours 



 USQ                                                                         Chapter 3: Materials and Methods  

73 | P a g e  

 

 

Figure 3.12: Weighing soil samples 

Table 3.8: Soil texture  details of field trials 

Property Soil depth 

(cm) 

Soil texture       % 

Sand % Silt % Clay % 

Koarlo 

 

 

 

0─10 33.75 20.0 46.25 100 

10─20 32.5 16.25 51.25 100 

20─30 27.5 20.0 52.5 100 

30─40 30.0 16.25 53.75 100 

40─50 31.25 15.0 53.75 100 

50─60 30.0 13.75 56.25 100 

60─70 28.75 15.0 56.25 100 

70─80 26.25 13.75 60.0 100 

Yambacully 

 

 

 

0─10 11.25 16.25 72.5 100 

10─20 12.5 13.75 73.75 100 

20─30 11.25 15.0 73.75 100 

30─40 8.75 17.5 73.75 100 

40─50 10.0 15.0 75.0 100 

50─60 10.0 15.0 75.0 100 

60─70 11.25 16.25 72.5 100 

70─80 8.75 17.25 73.75 100 

Undabri 0─10 21.25 15.0 63.75 100 

10─20 22.5 13.75 63.75 100 

20─30 17.5 16.25 66.25 100 

30─40 17.5 20.0 62.5 100 

40─50 13.75 16.25 70.0 100 

50─60 16.25 13.75 70.0 100 

60─70 16.25 15.0 68.75 100 

70─80 16.25 17.5 66.25 100 
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3.3.2. Measuring soil penetration resistance 

In this research, a static cone penetrometer CP40II (Rimik) and load cell rated 100 kg 

were used to measure soil penetration resistance (Figure 3.13). A small cone size (130 

mm2, 12.83 mm diameter) with shaft (9.53 mm diameter) was selected as it suits hard 

soils (ASAE 1986). This cone penetrometer is able to measure soil strength up to 5.6 

MPa and can reach soil depth of 750 mm with intervals of 10, 15, 20 and 25 mm 

(Rimik, 2017). In addition, GPS was used to reference the points measured in each 

location.  

The penetrometer was mounted to the constant drive device to ensure that the cone 

driven into the soil at a constant penetration rate (42.5 mm/s) (Rimik 2017). Data were 

collected from Koarlo, Undabri and Yambacully during October 2016, January 2017, 

May 2017 (before and after harvester traffic). At all study sites, SPR measurements 

were taken when the soil cores were collected (Ayers & Perumpral, 1981). This was 

done by selecting 6 m distance across cotton rows and furrows in each transect of 1.0 

m row spacing, while 9 m was determined for 1.5 m row spacing. Insertions were made 

at every 250 mm in each transect (Braunack & Johnston, 2014; Bennett et al., 2017).  

Penetration data was recorded at every 10 mm depth down to a depth of 700 mm. For 

accuracy, both the crop and cotton hills were removed to guide the penetrometer 

equipment in a straight path. Penetration measurements resulted in 2232 insertions 

during the study period. Soil penetration resistance data have been presented as 

contour maps using the OriginLab 8.5 software (OriginLab Corporation, 2018). This 

software creates contour maps automatically from xyz data in a worksheet without the 

need for an intermediate matrix (OriginLab Corporation, 2018). Table 3.9 shows the 

specifications of the Rimik CP40II cone penetrometer that was used in this study. 

Appendix 3.2 demonstrates SPR measurement in situ. 
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Figure 3.13: Motorised penetrometer CP40II (Rimik) 

Table 3.9: Specifications of Rimik CP40II penetrometer  

Penetrometer type Static cone penetrometer 

Weight  3.9 kg 

Case dimensions  470 * 358 * 175 (mm) 

Maximum Small Cone Index 5600 kPa, 75 kg 

Resolution 0.03 kg 

Maximum Insertion Depth (mm) 750 mm 

Interval Spacing 10, 15, 20, 25 mm 

Memory Capacity (no of insertions) 2047 

Operating temperature (degrees C) -10 to 75 

Screen resolution (characters) 160 * 128 

Load cell  100 Kg 

Small Cone size (dia.mm, area mm2) 12.83, 130 

Shaft size (dia.mm) 9.53 

Penetration speed 42.5 mm/s 
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3.3.3. Measurements of cotton yield  

3.3.3.1. Cotton pickers used 

Three cotton pickers (JD7760) were employed to harvest the study areas. Two standard 

pickers (6 m frontage with front dual-wheels) were used to harvest at Koarlo and 

Undabri (Figure 3.14). The CTF7760 modified harvester was employed at Yambacully 

(Figure 3.15). A major modification was made to the frontage of the CTF7760 to reach 

a 9 m width. In addition, the front axle was changed by removing one tyre of the dual-

wheels to become a single tyre 620/70R42 (Figure 3.16). The general specifications of 

the standard machine are shown in Appendix 3.3 (Wattonville, 2008).  

 

Figure 3.14: The standard John Deere 7760 cotton picker 

 

Figure 3.15: The modified John Deere 7760 cotton picker 
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Figure 3.16: A modified the JD7760 cotton picker fitted with single tyres 

(620/70R42) 

The JD7760 Harvest Identification (Harvest Doc, Yield Monitor, GPS, Mass Flow 

Sensors and CAN-BUS) was also employed to measure cotton yield in the field scale 

(Figures 3.17 and 3.18). To achieve the objective of this study, JOHN DEERE- 

DATALOGGER was used to extract yield data from the harvester row by row (Figures 

3.19 and 3.20). Moreover, a personal computer and USB were utilised to storage the 

data. A Petrol Hedge Trimmer, tape measure, sealed bags and large electronic scales 

were also used in this study. 

 

Figure 3.17: Harvest monitor displaying individual cotton rows data 
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Figure 3.18: Mass Flow Sensors 

 

Figure 3.19: The JOHN DEERE-DATALOGGER logged in CAN-BUS 

 

Figure 3.20: CAN-BUS Connector 
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3.3.3.2. Machine-picked cotton 

The experimental sites were selected on the basis of traffic history. The sites were used 

annually for the production of cotton and harvested by the JD 7760. In this study, the 

influence of compaction due to JD7760 traffic on cotton yield was assessed based on 

the JD7760 traffic in the previous harvest season. In RTF, the positions of cotton rows 

cultivated in 2016 were the same as that were harvested in 2015. It was determined by 

using GreenStar data and GPS coordinates to identify location information including 

boundaries, dimensions, latitude, longitude, positions of cotton rows and furrows and 

roads. In CTF, cotton rows and furrows locations were previously determined because 

harvester had the same track width in order to restrict the wheel traffic in the permanent 

lanes. To achieve the aim of this research, cotton yield was estimated by two novel 

methods (during the harvest seasons in 2016 and 2017) to investigate the influence of 

JD7760 compaction on the cotton yield, row by row, as follows: 

 Harvest season 2016: A field trial was undertaken in Koarlo in May 2016. In 

this experiment, a new methodology was designed for harvesting cotton with 

the JD7760 at the single row level. The plants were cut from the individual 

cotton rows using a petrol hedge trimmer, except for one row which was left in 

each spot, as shown in Figure 3.21. In addition, plant trash was removed from 

the field. When harvesting began, the first picking unit of the JD7760 harvested 

a single cotton row that was left in the first spot along 50 m2, while the other 

five picking units were neutral. The picker was stopped before reaching the 

next spot, and the harvested cotton was collected manually from the machine 

and stored in sealed bags. The same processes were repeated for the subsequent 

spots of the other rows (Figure 3.22). The lint yield was estimated in USQ 

laboratory. It was done by separating cottonseeds from lint by the hand for each 

spot in each row and then weighed by a sensitive electronic scale and calculated 

as kg per metre squared. The calculated lint yield for each row was converted 

into (bale/ha). Each bale per hectare is equal to 227 kg lint. 
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Figure 3.21: The scheme of the field trial design (1.0 row spacing) 
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Figure 3.22: Individual harvest stages at Koarlo in 2016 

 Harvest season 2017: Three field trials were conducted at Koarlo, Undabri, and 

Yambacully in May 2017. These trials were designed in similar fashion to that 

at Koarlo in 2016, in terms of selecting the paddocks and replicates. Figures 

3.23 and 3.24 show the experimental design under RTF (1.0 m spacing) and 

CTF (1.5 m spacing). 

In these trials, all picking units of the harvester were used to pick six cotton 

rows at once. Six flow mass sensors were installed on the ducts of the harvester 

to measure the amount of yield passing through the ducts during the picking 

operation. In addition, the JOHN DEERE-DATALOGGER was logged into 

the CAN-BUS connector to extract the individual row yield data from the 

harvester. The console received the data from the sensors and displayed them 

individually on the harvester’s monitor. The JOHN DEERE-DATALOGGER 

transferred the information to the Processing Unit Central of the John Deere 



 USQ                                                                         Chapter 3: Materials and Methods  

82 | P a g e  

 

Company in Chicago, USA by a precise antenna. The data was processed and 

set up as an excel spreadsheet for further measurements in order to compute 

the cotton yield row by row.  

 

Figure 3.23: Trial design schematic of each plot subjected to the JD7760 standard 

configuration (6 m frontage with dual-wheel). R1 and R2 represent the replication in 

each plot 
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Figure 3.24: Trial design schematic of each plot subjected to the JD7760 modified 

configuration (9 m frontage with a single wheel). R1 and R2 represents the 

replication in the plot 
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3.3.3.3. Hand-picked cotton 

A hand-picked harvesting method was employed to obtain an accurate and reliable 

estimation of the yield of individual rows. In the 2016 harvest season, the hand-picked 

method was undertaken at Koarlo by choosing six longitudinal cotton rows from the 

replicates of each paddock randomly. Three metres square were separately determined 

in each individual row. Thereafter, seed cotton were collected manually and stored in 

sealed bags. The lint yields were weighed using a sensitive electronic scale and 

calculated as kg per metre squared and then converted into bale per hectare. This 

method was also carried out at Koarlo, Undabri, and Yambacully during the 2017 

harvest season.  

3.3.4. Calculation of harvest losses  

The approach for measuring harvest losses adopted in this study followed that used by 

Faulkner et al. (2011). It was done by assigning a linear segment (7.5 m) to each cotton 

row in all paddocks. In each segment, three metres were chosen for the hand-picked 

section and a 1.5 m distance from the end of the hand-picked spot was left (uncropped). 

Another three metres were also selected for the machine-picked section and the seed 

cotton left in the ground were cleaned before harvesting (Figure 3.25 and 3.26). The 

first 3.0 metres of each spot were picked by hand, while remaining the 3.0 metres were 

harvested with the JD7760. Cotton left on the plant and on the ground was collected 

by hand to measure harvest efficiency using Equation 3, as was suggested by Faulkner 

et al. (2011): 

𝐿 = [
𝑃+𝐺

𝐻
]  × 100% …………………….(3) 

Where: 

 L= Harvest lost in percentages 

 P= Cotton lint left on plants in 3.0 m length due to machine picked (gram)  

G= Cotton lint on the ground in 3.0 m length of row after the harvest by JD7760 (gram) 

H= The amount of cotton lint in 3.0 m handpicked.  
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Figure 3.25: Scheme of harvest efficiency measurement methodology of single 

cotton row 

Source: Adopted by the researcher from (Faulkner et al., 2011). 

 

Figure 3.26: Segment 3.0 m for machine picked to measure harvest efficiency 

 Statistical analysis tool 

Analysis of variance (ANOVA) was used to determine differences between means by 

using the software package (Statistical Package for Social Scientists) IBM SPSS 

version 23.0 (IBM, 2016). One-way ANOVA, two-way ANOVA, descriptive 

statistics, correlation and regression analysis were employed to assess the impact of 

the JD7760 harvester traffic on soil compaction and cotton yield. Analysis of 

Covariance (ANCOVA) was also used to correct the SPR for soil water content and 

Pb. Significant difference was tested using the least significant difference (LSD) and 

Tukey tests. The differences between the means of random factors were considered to 

be significant if the probability level was 0.05 or less. The independent variables were 

seasonal variability, traffic systems (RTF and CTF), before and after harvester traffic, 

the position of the cotton row and furrow, row spacing, soil depth, and harvester. The 
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dependent variables were soil water content, dry bulk density, soil penetration 

resistance, cotton yield, and harvest loss. The statistical analysis processes were carried 

out after close consultation with the USQ’s Statistical Consulting Unit (Kabir 2017, 

Pers comm). Furthermore, the attached file (CD) includes field experiments data (Part 

I presents the data across the overall field and Part II presents the individual data of 

cotton rows and furrows). 

 Conclusion 

This chapter has detailed the specific methods used to investigate the influence of soil 

compaction due to JD7760 traffic on the cotton yield at the level of individual rows 

and furrows. The experimental arrangements for each objective have been described. 

Site description, field selection, experiment design, parameters, equipment used, 

experimental procedures and laboratory work have also been presented in detail. Data 

collection and statistical analysis have been explained. 

Field trials were carried out at three separate sites (Koarlo, Undabri and Yambacully). 

Soil properties (soil water content, dry bulk density and soil penetration resistance) 

were measured and Vertosol behaviour was also monitored. Two novel methodologies 

of machine harvesting were performed to gather the individual row yield data from the 

JD7760 cotton picker. 
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Chapter 4. Results and discussions: Soil properties in 

an overall field as influenced by rainfall, seasonal 

variability and harvester traffic 

 Introduction 

The previous chapter presented the research methodologies that were used to collect 

and analyse field data. This chapter discusses the findings of monitoring Vertosols 

behaviour under random traffic farming (RTF) and controlled traffic farming (CTF) 

systems within the period between October 2016 and May 2017. Results of  the impact 

of harvester traffic on Vertosols between different individual cotton rows, and at 

different soil depths in the rows are discussed in the following two chapters.   

Given that Vertosols shrink and swell with drying and wetting cycles, respectively, it 

is important to investigate the potential changes in dry bulk density over the growing 

season. This helps to understand the extent of change in dry bulk density from one 

harvest traffic instance to the next. In this chapter, the influence of rainfall, seasonal 

variability and harvester traffic on Vertosol properties (soil water content, dry bulk 

density, and penetration resistance) across the field are discussed. RTF under 1.0 m 

row spacing was utilised in Koarlo and Undabri. CTF (1.5 m row spacing) was adopted 

in Yambacully. Before the October trials, the total amount of rainfall was 112 mm in 

Koarlo, whilst about 122 mm was recorded at both Undabri and Yambacully. The 

temperature ranged between 40─42 ◦C in January 2017 (Australia Government 2018). 

Harvester traffic occurred in May 2017. In all the study sites, the observations of 

October 2016 reflected the history traffic across the field. The significant and key 

findings of this chapter are shown in the discussion sections.  

In this chapter, two-way ANOVA was used to compare the means of the treatments 

during October 2016, January 2017 and May 2017 (before and after traffic). The 

significant difference was tested using Tukey and LSD test at P≤0.05 level. The error 

bars presented are for an ANOVA at 95% confidence interval at all figures. The 

different lowercase letters (a, b and c) in the same row in the figures and tables in 

Chapters 4, 5, 6, 7 and 9 refer to significant differences at P≤0.05 (i.e. probability level 

between the values is 0.05 or less implies that there is a significant difference between 

the values, thus they take different letters, irrespective of an increase or decrease 
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between the values. A probability level higher than 0.05 between values implies no 

significant difference, therefore, values take the same letters). The symbol (*) refers 

to the significant difference between before and after harvester traffic (P≤0.05) at all 

figures. The attached file (CD), Part III includes all the results data for Chapters 4, 5 

and 6.  

 Results 

4.2.1.  Soil water content 

As previously mentioned, soil samples were collected across the cotton rows and 

furrows to represent the average field. In this study, soil water content (Swc) was 

calculated basis on gravimetric and then converted into volumetric soil water content 

in order to investigate the change in volumetric soil water dynamics due to Vertosols 

behaviour (shrink-swell) and compaction. Differences between treatments are 

presented as a percentage of the change in soil water content.  

4.2.1.1. Koarlo site 

The statistical analysis showed that Swc was significantly higher at P≤0.05 level in 

October 2016 than in January 2017, by approximately 13% at a depth of 0─30 cm 

(Figure 4.1). This suggests that significant rainfall in early October 2016 accumulated 

on the soil surface and began to infiltrate the soil, which then resulted in a recharging 

of the water profile of the soil. At the same time, variation of soil water content 

between different depths was related to Vertosol heterogeneity, clay minerals, and 

water flow through cracks (Ghosh et al., 2010; Yu et al., 2015). 

As shown in Figure 4.1, it is apparent that soil water content was significantly lower 

in January 2017 (Summer in Australia) than May 2017 (both before and after traffic), 

by 10% at the soil surface. This was because of the considerable rainfall between 

January and May 2017 which increased the water profile. There was no significant 

difference in Swc between the before and after harvester traffic in May 2017 

throughout the entire profile because soil cores were collected directly before and after 

traffic.   
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Figure 4.1: Change in volumetric soil water content at different soil depths in Koarlo 

during the period between October 2016 and May 2017 (after traffic) 

4.2.1.2. Undabri site 

As mentioned in the previous chapter, both Koarlo and Undabri had the same traffic 

farming system (RTF). Soil water content showed a similar trend to that in Koarlo 

(Figure 4.2). It was significantly higher in October 2016 than January 2017, by 

approximately 10% at the 0–30 cm soil depth, and lower in January 2017, by 14% in 

comparison to May 2017 (before and after traffic). In addition, no significant 

difference was found in soil water content between before and after harvester traffic 

in May 2017 throughout the soil profile. The reasons were similar to those highlighted 

for Koarlo site (above).  

0

10

20

30

40

50

60

70

80

24 26 28 30 32 34 36 38 40 42 44

a,b,c,c

a,b,b,b

a,b,c,c

a,b,c,c

a,b,c,c

a,b,b,b

a,b,bc,c

Volumetric soil water content (%)

S
o
il

 d
ep

th
 (

cm
)

 October 2016   January 2017

 May 2017 (before traffic)   May 2017 (after traffic)

a,b,c,c



 USQ                                                                         Chapter 4: Results and Discussion  

90 | P a g e  

 

 

Figure 4.2: Change in volumetric soil water content at different soil depths in 

Undabri during the period between October 2016 and May 2017 (after traffic) 

4.2.1.3. Yambacully site 

In this site, a controlled traffic system (CTF) with 1.5 m row spacing was adopted. The 

data analysis showed that soil water content was also significantly higher in October 

2016 than in January 2017, by 13% for the 0─30 cm depth due to rainfall (Figure 4.3). 

Additionally, the soil profile was significantly drier in January 2017 than in May 2017 

(before and after traffic), by 7% in the topsoil. A possible explanation is that the 1.5 m 

row spacing may have permitted a greater amount of dry wind and radiation to reach 

the ground, thereby increasing the evaporation rate and decreasing Swc from October 

2016 to January 2017 when rain fell again (Figure 4.4). Harvester traffic did not induce 

a significant change in soil water content throughout 0─80cm depth.  
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Figure 4.3: Change in volumetric soil water content at different soil depths in 

Yambacully during the period between October 2016 and May 2017 (after traffic) 

 

Figure 4.4: CTF Yambacully (1.5 m row spacing) in January 2017 
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4.2.2. Dry bulk density 

4.2.2.1. Koarlo site 

Due to the shrink-swell characteristic of Vertosols their soil density changes with 

changes in water content (Bennett et al., 2016). In particular, dry bulk density increases 

at dry conditions due to (volume) shrinkage, while it decreases under wet conditions 

due to the swell characteristic (Virmani et al., 1982). Table 4.1 and Figure 4.5 show 

that Pb ranged between 1.28 to 1.56 g/cm3 in the period between October 2016 and 

May 2017 (after traffic). The observations revealed that because of increased 

temperature and moisture evaporation, Pb increased significantly from October 2016 

to January 2017, by 3% at the 0–20 cm depth. Then the rainfall events between January 

and May 2017 led to a decrease in Pb, by 6% in the 0─20 cm depth. Harvester traffic 

in May 2017 resulted in an increase in Pb. 

Looking at Figure 4.6, significant compaction was induced after one pass of the 

JD7760 harvester, resulting in an increase in Pb, from 1.32 to 1.41 g/cm3 and from 

1.47 to 1.50 g/cm3 in the 0─30 cm and 40–50 cm depths respectively, when compared 

to before traffic in May 2017. This suggests that traffic from the heavy harvester was 

the main source of the surface and subsurface compaction.  

Table 4.1: Changes in Pb at the Koarlo site during the study period 

Soil depth 

(cm) 

October 2016 January 2017 May 2017 

(before traffic) 

May 2017 

(after traffic) 

Pb (g/cm3) 

0-10 1.30a 1.34b 1.28a 1.35c 

10-20 1.40a 1.43a 1.34b 1.42a 

20-30 1.47a 1.48a 1.39b 1.45a 

30-40 1.52ac 1.53a 1.45b 1.48bc 

40-50 1.55a 1.55a 1.47b 1.50b 

50-60 1.51a 1.52a 1.47b 1.50ab 

60-70 1.50a 1.51a 1.49a 1.52a 

70-80 1.55a 1.55a 1.53a 1.56a 
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Figure 4.5: Changes in Pb at different soil depths at the Koarlo site during the period 

between October 2016 and May 2017 (after traffic) 

 

Figure 4.6: Changes in Pb with depth due to harvester traffic (JD7760) 

 

 

 

October- 2016 January- 2017 May- 2017

(before traffic)

  May- 2017 

(after traffic)

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

D
ry

 b
u
lk

 d
en

si
ty

 (
g
/c

m
3
)

 0 -10 cm   10-20 cm   20-30 cm

 30-40 cm   60-70 cm   70-80 cm

0

10

20

30

40

50

60

70

80

1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70

*

*

*

Dry bulk density (g/cm3)

S
o
il

 d
ep

th
 (

cm
)

 Before traffic   After traffic

*



 USQ                                                                         Chapter 4: Results and Discussion  

94 | P a g e  

 

4.2.2.2. Undabri site 

It can be noted from Table 4.2 and Figure 4.9 that dry bulk density values possess a 

similar trend to those in Koarlo. The Pb values increased significantly, by 3% from 

October 2016 to January 2017 in the topsoil, and then decreased towards May 2017 

(before traffic), by 9% in the depth of 0–30 cm. Significant compaction was observed 

after harvester traffic, which resulted in increased dry bulk density from 1.30 to 1.36 

g/cm3 at the surface layer compared to before traffic (Figure 4.8).  

Table 4.2: Changes in Pb at the Undabri site during the study period 

Soil depth 

(cm) 

October 2016 January 2017 May 2017 

(before traffic) 

May 2017 

(after traffic) 

Pb (g/cm3) 

0-10 1.31a 1.35b 1.21c 1.27d 

10-20 1.41a 1.46b 1.32c 1.37d 

20-30 1.46a 1.50b 1.41c 1.46a 

30-40 1.49ab 1.50b 1.42c 1.46a 

40-50 1.48a 1.49a 1.43b 1.47a 

50-60 1.55a 1.55a 1.45b 1.49c 

60-70 1.55a 1.57a 1.46b 1.50c 

70-80 1.60a 1.61a 1.50b 1.52b 

 

Figure 4.7: Changes in Pb at different soil depths at the Undabri site during the 

period between October 2016 and May 2017 (after traffic) 
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Figure 4.8: Changes in Pb with depth due to harvester traffic (JD7760) 

4.2.2.3. Yambacully site 

Table 4.3 and Figure 4.9 reveal that Pb ranged between 1.23 and 1.54 g/cm3 during 

the study period. Dry bulk density was found to be significantly lower in October 2016 

than January 2017 throughout the 0–30 cm depth, and also decreased from 1.37 to 1.31 

g/cm3 from January to May 2017 (before traffic) in the 0–30 cm depth. This suggests 

that increasing soil water content due to rainfall events at the beginning of October 

2016 activated the swell property which led to a decreased Pb, while increased 

temperature due to seasonal variability resulted in more evaporation, which led to 

increased Pb due to shrinkage of the Vertosol (Daniel & Wu 1993; Chinn & Pillai 

2008). Furthermore, Figure 4.10 shows that traffic from the CTF7760 harvester caused 

significant compaction that led to increased Pb from 1.28 to 1.33 g/cm3 in the depth 

of 0–20 cm, suggesting that the JD7760 traffic, regardless of RTF or CTF, was the 

major source of soil compaction (Bennett et al., 2017).   
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Table 4.3: Changes in Pb at the Yambacully site during the study period 

Soil depth 

(cm) 

October 2016 January 2017 May 2017 

(before traffic) 

May 2017 

(after traffic) 

Pb (g/cm3) 

0-10 1.23a 1.27b 1.23a 1.28b 

10-20 1.37a 1.41b 1.32c 1.37a 

20-30 1.40a 1.44b 1.37c 1.40a 

30-40 1.42a 1.46b 1.40a 1.43ab 

40-50 1.42a 1.46b 1.42a 1.45ab 

50-60 1.44a 1.48b 1.45ab 1.47ab 

60-70 1.47a 1.50a 1.47a 1.48a 

70-80 1.49a 1.51a 1.49a 1.51a 

 

Figure 4.9: Changes in Pb at different soil depths at the Yambacully site during the 

period between October 2016 and May 2017 (after traffic) 
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Figure 4.10: Changes in Pb with depth due to harvester traffic (JD7760) 

4.2.3. Soil penetration resistance  

Tables 4.4, 4.5 and 4.6 show Analysis of Variance for soil penetration resistance in 

Koarlo, Undabri and Yambacully during the period between October 2016 and May 

2017 (after traffic). In addition, plots labelled A, B, C, and D in Figures 4.11 to 4.13 

represent soil penetration resistance for October 2016, January 2017, May 2017 

(before traffic), and May 2017 (after traffic), respectively, while plots E, F, G, and H 

refer to their corresponding variations in water content for the study areas. 

4.2.3.1. Koarlo site 

The results reveal a lower SPR in October 2016 than in January 2017, by 39% at the 

0─30 cm depth (Figure 4.11 A and B), suggesting that high water content due to rainfall 

in early of October 2016 led to swelling of the soil, and therefore alleviated compaction 

effects (Bennett et al., 2016). Increasing temperature from October 2016 to January 

2017 resulted in Vertosol shrinkage which led to a significant increase in soil 

penetration resistance by 23% in the topsoil compared to May 2017 (before traffic) 

(Figure 4.11 B and C). Figure 4.11 E and F shows that Swc decreased significantly 

from October 2016 to January 2017 due to evaporation, until rain fell again in the 

period between January and May 2017. Traffic from the JD7760 caused major 
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compaction, which resulted in increased SPR, by 52% in the depth of 0─40 cm (Figure 

4.11 C and D). 

Table 4.4: Analysis of Variance for soil penetration resistance in Koarlo during the 

study period 

Multiple Comparisons 

Dependent Variable:   SPR   

(I) Time (J) Time Mean 

Difference 

(I-J) 

Std. 

Error 

Sig.b 

Octber-2016 Jan-2017 -486.286* 102.025 .000 

May -17 before harvest -426.857* 102.025 .003 

May-17 after harvest -1532.143* 102.025 .000 

Jan-2017 Octber-2016 486.286* 102.025 .000 

May -17 before harvest 59.429 102.025 .003 

May-17 after harvest -1045.857* 102.025 .000 

May -17 before 

harvest 

Octber-2016 426.857* 102.025 .000 

Jan-2017 -59.429 102.025 .000 

May-17 after harvest -1105.286* 102.025 .000 

May-17 after 

harvest 

Octber-2016 1532.143* 102.025 .000 

Jan-2017 1045.857* 102.025 .000 

May -17 before harvest 1105.286* 102.025 .000 

*. The mean difference is significant at the 0.05 level. 

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent 

to no adjustments). 
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Figure 4.11: Soil penetration resistance maps at Koarlo during the study period: soil 

penetration resistance (A-D) and soil water content (E-H) 
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4.2.3.2. Undabri site 

A similar trend was found in soil penetration resistance to that in Koarlo (Figure 4.12). 

The values increased significantly, from 1445 to 3143 kPa in the 0─30 cm depth, from 

October 2016 to January 2017 (Figure 4.12 A and B). The period between January 

2017 and May 2017 (before traffic) showed a significant decreased in SPR, by 

approximately 44% at the 0─30 cm surface layer (Figure 4.12 B and C). Moreover, 

significant compaction was observed after one pass of the JD7760 harvester, which 

resulted in increased penetration resistance, from 3473 to 4250 kPa throughout the 

20─60 cm depth (Figure 4.12 C and D).  

Table 4.5: Analysis of Variance for soil penetration resistance in Undabri during the 

study period  

Multiple Comparisons 

Dependent Variable:   SPR   

(I) Time (J) Time Mean 

Difference 

(I-J) 

Std. 

Error 

Sig.b 

Octber-2016 Jan-2017 -1382.857* 101.016 .000 

May -17 before harvest -388.714* 101.016 .001 

May-17 after harvest -1179.571* 101.016 .000 

Jan-2017 Octber-2016 1382.857* 101.016 .000 

May -17 before harvest 994.143* 101.016 .000 

May-17 after harvest 203.286 101.016 .045 

May -17 before 

harvest 

Octber-2016 388.714* 101.016 .001 

Jan-2017 -994.143* 101.016 .000 

May-17 after harvest -790.857* 101.016 .000 

May-17 after 

harvest 

Octber-2016 1179.571* 101.016 .000 

Jan-2017 -203.286 101.016 .045 

May -17 before harvest 790.857* 101.016 .000 

*. The mean difference is significant at the 0.05 level. 

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent 

to no adjustments). 
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Figure 4.12: Soil penetration resistance maps at Undabri during the study period: soil 

penetration resistance (A-D) and soil water content (E-H)  
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4.2.3.3. Yambacully site 

Figure 4.13 A, B and C, shows that there was a significant increase in soil penetration 

resistance from October 2016 to January 2017, by approximately 37% in the 10–30 

cm depth, and then it decreased towards May 2017 (before traffic), by 28% in the depth 

of 10–20 cm. In addition, significant compaction occurred after a single pass of the 

CTF7760 harvester, which resulted in an increase of soil penetration resistance from 

944 to 1427 kPa in the depth of 0–30 cm (Figure 4.13 C and D).  

Table 4.6: Analysis of Variance for soil penetration resistance in Yambacully during 

the study period  

Multiple Comparisons 

Dependent Variable:   SPR   

(I) Time (J) Time Mean 

Difference 

(I-J) 

Std. 

Error 

Sig.b 

Octber-2016 Jan-2017 -679.571* 142.858 .000 

May -17 before harvest -712.143* 142.858 .001 

May-17 after harvest -1410.857* 142.858 .000 

Jan-2017 Octber-2016 679.571* 142.858 .000 

May -17 before harvest -32.571 142.858 .000 

May-17 after harvest -731.286* 142.858 .004 

May -17 before 

harvest 

Octber-2016 712.143* 142.858 .001 

Jan-2017 32.571 142.858 .000 

May-17 after harvest -698.714* 142.858 .000 

May-17 after 

harvest 

Octber-2016 1410.857* 142.858 .000 

Jan-2017 731.286* 142.858 .004 

May -17 before harvest 698.714* 142.858 .000 

*. The mean difference is significant at the 0.05 level. 

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent 

to no adjustments). 
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Figure 4.13: Soil penetration resistance maps at Yambacully during the study period: 

soil penetration resistance (A-D) and soil water content (E-H) 
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4.2.4. Covariance analysis between soil penetration resistance, soil 

water content and Pb  

Among the soil parameters affecting soil penetration resistance of a specific soil, the 

soil water content (Swc) and dry bulk density (Pb) are the most considerable (Bennie, 

1988; Moraes et al., 2012). To analyse soil SPR, it considered soil water content and 

Pb as covariables in May 2017 (after traffic) because their regression coefficient was 

significantly different. In this study, the means of SPR, Swc, and Pb were averaged 

across all depths and replications for the studied sites across the entire profile (Yasin 

et al., 1993). Results from the analysis of Covariance (ANCOVA) revealed that SPR 

had strongly significant difference (P≤0.05) with both Swc and Pb for Koarlo, Undabri 

and Yambacully throughout the depth of 0─70 cm (Tables 4.4, 4.5 & 4.6). There was 

an exponential dependence of the SPR with soil water content and a power dependence 

with the Pb values and the fitted parameters were well correlated. It was found a 

significant reduction in the values of SPR when Swc was higher, while increased with 

increasing Pb at all sites. This suggests that the cohesion and adhesion forces between 

the soil particles and aggregates were declined with increasing Swc leading to SPR 

reduction, besides, the water acts as a lubricant, reducing the friction between the soil 

and the steel cone penetrometer (Hillel, 1982; Silva et al., 2016).  

Figure 4.14 also shows that the effects of changing soil water contents on the values 

of SPR are clearly apparent than Pb in May 2017 (after traffic) at all sites. There was 

a negative correlation coefficient between the SPR and Swc at R2= 0.205, R2= 0.640 

and R2= 0.077 and 95% confidence intervals of (-696.870, -288.472), (-795.969, -

578.892) and (-632.030, -101.066) for Koarlo, Undabri, and Yambacully respectively 

Figure 4.14 (A, B & C). These results support inferences widely cited in the literature 

that Swc has an impact on SPR measurements. In contrast, it was observed a positive 

correlation coefficient between SPR and Pb at R2= 0.493, R2= 0.641 and R2= 0.492 

and 95% confidence intervals of (4821, 10629.597), (15298.845, 21017,009) and 

(4768.969, 10303,734) for the Koarlo, Undabri and Yambacully sites respectively 

(Figure 4.14 D, E & F). The validity of these results is confirmed that SPR is more 

sensitive to soil water content at Pb, and more sensitive to Pb at lower soil water 

content. 
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Table 4.4: Analysis of Covariance (ANCOVA) between SPR, Swc and Pb for Koarlo 

after harvester traffic in May 2017 

(SPR*Swc)                                                  Coefficientsa 

Model 

 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

t Sig. 

B Std. Error Beta 

1      (Constant) 

 Swc 

-14290.729 

   -492.671 

2398.644 

     102.769 

 

         -.453 

-5.958 

-4.794 

.000 

.000 

a. Dependent variable: SPR 

(SPR*Pb)                                                     Coefficientsa 

Model 

 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

      t Sig. 

B Std. Error Beta 

1      (Constant) 

     Pb 

8459.168 

7725.373 

2133.638 

 1461.628 

 

.489 

3.965 

  5.285 

000 

.000 

a. Dependent variable: SPR 

Table 4.5: Analysis of Covariance (ANCOVA) between SPR, Swc and Pb for 

Undabri after harvester traffic in May 2017 

(SPR*Swc)                                                  Coefficientsa 

Model 

 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

t Sig. 

B Std. Error Beta 

1      (Constant) 

 Swc 

-21081.865 

   -687.430 

1341.854 

     54.625 

 

         -.800 

15.711 

-12.585 

.000 

.000 

a. Dependent variable: SPR 

(SPR*Pb)                                                     Coefficientsa 

Model 

 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

      t Sig. 

B Std. Error Beta 

1      (Constant) 

     Pb 

-21663.387 

18157.927 

2058.733 

 1438.909 

 

.801 

-10.523 

 12.619 

000 

.000 

a. Dependent variable: SPR 

Table 4.6: Analysis of Covariance (ANCOVA) between SPR, Swc and Pb for 

Yambacully after harvester traffic in May 2017 

(SPR*Swc)                                                  Coefficientsa 

Model 

 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

t Sig. 

B Std. Error Beta 

1      (Constant) 

 Swc 

11986.111 

    -366.548 

3529.398 

133.611 

 

          -.279 

-3.396 

-2.743 

      .001 

 .007 

a. Dependent variable: SPR 

(SPR*Pb)                                                     Coefficientsa 

Model 

 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

      t Sig. 

B Std. Error Beta 

1      (Constant) 

     Pb 

-8330.822 

 7536.352 

1970.153 

 1392.759 

 

.498 

-4.229 

  5.411 

000 

.000 

1. Dependent variable: SPR 
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Figure 4.14: Relationship between SPR (kPa) and soil water content (%) and Pb 

(g/cm3) after harvester traffic in May 2017 for the study areas. The letter (A, B & C) 

refer to the relationship between SPR and Swc for Koarlo, Undabri and Yambacully 

respectively. The letter (D, E & F) refer to the relationship between SPR and Pb for 

Koarlo, Undabri and Yambacully respectively 
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4.2.5.  Correlation and regression analysis between soil penetration 

resistance and Pb 

Figures 4.15 and 4.16 reveal a positive linear correlation between SPR and Pb detected 

for the Koarlo (RTF) and Yambacully (CTF) sites. In RTF, it was found that SPR had 

a moderate correlation with Pb in October 2016 and May 2017 (before traffic), while 

there was a weak correlation in January 2017 and May 2017 (after traffic). As shown 

in Figure 4.15 (A-D), the CTF Yambacully site had also a moderate correlation 

between SPR and Pb in October 2016, January 2017 and May 2017 (before traffic), 

while it was relatively low in May 2017 (after traffic). These were because that dry 

bulk density had a significant impact on SPR measurements (Bennie, 1988). However, 

small differences in the values of soil bulk density affected differently the response of 

soil resistance as a function of moisture (Van Quang & Jansson, 2012). 

  

  

Figure 4.15: Relationship between SPR (kPa) and Pb (g/cm3) for Koarlo during the 

study period. The letters A, B, C, and D refer the correlation for October 2016, 

January 2017, May 2017 (before traffic), and May 2017 (after traffic), respectively 
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Figure 4.16: Relationship between SPR (kPa) and Pb (g/cm3) for Yambacully during 

the study period. The letters A, B, C, and D refer the correlation for October 2016, 

January 2017, May 2017 (before traffic), and May 2017 (after traffic), respectively 

One again, in this study, linear regression models were used to predict soil penetration 

resistance variables from the measured dry bulk density after harvester traffic in May 

2017 for Koarlo (RTF) and Yambacully (CTF). The tentative hypothesis was that 

increase Pb causes increasing SPR values. The regression analysis revealed that the 

predicted SPR values increased positively with the increment in Pb (R-squared= 1) for 

both systems (Figure 4.17 A and B). This suggests that the independent variables (Pb) 

in the model predicted 100% of the variation in the dependent variable (SPR) because 

the R-squared value equals 1. This implied that the dependent of a variable was always 

predicted by the independent variable (Montgomery et al., 2012; Ober, 2013; 

Hoffmann & Shafer, 2015). Furthermore, it is reported that SPR showed a similar trend 

to Pb, in particular when the soil was at the same moisture conditions (Bennie, 1988). 
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Figure 4.17: Linear regression between predicted soil penetration resistance (kPa) 

and bulk density (g/cm3) after JD7760 traffic in May 2017. A represents Koarlo site 

and B represents the Yambacully site 

 Discussion 

4.3.1. Soil water content 

Soil water content is a critical factor that can directly affect soil properties and crop 

growth (Mosaddeghi et al., 2000; Keller 2004). Soil water variability is affected by 

complex interactions among several factors (Yu et al., 2015). These include variations 

in topography, soil properties, vegetation type and density, mean water content, depth 

to water table, precipitation depth, solar radiation and other meteorological factors 

(Baroni et al., 2013). McKenzie (1998) reported that soil texture and irrigation method 

used have a direct impact on variation of soil water in the profile. Furthermore, the 

differences in soil water content due to differences in soil texture are more pronounced 

under wet conditions rather than dry (Famiglietti et al., 1998). 

Among Australian soils, Vertosol is widely utilised for irrigated and dryland cotton 

production (Jutzi, 1988; Isbell, 2016). This soil has the ability to self–mulch as a 

consequence of repeated wetting and drying (McKenzie & McBratney, 2001). The 

process occurs during drying when these Vertosols fragment to form a thin surface 

layer (<50 mm) of water stable aggregates less than 5 mm (Ahmad, 1983; Jutzi, 1988; 

Coulombe et al., 1996). However, Vertosol heterogeneity affects the distribution of 

soil water through variations in texture, organic matter content, structure and the 

existence of macroporosity, all of which affect the fluid transmission and retention 
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properties of the soil column (McGarry, 1996; Famiglietti et al., 1998). Addtitonally, 

water holding capacity and drainage are issues (Ghosh et al., 2010).  

In this study, Swc was expressed on a volumetric basis. The observations revealed that 

Swc was higher in October 2016 than in January 2017, by approximately 13% in the 

surface soil at Koarlo, Undabri, and Yambacully. This suggests that the soil held more 

water due to the rainfall events at the beginning of October 2016 which led to a re-

wetting of the soil profile compared to subsequent periods. The variations in the soil 

water between the different depths were highly related to Vertosol heterogeneity, clay 

minerals and a low infiltration rate. This was considered to be a major issue in terms 

of water stabilisation, and led to an obstruction in water movement in the soil profile 

(Hillel, 1998; McKenzie, 1998; Chinn & Pillai, 2008; Li et al., 2009).  

All field experiments showed that the Vertosol profile was drier in January 2017 

(before the rainfalls) than in May 2017 (before and after traffic) for all sites in the 0─30 

cm soil depth. However, the studied areas had different soil textures (Table 3.5) and 

irrigation systems. These results may be explained by the fact that was because of the 

lack of vegetation in the earlier growing stage and increasing temperatures between 

October 2016 and January 2017. This allowed a higher amount of solar radiation and 

dry wind to reach the ground, resulting in more evaporation until January 2017, after 

which the rains fell again (Roberton & Bennett, 2017). On the other hand, the depth of 

30─50 cm showed a slight decline in soil water content, by approximately 8% for 

Koarlo and Yambacully, respectively, from January 2017 to May 2017 (before and 

after traffic), suggesting that the crop absorbed the water during the growth stages 

(Figures 4.1 and 4.3). Furthermore, there was no significant difference in soil water 

content throughout the entire profile for both systems (RTF and CTF) before and after 

harvester traffic in May 2017 (sampling was done directly before and after traffic). In 

summary, the key findings are: 

 Rainfall events in early October 2016 resulted in a re-wetting of the soil profile, 

which resulted in 13% higher Swc, in the topsoil than subsequent periods at all 

sites  
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 The Yambacully site experienced more rainfall in October 2016 before the 

experiment, and had a higher water content than the other two conventional 

traffic sites, by 17% throughout the entire profile 

 The Undabri site was most affected by increased temperatures from October 

2016 to January 2017, recording 13% lower Swc compared to Yambacully in 

the topsoil 

 Controlled traffic farming had a lower sensitivity to seasonal variability. This 

was demonstrated by a lower rate of moisture loss (7%) compared to 18% 

under RTF at the Koarlo and Undabri sites in the 0–30cm depth for the period 

between January 2017 and May 2107 

 Traffic from the JD7760, regardless of random or controlled traffic farming, 

did not significantly affect soil water content throughout the entire profile.  

4.3.2.  Dry bulk density 

 In general, the dry bulk density of soils indicates the soil quality and degree of 

compaction, which have a direct impact on soil properties and crop growth (Nawaz et 

al., 2013; Hugar & Soraganvi, 2014; Vero et al., 2014). Among Australian soils, 

Vertosol is known to have a high clay content and strong shrink˗swell capacity 

(Hulugalle & Scott, 2008). It is strongly affected by changes in the soil water during 

the period between cultivation and harvest (Kamara & Haque, 1988). Furthermore, 

Vertosol has the ability to self-repair after several dry-wet cycles (Chinn & Pillai, 

2008). However, it responds readily to compaction at different profile depths (Chan et 

al., 2006). 

As mentioned, the density of Vertosol is significantly affected by wet-dry cycles, in 

particular, soil density increases in dry conditions due to shrinkage, while it decreases 

under wet conditions due to swelling (Virmani et al., 1982; Novara et al., 2012). In 

this study, the field results showed that rainfall events earlier in October 2016 had a 

clear effect on Pb at all sites. The values were significantly lower in October 2016 than 

January 2017 for Koarlo, Undabri and Yambacully in the surface layers (Tables 4.1, 

4.2 and 4.3). A possible explanation for this is that rainfall recharged the water profile 
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and increased soil water content before the soil samples were taken, thereby resulting 

in swelling, which consequently decreased dry bulk density and provided some natural 

remediation (Bennett et al., 2017). On the other hand, the surface soil showed higher 

dry bulk density in January 2017 than in May 2017 (before traffic), by approximately 

6%, 9% and 5% for Koarlo, Undabri and Yambacully, respectively. This was because 

from October 2016 to January 2017, soil temperature gradually increased, resulting in 

moisture loss until the next rainfall events. This led to re-distributed particle volume 

in the topsoil, which caused soil particles to move independently of each other due to 

shrinkage. Thus, soil pores decreased and Pb increased as a result (McKenzie & 

McBratney, 2001; Newton, 2014). 

Furthermore, the JD7760 cotton picker traffic caused significant compaction, which 

resulted in increased dry bulk density in Koarlo, Undabri and Yambacully at the 

surface soil. This suggests that the heavier harvester, regardless of random or 

controlled traffic, was a key source of soil compaction, resulting in a narrowing of the 

soil pores and increased Pb in both surface and sub-surface layers (Braunack et al., 

2012; Jobbagy et al., 2014; Bennett et al., 2017; Ungureanu et al., 2019). Overall, it 

was found that: 

 The topsoil exhibited high sensitivity to the wet-dry cycles which resulted in 

significant changes in Pb values under both CTF and RTF 

 Rainfall events in early October 2017 and May 2017 (before traffic) resulted in 

swelling of the Vertosol which led to significantly decreased Pb and provided 

some natural remediation in the topsoil under both RTF and CTF, relative to 

January 2017 

 Increased temperature due to seasonal variability (from October 2016 to January 

2017) resulted in Vertosol shrinkage which led to significantly increased Pb in the 

surface soil at all fields in comparison to May 2017 (before traffic) 

 Harvester traffic caused significant compaction, which resulted in a significant 

increase in dry bulk density in the surface layer for both RTF and CTF  
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 Traffic from the CTF harvester induced lower soil compaction on the overall field 

compared to traffic by the standard JD7760 configuration.  

4.3.3.  Soil penetration resistance 

The relationship between soil penetration and compaction can often be used to estimate 

soil compaction (Perumpral, 1987; Costantini, 1995). Cone index is generally 

connected to soil type, bulk density, and soil water content. It has a linear correlation 

with Pb when the soil is at the same moisture conditions (Bennie, 1988). However, Pb 

does not have a key impact on soil penetration resistance in the short-term (Van Quang 

& Jansson, 2012). Consequently, soil water content can be an important factor 

affecting SPR. Penetration resistance ranges between 3.7─4.2 MPa when Swc is 

approximately 16% (Jobbagy et al., 2014).  

The results of this study showed that there was a strong negative correlation between 

soil penetration resistance and soil water content, while there was a positive correlation 

between soil penetration resistance and Pb in depth of 0–70 cm at all sites. The values 

of soil penetration resistance were significantly lower in October 2016 than in January 

2017 in the topsoil under both farming systems (RTF and CTF). It was also lower in 

May 2017 (before traffic) than in January 2017, by approximately 23%, 44% and 28% 

for Koarlo, Undabri and Yambacully topsoil, respectively. As indicated in the previous 

section, this could be attributed to the rainfall events during the early parts of October 

2016 and in the period between January 2017 and May 2017 (before traffic). These 

rainfall events recharged the water profile of the soil and increased Swc. The increase 

in Swc caused the soil to swell and provided some natural alleviation of compaction, 

leading to lower soil strength (Radford et al., 2000; Junior et al., 2014; Bennett et al., 

2017). Significant moisture loss due to an increase in temperature occurred between 

October 2016 and January 2017, causing the Vertosol to shrink. Shrinking led to an 

increase in the cohesive strength and frictional resistance of the soil, thus, the 

significantly higher soil penetration resistance in January 2017 (Landsberg et al., 2003; 

Wilson et al., 2010; Farzaneh et al., 2012; Van Quang & Jansson, 2012).  
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Traffic from the JD7760 regardless of the farming system (RTF or CTF), resulted in 

increased soil penetration resistance in the surface soil. This suggests that field traffic 

was the major source of soil compaction (Horn et al., 1995). In general, the main results 

are:   

 Increasing soil water content due to rainfall caused the Vertosol to swell, 

providing some degree of natural compaction alleviation and decreasing soil 

penetration resistance in October 2016 relative to subsequent periods for both RTF 

and CTF  

 Vertosol shrinkage due to dry conditions resulted in a significant increase in soil 

penetration resistance in topsoil at all sites throughout the soil profile  

 Both traffic systems showed a higher soil penetration resistance after one pass of 

the harvester 

 Harvester traffic on the site under CTF had the lowest soil penetration resistance 

in the 0–70 cm depth relative to RTF at both Koarlo and Undabri. 

 Conclusion 

The behaviour of Vertosol in response to factors such as rainfall, seasonal variability 

and harvester traffic under two different cotton farming systems (RTF and CTF) was 

monitored in this chapter. First, it was found that the soil responded significantly to 

variations in the listed factors. This, in turn, affected the potential for plant growth and 

yield. Furthermore, it was found that increasing Swc due to rainfall resulted in swelling 

in the topsoil under both RTF and CTF. The higher moisture and the swelling of the 

soil led to a slight decrease in Pb and soil resistance and provided some compaction 

alleviation.  This translates positively in terms of seed germination and plant nutrition. 

The CTF site at Yambacully experienced more rainfall in October 2016, leading to a 

significant decrease in compaction impacts compared to the other two conventional 

traffic or RTF sites.  
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On the other hand, for all sites, dry conditions related to seasonal variability resulted 

in a significant increase in Pb and soil penetration resistance in the topsoil due to 

shrinkage. An increase in Pb and soil penetration resistance result in the obstruction 

of root penetration and plant growth. Site under CTF exhibited lower sensitivity to 

seasonal variability which showed a lower rate of moisture loss (7%) in the topsoil for 

the period between January 2017 and May 2107, as compared to RTF sites at Koarlo 

and Undabri (18%). Moreover, significant compaction was observed after one pass of 

the JD7760 in the depth of 0–30 cm, regardless of the farming system (RTF or CTF). 

Compaction, due to the CTF7760 harvester traffic in the cultivated area, was 

significantly lower than that of the standard JD7760 configuration. The lower 

compaction effect of the CTF7760 is considered desirable for preserving soil quality 

and cotton crop performance in Vertosol.      
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Chapter 5. Results and discussions: Comparison of 

the effect of harvester traffic on different 

individual rows 

 Overview 

The previous chapter presents the results and discussions of the impact of rainfall, 

seasonal variability, and harvester traffic on Vertosols behaivour. This chapter 

presents results on the impact of JD7760 traffic on soil characteristics in individual 

cotton rows and furrows under RTF and CTF. It starts with the results of the effect of 

harvester traffic on Swc, Pb, and soil penetration resistance followed by a discussion 

of the overall results and conclusion. The significant and key findings are presented in 

the discussion section of this chapter. 

 Results 

In this chapter, the results of the three study sites, Koarlo, Undabri and Yambacully, 

are presented. Random traffic farming (RTF) was practiced at the Koarlo and Undabri 

study sites, while controlled traffic farming (CTF) was adpoted at the Yambacully site. 

Figure 5.1 shows: (1) row and furrow positions under RTF and CTF; and (2) the wheel 

track of the JD7760 standard configuration and the CTF7760 harvester. The letters R1, 

R2 and R3, 6 and 8 in the figures represent Row 1, Row 2 and Row 3, while F1, F2, 

and F3 represent Furrow 1, Furrow 2 and Furrow 3, respectively. 
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(A) 

 

 

(B)  

 

Figure 5.1: The wheel track of the JD7760. (A) represents the standard configuration 

under 1.0 m row spacing (RTF), and (B) represents the controlled traffic configured 

CTF7760 (1.5 m row spacing). The letters R1, R2 and R3 represent Row 1, Row 2 

and Row 3, while F1, F2, and F3 represent Furrow 1, Furrow 2 and Furrow 3, 

respectively 

Source: Schematic designed by the researcher. 
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5.2.1. Soil water content as influenced by John Deere 7760 traffic 

5.2.1.1. Koarlo site  

The results presented in Figure 5.2 show that soil water content (Swc) was significantly 

lower in Row 1 and Row 3 than Row 2, by 6% in the top 10 cm layer of the soil, while 

no significant difference was observed between Row1 and Row 3 in the surface soil. 

This was because Row 2 was located between the inner and outer wheels of the front 

dual-wheels of the JD7760 and experienced some compression from the wheels as 

shown in Figure 5.3. This led to a reduction in pore size distribution and decreased 

porosity, thus restricting water movement.   

The statistical analysis shows that there was no significant difference (P≤0.05) in the 

Swc of Furrow 1, Furrow 2 and Furrow 3 in the top 20 cm depth (Figure 5.4). However, 

Furrow1 had a lower Swc than Furrow 2 and Furrow 3 in the top soil. This was because 

the JD7760 wheel traffic in Furrow 2 and Furrow 3 induced significant compaction 

which caused changes in the structural arrangement of the soil and resulted in a decline 

in Swc relative to Furrow 1.   

 

Figure 5.2: Comparison of volumetric soil water content between individual rows in 

soil depths at the Koarlo site after harvester traffic 
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Figure 5.3: Row 2 as influenced by inner and outer dual-wheel traffic of JD7760 

 

Figure 5.4: Comparison of volumetric soil water content between individual furrows 

in soil depths at the Koarlo site after harvester traffic 

5.2.1.2. Undabri site 

Soil water content in the 0–20 cm depth was significantly higher in Row 1 than in Row 

2 and Row 3, by approximately 6%. No difference in Swc was found between Row 2 

and Row 3 in the 0–30 cm depth (Figure 5.5). There was also no significant difference 

in Swc between Furrow 1, Furrow 2 and Furrow 3 in the  0–30 cm depth (Figure 5.6).  
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Figure 5.5: Comparison of volumetric soil water content between individual rows in 

soil depths at the Undabri site after harvester traffic 

 

Figure 5.6: Comparison of volumetric soil water content between individual furrows 

in soil depths at the Undabri site after harvester traffic 
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5.2.1.3. Yambacully site 

As shown in Figure 5.7, soil water content was significantly lower in Row 1 than in 

Row 2 and Row 3, by 9% in the depth of 10─30 cm. There was no significant difference 

in Swc when comparing Row 2 and Row 3 throughout the 0─30 cm depth. This was 

because Row 2 and Row 3 were adjacent to a permanent traffic lane under the CTF 

system, and the sides that faced the wheels of the cotton picker were usually subjected 

to traffic. This resulted in an increased rut depth that increased the effective surface 

area of the row exposed to sunshine, causing greater evaporation from the row. Thus, 

the Swc of Row 2 and Row 3 were lower compared to Row 1 (see Figure 5.8).   

No significant difference in Swc was observed between Furrow 1 and Furrow 2 in the 

top 40 cm layer. Both Furrow 1 and Furrow 2 had a lower water content than Furrow 

3, by about 8% throughout the 0─40 cm depth (Figure 5.9). This was because Furrow 

1 and Furrow 2 were not subjected to harvester traffic under CTF and therefore 

experienced no soil structural damage due to traffic (Figure 5.1 B). 

 

Figure 5.7: Comparison of volumetric soil water content between individual rows in 

soil depths at the Yambacully site after harvester traffic 
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Figure 5.8: Rut depth after a single pass by the CTF7760 harvester in Yambacully 

 

Figure 5.9: Comparison of volumetric soil water content between individual furrows 

in soil depths at the Yambacully site after harvester traffic 
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5.2.2. Change in dry bulk density due to harvester traffic 

5.2.2.1. Koarlo site 

Figure 5.10 shows variations in dry bulk density (Pb) between individual cotton rows 

at different profile depths. Row 1 showed a lower Pb than Row 2 and Row 3, by 8% 

and 6% respectively in the depth of 0–30 cm. Dry bulk density measured in Row 3 

was significantly lower than that of Row 2 by approximately 4% in the topsoil. As 

mentioned in the previous section, Row 2 was compacted by the inner and outer dual-

wheel traffic, which led to a changed soil’s structural arrangement and increased Pb 

relative to Row 1 and Row 3 (Figure 5.11).  

In comparison, the Pb value was significantly lower in Furrow 1 (1.37 g/cm3) than in 

Furrow 2 (1.41 g/cm3) and Furrow 3 (1.51 g/cm3) for the 0─20 cm and 0─70 cm depths 

respectively (Figure 5.12). There was a significant difference in Pb of Furrow  2  by 

4% in the 10─40 cm soil layer in comparison to Furrow 3. This was because both 

Furrow 2 and Furrow 3 were subjected to significant compaction by the inner and outer 

dual-wheel traffic, leading to an increased Pb in the wheel track (Figure 5.13).  

 

Figure 5.10: Change in Pb between individual rows in different depths at Koarlo 

after harvester traffic 
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Figure 5.11: Row 2 as influenced by the traffic of the dual-wheel of John Deere 7760 

in Koarlo 

 

Figure 5.12: Change in Pb between individual furrows in different depths at Koarlo 

after harvester traffic 
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Figure 5.13: Furrow 2 and Furrow 3 after single traffic from JD7760 in Koarlo 

5.2.2.2. Undabri site 

Figure 5.14 shows that traffic from the JD7760 did not induce significant differences 

in dry bulk density between cotton rows in both the surface and subsurface layers. 

However, Pb was slightly higher in Row 1 than Row 2 and Row 3 in the topsoil. This 

result could be attributed to the historical compaction from random traffic which 

seemed to be equal in the different rows. Furthermore, Furrow 1 had a lower dry bulk 

density than Furrow 2 and Furrow 3, by 5% and 9% in the surface layer (Figure 5.15). 

The comparison between Furrow 2 and Furrow 3 showed a significantly higher Pb for 

Furrow 3 by approximately 4% at the depth of 0–20 cm. This suggests that both Furrow 

2 and Furrow 3 were subjected to greater compaction by the dual-wheel traffic of the 

harvester than Furrow 1. 
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Figure 5.14: Change in Pb between individual rows in different depths at Undabri 

after harvester traffic 

 

Figure 5.15: Change in Pb between individual furrows in different depths at Undabri 

after harvester traffic 

 

 

0

10

20

30

40

50

60

70

80

1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80

a,a,a

a,a,a

a,a,a

a,a,a

a,a,a

a,a,a

Dry bulk density (g/cm3)

S
o

il
 d

ep
th

 (
cm

)

 Row 1   Row 2   Row 3

a,b,b

a,a,a

0

10

20

30

40

50

60

70

80

1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80

a,a,a

a,ab,b

a,a,a

a,a,b

a,ab,a

a,b,c

Dry bulk density (g/cm3)

S
o

il
 d

ep
th

 (
cm

)

 Furrow 1   Furrow 2   Furrow 3

a,b,c

a,a,b



USQ                                                                          Chapter 5: Results and Discussion  

127 | P a g e  

 

5.2.2.3. Yambacully site  

Figure 5.16 shows that Pb was significantly lower in Row 1 than in Row 2 and Row 

3, by approximately 10% in the depth of 10─30 cm. There was no significant difference 

between the Pb of Row 2 and Row 3 in the surface layer. This suggests that the space 

between Row 1 and the permanent traffic lane (CTF) was sufficient to protect the soil 

structure, while the permanent traffic lane was between Row 2 and Row 3 (see Figure 

5.1B). Consequently, significant compaction occurred, resulting in increased soil 

strength in the wheel track. This effect also expanded to reach Row 2 and Row 3.  

Figure 5.17 further shows that there was no significant difference in the Pb of Furrow 

1 and Furrow 2 throughout the 0─40 cm soil depth. However, the CTF7760 harvester 

traffic caused significant compaction in Furrow 3 which led to a higher Pb, by 

approximately 10% in the 0─80 cm depth than both Furrow 1 and Furrow 2. This was 

because both Furrow 1 and Furrow 2 were not subjected to harvester traffic (Figure 

5.18).   

 

Figure 5.16: Change in Pb between individual rows in different depths at 

Yambacully after harvester traffic 
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Figure 5.17: Change in Pb between individual furrows in different depths at 

Yambacully after harvester traffic 

 

Figure 5.18: Furrow 3 as influenced by the CTF harvester at Yambacully 
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5.2.3. Influence of harvester traffic on soil penetration resistance 

5.2.3.1. Koarlo site 

Figure 5.19 shows that soil penetration resistance (SPR) was significantly lower in 

Row 1 than in Row 2 and Row 3, by 25% and 18% in the 10–20 cm depth, while it 

was significantly greater in Row 2 than in Row 3, by approximately 15% for the 20–

30 cm depth. This was because the dual-wheel traffic resulted in increased soil strength 

underneath the wheel track which expanded to reach both sides of Row 2 (Raper et al., 

2009; Braunack & Johnston, 2014; Keller et al., 2015).  

Figure 5.20 also shows that Furrow 1 had a lower SPR than Furrow 2 and Furrow 3, 

by 69% and 78% in the 0─70 cm depth. There was a significantly lower SPR in Furrow 

2, by 16% at the depth of 0─30 cm as compared to Furrow 3. These were because 

traffic from the JD7760 harvester produced significant compaction in the trafficked 

furrows by the dual-wheel, which then resulted in increased soil strength compared to 

Furrow 1. At the same time, the rear tyre traffic exerted an additional load after the 

inner dual-wheel traffic in Furrow 3, which led to a greater SPR in Furrow 3 than 

Furrow 2.    

 

Figure 5.19: Change in soil penetration resistance between individual rows in 

different depths at the Koarlo site after harvester traffic 
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Figure 5.20: Change in soil penetration resistance between individual furrows in 

different depths at the Koarlo site after harvester traffic 

5.2.3.2. Undabri site 

Figure 5.21 shows that the SPR values followed a similar trend to those in the Koarlo 

site. Soil penetration resistance was significantly lower in Row 1 than both Row 2 and 
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depth of 40─70 cm compared to Row 3. The results revealed that SPR was significantly 

lower in Furrow 1 than in Furrow 2 and Furrow 3, by 49 and 44% in the 0─70 cm soil 

depth (Figure 5.22). Furthermore, the comparison between Furrow 2 and Furrow 3 
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Figure 5.21: Change in soil penetration resistance between individual rows in 

different depths at the Undabri site after harvester traffic 

 

Figure 5.22: Change in soil penetration resistance between individual furrows in 

different depths at the Undabri site after harvester traffic 
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5.2.3.3. Yambacully site 

Figure 5.23 shows that Row 1 had a lower SPR than Row 2 and Row 3 by 48% and 

67%, respectively, in the 0─10 cm and 0─30 cm depths. Row 2 also had 26% lower 

SPR than Row 3 in the10–30 cm soil layer, which suggests that the space between 

Row 1 and the traffic lane was sufficient to protect the soil’s structural arrangement 

(see Figure 5.1). At the same time, the traffic lane was between Row 2 and Row 3. 

This means that traffic from the CTF7760 harvester caused significant compaction, 

which then resulted in increased soil strength in the wheel track that expanded to reach 

neighbouring rows.  

As expected, there was no significant difference in soil penetration resistance between 

Furrow 1 and Furrow 2 at the 0–30 cm depth (Figure 5.24). The experiment results 

reveal a higher SPR in Furrow 3 than in Furrow 1 and Furrow 2, by 83% and 96% in 

the 0–70 cm and 0–60 cm depths respectively. This was because Furrow 3, which was 

also the wheel track, was subjected to significant compaction by the single wheel 

traffic of the CTF7760 harvester, which led to greater soil strength than in Furrow 1 

and Furrow 2.    

 

Figure 5.23: Change in soil penetration resistance between individual rows in 

different depths at the Yambacully site after harvester traffic 
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Figure 5.24: Change in soil penetration resistance between individual furrows in 

different depths at Yambacully after harvester traffic 

 Discussion 

5.3.1. Harvester traffic effect on soil water content 

Infiltration rate and water movement are strongly connected to changes in bulk density 

and porosity (Farzaneh et al., 2012). Harvester traffic is a key cause of changing soil 

structure which directly affects soil properties and compaction development 

(McGarry, 2003). Traffic from the JD7760 cotton picker at soil water content 21.4% 

causes significant compaction observable at 30 cm soil depth (Bennett et al., 2017).  

This research found that soil water content varied significantly between the individual 

cotton rows and furrows after harvester traffic across the study areas. For example, in 

the Koarlo site, Row 2 had a higher Swc than Row 1 and Row 3, by 6% in the top 10 

cm depth. However, Swc  at the Undabri site was significantly higher in Row 1 by 6% 

in the 0–20 cm soil depth than Row 2 and Row 3. As well known, the volumetric water 

content increases linearly with soil bulk density increases. These results were because 

Row 2 in both sites was compressed by the inner and outer dual-wheel traffic, which 

then led to increased Pb and reduced pores size, and consequently a decline in 

volumetric soil water content (McKenzie & McBratney, 2001). 
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Row 1 at the CTF site in Yambacully had a lower Swc than Row 2 and Row 3, by 9% 

in the 10─30 cm, while there was no significant difference in Swc between Row 2 and 

Row 3. This was because the space between Row 1 and the traffic lane was sufficient  

to maintain soil’s structural arrangement, while the permanent traffic lane was between 

Row 2 and Row 3. The wheels of the harvester created deep ruts on the sides of the 

rows. This increased the effective surface area of the rows exposed to the sun and 

allowed greater evaporation, thus decreasing Swc (Antille et al., 2016; Roberton & 

Bennett, 2017).  

In comparison, Furrow 1 under RTF showed a lower Swc than Furrow 2 and Furrow 

3 in the topsoil, while a slight change was observed in Swc between Furrow 2 and 

Furrow 3. This was the result of Furrow 2’s profile being subjected to significant 

compaction by the outer dual-wheel traffic, which led to an increased Pb, and reduction 

in soil porosity which resulted in a lower  Swc in comparison to Furrow 1. At the same 

time, Furrow 3 was influenced by both the inner dual-wheel and rear tyre traffic which 

caused more load that then led to less pore space available for water than in Furrow 1 

and Furrow 2 (Hamza & Anderson, 2005; Seifu & Elias, 2019).  

Furthermore, the CTF site at Yambacully did not show a significant difference in Swc 

between Furrow 1 and Furrow 2 from the surface soil to a depth of 40 cm. Furrow 1 

and Furrow 2, however, had a lower Swc than Furrow 3 by 8% in depth of 0─40 cm. 

A possible explanation for this was that Furrow 1 and Furrow 2 were not subjected to 

harvester traffic, while Furrow 3 was the permanent lane of the CTF system, and was 

subjected to significant compaction that led to an increased Pb, rearranged soil 

particles and restricted water movement throughout the profile (Antille et al., 2016; 

Bennett et al., 2017). In summary, the key outcomes of this experiment are as follows:   

 Row 2 under RTF was most influenced by harvester traffic, and showed a lower 

Swc than Row 1 and Row 3 by 6% in the surface soil (0–10 cm depth)  

 Row 1 at the Yambacully CTF had a lower Swc than Row 2 and Row 3, by 9% 

in the 10–30 cm depth 
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 Furrow 2 and Furrow 3 at RTF was more sensitive to the JD7760 standard 

traffic, which showed 6% higher Swc at the depth of 0–10 cm than Furrow 1  

  Traffic from the CTF7760 harvester did not cause a significant difference in 

Swc in either Furrow 1 and Furrow 2 throughout the 0–40 cm depth 

 Furrow 3 was most sensitive to the CTF7760 harvester traffic, which resulted 

in a lower Swc by 8% in the 0–40 cm depth than Furrow 1 and Furrow 2. 

5.3.2. Impact of JD7760 traffic on dry bulk density 

Compaction leads to a redistribution of soil pores, change in soil physical properties 

and structural deterioration (Soane & Van Ouwerkerk, 1994; McKenzie, 2010; Shen 

et al., 2016). Compaction due to wheeled traffic is characterised by a reduction in total 

porosity in the wheel track at the surface layer (Hamza & Anderson, 2005). Frequent 

agricultural field traffic increases dry bulk density (Pb) by 32% and decreases total 

porosity up to 17% (Frey et al., 2009).  

In this study, RTF was adopted at both Koarlo and Undabri, while CTF was used at 

Yambacully. The results reveal that Row 2 in Koarlo had a higher Pb than Row 1 and 

Row 3, by 8% and 3%, respectively, in the 0–30 cm soil depth, while there was no 

significant difference in Pb between cotton rows in both surface and subsurface soils 

at Undabri site. However, slight differences in Pb were observed in the topsoil of all 3 

rows. This was because Row 2 was compacted by the traffic of the dual-wheel of the 

harvester, which led to changed soil’s structural arrangement, soil porosity and 

increased Pb as a result (Osunbitan et al., 2005; Braunack & Johnston, 2014; 

Munkholm et al., 2016). The above observations at the Undabri site could be attributed 

to historical compaction due to the random harvester traffic that still existed and 

appeared to be equal among all rows (Alakukku, 1999).  

Row 1 at the Yambacully CTF site showed a lower Pb than Row 2 and Row 3, by 10% 

in the depth of 10–30 cm, while no significant difference in Pb was observed between 

Row 2 and Row 3 in the 0–30 cm soil depth. This suggests that the space between Row 

1 and the traffic lane of the CTF harvester was sufficient to the protect soil’s structural 

arrangement, while the wheel track was between Row 2 and Row 3. Consequently, 
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significant compaction occurred in the wheel track which resulted in increased soil 

strength, and this effect spread to Row 2 and Row 3. 

Furthermore, this study shows that the JD7760 standard configuration traffic had a 

similar impact at both Koarlo and Undabri. The Pb values were significantly lower in 

Furrow 1 than in Furrow 2 and Furrow 3 at the 0─20, while Pb was slightly higher in 

the 10─40 cm soil depth for Furrow 3 than Furrow 2. Interestingly, traffic from the 

CTF7760 harvester did not have an impact on Furrow 1 and Furrow 2, whilst Pb 

significantly increased in Furrow 3, by approximately 10% throughout the 0─80 cm 

depth relative to Furrow 1 and Furrow 2. These results were because in Koarlo and 

Undabri, Furrow 1 was not subjected to harvester traffic, while both Furrow 2 and 

Furrow 3 were subjected to significant compaction by the dual-wheel traffic of the 

JD7760 standard configuration. This resulted in the compression of soil aggregates 

into a smaller size and increased Pb. The rear tyre traffic directly behind the inner dual-

wheel passing through Furrow 3 exerted an additional load which led to higher a Pb 

in Furrow 3 than Furrow 2 (Ansorge & Godwin, 2008; Bennett et al., 2015). In 

contrast, the observations from the CTF site at Yambacully indicate that Furrow 3 was 

the traffic lane under the CTF system that was always subjected to considerable 

compaction, resulting in higher Pb than Furrow 1 and Furrow 2. Overall, the main 

findings are: 

 Both harvesters’ traffic systems induced significant compaction which led to 

increased Pb in the wheel tracks and this impact spread to adjacent rows 

throughout the depth studied 

 Row 1 had the lowest Pb under CTF, by 10% in the depth of 10–30 cm than 

Row 2 and Row 3 

 Under the RTF, Row 2 was most influenced by harvester traffic, which led to 

a higher Pb than in Row 1 and Row 3, by up to 8% in the depth of 0–20 cm 

 The top 30 cm layer of the cotton rows was most sensitive to harvester traffic 

at both Koarlo and Yambacully 
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 Furrow 1 and Furrow 2 at the CTF site at Yambacully had a lower Pb than 

Furrow 3 by 10% throughout the 0–80 cm depth. 

5.3.3. Change in soil penetration resistance due to harvester traffic 

The relationship between soil penetration resistance and compaction can be employed 

as an indication of the degree of soil compaction (Perumpral, 1987; Costantini, 1995; 

de Vetten, 2014). Excessive use of machinery increased SPR to up to 5 MPa, which 

restricted the expansion of the root system and the absorption of water and nutrients 

(Rosolem et al., 2002; Lampurlanés & Cantero-Martinez, 2003). Primary traffic from 

the harvester caused significant compaction, which increased SPR to about 0.5 MPa 

at the surface layer (Landsberg et al., 2003).  

This study revealed that SPR varied between cotton rows and furrows after one pass 

of the JD7760 harvester. This resulted in a similar trend in dry bulk density down the 

soil profile across the study sites. Row 1 at both Koarlo and Undabri showed a lower 

SPR, by approximately 22% and 38% than Row 2 and Row 3 in the top 20 cm depth 

of soil. Row 2 at both sites showed a 15% and 13% higher SPR in the 20─30 cm and 

40─70 cm soil depths, respectively, than Row 3. These findings were expected because 

Row 2, which was located between the inner and outer dual-wheels, was compressed 

on both sides by the wheels, leading to a  higher soil strength than Row 1 and Row 3 

(Braunack & Peatey, 1999).           

Row 1 at the CTF site at Yambacully showed a lower SPR than Row 2 and Row 3, by 

approximately 48% and 67%, respectively, in the 0─10 cm and 0─30 cm depths, while 

SPR was significantly higher (26%) in the 10─30 cm soil layer of Row 3 than Row 2. 

This suggests that the space between Row 1 and the traffic lane was wide enough to 

protect the soil’s structural arrangement, while the permanent traffic lane was between 

Row 2 and Row 3. Therefore, the wheel track was subjected to significant compaction 

which led to increased soil strength. This effect spread reached Row 2 and Row 3 

(Braunack & Johnston, 2014; Antille et al., 2016; Bennett et al., 2017).  

Furrow 1 at the both Koarlo and Undabri sites had a lower SPR by about two-thirds 

compared to Furrow 2 and Furrow 3 in the 0─70 cm depth after harvester traffic. In 
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addition, SPR was lower in Furrow 2 at the surface soil than Furrow 3. This was 

because traffic from the JD7760 harvester caused significant compaction, which 

resulted in soil structural damage and higher soil strength in the wheel track than 

Furrow 1 (Figure 5.1 A). 

Adopting CTF improved soil structure due to the minimisation and restriction of traffic 

to permanent lanes (Antille et al., 2016). The present study found that there was no 

statistical difference in SPR between Furrow 1 and Furrow 2 at the 0-30 cm layer of 

the soil profile after one pass of the CTF harvester. These furrows were not subjected 

to any traffic by the harvester, which provided some protection for the soil’s structural 

arrangement. In contrast, significant compaction was observed in Furrow 3, which led 

to a greater SPR by 83% and 96% in the 0─70 cm and 0─60 cm depths respectively 

than Furrow 1 and Furrow 2. This was because Furrow 3 was subjected to the 

combined effects of the single front wheel and rear wheel traffic of the CTF7760 

harvester, thus resulting in increased soil strength in the wheel track (McPhee et al., 

2015). In brief, the key findings are:  

 Row 1 under RTF had the lowest sensitivity to harvester traffic, showing a 

lower SPR than Row 2 and Row 3, by approximately 30% in the topsoil    

 Row 1 had the lowest SPR after one pass from the CTF7760 harvester, by 57% 

in top 30 cm depth relative to RTF  

 Furrow 2 and Furrow 3 under RTF were more sensitive to the JD7760 standard 

configuration traffic. They had approximately 75% greater SPR than Furrow 1 

throughout the 0–70 cm depth    

 Both Furrow 1 and Furrow 2 at the CTF site at Yambacully were less sensitive 

to harvester traffic. They had 83% and 96% lower SPR in the 0–70 cm and 0–

60 cm soil depths than Furrow 3 

 Traffic under the RTF system resulted in compacted soil by 75% of the field, 

while induced-compaction by the CTF harvester traffic was lower by 25%. 
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 Conclusion 

This chapter examined the impact of the John Deere 7760 harvester traffic on soil 

compaction at the single row level under two different cotton farming systems (RTF 

and CTF). It was found that wheeled traffic over the furrows resulted in reduced soil 

water content, and increased Pb and soil penetration resistance. In RTF conditions, the 

topsoil 0–20 cm layer of Row 2 was most influenced by harvester traffic which showed 

the highest Pb and soil penetration resistance compared to Row 1 and Row 3.  

There was an increase in dry bulk density and soil penetration resistance underneath 

the wheel track of both RTF and CTF. This effect spread to adjacent rows, which 

directly affected cotton. There was no impact on Row 1 after one pass of the CTF7760 

harvester throughout the 0–80 cm depth. Overall, CTF provided protection to about 

two-thirds of the farm in terms of soil’s structural arrangement and reduced 

compaction effects compared to RTF. 
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Chapter 6. Results and discussions: The impact of 

harvester traffic at different soil depths in 

individual row 

 Introduction 

The previous chapter explored the influence of JD7760 traffic on soil properties 

between individual cotton rows and furrows under two different farming systems. This 

chapter discusses the impact of the harvester traffic on soil water content (Swc), dry 

bulk density (Pb), and soil penetration resistance (SPR) at different soil depths across 

the individual rows and furrows. The following chapter will discuss the impact of soil 

compaction on cotton yield row by row.   

As mentioned in previous chapters, random traffic farming (RTF) was practiced in 

Koarlo and Undabri. Controlled traffic farming (CTF) was adopted in Yambacully. In 

this chapter, two different fields at Koarlo are investigated; the first in 2016 and the 

second in 2017. Both Undabri and Yambacully were examined in 2017. The letters 

R1, R2 and R3 in the figures represent Row 1, Row 2 and Row 3, while F1, F2, and 

F3 represent Furrow 1, Furrow 2 and Furrow 3, respectively. The significant and key 

findings are presented in the discussion sections of this chapter. The symbol (*) 

indicates significant difference between treatments at P≤0.05 level.  

 The impact of harvester traffic on soil water content at 

different soil depths 

Figure 6.1 shows Swc before and after harvester traffic in Row 1 for Koarlo in 2017. 

Overall, Swc before and after traffic was not significantly different (P≤0.05) 

throughout the entire profile for both RTF and CTF at all three sites. This was because 

Swc measurements were taken immediately before and after traffic.  
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Figure 6.1: Volumetric soil water content before and after traffic in Row 1 at Koarlo 

in 2017 

 The impact of harvester traffic on dry bulk density at 

different soil depths 

6.3.1. Random traffic farming 

As mentioned earlier, RTF was practiced at the Koarlo and Undabri sites. The results 

show that Pb increased significantly in Row 1, from 0.91 to 1.0 g/cm3 and from 1.22 

to 1.30 g/cm3 at Koarlo in 2016 and 2017, for the depths of 0─10 cm and 0─20 cm due 

to harvester traffic (Figures 6.2 and 6.3). A similar trend was observed at the Undabri 

site, where Row 1 showed a lower Pb before traffic than after traffic, by approximately 

10% in the topsoil (Figure 6.4). This was because the outer wheel traffic caused 

significant compaction in the wheel track that resulted in increased soil strength which 

also spread to reach adjacent rows.   

Figures 6.2 and 6.3 also reveal that Pb increased significantly after one pass of the 

JD7760 harvester in Row 2, by 10% at Koarlo in 2016 and 2017 in the 0–30 m depth. 

It as well increased by 5% in the 0─30 cm depth at Undabri. This was because Row 2 

was compressed by both the inner and outer dual-wheel traffics, which led to change 

in soil’s structural arrangements and increased soil strength, thus increased Pb (see 

Figure 5.11).  
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A significant increase in Pb was observed in Row 3 after harvest, for Koarlo in 2016 

(10%) and 2017 (6%), respectively in the 0─20 cm soil depth. Similarly, Undabri 

showed 5% higher Pb in Row 3 after one pass of the harvester in the 0─40 cm depth 

(Figure 6.4). This was also because the inner wheel and rear tyre traffic caused 

significant compaction in the wheel track, resulting in increased soil strength that 

spread widely to reach Row 3.  

As Figures 6.2, 6.3 and 6.4 show, harvester traffic induced no significant difference in 

Pb in Furrow1 for both Koarlo and Undabri throughout the 0─80 cm soil depth. As 

would be expected, traffic from the JD7760 caused significant compaction, resulting 

in increased Pb in Furrow 2 and Furrow 3, by approximately 5% and 6% in Koarlo in 

2016 and 2017 for the 0─70 cm depth respectively. The Undabri site was subjected to 

significant compaction by the dual-wheel of the harvester, which led to 5% increase 

Pb in both Furrow 2 and Furrow 3 throughout the 0─80 cm soil depth. This was because 

Furrow 2 and Furrow 3 were the traffic lanes under RTF that were subjected to 

significant compaction by the inner and outer dual-wheel traffic, which in turn resulted 

in increased soil strength and reduced soil pores and hence, increased Pb. 
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Figure 6.2: Before and after traffic comparison in Pb at individual cotton rows and 

furrows at Koarlo in 2016 
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Figure 6.3: Before and after traffic comparison in Pb at individual cotton rows and 

furrows at Koarlo in 2017 
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Figure 6.4: Before and after traffic comparison in Pb at individual cotton rows and 

furrows at Undabri 
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6.3.2. Controlled traffic farming 

Figure 6.5 shows that harvester traffic caused no significant difference in Pb in Row 

1 throughout the 0─80 cm soil depth, suggesting that the space between Row 1 and the 

traffic lane was sufficiently wide to protect the soil’s structural arrangement. The 

results also reveal that, after one pass of the CTF7760 harvester, Pb increased 

significantly in Row 2 and Row 3, from 1.18 to 1.24 g/cm3 and from 1.29 to 1.35 g/cm3 

in the 0─10 cm and 0─30 cm depths respectively (Figure 6.5). This was because the 

permanent traffic lane was located between Row 2 and Row 3. This implies that traffic 

from the CTF harvester induced significant compaction that had led to increased soil 

strength in the wheel track which expanded to reach neighbouring cotton rows, and 

thereby increased Pb. Furrow 1 and Furrow 2 did not show a significant difference in 

Pb throughout the 0─80 cm depth due to traffic. Moreover, one pass from the CTF7760 

caused significant compaction in Furrow 3, which then led to an increased Pb from 

1.42 to 1.52 g/cm3 for the 0─80 cm depth. This was because Furrow 1 and Furrow 2 

were not subjected to harvester traffic compared with Furrow 3 (Figure 5.17).  
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Figure 6.5: Before and after traffic comparison in Pb at individual cotton rows and 

furrows at Yambacully 
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 The influence of JD7760 harvester traffic effect on soil 

penetration resistance at different soil depths 

6.4.1. Random traffic farming 

Overall, soil penetration resistance (SPR) showed a similar trend to Pb across the study 

areas. It can be seen from Figures 6.6 and 6.7 that SPR significantly increased in Row 

1 after harvester traffic, by approximately 30% and 61% at Koarlo and Undabri in the 

0─10 cm and 10─20 cm depths respectively. This was because the outer wheel traffic 

induced significant compaction in the wheel track, which resulted in increased soil 

strength that spread to Row 1.  

After traffic, Row 2 in both Koarlo and Undabri showed a significant increase in SPR 

(45% and 50%) in the 0─30 cm and 10─40 cm depths respectively. This was because 

Row 2 was compressed by the dual-wheels which led to a change in the soil’s structural 

arrangement and increased SPR as a result. Row 3 also showed an increase in SPR 

after one pass of the JD7760 at both Koarlo and Undabri, by approximately 42% and 

71%, respectively, in the 0─20 cm and 0─30 cm depths compared to before traffic 

(Figures 6.6 and 6.7). This was because the inner wheel and rear tyre traffic induced 

significant compaction in the wheel track, which resulted in increased soil strength that 

expanded to reach Row 3 (Braunack et al., 2012).       

Furrow 1 at both sites did not show any significant difference in SPR for the 0─70 cm 

soil depth after traffic, because Furrow1 was not subjected to harvester traffic. 

Furthermore, for Koarlo, traffic from the JD7760 standard caused significant 

compaction that led to increased SPR in Furrow 2 and Furrow 3, to approximately 

3435 kPa at the depth of 0─70 cm. SPR increased by 60% and 30% in Furrow 2 and 

Furrow 3 at Undabri throughout the 0─70 cm depth (Figures 6.6 and 6.7), which reveal 

that Furrow 2 and Furrow 3 were trafficked furrows under RTF.   
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Figure 6.6: Effect of the JD7760 traffic on soil penetration resistance at Koarlo 
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Figure 6.7: Effect of the JD7760 traffic on soil penetration resistance at Undabri 
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6.4.2. Controlled traffic farming 

Figure 6.8 shows no significant difference in SPR in Row 1 after the CTF7760 

harvester traffic throughout the 0─70 cm depth, suggesting that the space between Row 

1 and the traffic lane was wide enough to protect the soil’s structural arrangement. Soil 

penetration resistance increased significantly in Row 2 and Row 3, by approximately 

90% for the 0─10 cm and 0─30 cm depths after harvester traffic. This was because the 

permanent traffic lane was between Row 2 and Row 3. Where traffic from the 

CTF7760 harvester occurred, significant compaction resulted in increased soil strength 

in the wheel track, which spread to adjacent rows.  

Furthermore, the CTF7760 harvester traffic did not result in a significant difference in 

SPR in Furrow 1or Furrow 2 throughout the 0─70 cm depth compared to before traffic, 

suggesting that these furrows were not subjected to the harvester traffic. Significant 

compaction was observed in Furrow 3 after one pass of the CTF7760 harvester which 

increased SPR from 1801 to 3444 kPa at the depth of 0─60 cm (Figure 6.8). This 

indicates that traffic from the JD7760 induced significant compaction, which resulted 

in increased SPR in the trafficked furrows, regardless of RTF or CTF. 
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Figure 6.8: Effect of the CTF7760 on soil penetration resistance at Yambacully 
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 Discussion 

6.5.1. The impact of traffic system on Pb at different soil depths 

Antille  et al. (2015a) and Bennett et al. (2017) found that, with both RTF and CTF, 

traffic from the JD7760 harvester produces significant compaction when the soil water 

content is about 20.15% and tyre inflation pressure is at the recommended level. The 

main differences between the two systems are that: (1) around 50% of furrows are 

subjected to harvester traffic under the CTF7760 harvester; (2) approximately 66% of 

furrows are subjected to traffic under the JD7760 standard (Bennett et al., 2016). 

This study found that one pass of the JD7760 standard configuration resulted in an 

increased Pb in Row 1, by 10%, 7% and 10% for Koarlo (in 2016 and 2017) and 

Undabri at the 0–10 cm and 0–20 cm depths. By contrast, Row 1 under CTF did not 

show any increase in dry bulk density throughout the 0─80 cm depth. This was because 

Row 1 under RTF was subjected to traffic of the outer dual-wheel which resulted in 

increased soil strength and reduced porosity in the wheel track that spread to the 

adjacent rows (Braunack et al., 2012). At the same time, the space between Row 1 and 

the traffic lane under CTF played a significant role in providing protection to the soil’s 

structural arrangement (Bennett et al., 2017).  

The current study demonstrates that, under both RTF and CTF, Row 2 and Row 3 were 

affected by harvester traffic. After traffic, Row 2 in Koarlo (2016 and 2017) showed 

an increase in Pb by 10% in the top 30 cm layer of the soil, while a 5% increase in 

Row 2 was observed at Undabri and Yambacully in the depths of 0─30 cm and 0─10 

cm, respectively. In addition, Pb increased significantly in Row 3 after one pass of the 

JD7760 standard configuration, by 10% and 6% for Koarlo in 2016 and 2017 in the 

0─20 cm soil depth, while it increased by 4% in Row 3 at Undabri throughout the 0─40 

cm depth. A significant increase in Pb was also found in Row 3 under the CTF 

Yambacully from 1.30 to 1.35 g/cm3 in the 0─30 cm depth.    
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These outcomes suggest that the inner and outer dual-wheel traffic of the JD7760 

standard configuration compressed the sides of Row 2 in both Koarlo and Undabri, 

while Row 3 was influenced by the combined effect of the inner dual-wheel and rear 

wheel traffic. Conversely, for CTF at Yambacully, the permanent traffic lane was 

between Row 2 and Row 3. Consequently, traffic from the JD7760 harvester 

(regardless of traffic system) generated significant compaction, which then resulted in 

increased soil strength in the wheel track, which spread to the adjacent cotton rows 

(Braunack et al., 2012; Antille et al., 2016; Bennett et al., 2017). 

Comparison of Pb before and after traffic in Furrow 1 did not show any significant 

difference for the Koarlo or Undabri sites throughout the 0─80 cm soil depth. There 

was also no difference in Pb in Furrow 1 and Furrow 2 at Yambacully after a single 

pass of the CTF7760 harvester because they were not subjected to wheel traffic in both 

systems during harvesting (Bennett et al., 2019). Traffic from the JD7760 standard 

configuration induced significant compaction which resulted in increased Pb in 

Furrow 2 and Furrow 3 for Koarlo and Undabri by 5% for the depth of 0─70 cm. 

Following the same trend, after one pass of the CTF7760 harvester, Pb significantly 

increased in Furrow 3 after one pass of the CTF7760 harvester, from 1.42 to 1.52 g/cm3 

for the 0─80 cm depth. This indicates that traffic from the JD7760 induced significant 

compaction, which resulted in an increased Pb in the trafficked furrows, regardless of 

RTF or CTF (Goutal et al., 2013; Bennett et al., 2017). Overall, the key findings of 

current investigations are:   

 Traffic from the JD7760 caused significant compaction irrespective of the 

traffic system (RTF and CTF), which led to an increased Pb in the 

neighbouring rows and in the wheel track in the surface and sub-surface layers   

 There was no significant difference in Pb in Row 1 after one pass of the 

CTF7760 harvester. The Pb of Row 1 under CTF was 7% lower in the surface 

layer than under RTF 

 Row 2 was most sensitive to harvester traffic under RTF. Up to 5% higher Pb 

was recorded under RTF than CTF  
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 After one pass of the JD7760 standard harvester, dry bulk density significantly 

increased by 9%, 11% and 7% in Row 1, Row 2 and Row 3, respectively, in 

the surface layer  

 Dry bulk density in Row 2 and Row 3 slightly increased by 5% in the 0─10 cm 

and 0─30 cm depths after the CTF7760 harvester traffic 

 No significant difference in Pb in Furrow 1 was recorded under for either CTF 

or RTF throughout the 0─80 cm depth  

 Furrow 2 under CTF at Yambacully was not subjected to compaction by wheel 

traffic and showed 8% lower Pb than under RTF throughout the studied depth 

 Under both farming systems (CTF and RTF), Furrow 3 was most sensitive to 

harvester traffic. Furrow 3 showed approximately 7% higher Pb than Furrow 

1 and Furrow 2 throughout the 0─80 cm depth. 

6.5.2. The effect of harvester traffic on soil penetration resistance at 

different soil depths 

Newton (2014) found that one pass of the JD 7760 picker can double SPR at different 

soil depths. In this study, the experiment results revealed that, after harvester traffic, 

SPR increased significantly in Row 1, by 30% and 61% at Koarlo and Undabri in the 

0─10 cm and 10─20 cm depths, respectively. At the same time, harvester traffic did 

not significantly affect SPR in Row 1 under the CTF at Yambacully. This was because, 

at both Koarlo and Undabri, the outer dual-wheel traffic caused increased soil strength 

and reduced porosity in the wheel track which spread to Row 1. The space between 

Row 1 and the traffic lane at the CTF site played a significant role in providing 

protection for the soil’s structural arrangement (Braunack et al., 2012; Bennett et al., 

2017).  

Row 2 in both Koarlo and Undabri sites experienced a significant increase in SPR, by 

45% and 50% for the 0─30 cm and 10─40 cm depths, while it increased by 42% and 

71% in Row 3 in the top 30 cm layer of the soil due to harvester traffic. Following the 

same trend, SPR showed a significant increase in Row 2 and Row 3 after one pass of 
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the CTF7760 harvester, by 90% in the 0─10 cm and 0─30 cm depths, respectively. This 

observation was because Row 2 under RTF was compressed by the dual-wheels during 

harvest traffic, which led to changed soil’s structural arrangement. Row 3 was 

influenced by the inner front wheel and rear wheel traffic, which induced significant 

compaction in the wheel track that resulted in increased soil strength that reached Row 

3. On the other hand, the permanent traffic lane under CTF was between Row 2 and 

Row 3, where harvester traffic caused significant compaction, which also reached the 

adjacent cotton rows (Row 2 and Row 3) and increased SPR as a result (McGarry et 

al., 1997; Braunack et al., 2012; Antille et al., 2016).  

The results also reveal that, at both Koarlo and Undabri, SPR did not vary significantly 

in Furrow1 at the 0─70 cm depth after traffic, suggesting that Furrow1 was not 

subjected to wheel traffic during harvesting (Bennett et al., 2016). In addition, traffic 

under CTF conditions did not cause any signficant difference in SPR in both Furrow 

1 and Furrow 2 throughout the 0─70 cm depth. This suggests that adopting CTF 

contributed to compaction avoidance and the minimisation of soil structural damage 

through restricted traffic lanes (Antille et al., 2016).  

As would be expected, throughout the entire Koarlo profile, traffic from the JD7760 

standard caused significant compaction that led to increased SPR in Furrow 2 and 

Furrow 3 to 3435 kPa, while it increased by 60% and 30% in Furrow 2 and Furrow 3 

at Undabri in the 0─70 cm depth. Significant compaction was also observed in Furrow 

3 after one pass of the CTF7760 harvester which resulted in an increased SPR from 

1801 to 3444 kPa in the depth of 0─60 cm. These findings indicate that traffic of the 

heavy harvester (regardless of the traffic system) was the main source of compaction, 

particularly in furrows beneath the wheel track (Antille et al., 2016; Bennett et al., 

2017). In summary, the main findings of this investigation are:   

 Whether the JD7760 harvester was standard or modified, soil penetration 

resistance showed a similar trend to Pb in terms of soil compaction. This led 

to a significantly increased SPR in rows and furrows adjacent and underneath 

the wheel track at different soil depths  
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 Row 1 under CTF at Yambacully was not influenced by harvest traffic and 

showed the lowest SPR, by >100% in the 0─70 cm depth compared to the two 

RTF sites  

 Row 2 under RTF was most sensitive to harvester traffic, which showed a 

higher SPR than under CTF, by approximately 24% in the top 30 cm layer of 

the soil 

 Traffic of the CTF7760 harvester did not affect Furrow 1 and Furrow 2. Soil’s 

structural arrangement of about two-thirds of the site was preserved as 

compared to 33% of the site under RTF  

 Trafficked furrows under RTF were most sensitive to harvester traffic which 

resulted in approximately 31% increase in SPR in the 0–70 cm depth as 

compared to CTF. 

 Conclusion 

The impact of harvester traffic on soil properties at different soil depths under two 

different cotton farming systems (RTF and CTF) across individual rows was 

investigated in this chapter. It was found that one pass of the harvester, regardless of 

RTF or CTF, had a negative effect on soil neighbouring the wheel track. This directly 

affects cotton performance. It was also found that there was no significant difference 

in Swc throughout the 0–80 cm depth across all treatments, for both RTF and CTF, 

before and after traffic. Traffic from the JD7760 standard configuration resulted in 

significantly increased soil penetration resistance and Pb in Row 1 at the depth of 10 

cm. There was no significant effect on Row 1 after traffic of the CTF7760 harvester 

throughout the 0–80 cm depth. Row 2 and Row 3 were influenced by harvester traffic 

under both traffic systems, which resulted in increased Pb and SPR in the top 30 cm 

layer of the soil. Furthermore, Row 2 was most sensitive to harvester traffic under 

RTF, which resulted in higher Pb and SPR in the surface soil when compared to Row 

2 under CTF.   
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There was no significant change in Pb and soil penetration resistance in Furrow 1 at 

both RTF sites throughout the 0─80 cm depth after harvester traffic. There was also no 

significant change in Pb and SPR in Furrow 1 and Furrow 2 after CTF7760 harvester 

traffic. Trafficked furrows at both RTF and CTF sites were sensitive to harvester traffic 

resulting in significant compaction in the 0–80 cm depth. However, traffic from the 

CTF7760 harvester covered 33% of the farm compared to 66% for the RTF sites. In 

summary, Chapters 4, 5 and 6 have answered research Question 1 and achieved 

Objective 1. Research Question 2 and 3, and Objectives 2 and 3 will be examined in 

the subsequent chapter. 
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Chapter 7. Results and discussions: The influence of 

harvester traffic on cotton yield 

 Introduction 

Chapters 5 and 6 have examined the impact of JD7760 harvester traffic on soil 

compaction in individual cotton rows and furrows. This chapter will discuss the results 

of the effect of soil compaction from different traffic systems on cotton yield row by 

row. In this study, cotton yield was measured at Koarlo in 2016 and 2017, and at 

Undabri and Yambacully in 2017. The chapter starts by presenting the results and 

discusion of the impact of the JD7760 harvester traffic on cotton yield row by row 

(7.2). The section is subdivided into two parts. First, it shows the correlation between 

machine-picked and hand-picked methods for all sites. Second, it discusses the yield 

data of each site separately. The next section (7.3) compares and discusses the effect 

of the two farming systems (RTF and CTF) on individual cotton yield. Section 7.4 

discusses the cotton farming systems based on the overall yield. Section 7.5 examines 

the efficiencies of harvesters (JD7760 standard configuration and CTF7760 modified 

harvester) based on harvest losses. The significant and key findings are highlighted in 

the discussion sections of this chapter.  

 Cotton yield of individual rows 

7.2.1. Correlation analysis between machine-picked and hand-picked 

methods 

Two harvesting methods machine-picking (mechanically in 2016 and by CAN-BUS 

in 2017) and hand-picking were employed in this project. The investigations showed 

that there was a strong correlation between machine-picked and hand-picked methods 

in terms of yield data, with R2 values of 0.78 for Koarlo in 2016, and 0.97, 0.98 and 

0.93 for Koarlo, Undabri and Yambacully, respectively, in 2017 (Figure 7.1). This 

correlation demonstrates that two machine-picking approaches performed well and 

showed a good agreement with the hand-picking method. However, the regression 

equation was based on 3 data pairs which considered as a limitation in this study. But 

the regression line was valid in the sense that at least provided a rough idea about the 

dependency of the two picking methods.   
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Figure 7.1: The correlation between the machined and hand-picked bales per hectare 

in individual cotton rows. A represents Koarlo in 2016 (mechanical method), while 

B, C, and D represent Koarlo, Undabri, and Yambacully in 2017 (using CAN-BUS) 

respectively 

7.2.2. Results 

In this study, lint yield was calculated to be 227 kg (500 pounds) cotton lint per ginned 

bale. This section compares and discusses the yield results of individual rows of each 

field for both the machine and hand-picked methods.The different letters (a, b and c) 

refer  to the significant difference at P≤0.05 level between rows under the machine-

picked method, while the values followed by different letters (x, y, and z) refer to 

significant differences (P≤0.05) for the hand-picked method. 
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7.2.2.1. Koarlo site 

At this site, two field experiments were carried out in two different cotton fields. The 

first field trial was undertaken in 2016 and aimed to measure the row by row cotton 

yield mechanically. The second trial was conducted in 2017 and used CAN-BUS with 

the JD7760 to collect yield data. Figure 7.2 shows that the 2016 yield varied between 

cotton rows which were 12.78, 12.16 and 12.70 bales per hectare for Row 1, Row 2, 

and Row 3 respectively. The yield was significantly higher in Row 1 and Row 3 than 

in Row 2, by approximately 4%, while the yield in Row 1 did not show a significant 

difference when compared to Row 3. In 2017, the results revealed that Row 1 also 

produced a higher yield than Row 2 and Row 3, by 18% and 9% respectively, while 

Row 2 had a lower yield than Row 3, by approximately 10% (Figure 7.3).          

Further investigations showed a similar trend for the hand-picked method in both 

years. Row 1 had a higher yield than Row 2, by 7% and 24% in 2016 and 2017 

respectively (Figures 7.2 and 7.3). There was no significant difference in the yield in 

both Row 1 and Row 2 when compared to Row 3 in 2016 (Figure 7.2). In contrast, the 

results of 2017 indicated a lower yield in Row 2 than in Row 1 and Row 3, by 24% 

and 8% respectively (Figure 7.3).    

These results were because the inner and outer dual-wheel traffic induced significant 

compaction underneath the wheel track, which led to increased soil strength that spread 

to neighbouring cotton rows. This influence resulted in soil structure damage and 

hindered root growth and, as a result, the actual yield declined. While the difference 

in yield between treatments was attributed to this particular effect, Row 2 was 

compacted by both the inner and outer dual-wheel traffic which led to increased soil 

strength and reduced porosity resulting in hindered root penetration and, therefore 

produced the lowest yield (Figure 7.4).  
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Figure 7.2: Individual cotton lint yields (bales/ha) harvested by the JD7760 and by 

hand at the Koarlo site during 2016 

 

Figure 7.3: Individual cotton lint yields (bales/ha) harvested by the JD7760 and by 

hand at the Koarlo site during 2017 
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Figure 7.4: The effect of compaction on Row 2 at the Koarlo site in 2017 

7.2.2.2. Undabri site 

The CAN-BUS data showed that the yield in cotton rows varied between 6.63 to 7.14 

bales/ha. The yield was significantly higher in Row 1 than in Row 2 and Row 3, by 

10% and 7% respectively (Figure 7.5). There was no significant difference in yield 

between Row 2 and Row 3. The hand-picked method showed a higher yield in Row 1 

than in Row 2 and Row 3, by approximately 12.3% and 7.6%. The comparison 

between Row 2 and Row 3 did not show a significant difference in the cotton yield 

(Figure 7.5). The reasons were similar to those highlighted for the Koarlo site (above).  

 

Figure 7.5: Individual cotton lint yields (bales/ha) harvested by the JD7760 and by 

hand at the Undabri site during 2017 
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7.2.2.3. Yambacully site  

Figure 7.6 shows that Row 1 had a higher yield than Row 2 and Row 3, by 6% and 

10% respectively. The comparison between Row 2 and Row 3 did not show a 

significant difference in the yield. Furthermore, the hand-picked method had a similar 

trend to that of the machine-picked method. Row 1 showed a significantly higher yield, 

by 18% and 20% than Row 2 and Row 3 (Figure 7.6). There was no significant 

difference in yield between Row 2 and Row 3. This suggests that the space between 

Row 1 and the traffic lane was sufficient to protect the soil’s structural arrangement. 

This was reflected in the yield. Conversely, the permanent traffic lane was between 

Row 2 and Row 3, which resulted in increased soil strength beneath the wheel track 

which spread to the adjacent cotton rows. This resulted in soil deterioration and 

hindered root penetration, and so the yield declined (Braunack et al., 2012; McPhee et 

al., 2015; Bennett et al., 2017).  

 

Figure 7.6: Individual cotton lint yields (bales/ha) harvested by the JD7760 and by 

hand with CTF Yambacully during 2017 
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7.2.3. Discussion  

Improving cotton production is undoubtedly one of the greatest challenges facing the 

cotton industry worldwide. There are a number of factors that could affect cotton yield. 

These include farming systems used (irrigated and dryland), region, configuration of 

cotton rows (e.g. solid, single skip, double skip, wide row, and alternative skip), 

cultivar, plant stand, N, P, number of irrigations (irrigated systems) and in-crop rainfall 

(dryland system), season length (time between planting date and harvest date), days to 

defoliation and harvest method (Grzesiak, 2009; Braunack et al., 2013). In addition, 

irrigation water and poor land quality and fertilizer are important constraints that affect 

badly cotton productivity (Sheng et al., 2019). Nevertheless, soil compaction is a key 

source of yield decline (Hamza & Anderson, 2005). Reduction in plant growth and 

productivity is highly connected to the development of soil compaction (Azzi et al., 

2017).   

As mentioned earlier, RTF was practiced at both Koarlo and Undabri, while CTF was 

adopted at Yambacully. For the machine-picked method, 2016 Koarlo outcomes 

revealed a higher yield in Row 1 and Row 3 than in Row 2, by approximately 4%, 

while yield did not show any significant difference between Row 1 and Row 3. The 

results of Koarlo in 2017 also revealed that Row 1 achieved a higher yield than Row 

2 and Row 3, by 18% and 9% respectively, while Row 2 had a lower yield than Row 

3, by 10%. A similar trend was observed at Undabri, where cotton yield was 

significantly higher in Row 1 than in Row 2 and Row 3, by 10% and 7%, and not 

significantly different in yield between Row 2 and Row 3. The yield results of the 

hand-picked method showed a similar trend to that of the machine-picked method at 

both the Koarlo and Undabri sites. These results suggest that Row 2 at the two 

conventional sites was compacted by the dual-wheel harvester traffic, resulting in 

increased soil strength and reduced porosity. This hindered root growth and led to a 

reduction in water infiltration and nutrient uptake, thus producing the lowest yield 

when compared to Row 1 and Row 3 (Braunack et al., 2012; McPhee et al., 2015).  

At the CTF site at Yambacully, Row 1 had a higher yield than Row 2 and Row 3, by 

6% and 10% respectively, while there was no significant difference in yield between 

Row 2 and Row 3. This was because the space between Row 1 and the traffic lane was 



 USQ                                                                         Chapter 7: Results and Discussion 

166 | P a g e  

 

sufficient to protect the soil’s structural arrangement, which reduced the impact of 

compaction and maintained the soil structure, water infiltration and nutrient uptake, 

which reflected positively on the yield obtained. On the other hand, the permanent 

traffic in the wheel track spread to the adjacent cotton rows, and yield declined when 

compared to Row 1 (Braunack et al., 2012; Bennett et al., 2017). Overall, the key 

findings of this investigaton are: 

 With regards to the 2017 yield, there was a very strong correlation between 

hand-picked and machine-picked methods, which were R2 = 0.97, 0.98 and 93 

for Koarlo, Undabri and Yambacully respectively  

 At all sites, Row 1 achieved the highest yield for both CAN˗BUS and 

hand˗picked methods when compared to Row 2 and Row 3  

 There was no significant difference in the yield between Row 2 and Row 3 for 

both harvest methods at Undabri and Yambacully 

 Row 2 under RTF was the most sensitive to harvester traffic and produced the 

lowest yield when compared to Row 1 and Row 3  

 Row 2 and Row 3 under CTF were affected more by harvester traffic and 

recorded about 10% lower cotton yield than Row 1.    

 The impact of traffic systems and row spacing on cotton 

yield  

As mentioned before, RTF with 1.0 m row spacing was adopted at both Koarlo and 

Undabri, and both were harvested with the JD7760 standard configuration. CTF with 

1.5 m row spacing was adopted in Yambacully and picked with the CTF7760 modified 

harvester. This section compares and discusses the outcomes of the impact of the 

traffic system and row spacing (1.0 m and 1.5 m) on the cotton yield, row by row, 

between the study areas for both the machine and hand-picked methods in 2017. 
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7.3.1. Traffic impact on the yield of Row 1 

Figure 7.7 shows that there was no significant difference in the Row 1 yield at Koarlo 

and Yambacully. Row 1 in both Koarlo and Yambacully achieved a higher yield than 

Row 1 in Undabri, by 29% and 34% respectively. A similar trend was found for the 

hand-picked method, where Row 1 in Koarlo showed a significantly higher yield 

(25%) than Row 1 at Undabri. No significant difference was observed between Koarlo 

and Yambacully. As would be expected, the Row 1 yield was significantly lower 

(26%) at Undabri than Yambacully.  

These results may be explained by the fact that, in general, 1.0 m row spacing produces 

a higher yield than 1.5 m spacing assuming there is no impact of the JD7760 traffic 

(Bennett et al., 2017). On the other hand, adopting CFT requires that all machinery be 

modified to have the same track width in order to restrict the wheel traffic to the 

permanent lanes. This implies that the space between Row 1 and the traffic lane under 

the CTF was sufficient to protect the soil’s structural arrangement. This resulted in 

improved soil properties, increased water infiltration, and nutrient uptake, and thus the 

actual yield increased compared to RTF.  

 

Figure 7.7: The impact of a traffic system (RTF and CTF) on cotton lint yields 

(bales/ha) in Row 1, which was harvested by the JD7760 standard, the CTF7760 

modified, and by hand during 2017 
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7.3.2. Traffic impact on the yield of Row 2 

Figure 7.8 shows that Row 2 produced a lower yield at Undabri than at both Koarlo 

and Yambacully, by 41% and 38% respectively. Row 2 did not show any statistical 

difference in yield between Koarlo and Yambacully. Furthermore, the hand-picked 

method also demonstrated a similar trend to that of the machine-picked method, where 

Row 2 in Undabri had a lower yield than Row 2 in Koarlo and Yambacully by 

approximately 25%. There was no significant difference in yield between Koarlo and 

Yambacully. This suggests that Row 2 under RTF was subjected to compaction due to 

the dual-wheel traffic of the JD7760 standard configuration, which resulted in 

increased soil strength and Pb in the root region. This resulted in smaller soil pores, 

lack of water infiltration and nutrient uptake, and thus the yield declined. 

 

Figure 7.8: The impact of a traffic system (RTF and CTF) on cotton lint yields 

(bales/ha) in Row 2, which harvested by the JD7760 standard, the CTF7760 

modified, and by hand during 2017 

 

 

 

Koarlo 1.0 m Undabri 1.0 m Yambacully 1.5 m

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Row spacing

Row 2

L
in

t 
y

ie
ld

s 
(b

al
es

/h
a)

 Machine picked   Hand picked

a

x

b

y
a

x



 USQ                                                                         Chapter 7: Results and Discussion 

169 | P a g e  

 

7.3.3. Traffic influence on the yield of Row 3 

Figure 7.9 shows that Row 3 in Koarlo achieved a higher yield than Row 3 in Undabri, 

by approximately 20% and 14% for the machine and hand-picked methods 

respectively. Comparison between Koarlo and Yambacully did not reveal any 

significant difference in yield in Row 3 for both methods. The results show that Row 

3 in Undabri had a lower yield than Row 3 in Yambacully, by 22% and 14% for the 

machine and hand-picked methods, respectively. As mentioned, 1.0 m row spacing 

produces a higher yield than 1.5 m spacing assuming there is no influence of the 

JD7760 traffic in terms of compaction (Bennett et al., 2017). This suggests that the 

impact of random machinery traffic was evident in Undabri, which was reflected in 

the lower yield of Row 3. This outcome was more obvious in Undabri than in Koarlo 

when compared to CTF at Yambacully.       

 

Figure 7.9: The impact of a traffic system (RTF and CTF) on cotton lint yields 

(bales/ha) in Row 3, harvested by the JD7760 standard, the CTF7760 modified, and 

by hand during 2017 
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7.3.4. Discussion 

Trafficked middle rows are usually the areas of the field which are subject to the most 

intensive farm machinery traffic. They typically have Pb higher than nearby 

untrafficked middle rows or areas under the row. Compaction due to machinery traffic 

reduces pore space and increases soil strength (Rosolem et al., 2002; Lampurlanés & 

Cantero-Martinez, 2003). This leads to increased mechanical impedance and 

decreased water and oxygen availability (Ishaq et al., 2001). A high percentage of yield 

reduction is commonly observed with regions severely compacted by machinery 

traffic (Marshall et al., 2016; DeJong-Hughes, 2017). It was found that about one-third 

of yield decline occurs when soil profile is subjected to considerable compaction 

(Daniells, 1989). Compaction, due to harvest traffic, for example, causes 23% decline 

in cotton growth and yield (Lowry et al., 1970; Neale, 2008). 

In this study, Row 1 did not show a significant difference in yield between Koarlo and 

Yambacully for both machine and hand-picked methods, while it produced a lower 

yield in Undabri than in Koarlo and Yambacully, by approximately 29% and 34% 

respectively. This could suggest that adopting RTF resulted in soil structure damage, 

which hindered root growth and led to a reduction in water infiltration and nutrient 

uptake, consequently the yield declined. In contrast, the space between Row1 and the 

traffic lane of the CTF was sufficient to protect the soil’s structural arrangement, which 

was reflected positively in Yambacully when compared to Koarlo and Undabri 

(Tullberg et al., 2007; Bennett et al., 2017).      

This study also shows that the yield was significantly lower in Row 2 at both Koarlo 

and Undabri than at Yambacully, by about 17% and 14% for the machine and hand-

picked methods respectively. This was because Row 2 under RTF was compacted by 

the inner and outer dual-wheel traffic of the harvester, resulting in increased soil 

strength, obstruction of root growth, reduction in water infiltration and nutrient uptake, 

and thus less yield compared to the CTF site at Yambacully (McPhee et al., 2015; 

Quigley, 2015). 

Furthermore, Row 3 in Koarlo achieved a higher yield than Row 3 in Undabri, by 

approximately 20% and 14% for machine and hand-picked methods, respectively. The 
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comparison between Koarlo and Yambacully did not show any differences in the yield 

of Row 3 for both harvest methods. The results revealed that Row 3 in Undabri had a 

lower yield than Row 3 in Yambacully, by 22% and 14% for the machine and hand-

picked methods, respectively. This suggests that RTF resulted in soil structural 

deterioration, increased soil strength and decreased porosity and thus declined yield. 

However, Row 3 was influenced by the traffic of both the inner (front) and rear wheels 

of the JD 7760, regardless of RTF or CTF traffic, at all the study sites (Bennett et al., 

2016). In summary, the main outcomes are:  

 Row 1 achieved the highest cotton yield in both systems when compared to 

Row 2 and Row 3  

 With machine picking, Row 1 in Koarlo showed a higher yield than Row 1 in 

Undabri and Yambacully by approximately 20% and 14%  

 At Koarlo and Undabri (compared to the CTF Yambacully site), Row 2 was 

the most sensitive to the random traffic farming of the harvester, leading to 

21% and 14% lower yield for both machine and hand-picked methods, 

respectively,  

 For the machine-picked method, Row 3 at Undabri had a lower yield than Row 

3 at Koarlo and Yambacully by 20% and 22%, respectively.  
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 Cotton farming system assessment based on overall yield 

7.4.1. Results 

In this study, cotton yield was collected from individual rows and grouped to represent 

the average yield data. As shown in Figure 7.10, there was no significant difference in 

the overall yield between Koarlo (RTF) and Yambacully (CTF) for both machine- 

picked and hand-picked methods. The results also showed that Undabri had a lower 

yield than Yambacully, by 34% and 27% for the machine and hand-picked methods, 

respectively. This suggests that CTF with 1.5 m row spacing achieved a higher cotton 

yield due to the minimization of the impact of heavy machinery on the soil. 

 

Figure 7.10: Overall cotton lint yields by machine-picked (using CAN-BUS) method 

and by hand-picked method from cotton grown on 1.0 m and 1.5 m row spacing in 

2016/17 
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7.4.2. Discussion 

In general, row spacing has a major effect on the potential yield as it affects the number 

of plants per hectare (Bartimote et al., 2017). The yield normally decreases with 

increased row-spacing. However, when comparing RTF and CTF, reducing soil 

compaction can result in an increase in yield per row (Bartimote et al., 2017). The 

standard and CTF JD7760 harvesters induce comparable compaction, however, the 

standard system affects 17% more land due to the dual wheel system (Bennett et al., 

2017). Adoption of CTF using commercially available machinery reduces the cropped 

regions affected by traffic by more than 50% comparing RTF systems (Galambosova 

et al., 2017).  

The current study (Figure 7.10) showed that the CTF site at Yambacully achieved a 

higher total yield than the RTF site at Undabri, by approximately 34% and 27% for 

the machine and hand-picked methods, respectively. There was only a small difference 

in overall cotton yield per hectare between Koarlo and Yambacully. This result 

demonstrates that the CTF system can achieve at least a comparative cotton yield with 

RTF, because compaction due to the JD7760 standard configuration under RTF with 

1.0 m row spacing can decrease yield on a single row by 15%–30% (CFI, 2016). This 

was more obvious in Undabri than in Koarlo when compared to the CTF site at 

Yambacully. With CTF, wider row spacing such as a 1.5 m row can significantly 

improve water use efficiency, soil health and minimise energy requirements (Antille 

et al., 2016; Bennett et al., 2019). Furthermore, plants can access a larger amount of 

soil water since lower plant densities per hectare can assist in reducing water input 

requirements (Bartimote et al., 2017; Bennett et al., 2017). 
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 Harvest losses 

This section presents the results of: (1) harvest losses row by row for each field; and 

(2) harvest losses calculated in percentages as affected by the JD7760 standard and the 

CTF modified harvester. 

7.5.1. Harvest losses within individual cotton rows of each field 

7.5.1.1. Results 

As mentioned above, two field trials were conducted in two different cotton fields at 

Koarlo in 2016 and 2017. The Koarlo data in Table 7.1 shows that harvest loss was 

significantly lower in Row 1 than in Row 2, by 33% and 53% in 2016 and 2017, 

respectively. There was no significant difference in harvest loss between Row 1 and 

Row 3 in 2016, while the results show a significantly lower yield in Row 1, by 39% in 

2017 relative to Row 3. Furthermore, Row 2 had higher losses than Row 3 by 21% in 

2016. In contrast, Row 2 had a lower loss than Row 3 by 8% in 2017.  

Undabri showed a similar trend to that of Koarlo, where Row 1 had 49.9% and 40.6% 

lower losses than Row 2 and Row 3. No significant difference in harvest loss was 

found between Row 2 and Row 3. The results of the CTF site at Yambacully reveal 

that losses were significantly higher in Row 1 than in Row 2 and Row 3, by 33% and 

36%, respectively, while Row 2 showed lower harvest losses than Row 3, by 11% 

(Table 7.1). These results might be because of the complex interaction between the 

picking unit (row units not centred on the row), travel speed and operator skill, which 

directly affected harvest efficiency.  

Table 7.1: Harvest losses in individual cotton rows for the study sites 

Site Harvest losses (%) 

Row1 Row2 Row3 

Koarlo 2016 8.53a 11.36b 8.94a 

Koarlo 2017 4.54a 6.98b 7.56c 

Undabri 2017 8.05a 12.07b 11.32b 

Yambacully 2017 3.72a 2.70b 2.38c 
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7.5.1.2. Discussion 

Serious yield losses at harvest reduce the profitability of crops. However, compaction 

due to harvester traffic is not the only factor that affects cotton productivity. Factors 

that can affect picker harvesting efficiency include harvester operation and adjustment, 

boll distribution along the height of the plants, height above ground surface to lowest 

bolls, plant and seed cotton moisture content, boll type and crop maturity (Wanjura et 

al., 2013). In general, both delayed harvesting after cotton defoliation and harvester’s 

condition are key reasons for increased harvest losses, which may add up to more than 

20% (Khalilian et al., 1999). Harvest efficiency is considered as an important factor 

when evaluating the harvester’s performance (Faulkner et al., 2011). Ground and plant 

losses and qualitative losses are not affected by increased harvesters’ speed (Kazama 

et al., 2018). Harvest losses may be in the form of cotton left on the plants by the 

harvester or cotton dropped by the harvester (Kepner et al., 1972; Khalilian et al., 

1999). 

The current study has demonstrated that the efficiency of the JD7760, in terms of the 

cottonseed left, varies between the individual cotton rows. The losses were 

significantly lower in Row 1 than in Row 2 (for both Koarlo and Undabri) by 

approximately 40% and 45%. By contrast, the CTF site at Yambacully showed a 

higher loss in Row 1 than in  Row 2 and Row 3, by 33%. However, the JD7760 

harvester is capable of harvesting 95─98% of the cottonseed. This suggests that the 

harvester’s condition and technical issues might have played a role in increasing yield 

losses. Another possible explanation is the harvesting of immature plants, when bolls 

did not open due to early frost, which also results in an increase in lost harvest 

(Muthamilselvan et al., 2007). The key finding were: 

 At both Koarlo and Undabri, Row 1 had lower losses than Row 2, by 40% and 

45%  

 The CTF site at Yambacully showed a higher loss in Row 1 than in Row 2 and 

Row 3, by 33%.  
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7.5.2.  Comparison between the JD7760 standard configuration and 

the CTF7760 modified harvester 

7.5.2.1. Results  

In this study, the Koarlo and Undabri study sites were harvested using the JD7760 

standard with 1.0 m cotton row spacing, whilst the Yambacully site was harvested 

using the CTF7760 modified harvester with 1.5 m row spacing. The harvesters’ 

efficiencies were determined based on yield losses. Figure 7.11 shows that there was 

a poor correlation (R2= 0.10) between row-by-row harvest losses of the two harvesters 

used at Koarlo and Yambacully.  

 

Figure 7.11: The relationship between harvest losses of the JD7760 standard 

(Koarlo) and the CTF7760 (Yambacully) in individual cotton rows 

As shown in Table 7.2, the CTF7760 harvester showed a lower loss than the JD7760 

standard at Koarlo and Undabri, by 47%, 72% and 74% for Row 1, Row 2, and Row 

3, respectively. This suggests that RTF (Koarlo and Undabri) with 1.0 m row spacing 

might have had a higher plant density. The 1.5 m row spacing at the CTF site 

Yambacully played a significant role in decreasing the amount of cotton left on the 

field. This was because the space between the spindles of the CTF7760 harvester and 

cotton rows was sufficient to reduce the influence of the overlap between plants 

(Willcutt et al., 2010; Faulkner et al., 2011).  
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Table 7.2: Table 7.2: Harvest losses in individual cotton rows for the study areas. 

The symbol  (*) represents a significant difference between the harvesters (P≤0.05) 

 

Cotton rows 

 

 

The JD7760 standard  

1.0 m row spacing 

 

 

The CTF JD7760 

1.5 m row spacing 

 

 

Sigb 

 

Koarlo 2016 Yambacully 2017  

Row1 8.53 3.72 * 

Row2 11.36 2.70 * 

Row3 8.94 2.38 * 

 Koarlo 2017 Yambacully 2017  

Row1 4.54 3.72 * 

Row2 6.98 2.70 * 

Row3 7.56 2.38 * 

 Undabri 2017 Yambacully 2017  

Row1 8.05 3.72 * 

Row2 12.07 2.70 * 

Row3 11.32 2.38 * 

7.5.2.2. Discussion 

Harvest efficiency is an important factor for evaluating harvester performance because 

it is a measure of the amount of cotton in the field that is harvested and subsequently 

cleaned, ginned, and made available for marketing (Faulkner et al., 2011). However, 

cotton pickers have lower harvest efficiencies comparing stripper harvesters, but the 

gains in labour efficiency have far surpassed the losses in harvest efficiency, resulting 

in high interest in the conversion of the global cotton industry to mechanical harvesters 

(Willcutt et al., 2010). 

 In this study, harvest efficiency of the CTF7760 and the JD7760 standard harvesters 

was investigated by comparing harvest losses across individual cotton rows at all sites. 

The results show that the CTF7760 harvester at Yambacully achieved a lower loss, by 

approximately 47%, 72% and 74% for Row 1, Row 2, and Row 3, when compared to 

the JD7760 standard at Koarlo and Undabri. Table 7.2 shows that the CTF7760 

harvester had the lowest loss in Row 3 of approximately 2.3%, whilst the JD7760 

standard showed the highest loss, which was 12% in Row 2 at Undabri. This indicates 

that the JD7760 has the ability to harvest about 95─98% of the cottonseed with high 

efficiency assuming no losses due to harvesters and field conditions. The 1.5 m row 

spacing had significantly less cottonseed left on the field because the gap between 
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spindles of the CTF7760 harvester and cotton rows was sufficient to reduce the impact 

of the crop buildup between individual rows when compared to the JD7760 standard 

configuration (Batey, 2009; Willcutt et al., 2010). Overall, the CTF7760 harvester was 

superior to the JD7760 standard and showed the lowest losses by 47%, 72% and 74% 

for Row 1, Row 2, and Row 3 respectively. 

 Conclusion  

Two novel methodologies (mechanically in 2016 and by CAN-BUS in 2017) have 

been adopted in this study to estimate cotton yields row by row. The results 

demonstrate that they could give accurate results for the individual row yield data of 

both the JD7760 standard and the CTF7760 harvester, showing a very similar trend to 

that of the hand-picked method.  

The yields in individual rows have been compared. Significant compaction occurred 

after harvester traffic, particularly in the root region. This resulted in reduced cotton 

yield between and neighbouring the wheel track of the harvester. In particular, it has 

been found that Row 1 had the highest yield under both RTF and CTF. It was also 

found that Row 2 under RTF was most sensitive to harvester traffic which showed the 

lowest yield when compared to Row 1 and Row 3. Furthermore, under both systems, 

Row 2 and Row 3 were influenced by harvester traffic which led to a significantly 

lower yield than Row 1.  

The measured results for the CTF site at Yambacully also achieved a higher total yield 

per hectare than the RTF at Undabri site, by 33%. There was only a small difference 

in overall cotton yield per hectare between Koarlo and Yambacully. This result 

demonstrates that CTF system can at least achieve a comparative cotton yield with 

RTF because compaction due to the JD7760 standard configuration under RTF with 

1.0 m row spacing can decrease yield on a single row by 15%–30%. 

Finally, it was observed that the CTF7760 modified harvester showed a lower yield 

loss than the JD7760 standard configuration on all cotton rows. Overall, this chapter 

has answered the Research Questions 2 and 3, and achieved Objectives 2 and 3. 

Research Question 4 and Objective 4 will be investigated in the next chapter. 
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Chapter 8. Soil compaction and stress modelling 

 Introduction 

The experimental results obtained from the fieldwork in 2016 and 2017 have been 

discussed in Chapters 4, 5, 6 and 7. This chapter presents the results related to the 

simulation of soil vertical stress distribution under the wheels of both the JD7760 

standard configuration and the CTF7760 cotton picker using the SoilFlex model. The 

chapter begins with a review of some existing soil compaction models and highlights 

the SoilFlex model (Keller et al., 2007), justifies the use of SoilFlex in this study, and 

presents the model validation and simulation method. Finally, there is a discussion of 

the model output and conclusion.   

 Soil compaction model 

Compaction of the agricultural soil due to machinery is a major concern for both 

researchers and growers as it results in the decline of crop productivity (Rodríguez et 

al., 2012; Nawaz et al., 2013). In general, soil compaction models are vital for the 

successful management of soil properties (Schafer et al., 1991). They present the 

advantage of being able to assess the potential impact of traffic on production before 

resources and time are allocated (Reddy & Zhao, 2003). Simulation models are often 

improved and validated by comparing them to fieldwork data (Carberry et al., 2009). 

Existing compaction simulation models were reviewed in Chapter 2 (Table 2.6).  

According to Defossez and Richard (2002), the framework of compaction models 

usually consist of two parts: (1) quantification of the propagation of loading stress due 

to farm machinery; and (2) validation of the modelled stress and strain behaviour. A 

simplified model was proposed by O'Sullivan et al. (1999), which allows for the 

estimation of dry bulk density along the centreline of a wheel path. This approach 

usually includes three key aspects: (1) the load applied by the machinery at the surface 

layer is simulated; (2) an analytical approach is utilised to predict how the stress is 

distributed in the soil profile; and (3) a set of proper soil parameters are chosen to 

describe the influence of compaction on soil deformation. However, this model is not 

recommended for specialists and researchers (O'Sullivan et al., 1999). 
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Terranimo® is an online computer model that can predict the risk of soil compaction 

by farm machinery. This software is particularly designed for growers and consultants 

(Stettler et al., 2014). Terranimo® is appropriate for simulating the compaction induced 

by a single pass of machinery. SOCOMO is another soil compaction model that was 

developed by Van den Akker (2004). This model is analytical, based on the hypothesis 

of Boussinesq (1885) that analyses the vertical stress distribution in a homogeneous, 

isotropic, linear-elastic and semi-infinite robust soil block, resulting from a force 

which is applied at a specific point on the surface of the same block. Overall, 

SOCOMO is weak in the valuation of stress propagation over the footprint of 

machinery (Van den Akker, 2004). Figure 8.1 shows the pressure distribution over a 

soil medium according to Defossez and Richard (2002).  

 

Figure 8.1: Stress distribution in a layer parallel to the surface contact area. 

According to Defossez and Richard (2002), equation  𝜎𝑧 = (𝑣𝑃/л 𝑟2) 𝑐𝑜�ͮ� Ѳ, where 

P= Load under a point, σ1 = Principal stress, z= depth, Ѳ = Internal friction angle, 

and r = Polar co-ordinate 

Source: Adopted by the researcher from (Defossez & Richard, 2002). 

SoilFlex is an analytical model, proposed and developed by Keller et al. (2007) to 

simulate soil compaction due to agricultural machinery traffic. It is a flexible model 

suitable for predicting tyre stress on the surface layer, and it can provide an accurate 

simulation of the contact area and the stress distribution in the contact surface from 

readily obtainable tyre parameters. In SoilFlex, two-dimensional models are coupled 

to calculate soil stresses, changes in Pb and the soil’s vertical displacements resulting 

from farm machinery traffic. The model has the following three major features: (1) 
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describes stress in the contact area; (2) stress distribution over the soil is computed 

analytically; (3) allows for the calculation of soil deformation as a function of stress 

(Figure 8.2). Keller et al. (2007) reported that the calculation of vertical stress in 

SoilFlex is based on the equations of Boussinesq (1885) and Fröhlich (1934) who 

introduced the concentration factor. The vertical soil stress at a certain depth is 

calculated by summation (Söhne, 1953) as shown in Equation (1). The horizontal stress 

is calculated according to Janosi (1962) as given in Equation (2): 

          𝜎
𝘻= ∑ (𝜎𝘻)ᵢ= ∑

𝑣𝑃𝑖

2𝜋𝑟𝑖
2 𝑐𝑜𝑠𝑣 𝜃𝑖    

𝑖=𝑛
𝑖=0

𝑖=𝑛
𝑖=0

                          

Where: 

σz = The vertical stress 

Pi = Carrying the load 

Z= The profile depth  

V = Concentration factor  

r = The space between point load and the desired point 

θ = Angle between normal load and placement of the desired point  

 

Figure 8.2: A geometric relationship for the stress computation at a required point in 

the soil mass, where Pi represents vertical load, and Hi represents horizontal load  

Source: Adopted by the researcher from (Keller et al., 2007). 
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Overall, it can be seen that many models have been employed to simulate the influence 

of machinery traffic on soil properties and compaction state. In this study, SoilFlex 

was used to predict vertical stress distribution under the wheels of the JD7760 

harvester under two different cotton farming systems.  

 Justification of SoilFlex model adopting 

Several studies (Keller et al., 2007; Braunack & Johnston, 2014; de Lima et al., 2017; 

Bennett et al., 2019) have employed SoilFlex model to calculate the vertical stress (σz) 

under the wheels of harvesters. It was found that, overall, SoilFlex provides a realistic 

simulation of the contact area and the stress distribution in the contact area from readily 

available tyre parameters (Keller et al., 2007). It also allows researchers and 

agricultural specialists to calculate the stresses of a machine which has dual or tandem 

wheels which is an important aspect and an omission in other models (Keller et al., 

2007; Nawaz et al., 2013). In addition, SoilFlex is a useful tool which has the ability 

to simulate stress distribution under the wheel of the JD7760 harvester with tyre size 

of 520/85R42 and 20.8-38 and an inflation tyre pressure of 270 kPa as input parameters 

(Braunack & Johnston, 2014). Nevertheless, the model assumes that the soil profile is 

isotropic throughout, which is considered a limitation in regards to modelling 

subsequent expected compaction without adequate calibration. But, this does not affect 

stress state simulation, which is a property of the machine rather than the soil (Keller 

et al., 2007; Bennett et al., 2016). Figure 8.3 presents the SoilFlex model interface in 

an Excel spreadsheet. 
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Figure 8.3: SoilFlex model in an Excel spreadsheet  
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 Model validation 

The model was previously validated by Keller et al. (2007), by calculating ‘the vertical 

stress and vertical displacement of the soil’ after one pass of a sugar beet harvester. 

The wheel load of the harvester was 86 kN with an inflation pressure of 100 kPa on 

soils (loam and silty clay loam) at different soil depths. The simulated stress was 

further compared to the measured soil stress obtained from fieldwork (Bennett et al., 

2013). Keller et al. (2007) found that simulated results agreed quite well with the 

measured stresses.  

 Simulation method 

In this study, SoilFlex was used to simulate the vertical stress under the wheels track 

of the JD7760 standard configuration and the CTF7760 modified harvester using 

wheel load and tyre parameters. Simulations were carried out assuming an elliptical 

contact area, and standard tyres with manufacturer’s recommended inflation pressures 

(Keller et al., 2007; Bennett et al., 2019). The model was set up to calculate soil stresses 

for three different scenarios. The first simulated the front dual-wheel of the JD7760, 

the second simulated the front single wheel of the CTF7760, and the third simulated 

the rear tyre for both harvesters. The JD7760 standard harvester had a dual-wheel at 

the front, namely 520/85R42 (R1, R2) with inflation pressure of 248 kPa. The wheel 

load was 5430 Kg. The gap between the dual-wheels was 40 cm. The CTF7760 was 

modified by replacing the front dual-wheels with a single wheel of specification 

620/70R42 with an inflation pressure of 340 kPa. The single wheel load was 10860 

kg. Both harvesters had a similar rear wheel load (8250 kg) and tyres, namely 

IF580/80R34 (R1W), with an inflation pressure of 324 kPa. The wheels data for both 

harvesters were obtained from Wattonville (2008), Bennett et al. (2015), Antille et al. 

(2016) and Zimbatu (2016). Table 8.1 shows the parameters of the harvesters used to 

simulate vertical stress in the SoilFlex model. 
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Table 8.1: The input parameters for the SoilFlex model 

Parameter Details 

John Deere 7760 Standard configuration The CTF modified 

Tyre Configuration 
 

Dual wheel Single wheel 

The gap between wheels (cm) 40 - 

Wheel load (kg) 5430 10860 

Front dual drive tyres 520/85R42 (R1, R2) 620/ 70R42 

Tyre infiltration pressure (kPa) 248 340 

Tyre width (cm) 55 65 

Unloaded tyre diameter (cm) 178 190 

Rear guide wheel tyres IF580/80R34 (R1W) IF580/80R34 (R1W) 

Rear wheel load (kg) 8250 8250 

Tyre infiltration pressure (kPa) 324 324 

The simulation processes were carried out after consultation with the SoilFlex’s author 

(Keller 2016, Pers comm). The following steps show the process of calculating the soil 

vertical stress by SoilFlex (Keller et al., 2007): 

 Entering tyre parameters and wheel configuration (tyre inflation pressure, single or 

dual wheel, wheel load, etc.) 

 Selecting vertical stress distribution  

 Choosing an elliptical contact area (E uniform) 

 Confirming the command ‘Calculate vertical stress distribution’ 

 The vertical soil stress distribution was presented in a separate Excel sheet.  

Figure 8.4 shows the input data of the dual-wheel in SoilFlex. 
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Figure 8.4: Input parameters of the dual wheel (JD7760 standard configuration) into SoilFlex
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 Simulation outcomes 

8.6.1. Model validation 

SoilFlex has been evaluated by Keller et al. (2007) who compared predicted and 

measured soil stress values and demonstrated reasonable agreement. To verify the 

model in this study, the trend of the simulated soil stress was compared to the pattern 

of soil penetration resistance (SPR) results after harvester traffic for Koarlo and 

Yambacully in 2017. 

Figure 8.5A shows that vertical stress was higher beneath the loaded area (Furrow 2 

and Furrow 3) than Furrow 1. The intersection of the stresses beneath the dual-wheels 

resulted in greater stress in Row 2 than Row 1 and Row 3 down to 70 cm depth. Figure 

8.5B shows that the measured SPR had a similar trend to the simulated vertical stress. 

Furrow 2 and Furrow 3 showed a higher SPR than Furrow 1, by 73% throughout the 

0–60 cm depth after one pass of the dual-wheel. Row 2 had a higher SPR than Row 1 

and Row 3 at the surface layer. This indicates that Row 2 was compressed by the inner 

and outer wheels of the front dual-wheel, which led to significantly higher soil 

strength.  

A similar trend between experimental and simulation results was found at the CTF site 

at Yambacully. The simulated vertical stress was higher in Furrow 3 (loaded area) than 

Furrow 1 and Furrow 2 (Figure 8.5A). Vertical stress caused by the single wheel of 

the CTF7760 harvester was higher in Row 2 and Row 3 than Row 1. Similarly, Figure 

8.6B shows that SPR was significantly higher in the wheel track (Furrow 3) of the 

CTF7760 harvester than the un-trafficked furrows (Furrow 1 and Furrow 2) throughout 

the 0–70 cm depth. Soil penetration resistance was significantly higher in both Row 2 

and Row 3 at the surface layer than in Row 1. Overall, it can be said that the simulated 

soil stress agreed well with the trends in the SPR values.   

 

 

 



 USQ                                                Chapter 8: Soil Compaction and Stress Modelling  

 

188 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Comparison of the trend between the simulated vertical stress and soil 

penetration resistance results after harvester traffic (JD7760 standard). A represents 

the simulated vertical stress. B represents the measured soil penetration resistance at 

Koarlo during 2017 
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Figure 8.6: Comparison of the trend between the simulated vertical stress and soil 

penetration resistance results after harvester traffic (CTF modified). A represents the 

simulated vertical stress. B represents the measured soil penetration resistance at 

Yambacully during 2017 
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8.6.2. Stress state simulation  

8.6.2.1. Front dual-wheel loading (JD7760 standard configuration) 

Figure 8.7 shows that vertical stresses induced by the front dual-wheel of the JD7760 

had a similar magnitude (370 kPa) in both Furrow 2 and Furrow 3, at the depth of 75 

cm compared to Furrow 1. This reveals that stress distribution and magnitude were 

higher under the loaded area. Row 2 had higher vertical stress than Row 1 and Row 3 

by 10% in the surface soil. This was due to the stress interaction from the front dual-

wheels. Furthermore, Figure 8.8 shows that the surface loads applied generated 

significant stress at the centreline of the trafficked area, which ranged from 350 to 400 

kPa and decreased gradually below the contact area with the increasing depth.  

 

Figure 8.7: The vertical stress distribution beneath the dual-wheel of the JD7760 
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Figure 8.8: The vertical stress generated beneath the front dual-wheel of JD7760 

8.6.2.2. Front single wheel load (CTF7760 modified harvester) 

Figure 8.9 shows that the vertical stress distribution caused by the single wheel of the 

CTF7760 harvester was higher (355 kPa) in Furrow 3 at the 75 cm depth when 

compared to Furrow 1 and Furrow 2. This is because, Furrow 3 was the traffic lane of 

the harvester under CTF. The stress distribution was higher in both Row 2 and Row 3 

in the topsoil compared to Row 1. This was due to the wheel load distribution by a 

single tyre (front axle) which was between Row 2 and Row 3. Moreover, Figure 8.10 

shows that vertical stresses ranged between 500 to 600 kPa at the centreline of the 

single wheel of the harvester, and then declined gradually below the contact area with 

the increase in profile depth. This suggests that, in general, the SoilFlex simulations 

overestimated the effect in the surface layers and underestimated it in the deep layers.   
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Figure 8.9: The vertical stress caused by the single wheel of the JD7760 modified 

 

Figure 8.10: The vertical stress generated beneath the front single wheel of the 

JD7760 modified 
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8.6.2.3. Rear tyre loading  

Figure 8.11 shows that the vertical stress caused by the rear tyre for the J7760 standard 

and the CTF7760 modified harvesters had a similar magnitude (300 kPa) at the depth 

of 70 cm. This was because both harvesters had the same rear wheel load and tyre size. 

Figure 8.12 also reveals that the vertical stress peaked at about 475 kPa in the centre, 

and decreased radially outward. 

 
 

Figure 8.11: The vertical stress distribution underneath the rear tyre of the JD7760 

standard and the CTF7760 modified 
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Figure 8.12: The vertical stress distribution beneath the rear tyre of the JD7760 

standard and the CTF7760 modified 

 Discussion 

Agricultural machinery imposes considerable mechanical stresses on soil and can 

cause soil compaction (Schjønning et al., 2008). Soil compaction models represent an 

important instrument for controlling traffic-induced soil compaction in agriculture 

(Keller et al., 2007). The models play an important role in the effective management 

of soil properties and in the improvement of production (Schafer et al., 1991). In 

particular, they can be used help to explain the susceptibility of soil to compaction 

(Nawaz et al., 2013).   

The comparison between the JD7760 standard and the CTF7760 modified harvester 

shows that the wheel load of both the inner and outer dual-wheels traffic had a similar 

influence on Furrow 2 and Furrow 3 causing vertical stresses of 370 kPa at the depth 

of 75 cm. Vertical stress caused by the single tyre (front axle) of the CTF7760 

harvester in Furrow 3 was 355 kPa at the 75 cm depth. This demonstrates that the 

heavy wheel load applied with higher tyre inflation pressure underneath the loaded 

area led to higher soil stresses in the topsoil and subsoil irrespective of single or the 

dual configuration (Keller & Arvidsson, 2004; Schjønning et al., 2008).    

kPa 



 USQ                                                Chapter 8: Soil Compaction and Stress Modelling  

 

195 | P a g e  

 

The interaction of the stresses from the inner and outer wheels of the dual configuration 

led to higher stresses in Row 2 than in Row 1 and Row 3, by 10% in the topsoil (Figure 

8.7). In the CTF, both Row 2 and Row 3 showed higher soil stresses in the surface 

layer compared to Row 1. This indicates that the stress interaction from the two wheels 

of the dual configuration led to higher stresses compared to the stresses neighbouring 

to the wheel path (Keller & Arvidsson, 2004; Braunack & Johnston, 2014). 

Furthermore, vertical stress caused by the rear tyre showed a similar magnitude for 

both harvesters which was 300 kPa at the 70 cm depth. This was because the wheel 

load and tyre were the same sizes in both systems. 

 Conclusion 

This chapter has presented a simulation of vertical stresses under the wheel tracks of 

the JD7760 standard configuration and the CTF7760 modified harvester. It was found 

that the simulated vertical stress showed a similar trend to the measured soil 

penetration resistance. Vertical soil stress underneath the loaded area was related to 

wheel load and tyre infiltration pressure. The stress distribution in the contact area 

affected stresses in the topsoil and the subsoil. The vertical stress caused by the inner 

and outer dual-wheels of the conventional harvester had a similar magnitude at all 

depths. Both Furrow 2 and Furrow 3 under RTF had higher stresses compared to 

Furrow 1 in the topsoil and subsoil. The stress interaction from the two wheels of the 

dual-wheel configuration induced higher stresses in Row 2 when compared to Row 1 

and Row 3 in the topsoil.  

For the CTF7760, the vertical soil stress at all depths was higher in Furrow 3 (loaded 

area) than Furrow 1 and Furrow 2 throughout profile depth. Row 2 and Row 3 also 

showed higher soil stress at the topsoil due to the influence of the single tyre (front 

axle) when compared to Row 1. Vertical stress induced by the rear tyre under the 

JD7760 standard configuration was of similar magnitude to that of the rear tyre of the 

CTF7760 harvester at the 70 cm soil depth. Overall, this chapter has answered the 

Research Question 4 and achieved Objective 4. Research Question 5 and Objective 5 

will be addressed in Chapter 9. 
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Chapter 9. Modelling of crop performance  

 Introduction 

The results of the modelling of vertical stresses induced in the soil by the wheels of 

the JD7760 harvester under two traffic farming systems using SoilFlex was discussed 

in the previous chapter. This chapter presents and discusses the results of the prediction 

of the impact of the harvester traffic on cotton yield, row by row, for the Koarlo, 

Undabri, and Yambacully sites using OZCOT-APSIM model (Keating et al., 2003). It 

starts with an overview of the model, and the addresses the model validation, 

simulation methodology and model outputs. Finally, there is a discussion of the 

findings and chapter conclusion.  

 OZCOT model 

In Australia, the OZCOT model, which is part of APSIM software is widely used to 

predict cotton yield in order to make proper decisions and forecasting of crop growth 

and development (Thorp et al., 2014). The Agricultural Production Systems Simulator 

(APSIM) is an agronomy software model developed by the Agricultural Production 

Systems Research Unit in Australia (Keating et al., 2003). This model involves a 

number of modules that are capable of predicting agricultural practices that cover a 

range of crops, soils, weather, irrigation, etc. Its improvement and maintenance are 

based on accurate science and engineering software standards (APSIM Group, 2013).   

The OZCOT-APSIM has the ability to predict the theoretical yield by employing 

historical climate and field data (CRCD, 2013). OZCOT adopts a ‘top-down’ strategy 

(Hearn 1994; Bange 2012). The OZCOT-APSIM model has been calibrated by the 

model developers (APSIM Group, 2013). In addition, the model has been validated 

against six collections of data from agronomic field trials over the past 30 years by 

covering a range of Australian cotton growing areas (Hearn, 1994). However, the 

OZCOT-APSIM is not capable of predicting factors such as insects’ impacts, harvest 

loss, and other effects of plant management (Hearn, 1994; Richards et al., 2001; 

Keating et al., 2003).  
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Past examination of the model has shown that the OZCOT model achieved an accurate 

prediction of commercial irrigated cotton yield (Rechards & Bange, 2003). The 

OZCOT model can be used for:  

(1) Calculating potential yield before sowing by providing the amount of water 

required  

(2)  Determining the amount of irrigation and fertiliser that is required during the 

season  

(3)  Estimating cotton yield at the end of the season (Rechards & Bange 2003).  

The key input parameters of OZCOT are soil properties, the plant index and climate 

variables (e.g. daily temperature, rainfall and radiation) (McCarthy, 2010). With 

OZCOT, it is possible to simulate different factors that can directly affect potential 

yields such as weather, irrigation, and soil fertility. The basic data required to set up 

the model are soil type, agronomy, climate, crop variety, and irrigation (Rechards & 

Bange, 2003). The framework of the APSIM is shown in Figure 9.1. 

 

Figure 9.1:  Schematic of the OZCOT-APSIM framework 

Source: Adopted by the researcher from (Keating et al., 2003). 
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 OZCOT-APSIM model validation 

Validation is an important approach for assessing a model’s performance by 

comparing the model's outputs to experimental results (Ahmed et al., 2016). The 

OZCOT model has been extensively calibrated against field experiment data. It has 

also been demonstrated to be able to accurately simulate potential yield under a wide 

variety of Australian growing conditions (CRDC, 1994). Hearn (1994) reported that 

the agreement between actual and simulation results was reasonably valid with 70% 

of the variation in the observed yield captured in the simulation. The OZOCT model 

provides an accurate simulation as the range between the yield predicted and yield 

observed is about 0.16–0.7 bales/ha  (Richards et al., 2001). In this study, the measured 

yield data was used to validate the OZCOT model, row by row, at the three study areas.   

 Modelling of the study sites 

As mentioned above, OZCOT is a part of the APSIM model (Keating et al., 2003). In 

this study, version (7.9) of APSIM was employed to simulate the row by row effect of 

the JD7760 and CTF7760 traffic on irrigated cotton yield in order to provide another 

evidence of soil compaction effect on individual cotton yield and support the findings 

of the field experiments. Also, this work validated the APSIM model at the single 

cotton row level by comparing the predicted data and observed yield. This model was 

used to predict the yield towards the end of the season at Koarlo, Undabri, and 

Yambacully. In this simulation, the cotton crop cultivar used was S71BR. Daily 

weather profiles for GPS positions -28.69○N and 150.37○E (Koarlo-Yelarbon), -

28.69○N and 150.37○E (Undabri- Goondiwindi) and -28.78○N and 150.54○E 

(Yambacully- Goondiwindi) were collected from the Australian Bureau of Meteorology 

SILO data (Queensland Government, 2018) for 2015/2016 and 2016/2017. Table 9.1 

shows soil classifications that were chosen from APSIM’s APsoil at each site.  

Table 9.1: Soil classification of the study sites 

Location APSIM’s APsoil file 

Koarlo -Yelarbon, QLD Grey Vertosol (Yelarbon No. 222) 

Undabri - Goondiwindi, QLD Grey Vertosol (Goondiwindi No. 856) 

Yambacully - Goondiwindi, QLD Grey Vertosol (Goondiwindi No. 856) 
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 Simulation methodology 

In line with www.apsim.info (2016), the following steps were followed to predict 

cotton yield at Koarlo for the 2015/2016 season. First, weather data obtained from the 

SILO data was inserted into the OZCOT-APSIM (Figure 9.2). The simulation period 

was adjusted to run for one season from 1 October 2015 to 1 July 2016. Next, APsoil 

was added (Grey Vertosol Yelarbon No. 222) to the simulation tree. Figure 9.3 

illustrates the sowing period, which started and ended on the 1 October 2015. Plant 

density was 12 plants per metre in a row, according to the planter adjustment. The 1.0 

m row spacing was used for RTF in this scenario. 

 

Figure 9.2: APSIM entered weather data (Grey Vertosol Yelarbon No 222) 
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Figure 9.3: Inputs of sowing criteria in APSIM 

A furrow irrigation system was used at this site. Irrigation inputs were added to the 

simulation and adjusted to the depth of 800 mm to be matched with the soil profile 

depth used in the field experiment (Figure 9.4). 

 

Figure 9.4: APSIM entered irrigation components 

The harvest rule was also added. When adjusting the water criteria, the profile depth 

was divided into eight layers (0─10, 10─20, 20─30, 30─40, 40─50, 50─60, 60─70 and 

70─80 cm) to match the soil layers in the field trial (Figure 9.5). The Pb values obtained 

from the field experiment for Row 1 of Koarlo were entered into the APSIM. The soil 

depths of SoilWater, SoilOrgaincMatter, Analysis, and InitialNitrogen criteria were 

also adjusted to be the same those in the field experiment.  
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Figure 9.5: The measured Pb of Row 1 entered into APSIM water criteria 

When all the inputs and adjustments were completed, the OZCOT-APSIM model was 

run to simulate the potential yield of Row 1, and then Row 2 and Row 3 separately. 

The outputs of the model were dry mass (kg/ha), bolls square(g/boll), leaf index 

(m2/m2) and yield (bales/ha) as shown in Table 9.2. The same processes as above were 

also carried out for Koarlo, Undabri, and Yambacully for 2016/2017. Weather data 

and APsoil were changed for each field according to GPS locations. Furthermore, the 

1.5 m row spacing was entered in relation to the sowing criteria under CTF. The 

simulation processes were carried out after consultation with CSIRO researchers 

(Johnston 2018, Pers comm). The attached file (CD), Part IV includes the inputs data 

that were used to run APSIM. Appendices 9.1, 9.2 and 9.3 show the simulation outputs 

of the individual rows of each site. 

Table 9.2: The simulation output for Row 1 in Koarlo 2016 
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 Simulation results 

9.6.1. OZCOT-APSIM validation 

Figure 9.5 shows the trend between predicted yield against measured yield in 

individual rows. There was a very strong correlation between the simulated and actual 

yield (R2 = 0.99) for Koarlo in 2016 and 2017 (Figure 9.6A and B). The correlation 

between predicted and measured yield was also very strong at both Undabri (R2 = 0.99) 

and Yambacully (R2 = 0.91) as shown in Figure 9.5C and D. The linear trends for both 

observed and predicted yield showed a good agreement. However, the regression 

equation was based on 3 data pairs which considered as a limitation in this study. But 

the regression line was valid in the sense that at least supplied a strong idea about the 

relationship between the predicted and observed yield. 

Table 9.3 that the predicted yield was close to the measured yield for Row 1, Row 2 

and Row 3 for Koarlo in 2016 and 2017. With a similar trend, predicted and measured 

yield were close for Row 1, Row 2 and Row 3 at both Undabri and Yambacully. 

However, there was a slight variation because the model was not able to predict factors 

such as biophysical influences and other influences of plant management (Hearn, 

1994; Richards et al., 2001; Keating et al., 2003). Overall, the OZCOT-APSIM model 

showed a reasonable simulation of the yield at all the study sites.  
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Figure 9.6: Validation simulation results: the measured versus predicted yield. A and 

B represent Koarlo in 2016 and 2017. C and D represent Undabri and Yambacully in 

2017 
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Table 9.3: The observed and simulated yield of the study areas 

Site Treatment Observed yield 

(bales/ha) 

Predicted yield (bales/ha) 

 

Koarlo 2016 

Row 1 12.78 12.75 

Row 2 12.16 12.16 

Row 3 12.70 12.69 

 

Koarlo 2017 

Row 1 10.04 10.05 

Row 2 8.26 8.27 

Row 3 9.12 9.15 

 

Undabri 

Row 1 7.14 7.20 

Row 2 6.45 6.40 

Row 3 6.63 6.61 

 

Yambacully 

Row 1 9.60 9.59 

Row 2 8.91 9.05 

Row 3 8.55 8.55 

9.6.2. Results of simulation for individual cotton rows  

9.6.2.1. Koarlo site 

As mentioned previously, two field experiments were carried out on two different 

cotton sites at Koarlo. The first trial was conducted in the harvest season of 2016, while 

the second was done in 2017, therefore, lint yields were simulated in both 2016 and 

2017. Based on the OZCOT-APSIM simulations, lint yields were significantly higher 

in Row 1 than in Row 2, by approximately 4% and 17% for 2016 and 2017, 

respectively (Figures 9.7 and 9.8). For both periods, there was no significant difference 

in the predicted yield between Row 1 and Row 3. Row 2 had a lower lint yield than 

Row 3, by approximately 4% and 9%, respectively, for 2016 and 2017. These outputs 

suggest that the model was highly sensitive to variation in the soil density values 

inserted. The measured Pb of Row 2 was higher than Row 1 and Row 3 due to the 

impact of the dual-wheel traffic of the harvester, as mentioned in previous chapters. 

Therefore, this effect was negatively reflected in the predicted yield. 
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Figure 9.7: Predicted lint yields (bales/ha) for individual cotton rows at the Koarlo 

site during 2016 

 

Figure 9.8: Predicted lint yields (bales/ha) for individual cotton rows at the Koarlo 

site during 2017 
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9.6.2.2. Undabri site 

Row 1 had a significantly higher lint yield (11%) than Row 2, while no significant 

difference was found between Row 1 and Row 3 (Figure 9.9). The comparison 

between Row 2 and Row 3 did not show any significant difference in lint yield at 

P≤0.05 level. The reason was similar to that highlighted for the Koarlo site (above). 

 

Figure 9.9: Predicted lint yields (bales/ ha) for individual cotton rows at the Undabri 

site during 2017 

9.6.2.3. Yambacully site 

Figure 9.10 shows that the lint yield was significantly higher in Row 1 than in Row 2 

and Row 3, by approximately 6% and 12%, respectively. There was no significant 

difference in the predicted yield between Row 2 and Row 3. This was because the 

measured Pb was lower in Row 1 than in Row 2 and Row 3 due to the space between 

Row 1 and traffic lane under CTF, which was sufficient to protect the soil’s structural 

arrangement. This required that a lower Pb be entered into the model, which reflected 

positively in increased predicted yield for Row 1 than Row 2 and Row 3.    
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Figure 9.10: Predicted lint yields (bales/ha) for individual cotton rows at the 

Yambacully site during 2017 

 Discussion 

APSIM is an agronomic model that was proposed by (Hearn, 1994) and developed by 

the CSIRO in Australia as a modelling instrument to accurately predict the influence 

of weather, genetics, soil, irrigation and farm management factors on cotton production 

(Yang et al., 2014). In this study, the comparison between simulated and measured 
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there was a very strong linear correlation between the predicted and actual yield for 

the Koarlo, Undabri and Yambacully sites.   

In Koarlo, the simulated yield was significantly higher in Row 1 than in Row 2, by 

approximately 4% and 17% for both 2016 and 2017, while Row 2 showed a lower 

yield than Row 3, by 4% and 9%, respectively, for 2016 and 2017. A similar trend was 

found in Undabri. It showed a significantly higher yield (11%) for Row 1 than Row 2, 

while no significant difference was found between Row 1 and Row 3. This suggests 

that the APSIM was sensitive to variations in Pb. Measured Pb of Row 2, which was 

entered into the model, was higher than those of Row 1 and Row 3, and this was 

reflected in the predicted results which showed the lowest yield in Row 2. This was 

because Row 2 was compressed by the inner and outer dual-wheels of the JD7760. 
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Furthermore, for the CTF site at Yambacully, lint yield was significantly higher in 

Row 1 than in Row 2 and Row 3, by approximately 6% and 12%, respectively. There 

was no statistical difference in potential yield between Row 2 and Row 3. This was 

because the measured Pb was the lowest in Row 1, as the space between Row 1 and 

the traffic lane was sufficient to protect the soil’s structural arrangement. At the same 

time, the permanent traffic lane was between Row 2 and Row 3, which resulted in 

increased soil strength in the wheel track which spread to the adjacent rows, and thus 

the Pb increased (Braunack & Johnston, 2014). This led to a decrease in predicted 

yield because OZCOT-APSIM is sensitive to changes in Pb (Hearn, 1994). In 

summary, the key findings of this simulation are: 

 The model outputs demonstrated that predicted yield was close to measured 

yield from the field experiments which showed a very strong correlation for 

all the study sites 

 Row 2 under RTF (Koarlo and Undabri) had the lowest yield, being 4% and 

14% lower than Row 1 and Row 3 

 At the CTF site at Yambacully, lint yield was significantly higher in Row 1 

than in Row 2 and Row 3, by approximately 6% and 12%, respectively 

 The simulation results showed no significant difference in potential yield 

between Row 2 and Row 3 under CTF  

 Row 3 under CTF was most sensitive to harvester traffic with the lowest 

yield prediction about 12% lower than Row 1 and Row 2. 
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 Conclusion 

Simulation of row by row cotton yield under two traffic systems (RTF and CTF) was 

carried out using OZCOT-APSIM and results have been presented in this chapter. The 

model performed, well showing a good agreement between predicted and measured 

cotton yield for all study sites which is considered another confirmation of compaction 

impact on individual cotton yield in line with the experimental results. Under both 

CTF and RTF, Row 1 achieved the highest yield compared to Row 2 and Row 3. Row 

2, which was located between the front dual-wheels of the JD7760 standard 

configuration, was most sensitive to harvester traffic. It showed a lower yield than the 

rows (Row 1 and Row 3) adjacent to the wheel track of the harvester. Under CTF, 

traffic by the single wheel of the harvester affected Row 2 and Row 3 which showed 

a lower potential yield than Row 1. The model outputs revealed that cotton rows 

between the dual-wheels of the JD7760 standard were influenced by harvester traffic 

and had a lower yield than those neighbouring to the wheel track of the harvester. In 

summary, this chapter has addressed the Objective 5 and answered the Research 

Question 5. 

The OZCOT-APSIM has been used for predicting the impact of JD7760 and CTF7760 

traffic on row by row cotton yield under different levels of soil compaction in order to 

confirm and support the results of the experimentations. Also, to validate the model at 

the single cotton row level by comparing the predicted data and observed yield row by 

row.  
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Chapter 10.  Conclusions and recommendations 

 Overview 

Row by row Vertosol soil compaction due to JD7760 cotton picker traffic and its 

impact on cotton yield under two farming systems (RTF and CTF) has been 

investigated and presented in this thesis. The response of Vertosol to rainfall, seasonal 

climatic variability and harvester traffic was monitored during the period from October 

2016 to May 2017. Field trials and simulation models were employed to investigate 

soil compaction and cotton yield. The results of this investigation have contributed to 

the creation of new knowledge that is relevant to both cotton farmers and researchers 

across the world. It has also provided important information for farmers intending to 

grow crops in Vertosol soils in both Australia and around the world. 

 Achievement of the research objectives 

This section provides a summary of the achievements of each objective in this thesis: 

10.2.1. Summary related to Objective 1 

“To obtain and compare the parameters of soil compaction due to JD7760 traffic at a 

single row scale in different fields under RTF and CTF” 

The impact of soil compaction due to JD7760 cotton picker traffic at the single row 

level under two different traffic farming systems (RTF and CTF) was examined. 

Additionally, the response of Australian Vertosol soil to rainfall, seasonal variability 

and harvester traffic across the overall field was investigated. Soil water content (Swc), 

dry bulk density (Pb) and soil penetration resistance (SPR) were measured to assess 

the degree of compaction in the 0–80 cm depth of cotton rows and furrows. The 

measurements were carried out in October 2016, January 2017 and May 2017 (before 

and after harvester traffic).  

It was found that over an entire field, Vertosol soil was significantly influenced by the 

wet-dry cycles of the soil. This resulted in the activation of the shrink-swell property 

in the topsoil. Heavy rainfall in early October 2016 was particularly important for 
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compaction alleviation due to swelling of the Vertosol. Increased temperature in 

January 2017 also resulted in increased drying and shrinking of the soil that resulted 

in increased soil strength in the topsoil. It was further found that traffic from the 

JD7760 harvester induced significant compaction in the 0–30 cm depth, irrespective 

of RTF or CTF. Overall, about 75% of the fields were compacted due to trafficking 

with the JD7760 standard under RTF as compared to 50% with the CTF7760 harvester.      

Soil properties (Swc, Pb and SPR) were significantly affected by harvester traffic 

across the individual cotton rows and furrows under both RTF and CTF. Wheeled 

traffic over the furrows induced both topsoil and subsoil compaction. This effect 

expanded to neighbouring cotton rows, directly affecting cotton yield. In RTF, Row 2 

was most influenced by harvester traffic as indicated by a higher Pb and SPR in the 

topsoil when compared to Row 1 and Row 3. Row 2 was located between the front 

dual-wheels and experienced compaction from both wheels. There was no traffic 

impact on Row 1 with the CTF7760 harvester throughout the 0–80 cm depth, unlike 

Row 2 and Row 3. Overall, regardless of traffic system, significant compaction was 

found in rows and furrows between, neighbouring and beneath the wheel tracks. With 

these results, Objective 1 is achieved and Research Question 1 is answered. These 

results provide the international cotton industry with important practical information 

on the impact of JD7760 traffic on Vertosols at the single row level and the entire field.  

10.2.2. Summary related to Objective 2  

“To develop and evaluate different methods for estimating row by row cotton yield 

data” 

The influence of soil compaction due to harvester traffic on cotton yield at the single 

row level under RTF and CTF was investigated. Two novel approaches for collecting 

row by row yield data were adopted at the three study sites. The first method was 

designed to gather cotton yield from the existing machine (See Figure 3.21). The 

second employed the CAN-BUS and sensors of the harvester to directly extract yield 

data for individual cotton rows in 2017. Cotton yield was also hand-picked at all three 

sites in this study.  
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Yield results obtained using both approaches at the single row level showed significant 

soil compaction due to JD7760 harvester traffic under both RTF and CTF, particularly 

for rows between and adjacent to the wheel track. It was found that Row 1 achieved 

the highest yield under both traffic systems when compared to Row 2 and Row 3. Row 

2 under RTF was most influenced by the inner and outer dual-wheel traffic which led 

to lower yield than Row 1 and Row 3. Under CTF, Row 2 and Row 3 had a lower 

cotton yield than Row 1 due to the impact of wheel traffic. The measured results for 

CTF site at Yambacully also achieved a higher total yield per hectare than RTF at 

Undabri site, by 33%. These results were confirmed through comparison with the 

hand-picked data. With these results, the feasibility of the two new approaches for 

estimating cotton yield at the single row level was proven. These approaches can 

therefore be adopted by both farmers and researchers. Overall, Objective 2 is achieved 

and Research Question 2 is answered.  

10.2.3. Summary related to Objective 3 

“To compare the harvest efficiencies (harvest losses) of JD7760 and CTF7760” 

Harvester performance and harvest system costs are important considerations when 

comparing cotton harvesting systems. In this thesis, harvester efficiency was measured 

as a function of harvest loss. The third objective of this study was to examine the 

harvest efficiency of both the JD7760 standard configuration and the CTF7760 

modified harvester at the single row level. The JD7760 standard harvester (6 m 

frontage width) was used to harvest the RTF sites at Koarlo and Undabri, while the 

CTF7760 modified (9 m frontage width) was employed to harvest Yambacully.  

The results revealed that the CTF7760 harvester was superior and showed lower yield 

loss than the JD7760 standard configuration for all cotton rows. This indicates that the 

adoption of the CTF7760 harvester could help farmers to reduce picking costs per 

hectare and maximise their profits. These results indicate achievement of Objective 3 

and answer Research Question 3. 
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10.2.4. Summary related to Objective 4 

“To select and utilise an appropriate soil stress model to simulate soil compaction due 

to JD7760 and CTF7760 traffic” 

This study used SoilFlex to simulate vertical stress distribution under the wheel track 

of the JD7760 standard (front dual-wheel) and the CTF7760 modified (single wheel). 

This model is easy to use and applicable for farmers and agricultural advisers to control 

soil compaction in practice. This model has the ability to simulate the stress 

distribution underneath the wheel with tyre sizes (520/85R42 and 20.8-38) and 

inflation tyre pressure of 270 kPa as input parameters.  

First, the SoilFlex model was validated. Results obtained from this project agree well 

with the trend in the measured soil penetration resistance. The simulation results 

confirmed that vertical soil stress beneath the loaded area was highly related to wheel 

load and tyre infiltration pressure. In addition, the vertical soil stress caused by the 

inner and outer dual-wheel of the conventional harvester was of similar magnitude 

throughout the entire depth. The stress interaction from the two wheels of the dual 

configuration induced higher topsoil stresses in Row 2 than Row 1 and Row 3. Under 

CTF, Row 2 and Row 3 also showed higher soil stress in the topsoil due to the load of 

the single tyre (front axle) compared to Row 1. This was because the tyre was located 

between Row 2 and Row 3. The results of the study therefore demonstrate that it is 

possible to predict the impact of wheel traffic of heavier machinery on agricultural soil 

using SoilFlex. The outputs of SoilFlex demonstrate the achievement of Objective 4 

and answer to Research Question 4.    

10.2.5. Summary related to Objective 5 

 “To utilise a crop model to predict the impact of JD7760 and CTF7760 traffic on row 

by row cotton yield” 

The OZCOT-APSIM model was used to predict the impact of harvester traffic on 

cotton yield, row by row. This model was selected because it was able to simulate the 

theoretical yield by using historical weather and field data. It can provide a good 

prediction for the commercial yield of irrigated cotton. In this project, the OZCOT-
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APSIM model was first validated by comparing the predicted yield data against the 

observed yield. This demonstrated a good agreement between them. Importantly, the 

model outputs showed that cotton rows between the dual-wheels of the JD7760 

standard were most sensitive to harvester traffic and had a lower yield than those 

adjacent to the wheel track of the harvester. Under CTF, traffic from the single wheel 

of the harvester had an influence on both Row 2 and Row 3 which showed lower yields 

than Row 1. Results obtained with the model confirmed results obtained from field 

experiments. This result demonstrates the achievement of Objective 5 and answers 

Research Question 5. 

 Contributions of the research 

The literature review of this project revealed that there is currently a paucity of 

information pertaining to the impact of soil compaction due to JD7760 harvester traffic 

on cotton yield at the single row level under different farming systems. There is also a 

lack of studies on the impact of factors such as rainfall, seasonal climatic variability 

and harvest traffic on Vertosol soil behaviour. Thus, this study has been successful in 

identifying research gaps that need to be addressed (theoretical contribution) and in 

developing of new measurement methods, collection of field data, and computer 

simulation (practical contribution). Details of these contributions are highlighted 

below. 

10.3.1. Theoretical contributions of this thesis 

Through a comprehensive review of literature, this thesis has brought together and 

contextualised a range of issues relating to soil compaction and highlighted the 

research gaps. It has also offered a thorough review of the relationship between soil 

compaction and agricultural field traffic and their impacts on crop performance. In 

addition, this thesis has presented a comprehensive review of approaches used to 

reduce the level of soil compaction, including the best management strategies for 

avoiding and alleviating topsoil and subsoil compaction. This thesis has further 

delivered a comprehensive review of existing soil compaction and agronomy models. 

This knowledge can help future research in selecting an appropriate model for 

controlling traffic-induced soil compaction in agriculture and support to sound 
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decision making and forecasting of crop growth and development. Overall, the 

findings of this thesis have made an important scholarly contribution to the growing 

body of literature related to soil compaction and cotton yield.   

10.3.2. Practical contributions of this thesis 

The Australian cotton industry has made considerable advances in cotton production 

by adopting improved management strategies. With the widespread uptake of the 

JD7760 cotton picker, evaluation of its impacts under different farming systems has 

become critical. Previous researchers have studied the effect of this cotton picker on 

soil compaction and cotton yield. But, these studies provided overall field results rather 

than results at individual row level. This thesis has, therefore, made an important 

contribution to the global knowledge by delivering new findings in regards to the 

impact of JD7760 traffic on soil compaction and cotton yield at the single row level 

under different farming systems. The behaviour of Vertosol in response to factors such 

as rainfall, seasonal variability and harvester traffic under RTF and CTF was also 

monitored and investigated within the short-term (between October 2016 and May 

2017). 

Another significant contribution of this thesis is its development of two new 

methodologies for estimating cotton yield at the single row level (discussed in Chapter 

3). Use of these methods revealed that, for both systems, individual row yield data was 

significantly influenced by JD7760 traffic compaction. The yield was much lower in 

the rows between the dual-wheel than the yield in those adjacent to the wheel track. 

Overall, it has been demonstrated that the results of these methods are valid because 

they show a similar trend to the findings of hand-picked method which was also used 

in this study.  

This thesis further examined the efficiency of the harvesters under RTF and CTF. 

Previous studies had only compared the efficiencies of cotton pickers and strippers 

based on overall yield loss, while the efficiencies of the JD7760 standard configuration 

and the CTF7760 modified version had not been investigated, particularly within 

Australian cotton industry. This project has, for the first time, shown that the CTF7760 
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harvester was superior and showed lower yield loss than the JD7760 standard 

configuration in all cotton rows.  

Finally, this study has simulated the impact of JD7760 harvester traffic on soil 

compaction and cotton yield for both RTF and CTF. Validation of soil compaction 

(SoilFlex) and biophysical (APSIM) models was again performed at the single row 

level. This was done by comparing the model outputs against field data to increase the 

reliability of the results of this study. Thus, this thesis has provided new insights and 

information to Australian and international cotton farmers in terms of the influence of 

John Deere 7760 traffic on cotton yield and enables the adoption of better strategic 

management and the development of aids for better production decision making under 

different levels of soil compaction. 

 Recommendations for further research 

This thesis has achieved the main aim and objectives outlined in Chapter 1. However, 

it has some limitations due to limited harvest seasons and limited availability of 

equipment. Therefore, the following recommendations are made for future work: 

 The findings reported in this thesis were based on fieldwork conducted in Yelarbon 

and Goondiwindi, Queensland. In the future, the field work will need to be extended 

to different locations and soils, and to multiple harvest seasons to provide further 

verification of the impact of compaction due to JD7760 picker traffic on cotton 

production, row by row. Particularly, field trials should be undertaken in Australia 

(Narrabri, Moree, Warren, etc.) and other cotton growing regions around the globe. 

 Soil compaction was identified within individual rows due to the JD7760, 

regardless of random or controlled traffic, and this resulted in cotton yield decline. 

DI practices the costs of removal of such compaction and how it can affect crop 

returns or net profit. 

 The results of this study have quantified the impact of JD7760 traffic on soil 

compaction. However, this study did not attempt to employ methods and models 

developed by civil engineers for measuring compaction in agricultural soils. Thus, 
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it is recommended that civil engineering methods and models should be explored 

for compaction measurement of agricultural soils.    

 The experiments undertaken in this thesis were carried out to investigate the impact 

of JD7760 traffic in changing the soil’s physical properties and cotton production 

row by row. The soil’s chemical properties were not investigated in this study. 

Thus, further research into the effect of compaction, due to JD7760 traffic on soil 

chemical properties is also recommended.   

 The current thesis has highlighted the influence of compaction by a specific cotton 

picker model (JD7760) on row by row cotton yield. Further studies will need to 

compare the John Deere round baler and other brands of round bale harvesters or 

the conventional basket pickers, in terms of soil compaction and its influence on 

row by row cotton performance. 

 This study has successfully employed the JOHN DEERE˗DATALOGGER and the 

JD7760 cotton picker CAN˗BUS to extract yield data at the single row level. Thus, 

for future work, it is recommended that this approach could be repeated or used 

with a different crop, such as sugarcane. 

 Harvesting is expensive for many cotton growers and requires a significant 

investment to achieve a high yield and profitability. This thesis has compared the 

harvest efficiency between the JD7760 standard and the CTF7760 modified based 

on harvest loss for only one harvest season. Hence, it is recommended that harvest 

loss measurements be repeated under both systems across different sites and 

multiple seasons for more accuracy.  

 This thesis has investigated the influence of soil compaction due to trafficking on 

cotton yield. However, this study did not attempt to calculate total operating costs 

for the JD7760 standard and the CTF7760 modified. Therefore, it is recommended 

that investigating of the operating costs for both systems be undertaken and these 

be compared. 
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 The current thesis has employed the SoilFlex model to simulate vertical stress 

distribution in Australian Vertosol soil underneath the wheels of the JD7760 

standard configuration and CTF7760 modified harvester at the single row 

level. However, this study did not attempt to calculate soil deformation under 

the wheels of both the JD7760 standard and the CTF7760 modified. Therefore, 

it is recommended that soil deformation simulations be undertaken. 
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Appendix 

Appendix 2.1: Classification of mechanism soil compaction model 

Model Pseudo-analytical Finite element method (FEM) 

Propagation sub- model Pseudo-analytical 

calculus of stress 

propagation. 

Numeral calculus of 

displacement propagation. 

Surface- applied force sub- 

model. 

Inhomogeneous stress 

propagation through an 

elliptical contact region. 

Uniform stress propagation 

through an elliptical contact 

region. 

Stress-strain behaviour sub- 

model. 

Empirical models. Pseudo-elastic models,  Cam 

clay type models 

Combined models. 
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Appendix 2.2: Flowchart-Inputs and outputs of SoilFlex model 
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Appendix 3.1: Soil cores collected during the study period 

 

Appendix 3.2: Soil penetration resistance measurement in situ 
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Appendix 3.3: General specifications of the JD7760 cotton picker 

Engine:   

Manufacturer  John Deere 7760 

Tier III 

compliant 

 Yes 

Horsepower  373 kW (500 hp) @ 2100RPM 

Displacement  13.5 L 

Number of cylinders 6 

Aspiration  Turbocharged/air to air 

Air filter  Dry air cleaner w/Safety Element 

Alternator  200 Amp 

Batteries  Three batteries (925 CCA) 12V 

Fuel Capacity  1136 L (300 Gallon) 

Drive Train:   

Transmission  Electronic controlled hydrostatic ProDriveTM 

Automatic Shift 

  (AST), full time 4WD 

Picking mode  6.8 kph (4.2 mph) 

Scrapping mode  8.1 kph (5.0 mph) 

Field transport mode 14.5 kph (9.0 mph) 

Road transport mode 27.4 kph (17.0 mph) 

Final drives  Super Heavy Duty (SHFD), dual wheels standard 

Brakes  Independent hydraulic assist wet disk 

Parking brake  Electronically activated (spring-applied - hydraulic 

release) 

Tyres:   

Guide wheels Standard 520/85R34 R1 (20.8R34 R1) 

 Optional 520/85R34 R2 (20.8R34 R2) 

Drive tyres 

(duals) 

Standard 520/85R42 R1 (20.8R42 R1) 

 Optional 520/85R42 R2 (20.8R42 R2) 

Module Builder:   

Shape  Round (Cylindrical) 

Round Module Size 90 in DIA. * 94 in W (max) 

Weight  2041 to 2722 kg (4,500 to 6,000 lbs) 
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Appendix 9.1: The OZCOT-APSIM outputs for Koarlo 2017. A, B and C represent 

Row 1, Row 2 and Row 3 respectively 

A 

 

B 

 

C 

 

Appendix 9.2: The OZCOT-APSIM outputs for Undabri. A, B and C represent Row 

1, Row 2 and Row 3 respectively 

A 

 

B 

 

C 
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Appendix 9.3: The OZCOT-APSIM outputs for Yambacully. A, B and C represent 

Row 1, Row 2 and Row 3 respectively 

A 

 

B 

 

C 

 

 

 

 

 

 


