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A B S T R A C T   

The aims of this study were to (i) test ground and aerial-based remote sensing vegetation indices (VIs) for trait- 
based breeding line selection, (ii) improve our understanding of the association between measured plant traits 
and readings derived from active and passive sensors and (iii) establish an optimal time for growth assessments 
in relation to field pea vigour and seed yield. Multispectral sensors were deployed with the handheld Crop Circle 
(CC) and a sensor mounted on an unmanned aerial vehicle (UAV) to collect data from field trials conducted 
between 2017 and 2020 at Beulah and Horsham in Victoria and Yenda, Wagga Wagga and Ardlethan in New 
South Wales in Australia. The result showed that normalised difference vegetation index (NDVI) derived from an 
aerial-based passive sensor (UAV) was strongly and significantly correlated to NDVI derived from a ground-based 
active sensor (CC) at both Beulah (R2 

= 0.85; n = 1165; p < 0.001) and Horsham (R2 
= 0.77; n = 210; p <

0.001). Both methods showed similar NDVI trends in pea genotype rankings. Based on the three seasons of field 
trial data, NDVI derived from both the CC and UAV sensors were linearly related to biomass production during 
pre-canopy closure growth. In water limiting environments, seed yield was positively correlated to NDVI mea
sures. Measures calculated from the area under the NDVI curve throughout the growth season, and an additive 
main effect and multiplicative interaction model (AMMI) identified varieties with high vigour scores (high 
NDVI). Overall, a high vigour score was correlated to seed yield in lower yielding environments. From these 
results it appeared that higher vigour helps achieve higher yields in drier environments, however it was 
correlated with lower yields in better environments.   

1. Introduction 

Field-based phenotyping of plant traits is a routine breeding activity 
in field pea improvement. However, physical measurements of several 
quantitative traits are destructive, time-consuming, labour-intensive 
and expensive. Plant phenotyping using ground-based sensors and 
remote sensors mounted on unmanned aerial vehicles (UAVs) could 
provide field pea breeders with a rapid and efficient tool for trait-based 
phenotypic selection and help define the relationship between vigour 
and yield. Several studies have shown the advantages of aerial-based 
passive sensors over ground based active sensors in providing a wide 
range of vegetation indices for large-scale rapid assessment of crop 
growth (Winterhalter et al., 2013, 2012; Hatfield, 2008). Despite these 

advantages, the data quality of aerial-based passive sensors can be 
affected by bad weather conditions (Erdle et al., 2011; Stamatis et al., 
2009; Hatfield et al., 2008) and breeders require base level information 
on which indices are most appropriate to facilitate the correct choice of 
sensors for trait-based germplasm screening. 

High-throughput phenotyping through a range of spectral reflec
tance indices has been widely used in cereal crops for the screening of 
desirable plant traits adapted to abiotic and biotic stresses, including 
drought (Condorelli et al., 2018; Gupta et al., 2012; Kim et al., 2020), 
nutrition (Tan et al., 2020), frost (Nuttall et al., 2019), salinity (Beisel 
et al., 2018), heat (Ullah et al., 2019), herbicide, weed infestation 
(Huang et al., 2018), insect pest infestation (Bhattarai et al., 2019) and 
disease incidence (Su et al., 2018). Such indices have been used to screen 
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germplasm for genetic variability, thereby increasing breeding effi
ciencies in field crops (Li et al., 2014). The commonly used vegetation 
indices, such as normalized difference vegetation index (NDVI), have the 
potential to be linked to important production traits, including biomass, 
leaf expansion, vigorous growth, yield and yield related traits in field 
pea. 

Vegetation indices quantify plant traits based on photosynthetic 
activity (chlorophyll or greenness) (Beck et al., 2006; Gitelson et al., 
2003,1993, 1994). It is likely that plant shoot architecture such as leaf 
angle, leaf orientation, leaf morphology and branching could impact the 
measurements derived from vegetation indices. For example, a signifi
cant correlation was reported between leaf angle and digital ground 
cover (DGC) in four large wheat populations (Mullan and Reynolds, 
2010). However, the quantification primarily depends on chlorophyll 
pigments which absorb the red spectral band and reflection of near 
infra-red (NIR) band from the canopy. Therefore, high NDVI values are a 
function of low reflectance in the red spectral region and high reflec
tance in the infrared spectrum. NDVI and other related indices can be 
used to track early growth and vigour, traits which are important in 
crops that suffer from limited water availability due to rainfall vari
ability and poor soil water holding capacity. 

Early vigour has been proposed for drought adaptation and this is 
particularly relevant to field pea as the crop is seen as the preferred pulse 
in the drier cropping regions of south western and south eastern 
Australia. Inadequate water is often the main constraint affecting dry 
matter biomass production and seed yield in these regions. Soil water 
losses in this environment are mainly driven by high temperature and 
high atmospheric vapour pressure deficit as the season progresses 
(French, 2010). Leuning et al. (1994) reported soil water loss of 49% 
below wheat canopies in relation to total seasonal evapotranspiration in 
drier, Mediterranean type environments. Here, early vigour is an 
important plant trait in reducing water loss from the soil surface through 
increased ground cover and early crop development. Mullan and Rey
nolds (2010) found significant and negative correlations between DGC 
and daily soil evaporation below the wheat crop canopy. In agreement 
with this study, a low evaporation rate was reported under higher vigour 
breeding lines of wheat in water-limiting environments (Turner and 
Nicolas, 1998). 

Early vigour is characterized by fast leaf area expansion and 
aboveground biomass production during the early stage of plant growth. 
Several studies reported positive correlations between early vigour as 
measured by biomass and leaf traits, such as leaf width, leaf size and 
specific leaf area in wheat and rice crops (Maydup et al., 2012; Rebol
ledo et al., 2012; Mir-Mahmoodi and Soleimanzadeh, 2009). Nguyen 
et al. (2018) also found strong and significant correlations between early 
vigour (as measured by digital ground cover, DGC) and aboveground 
biomass (r = 0.92; p < 0.001), leaf area (r = 0.95: p < 0.001) and water 
use efficiency (r = 0.80; p < 0.001 under controlled environments in 
field pea. These traits could be important in improving seed yield of field 
pea through rapid early ground cover and increasing transpiration ef
ficiency (Ward et al., 2007) in water-limiting environments. 

During early growth of wheat, Mullan and Reynolds (2010) also 
reported significant and positive correlations between DGC and 
destructive early vigour measurements, viz., biomass (r2 = 0.63) and 
leaf area index (r2 = 0.84). Their study further indicated a significant 
and positive correlation between DGC and NDVI (r2 = 0.69) derived 
from GreenSeeker. Nguyen et al. (2018) also found a significant and 
positive correlation between DGC and NDVI derived from CC (r = 0.70; 
p < 0.001), indicating that NDVI is an alternative method of measuring 
DGC or early vigour in field pea. 

The non-destructive measurement of early vigour, and potentially 
other plant traits, could have a significant contribution to a field pea 
breeding program where thousands of breeding lines are evaluated 
during the selection process in early breeding stages. The current 
method for assessing lines for vigour involve a visual score of lines on a 
one to nine scale taken pre canopy closure. This is somewhat subjective 

as different operators may interpret observations differently, and there 
can be issues as operators become tired in scoring large field trials. Other 
methods such as physical weighing of biomass samples are prohibitive in 
terms of resource use for large scale screening required in breeding. 
Remote sensing methods are more rapid, efficient and objective 
compared to conventional methods of vigour estimation. The collection 
of large and accurate datasets would then better facilitate the under
standing of associations between this trait and grain yield across a range 
of environments. 

Field pea is an interesting crop in which to apply vegetation indices, 
as breeding has led to the development of two highly divergent archi
tectural ideotypes. Traditionally, field pea had long internodes and 
highly compounded leaves with limited tendrils, giving rise to “con
ventional” type field pea. Kielpinski and Blixt (1982) combined two 
recessive genes, afila and length. afila converts the compound leaf to an 
abundance of tendrils, while length reduces the length of the internodes. 
Together, these traits form the semi-dwarf, semi-leafless ideotype which 
has much better standability in the field, facilitating a much easier 
harvest. It is currently unknown how these traits affect vegetation 
indices and their relation to biomass accumulation. 

Spectral VIs derived from active sensors as deployed in a CC and 
passive sensors such as the MicaSense RedEdge-M™ could be useful in a 
field pea breeding program. The objectives of this study were to (i) test 
ground and aerial-based remote sensing vegetation indices (VIs) for 
trait-based genotype variety selection, (ii) improve our understanding of 
the association between measured plant traits and readings derived from 
active and passive sensors and (iii) establish an optimal time for growth 
assessments in relation to field pea vigour and seed yield. 

2. Materials and methods 

2.1. Experimental site 

Field experiments were conducted during the winter growing sea
sons between 2017 and 2020 (Table 1) at Beulah (36◦03’36.0"S, 
142◦29’38.04"E) and Horsham (36◦43’49.2"S 142◦06’25.1"E and 
36◦44’10.8"S, 142◦06’25.40"E) in Victoria and at Yenda (33◦59’47.5"S, 
146◦08’32.2"E), Wagga Wagga (35◦ 2’ 42.6408’’ S, 147◦ 21’ 3.0384’’ E) 
and Ardlethan (34◦ 36’ 32.6376’’ S, 147◦ 6’ 24.2028’’ E) in New South 
Wales in Australia. The research sites of Victoria were characterized by 
Vertisol soil in Horsham and Calcareous soils in Beulah. The soil type of 
NSW was Chromic Luvisols. The rainfall was well below the 50-years 
average rainfall in 2019 in both regions. The conditions of the experi
mental sites are presented in Table 1. 

2.2. Genotype description and field experiments 

Three experiments were conducted over three consecutive years. 
Experiment 1 was conducted in 2017, 2018 and 2020 where forty-four 
varieties representing a range of important historical lines were evalu
ated in a RCBD trial replicated three times at Horsham. Datasets from 
this trial were used to validate non-destructive and destructive methods 
of measuring aboveground biomass and seed yield. 

Experiment 2 was conducted at Horsham in 2019 and consisted of 
ten current varieties of field pea with three replicates in a randomized 
completed block design (RCBD) trial. Experiment 3 consisted of two 
replicate RCBD trials of two hundred and seventeen genotypes repre
senting stage 2 breeding germplasm from the Australian national field 
pea breeding program. This trial was grown over five sites, namely 
Horsham and Beulah in Victoria and Yenda, Wagga Wagga and 
Ardelthan in New South Wales. Experiments 2 and 3 had eight varieties 
in common and represented 3 ideotypic classes on which detailed 
measures were taken. These ideotypes were (i) semi-dwarf, semi-leafless 
varieties and included PBA Oura, PBA Pearl, PBA Twilight, Kaspa and 
PBA Butler, (ii) a fully leaved short internode breeding line (OZP1604) 
and conventional or fully leaved varieties with long internodes (Sturt 
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and PBA Percy). Sturt was missing at the Beulah experimental site. 
All plots were 5 m long and consisted of five rows spaced 0.25 m 

apart. Plots had a 2 m gap within the ranges and a 0.5 m gap between the 
rows. Fertilizer and herbicides were applied according to best farmer 
practice for the region. Details of these experiments are presented in 
Table 1. 

2.3. Plant measurements 

The aboveground biomass was harvested from 0.5 m x 1.25 m at an 
early vegetative stage in experiment 1 and experiment 2, and twice more 
in experiment 1 coinciding with canopy closure and physiological 
maturity. Seed yield was harvested from 5 m x 1.25 m at physiological 
maturity from each plot of all three experiments. 

Spectral reflectance readings were taken at up to 19 time points using 
the handheld CC configured with green, red and NIR channels (Model 
ACS-470, Holland Scientific, Inc). CC was also configured to take 10 
samples readings per second. During measurements, the detection optics 
of the CC were positioned over the middle row of a 5-row plot at 
approximately 0.75 m height above canopy with a sensor field view of 
32 degrees, resulting in a projected beam of 0.43 m width. This height is 
within the range recommended by the manufacturer to minimise soil 
spectrum effects (https://hollandscientific.com). Average reflectance 
values from approximately 20 readings were taken for each plot by 
walking at a consistent pace and taking measurement from the middle 
row along the 5 m plot length. 

2.4. Aerial data acquisition 

This research used a custom multispectral data acquisition system 
integrated for phenotypic research at SmartSense iHub, Agriculture 
Victoria, as described in Banerjee et al. (2020). The system consists of a 
MicaSense RedEdge-M multispectral camera (MicaSense, Seattle, WA, 
USA) integrated with the unmanned aerial vehicle (UAV) DJI Matrice 
100 quadcopter at Horsham and Bask Aerospace MR4 (4 rotors) at 
Beulah. The multispectral sensor records the position values, i.e. lati
tude, longitude and altitude on to the camera tags, using the included 
global positioning system (GPS) module. Additionally, the multispectral 
camera also logs dynamic changes in incident irradiance levels using a 
downwelling light sensor. A radiometric calibration panel with known 
radiometric coefficients for individual multispectral bands was used. 
Radiometric calibration measurements were recorded with the multi
spectral sensor before individual flight missions for image correction. 

Meticulous flight planning is important for UAV aerial data acqui
sition critical in high-throughput phenotyping. The UAV trajectory was 
designed using Ground Station Pro (DJI, Shenzhen, China) and the 
multispectral sensor was set to acquire images at a specified overlap 
(80% at Horsham and 75% at Beulah) and height (35 m at Horsham and 
58 m at Beulah) to achieve a ground sampling distance (GSD) of 2 cm at 
Horsham and 4 cm at Beulah. The UAV-multispectral data was acquired 

at different days after sowing (DAS) to map the spectral profile of the 
cultivars over their life cycle. Strategic flights were carried out before 
destructive harvesting of biomass, to evaluate the benefit of utilizing 
UAV-multispectral systems as a high-throughput phenotypic tool at 
Horsham. Total flights of nine at Horsham and eleven at Beulah were 
conducted as detailed in Table 2. 

2.5. UAV data processing 

This study adopted the workflow developed in Banerjee et al. (2020), 
wherein the detailed workflow is provided. Here, we present a brief 
overview of the adopted workflow Fig. 1. 

The acquired UAV multispectral images were processed using a 
photogrammetry software, Pix4D Mapper (Pix4D, 2017). The software 
used a technique called Structure from Motion (SfM) which is 
well-suited for processing UAV data to generate the reflectance ortho
mosaic, the digital surface model (DSM) and the digital terrain model 
(DTM) layers. The mosaicked layers were then exported to individual (. 
tif) files with a spatial resolution of 2 or 4 cm GSD. 

The MicaSense RedEdge multispectral camera records reflectance in 
blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and 
near-infrared (840 nm) bands. These surface reflectance values were 
used to compute a total of 12 VIs, used in plant phenotyping research 
(Table 3). These indices enhance the contribution of spectral properties 
of the vegetation to correct confounding factors such as reflectance of 
soil backgrounds in a crop, particularly at the early stages of the growth 
cycle (Xue and Su, 2017). Additionally, VIs are immune to operator bias 
or assumptions regarding land cover class, soil type, or climatic condi
tions (Banerjee et al., 2020), therefore improving objectivity of 
high-throughput phenotyping of crops. 

A crop coverage (CCov) metric was also computed to classify vege
tation fraction region, the vegetation part of the research plots, as 
described in Banerjee et al. (2020). The CCov layer provides a highly 
accurate (99.2% overall accuracy) means to classify the vegetation cover 
within each plot. CCov is effective in suppressing background soil 
spectrum to improve the detection of vegetation, which is important in 
early stages of crop growth when estimating emergence. 

For each plot (i.e. footprint size of 1 m x 5 m) the VI and CCov layers 
were summarized as average of all pixel values in the plot. A shapefile (. 
shp) consisting of the individual field plot extent was prepared in Arc
Map version 10.4.1 (Esri, Redlands, CA, United States). The image 
processing involved in computation of VIs and CCov were performed in 
Python 3.7.8 (Python Software Foundation. Python Language 
Reference). 

Cumulative NDVI was computed in terms of area under the NDVI 
progress curve as in Eq. (1). 

AUC =
∑n− 1

i=1
[
(xi+1 + xi)

2
]*[ti+1 + ti] (1)  

Where, 

Table 1 
Experimental conditions at each site.  

Experiment No. of genotype Date of planting Year Environment Region Soil type In-crop Rain fall (mm) Location GPS 

1  44 08-Jun  2017 Horsham (E1) VIC Vertisol  253 36◦43’49.2"S 142◦06’25.1"E 
1  44 14-May  2018 Horsham (E1) VIC Vertisol  151 36◦44’10.8"S, 142◦06’25.40"E 
1  44 28-May  2020 Horsham (E1) VIC Vertisol  217 36◦43’49.2"S 142◦06’25.1"E 
2  10 06-Jun  2019 Horsham (E1) VIC Vertisol  192 36◦43’49.2"S 142◦06’25.1"E 
3  217 06-Jun  2019 Horsham (E1) VIC Vertisol  192 36◦43’49.2"S 142◦06’25.1"E 
3  217 15-May  2019 Beulah (E2) VIC Calcareous  186 36◦03’36.0"S, 142◦29’38.04"E 
3  217 08-May  2019 Yenda (E3) NSW Chromic luvisol  87 33◦59’47.5"S, 146◦08’32.02"E 
3  217 22-May  2019 Wagga Wagga (E4) NSW Chromic luvisol  126 35◦02’42.6‘’S, 147◦21’03.03’’E 
3  217 14-May  2019 Ardlethan (E5) NSW Chromic luvisol  99 34◦36’32.6‘’S, 147◦06’24.02’’E 

Eight divergent ideotypes of field pea from Experiment 2 (Horsham, E1) and seven from Experiment 3 (Beulah, E2) were selected for detailed measurements. These 
ideotypes had three classes: (i) semi-dwarf, semi-leafless varieties (PBA Oura, PBA Pearl, PBA Twilight, Kaspa and PBA Butler), (ii) a fully leaved short internode 
breeding line (OZP1604) and (iii) conventional or fully leaved varieties with long internodes (Sturt and PBA Percy). Sturt was missing at the Beulah experimental site. 
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AUC is area under NDVI curve, xi is NDVI at ith day after sowing, ti is 
the duration in days, n is the total number measurements. 

2.6. Statistical analysis 

The analysis of variance, additive main-effects and multiplicative 

interaction (AMMI) model and genotype main effect and genotype by 
environment interaction (GGE) biplot were computed using GenStat 
software package (VSN International, 2015). Further analysis using 
correlation and linear regression were analysed using Microsoft Excel. 

3. Results 

3.1. Ground and aerial-based sensors validation for NDVI 

UAV derived NDVI was strongly and positively related to CC-NDVI 
(Fig. 2) at both Horsham (R2 = 0.77; n = 210; p < 0.001; RMSE =
0.08) and Beulah (R2 = 0.85; n = 1165; p < 0.001; RMSE = 0.20). A 
comparison between both sensors in detecting differences in each ge
notype was also made using the dataset of 2019 (Experiment 2). Aerial 
NDVI was highly and significantly correlated to ground based NDVI in 
all lines (Fig. 3). 

3.2. NDVI based variety rankings across locations and crop growth stages 

The difference between a near-infrared band of light and a visible 
light band of light as measured by NDVI was used for trait-based ge
notype rankings. Fig. 4 presents the readings of the NDVI of eight and 
seven varieties of field pea at multiple time points at Horsham and 
Beulah, respectively. The readings were taken using both CCand UAV 
from an early vegetative growth stage to senescence of the field pea. The 
plot based NDVI increased with time towards canopy closure. The 
highest mean saturation values were reached at 111 DAS using CC-NDVI 
(0.83) and at 118 DAS using UAV-NDVI (0.85) at Horsham, whereas the 
NDVI values reached the peak at 106 DAS using CC-NDVI (0.67) and at 
127 DAS using UAV-NDVI (0.79) at Beulah for the variety PBA Percy. 

Based on a time series analysis, there were statistically significant 
differences among the varieties for NDVI readings (Sup Table 1) before 
canopy closure (up to 101 DAS). Generally speaking, the conventional 
varieties of PBA Percy and Sturt had higher NDVI readings (Sup Table 1) 
and cumulative area under NDVI curve (Fig. 4) than that of most semi- 
dwarf, semi-leafless varieties with the most obvious exception of PBA 
Twilight. Additionally, the NDVI values of PBA Twilight were signifi
cantly higher than that of semi-leafless varieties, viz., OZP1408, PBA 
Butler, PBA Pearl and PBA Oura (Sup Table 1) during the early vege
tative stage of crop development to canopy closure. PBA Twilight also 
had a larger area under the NDVI curve when compared to other semi- 

Table 2 
Details of UAV-multispectral data acquisition in Horsham (Experiment 2) and Beulah (Experiment 3).  

Flight number Date of acquisition Flying Height Overlap (%) GSD Flight speed (m/sec) Local illumination conditions UAV 

UAV-flights at Horsham  
1 2019–07–19 35 m 80 2 cm 5 Sunny 

DJI Matrice 100 quadcopter 

2 2019–07–31 35 m 80 2 cm 5 Overcast cloudy 
3 2019–08–14 35 m 80 2 cm 5 Patchy cloudy 
4 2019–08–27 35 m 80 2 cm 5 Patchy cloudy 
5 2019–09–03 35 m 80 2 cm 5 Overcast cloudy 
6 2019–09–11 35 m 80 2 cm 5 Sunny 
7 2019–10–03 35 m 80 2 cm 5 Sunny 
8 2019–10–14 35 m 80 2 cm 5 Overcast cloudy 
9 2019–10–22 35 m 80 2 cm 5 Overcast cloudy 
UAV-flights at Beulah  
1 2019–07–24 58 m 75 4 cm 10 * 

Bask Aerospace MR4(4 rotors) 

2 2019–08–13 58 m 75 4 cm 10 * 
3 2019–08–16 58 m 75 4 cm 10 * 
4 2019–08–23 58 m 75 4 cm 10 * 
5 2019–08–27 58 m 75 4 cm 10 * 
6 2019–08–30 58 m 75 4 cm 10 * 
7 2019–09–04 58 m 75 4 cm 10 * 
8 2019–09–10 58 m 75 4 cm 10 * 
9 2019–09–14 58 m 75 4 cm 10 * 
10 2019–09–24 58 m 75 4 cm 10 * 
11 2019–10–12 58 m 75 4 cm 10 *  

* =data not recorded but cloud shadows were not detected across target areas. 

Fig. 1. The workflow ofUAV-multispectral data processing. GCPS=ground 
controlpoints, DSM=digital surface model, DTM=digital terrain model, OSA
VI=optimizedsoil adjusted vegetation index. 
(Adapted from Banerjee et al., 2020). 
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leafless varieties (Fig. 5). Furthermore, conventional varieties with 
longer internodes (PBA Percy & Sturt) had higher and significant pre- 
and post-canopy closure NDVI values than the conventional short 
internode, OZP1604 line. In contrary, significant differences among 
genotype were not observed in terms of destructive measurement of 
biomass at two sample points (Sup Table 1). The non-destructive method 
was more sensitive in detecting phenotypic variation at these time 
points. 

The study found good correlations between biomass and UAV 
derived NDVI measures within the idiotypic classes at P < 0.05 in the 
semi-dwarf, semi-leafless class (r = 0.71) and in the conventional leaved 
(r = 0.99) class. However, the correlation was not significant when all 
classes were combined. 

3.3. Vegetation index-based estimation of biomass 

A relationship between biomass and vegetation indices of field pea 
was also studied in Experiments 1 and 2 at Horsham (Fig. 6a and b). 
Aboveground biomass production was linearly related to various vege
tation indices derived from a multi-spectral camera mounted on a UAV 
(Fig. 6a). In addition, CC- NDVI was positively linked to biomass (R2 =

0.60, p < 0.001, RMSE=144.6 g) in field pea (Fig. 6b). Comparing a 
range of spectral indices, it was found that normalized difference red- 
edge index (NDREI) gave the highest correlations to aboveground 
biomass with a high coefficient of determination (R2 = 0.94) (Fig. 6a). 

Table 3 
Spectral reflectance vegetation indices used in this study.  

Name of Indices Abbrev. Formula Reference 

Normalized Difference Vegetation Index NDVI (ρNIR − ρRED)

(ρNIR + ρRED)

Rouse et al. (1974)   

Green Normalized Difference Vegetation Index GNDVI (ρNIR − ρGREEN)

(ρNIR + ρGREEN)

Gitelson et al. (1996)   

Enhanced Vegetation Index EVI 2.5(ρNIR − ρRED)

(ρNIR + 6*ρRED − 7.5*ρBlue + 1)

Huete et al. (2002)   

Normalized Difference RedEdge Index NDREI (ρNIR − ρRED EDGE)
(ρNIR + ρRED EDGE)

Gitelson and Merzlyak (1994)   

Chlorophyll Index RedEdge CIRE (ρNIR)
(ρRED EDGE)

− 1  
Gitelson et al. (2003)   

Green Leaf Index GLI (2*ρGREEN − ρRED − ρBlue)
(2*ρGREEN + ρRED + ρBlue)

Lohaaichi et al. (2001)   

Optimized soil adjusted vegetation index OSAVI 1.6[
(ρNIR − ρRED)

(ρNIR + ρRED + 0.16)
]

Rondeaux et al. (1996)   

Modified simple ratio MSR (ρNIR/ρRED) − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ρNIR/ρRED)

√
+ 1  

Chen et al. (2014)   

Modified chlorophyll absorption ratio index 1 MCARI1 1.2[2.5(ρNIR − ρGREEN) − 1.3(ρRED − ρGREEN)]

Haboudane et al. (2004)   

Modified chlorophyll absorption ratio index 2 MCARI2 3.75(ρNIR − ρRED) − 1.95(ρNIR − ρGREEN)

(2*ρNIR + 1) 2 − (6*ρNIR + 5
̅̅̅̅̅̅̅̅̅̅̅̅
ρRED

√
) − 0.5  

Haboudane et al. (2004)   

Modified triangular vegetation index 1 MTVI1 1.2[2.5(ρNIR − ρGREEN) − 2.5(ρRED − ρGREEN)]
Haboudane et al. (2004)  

Modified triangular vegetation index 2 MTVI2 1.8(ρNIR − ρGREEN) − 3.75(ρRED − ρGREEN)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2*ρNIR + 1) 2 − (6*ρNIR + 5

̅̅̅̅̅̅̅̅̅̅̅̅
ρRED

√
) − 0.5

√

Haboudane et al. (2004)   

Pigment specific simple ratio for chlorophyll a PSSRA (ρNIR)
(ρRED)

Blackburn (1998)   

Fig. 2. NDVI readings of field pea varieties using handheld crop circle and UAV at Horsham (a) and at Beulah (b) in 2019 (experiments 2 & 3).  

A.T. Tefera et al.                                                                                                                                                                                                                                



Field Crops Research 277 (2022) 108407

6

Fig. 3. The relationship between NDVI derived from Crop Circle (CC-NDVI) and UAV of eight varieties of field pea at Horsham in 2019 (experiments 2). Data was 
from four sampling points at pre-canopy closure (i.e. CC-NDVI at 60, 68, 89, 94 & UAV-NDVI at 54, 68, 88, 96 days after sowing). 

Fig. 4. Plot level NDVI mean of field pea varieties using handheld crop circle (a, c) and UAV (b, d) at Horsham (a, b) and Beulah (c, d) in 2019 cropping season 
(experiment 2 = a & b & experiment 3 =c & d). 
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3.4. Interrelationships between seed yield and vegetation indices 

In a breeding program, high yielding and consistent genotypic per
formances across production environments are desirable for wide 
adaptation. However, some genotypes are adapted to specific environ
ments due to genotype by environment interaction (GEI) effects. In this 
study we clustered the field pea trials into relatively homogenous en
vironments using AMMI and GGE analysis. As illustrated in Figs. 7 and 8, 
both AMMI and GGE clearly classified production environments into 
three distinctive potential environments using 270 genotypes in five 
environments (experiment – 3). The AMMI model grouped the low 
yielding environments into cluster 3 and the high yielding environments 
into cluster 1 and cluster 2 (Fig. 7). The GGE model used six lines and 
divided the biplot into six sectors of the convex hull (Fig. 8). The low 
yielding environments (E3 = Ardlethan, E4 = Wagga Wagga and 
E5 = Yenda) fell into one sector while the other two high yielding en
vironments (E1 = Horsham and E2 = Beulah) fell into two of the six 
sectors. Overall, the environments were clustered into three mega en
vironments using both AMMI and GGE. The mega environments were 

Fig. 5. The area under the NDVI curve based on data from crop circle at Horsham in 2019 (experiment 2). AUC is the area under the NDVI curve, a=PBA Percy, 
b=Sturt, c=PBA Oura, d=PBA Pearl, e = PBA Twilight, f = Kaspa, g = OZP1604, h = PBA Butler (experiment 2). 

Fig. 6. Relationships between UAV (a) and Crop Circle (b) derived vegetation 
indices and aboveground biomass yields at early growth stage of field pea at 
Horsham experimental site (Fig. 6a=Experiments 2 and Fig. 6b=experiments 1 
& 2). NDVI = Normalized Difference Vegetation Index, GNDVI=Green 
Normalized Difference Vegetation Index, EVI = Enhanced Vegetation Index, 
NDREI = Normalized Difference RedEdge Index, CV = Crop Volume (cumula
tive), CH = Crop Height, RDVI= Renormalized Difference Vegetation Index, 
OSAVI= Optimized Soil Adjusted Vegetation Index, MCARI1 = Modified 
Chlorophyll Absorption Ratio Index 1, MCARI1 =Modified Chlorophyll Ab
sorption Ratio Index 2, MTVI1 = Modified Triangular Vegetation Index1, 
MTVI2 = Modified Triangular Vegetation Index2, PSSRA= Pigment Specific 
Simple Ratio for chlorophyll a. 

Fig. 7. AMMI biplot based genotype and environment clustering using seed 
yield of two hundred seventeen genotypes (G1 – G217) in five environments 
(E1 - E5). E1 = Horsham, E2 = Beulah, E3 = Ardlethan, E4 = Wagga Wagga, 
E5 = Yenda (experiment 3). 
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defined by drawing an ellipse around environments located in the same 
sector. The clustering results were consistent with rainfall received 
during the 2019 winter cropping season (Table 1) and subsequent yields 
(Table 5). 

Further analysis based on both AMMI and GGE biplot clustering was 
carried out to identify traits of specific adaptation in relation to seed 
yield under two contrasting production environments. Using the AMMI 
model, genotypes were clustered based on their adaptability to diverse 
environments (experiment 3). For example, the model identified a va
riety with high vigour (PBA Percy, for example) as the most adaptive to 
low yielding environments (Table 5). The model also identified G105 
and G108 as the most adaptive genotypes in the high yielding envi
ronments (Table 5). 

In the high yielding environments (E1), seed yield was negatively 
related to several vegetative indices (VIs) derived from both CC and UAV 
at an early growth stage (experiment 2). During post-flowering or post 
canopy closure, there was a positive association between seed yield and 
VIs derived from UAV though the relationship was not statistically sig
nificant (Fig. 9). 

In the low yielding environments (E3, E4 & E5), seed yield was 
significantly related to NDVI during the early growth stage of field pea 
(i.e. 28 days after sowing). Varieties with high vigour scores (NDVI 
readings) were high yielding in a low yielding environment (in-crop 
rainfall < 126 mm) (Fig. 10a). On the contrary, low vigour varieties 
were high yielding in high yielding environment (in-crop rainfall >
186 mm) (Fig. 10b, c and d). 

4. Discussion 

Development of high-yielding varieties requires an assessment of a 
large number of breeding lines to select for a range of desirable traits. 
Visual scoring and physical measurements for desirable traits are usually 
carried out on hundreds of breeding plots. However, quantification of 
these traits are generally labour intensive, can be somewhat subjective 
and expensive (Potgieter et al., 2017). Sensors and multispectral 
image-based measurements could be an effective and accurate method 
for large scale germplasm screening for multiple traits in field pea. 

The current studies found that both active (CC) and multispectral 
passive sensors (UAV-deployed) showed similar NDVI trends in geno
type rankings in terms of various parameters in most cases. This was in 
spite of there being a large difference in the footprint size of the two 
sensing technologies. CC measured a width of 0.43 m over the 5 m plot 
length, which essentially only covered the middle row in a 5 row plot 
(row spacings were 0.25 m) while processing of UAV images took 
readings from all 5 rows in the plot. These different footprints of the 
technologies indicates that although the percentage of soil spectra likely 
varied between CC and UAV derived measurements, such effects were 
proportional between varieties and did not affect the final results. 

Vegetation indices have been proposed as a means of non-destructive 
biomass assessment in screening large numbers of germplasm for vigour. 
In this study, biomass was strongly and significantly related to NDVI. 
This is particularly useful to rapidly and effectively measure early vigour 
in diverse field pea germplasm. However, there was a difference be
tween NDVI of both sensors in relation to biomass production in the two 
architectural ideotypes of pea. A significant correlation was found be
tween biomass and cumulative area under UAV-NDVI, however, no 
significant correlation was found for CC-NDVI at a single time point. As 
previously stated, NDVI measurements using CC only measured a single 
row whereas the UAV mounted sensor measured the whole plot. It seems 
the UAV readings had greater accuracy and likely had a greater pro
portion of green biomass to soil than the ground-based measures. 

Early vigour is commonly measured by NDVI derived from ground- 
based and aerial-based sensors and is considered as a surrogate of 
biomass production (Duan et al., 2017). It has been reported that early 
vigour traits such as leaf expansion rate (Mullan and Reynolds, 2010), 
dry matter production (Cowley et al., 2014; Li et al., 2010; Diepenbrock, 
2000) and increased crop growth rate (Mullan and Reynolds, 2010) are 
linked to grain yield (Cowley et al., 2014; Zhou et al., 2007; Botwright 
et al., 2002; Kumar et al., 2009; Rebetzke and Richards, 1999). In low 
rainfall environments, these desirable traits are essential to improve the 
water use efficiency of field crops through rapid canopy closure, which 
increases water availability by reducing water loss to evaporation. 

Previous studies have used NDVI to estimate early vigour in many 
crops (Cowley et al., 2014; Holzapfel et al., 2009; Basnyat et al., 2004). 
Studies on canola showed a significant correlation (r = 043–0.80) be
tween early vigour (as measured by NDVI) and seed yield (Cowley et al., 
2014; Holzapfel et al., 2009; Basnyat et al., 2004). These studies sug
gested the optimal time to measure NDVI to predict canola seed yields 
was between 44 and 79 days after sowing (Cowley et al., 2014; Basnyat 

Fig. 8. GGE biplot based genotype and environment clustering using seed yield 
of two hundred seventeen genotypes (G1 – G217) in five environments (E1 - 
E5). E1 = Horsham, E2 = Beulah, E3 = Ardlethan, E4 = Wagga Wagga, 
E5 = Yenda (experiment 3). 

Table 4 
Pearson correlations between cumulative area under NDVI measures derived 
from either UAV or crop circle in two main divergent architectural ideotypes.  

Type UAV-NDVI CC-NDVI 

SD-SL (7) 0.71 * **  0.41 
Conventional (3) 0.99 * **  -0.45 
All (10) 0.29  0.08 

Three conventional leaved varieties and seven semi-dwarf, semi-leafless (SD-SL) 
varieties were included from dataset of 2019 (Experiment 2). 

Table 5 
The first three AMMI selections per environment.  

Environment Region yield (t/ 
ha) 

Selection- 
1 

Selection- 
2 

Selection- 
3 

Horsham (E1) VIC  1.88 G105 G184 G144 
Beulah (E2) VIC  1.32 G108 G207 G179 
Yenda (E3) NSW  0.39 PBA Percy G129 G38 
Wagga Wagga 

(E4) NSW  0.19 PBA Percy G38 G129 

Ardlethan (E5) NSW  0.20 PBA Percy G38 G143 

In this study, two hundred seventeen genotypes (G1 – G217) in five environ
ments (E1 - E5) were used in 2019. E1 = Horsham, E2 = Beulah, 
E3 = Ardlethan, E4 = Wagga Wagga, E5 = Yenda (experiment 3). 
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et al., 2004). Studies on wheat also found strong positive correlations 
between grain yield and NDVI measurement taken at flowering (Duan 
et al., 2017), milky stage (Babar et al., 2006) and grain filling (Sultana 
et al., 2014). Our study mainly found negative correlations between seed 
yield and NDVI during early growth stages of pea in high yielding en
vironments. Vegetation indices derived from UAV (NDVI, EVI, GNDVI, 
NDRE, RDVI, OSAVI, MSR, MCARI1, MACRI2, MTVI1, MTVI2, PSSRA) 
including UAV estimated plant height during the reproductive stage (96 
– 137 DAS) were positively related to seed yield in high yielding envi
ronments. Pandey et al. (2016) also reported a positive and significant 
relationship between seed yield and biomass (as measured by canopy 
cover) during the reproductive stage of canola in similar environmental 
conditions. 

Further analysis using seed yield and NDVI data from five environ
ments indicated an association between seed yield and early vigour (or 
NDVI reading) under water-limiting environments. We have demon
strated this using graphical illustrations by using both AMMI and GGE 
models. For example, no significant relationship was obtained between 
seed yield and vigour scores (or NDVI readings) under high rainfall 
environments, whereas under low rainfall environments, varieties with 
higher vigour scores produced better seed yield and this is in agreement 

with the canola work by Pandey et al. (2016). The lack of advantage of 
early vigour in a high potential environment could be due to the avail
ability of adequate resources, mainly rainfall during the study period in 
Victoria compared to New south Wales. 

Season to season climates are highly variable in Victoria and New 
South Wales and the current seed yield increase coupled with high early 
vigour in water-limited environments was likely caused by reduced 
water loss from increased ground cover at early crop development. For 
example, studies by Turner and Nicolas (1998) and Mullan and Reynolds 
(2010) have shown low soil evaporation rates under higher vigour 
wheat canopies in water-limiting environments. This relates to water use 
efficiency where reduced evaporation allowed greater water capture by 
the plant to produce grain. This is only effective in water-limiting en
vironments. In the current study the seed yield was strongly associated 
with in-crop rainfall (R2 =0.82, p < 0.001) (Tables 1 and 4), where early 
vigour was positively related to seed yield in direr environments. The 
advantage of early vigour traits as an adaptive response to drought has 
been widely reported in several studies (Nguyen et al., 2018; Cowley 
et al., 2014; Kumar et al., 2009; Zhou et al., 2007; Botwright et al., 2002; 
Rebetzke and Richards, 1999). Similarly, specific traits, such as deep 
root systems, shifting sowing time and genetic manipulation of crop 

Fig. 9. Relationships between seed yield and 
UAV derived vegetation indices at multiple 
growth stages of field pea at Horsham in 2019 
(experiment 2). a= 118 DAS, b= 129 DAS, 
c= 137 DAS. NDVI = Normalized Difference 
Vegetation Index, GNDVI=Green Normalized 
Difference Vegetation Index, EVI = Enhanced 
Vegetation Index, NDREI = Normalized Differ
ence RedEdge Index, RDVI= Renormalized 
Difference Vegetation Index, OSAVI= Opti
mized Soil Adjusted Vegetation Index, MCAR
I1 = Modified Chlorophyll Absorption Ratio 
Index 1, MCARI1 =Modified Chlorophyll Ab
sorption Ratio Index 2, MTVI1 = Modified 
Triangular Vegetation Index1, MTVI2 = Modi
fied Triangular Vegetation Index2, 
PSSRA= Pigment Specific Simple Ratio for 
Chlorophyll a, CH=Crop Height, CV=Crop 
Volume.   
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phenology have been suggested as means for improving water stress 
adaptation (Sadras et al., 2012; Manschadi et al., 2008). This result has 
demonstrated the potential of reflectance indices to predict final seed 
yield in field pea under specific conditions. Overall, the capability en
ables field pea breeders to screen a large number of breeding lines more 
rapidly and efficiently than the conventional destructive methods. 

Architectural and morphological driven differences in early vigour 
were also detected using sensors deployed in field pea. During both pre 
and post-canopy closure, fully leaved varieties with long internodes 
(PBA Percy and Sturt) had significantly higher NDVI readings than 
OZP1604, a fully leaved short internode variety. Additionally, the long- 
internode pea generally had higher measures than the remaining short- 
internode, semi-leafless types. This latter plant type has an erected 
growth habit with an abundance of tendrils instead of leaves, as 
compared to the leafy prostrate conventional types. This data suggests 
that long internodes play a greater role in achieving canopy closure than 
the fully leaved trait, although a more balanced data set should be 
investigated to confirm this. 

In addition, higher NDVI values were recorded at post canopy 
closure using CC than UAV. We also found low phenotypic variation 
among varieties of field pea between CC-NDVI and UAV-NDVI at Beulah. 
However, this could be due to a lower number of corresponding mea
surements at Horsham (n = 210) compared to Beulah (n = 1165), 
indicating that a greater number of measurements are likely to improve 
the R2 between CC-NDVI and UAV-NDVI at Horsham. Neverthless, the 
relationship was found sufficiently strong for application in pea 
breeding research. 

5. Conclusion 

In this study, spectral reflectance vegetation indices derived from 
both CC (active sensor) and multispectral UAV (passive sensor) were 
capable of ranking field pea varieties for VIs related to vigour. The 
values of vegetation indices derived from both UAV and CC were 
strongly related to aboveground biomass yield at an early stage of field 
pea growth. We were also able to rank genotypes using area under the 

NDVI curve. The current study has also improved our understanding of 
the influence of morphological traits on NDVI readings during pre-and 
post-canopy closure. Our data shows that NDVI accurately reflect 
biomass accumulation within the semi-dwarf, semi-leafless class but this 
correlation broke down when conventional types were included. This 
indicates that AUC NDVI can only be used to assess biomass accumu
lation within the two classes of germplasm. The current study has also 
demonstrated the optimal timing and vegetation index to be used for 
final seed yield prediction in field pea. Given the in-crop rainfall being 
less than 126 mm, the optimal regime to conduct high-throughput 
measurements for best prediction of seed yield from early vigour is 28 
days after sowing. Furthermore, vegetation indices in conjunction with 
environmental clustering using both AMMI and GGE biplots could be 
useful to identify traits with specific adaptation. The study also found 
early vigour as an important plant character in a drier environment to 
increase seed yield in field pea. 
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Fig. 10. Relationship between early vigour (NDVI readings) and yield of field peas in low (a) and high (b, c, d) yield potential environments (Fig. 10a &b =
experiment 3 (Table 1); Fig. 10c & d=experiment 1(Table 1). n = number of observations, ICR=in-crop rainfall. 
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