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ABSTRACT 

Queensland (QLD) is the second largest state in Australia, with a growing demand for 

electricity, but existing studies appear to lack their ability to accurately model the consumer 

demand for electricity. In this Master of Science Research (MSCR) thesis, two kinds of 

hybrid forecasting models were developed by integrating the Extreme Learning Machines 

(ELM) with a Markov Chain Monte Carlo (MCMC) algorithm based bivariate copula model 

(ELM-MCMC) and also, a conditional bivariate copula model to probabilistically forecast 

the electricity demand (D). The study has incorporated statistically significant lagged 

electricity price (PR) datasets as a non-linear regression covariate into the final D-forecasting 

model.  

In the first objective of the MSCR thesis, the ELM model was trained using statistically 

significant historical electricity demand at (t–1) timesteps for the state of Queensland used 

as a predictor variable, derived from Partial Autocorrelation Functions (PACF). This 

represented historical usage patterns in the electricity demand datasets used to forecast the 

future usage. It was then tested against current electricity demand (D(t)) to forecast the future 

D values. The output (i.e., simulated and observed tested D values) from the independent 

test dataset of the ELM model was used as the input for the MCMC-based copula model to 

derive the best copula model and to further improve forecasting accuracy.  This involved the 

adoption of twenty-six copulas (e.g., Gaussian, t, Clayton, Gumble, Frank, etc.) and enabled 

us to also rank the best copulas based on the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Maximum Likelihood (MaxL) to establish the dependence 

of historical D with the current and future D values. The results for the ELM-MCMC copula-

based model outperformed both of its counterpart models (i.e. MCMC copula-based model 

and the standalone ELM model) based on vigorous statistical performance metrics. For 6 

and 12-hours timescales, the MCMC-Fischer-Hinzmann copula yielded the highest Legates 

and McCabe Index (LM) (0.98 and 0.98), and lowest error terms including root mean square 

error (RMSE) (285.480 and 534.090), relative root mean square error (RRMSE) (0.348 and 

0.320%), mean absolute error (MAE) (262.241 and 490.661 MW), relative mean absolute 

error (RMAE) (0.336 and 0.309 %), AIC (-63136.102 and -34727.466), BIC (-63125.530 and 

-34718.279), and MaxL ( 51570.051 and 17365.733), respectively. Similarly, for the daily 

timescale, the ELM-MCMC-Cuadras-Auge copula outclassed its counterpart models by 
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displaying LM  (0.98), MSE ( 482703.8 MW), RMSE (694.769 MW), RRMSE (0.220 %), 

MAE (638.365 MW), RMAE (0.208 %),  AIC (-14514.312), BIC (-14510.412), and MaxL 

(7258.156). 

These present results indicated that the hybrid ELM-MCMC copula-based model had an 

excellent performance, evidenced by attaining less than 10% RRMSE and RMAE, and 

Legates McCabe value close to unity. This is further supported by better model fits as 

denoted by lower AIC and BIC values and small residual error between observed and 

predicted data as indicated in higher MaxL values for the respective timescales. 

In another phase of this study, we explored the ability of both local and global optimization 

techniques in achieving the best parameter estimate for the 26 copulas. It has shown that the 

global MCMC optimization method delivers accurate parameter estimates for 6 and 12-hours 

timescales whilst presenting information on the posterior distribution by computing 

uncertainty range of parameter values within a Bayesian framework. The local method 

appeared to provide better estimates of copula parameters for the daily timescale of D-

forecasting. 

In the second objective of the MSCR thesis, this study has developed a conditional bivariate 

copula model to probabilistically forecast electricity demand by incorporating the significant 

lagged electricity price (PR) from the Australian Energy Market Operator (AEMO) as a 

covariate into the final D-forecasting model. The use of energy price data to predict the 

energy demand is an important contribution given the relationships between these variables 

are well established. This objective resulted in the bivariate BB7 and BB8 copulas as being 

ranked highly for the probabilistic forecasting of D at a timescale of 30 minutes, 1-hour, and 

daily. The conditional exceedance probability of electricity demand greater than 7000 MW, 

14000 MW, and 360000 MW for 30-minutes, 1-hour, and daily timescales given their 

respective prices greater than AU$25/MWh, AU$60/MWh, and AU$165/MWh predicted to 

be 20%, 30%, and 50% respectively. Similarly, the conditional non-exceedance probability 

of electricity demand greater than 7000 MW, 14000 MW, and 360000 MW for 30-minutes, 

1-hour, and daily timescales given their respective prices greater than AU$25/MWh, 

AU$60/MWh, and AU$165/MWh was predicted to be 80%, 72%, and 70% respectively.  

When benchmarked with literature, the proposed research methodologies for objective 1 

(i.e., projection of demand based on antecedent behaviour) and objective 2 (i.e., projection 
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of demand based on antecedent energy price data) appear to be versatile tools possessing a 

robust predictive capability for forecasting D in Queensland, Australia. Hence, this research 

project is the first to develop and test these novel techniques, especially using price as 

regression covariate to forecast demand to achieve high forecasting accuracy, when the 

models are applied for multiple forecasting horizons of 30-minutes, 1-hour, 6-hourly, 12-

hourly, and daily. It is noted that these timescales are relevant for stakeholders (e.g., energy 

utilities) to develop decision systems for better energy security, and can potentially be 

adopted in real power grid operations to ensure stability, cost reduction and improved 

efficiency whilst granting consumer satisfaction. 

In summary, the novel energy demand modelling techniques presented here can help address 

research gaps in electricity usage monitoring sector by making a significant contribution 

towards improved forecasting accuracy of energy demand. While this study has currently 

been limited to Queensland, the research findings are immensely useful for energy experts 

in the National Energy Markets elsewhere including supporting the work of AEMO, Energex 

and other companies to enhance their energy forecasting and monitoring skills. These can 

assist in informed decisions and addressing the growing challenges within electricity 

industry, through improving energy demand and price monitoring, consumer satisfaction and 

maximized profitability endeavours of energy companies. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In this contemporary world, electricity is increasingly used as a necessity for human 

advancement and survival. Electricity demand forecasting is a vital tool for effective energy 

management, operation, and policy planning in the energy sector. Innovative data-driven 

models are powerful tools that possess accurate forecasting capability, hence, they are required 

by electricity operators and other stakeholders along the energy value chain to make informed 

decisions for improved performance, increased reliability, reduced cost, and above all, avoid 

energy crisis. Such models are important platforms for enhancing key operational parameters 

of the National Electricity Market (NEM) including the determination of electricity generation 

capacity, price regulation and the introduction of new policies to reflect changes and make 

room for upcoming expansion of electricity distribution networks. 

Electricity is an essential commodity in contemporary world and is vital for socio-economic 

and infrastructure development to ensure economic growth and success in any country. 

Electricity load (predominantly called demand) (abbreviated as D in this thesis and measured 

in megawatts, MW) forecasting is essential for enriching and upgrading system deficiencies in 

ensuring adequate generation and consistent electricity supply to its distribution networks, 

which in turn can positively impact development outcomes (Toman & Jemelkova 2003). The 

global electricity markets have confirmed forecasting irregularities and uncertainties present in 

traditional D-forecasting techniques, which have led to substantial financial losses for electric 

utility companies (Bunn & Farmer 1985; Haida & Muto 1994; Fan, S. & Chen, L. N. 2006). 

Therefore, they have emphasised and embarked on researchers to strategize and develop robust 

forecasting models that hold high accuracy to deliver reliable forecasting solutions. This also 

helps to meet the United Nations (UN) Sustainable Development Goal (SDG) 7 (Assembly 

2015), which facilitates smooth transition from non-renewable to renewable energy sources. 

This is done to mitigate climate change treats whilst providing a safe and vibrant energy 

systems to meet consumer demands in real-time. It is projected that during the imminent shift 

to sustainable energy system, electricity consumption will increase (Akay & Atak 2007; 

Campbell 2018) to ensure tranquility during this transition phase. To achieve this smooth 

transition, new and robust energy models are needed for precise capacity planning as old D-
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forecasting methods are reported to have exhibited inaccurate results when dealing with 

complex datasets of various predictors. 

1.2 Classification of electricity demand forecasting method 

Generally, electricity demand forecasting models are classified as either physical or data-driven 

models. Physical models are driven by physics and use mathematical equations to solve 

problems. They require initial (boundary) conditions to force the model to work and can be 

non-linear and complex. In contrast, Artificial Intelligence models are cheap and easy to 

develop and do not require initial conditions. They can learn from historical features of the data 

using computer algorithms and are purely dependent on data, hence are called “data-driven 

models”. These models use data analytics techniques where big data are examined to reveal 

hidden patterns, trends, periodicity and “cause and effect” information necessary to predict 

target variables. They do not require mathematical equations (except a transfer function to 

analyse patterns in datasets) nor model initialization and are self-adaptive and highly automated 

to provide real-time solutions. 

Energy forecasting is usually done using qualitative or quantitative methods, depending on the 

degree of statistical or mathematical forecasting models. The qualitative forecasting technique 

is widely applied by forecasters in forward planning of electricity load generation and 

distribution. It involves an expert knowledge system where historical electricity consumption 

data across the spectrum of the electricity sector is analysed to reach common consensus to 

forecast future electricity load requirements. This includes the Delphi method, curve fitting and 

advanced comparative analysis (Dalkey & Helmer 1963; Suganthi & Jagadeesan 1992; Haida 

& Muto 1994).  Conversely, quantitative forecasting methods are categorized as deterministic 

or data driven. The deterministic methods are governed by mathematical equations while data-

driven methods purely use past data to train computer systems using a set of soft algorithms to 

learn the prevailing relationships, trends, seasonality, and cause and effect to rapidly produce 

logical and accurate results for future projections. Data-driven models (predominantly called 

machine learning (ML) models) use historical datasets to teach computer which emulate the 

human thinking and produce logical and accurate forecasting solutions (Wang & Ramsay 

1998). Therefore, they have been used extensively (Florens et al. 2007; Xydas et al. 2016) in 

the contemporary world due to their powerful computational ability (Suganthi & Samuel 2012) 
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in generating precise forecasting results for complex systems (Haida & Muto 1994) such as 

time-series modelling.  

1.3 Classifications for electricity demand forecasting horizons 
 

Electricity demand forecasting is usually classified into time intervals based on the duration of 

the forecast range. This includes short-term, medium-term, and long-term forecasting. Short-

term forecasts commonly range from half an-hour to a week and are vital for the daily routine 

planning and management of the utility systems to ensure stability and continuity. Likewise, 

the medium-term forecasts commonly range from weeks to a year. They are used as decision 

support tools for the timely procurement of field consumables (for example, fuel and spare 

parts), planning for preventive maintenance of utility systems, and assessing sales and income. 

Long-term forecasts are usually greater than a year and are essential for long-term planning of 

infrastructure development for the utility system to cater for future expansion. 

Different modelling techniques have been used globally for short, medium, and long-term D 

and price (PR) forecasting depending on the duration of forecasting (Al-Alawi & Islam 1996; 

Mamun & Nagasaka 2004; Chui et al. 2009; Zhang et al. 2013; Papadopoulos & Karakatsanis 

2015; Bello et al. 2016; Ziel & Steinert 2018; Cao et al. 2019; da Silva et al. 2019).  

1.4 Complexity of electricity demand forecasting 

The forecasting of D is a multivariate issue comprising many exogenous features such as the 

local GDP, population, and climate variables. As such, it cannot be appropriately modelled in 

time series using a bivariate normal distribution (Alexander 2004) with simple statistical 

methods. However, this problem can be addressed using copulas, which are advanced statistical 

methods. Multivariate normality can be accommodated by capturing essentials features of the 

D datasets such as asymmetry, non-linear dependence, and heavy-tail behaviour using ranked 

Spearman or Kendall tau coefficients. Further, this enables independent modelling of marginal 

selections and dependence structure. In previous studies, He et al. (2017) used copula for short-

term D probability density forecasting. Similarly, Grégoire et al. (2008) used copulas to model 

price in energy trades. Therefore, this project firstly develops and tests a hybrid ELM-MCMC 

copula-based model to achieve robust forecasting results. Furthermore, it also investigates and 
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evaluates the joint predictive distribution of D for probabilistic forecasting by utilizing 

conditional bivariate copula whereby the electricity price (PR) is used as a covariate predictor. 

1.5 Forecasting model for the national electricity market in Australia 
and its limitation 

The national electricity market (NEM) in Australia was established in December 1998 and 

operates the world’s biggest integrated electricity systems comprising five states, namely 

Tasmania, South Australia, Queensland, Victoria, and New South Wales (Clements et al. 

2016). Electricity in these five states is supplied from generators (sellers), which are managed 

by Energex and the Australian Energy Market Operator (AEMO) whereby they organize trade 

between customers and sellers. In particular, the AEMO adopts semi-parametric-type additive 

models for forecasting D in these respective regions. However, the emergence of technological 

advancement in the energy sector, infrastructure development, climate change, and economic 

interventions have downplayed the forecasting capability of the existing model to forecast D 

accurately. Therefore, there is a need for the development of robust models for accurate D 

projection to meet the growing consumer demands in real-time whilst optimizing operation and 

maximizing profitability. 

This Master of Science Research Thesis is centred on developing models for short-term 

electricity demand forecasting, which is an essential service in infrastructural and economic 

development for the prosperity of any nation. 

The timely and adequate provision of electricity supply by any utility company is vital for 

economic growth and industrialization in any county (Morimoto & Hope 2004; Altinay & 

Karagol 2005; Nwankwo & Njogo 2013). Lacking such supply can deter economic 

development, hence hindering the prosperity of any nation (Stern et al. 2019). This study is 

focused on Queensland (the second largest state in Australia) where demand for electricity 

consumption has experienced significant growth in the recent past (2014 - 2015) consuming 

24.4% of the national consumption (Ball et al. 2016). Despite Queensland having high demand 

for electricity consumption, the literature shows that it lacks accurate D-forecasting models. A 

few studies have been conducted recently to address this issue. This includes a study by Wu et 

al. (2019) which amalgamated ensemble empirical mode decomposition, ELM, and a 

grasshopper optimization algorithm for daily D-forecasting for five states in Australia, 
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particularly New South Wales, QLD, South Australia, Victoria, and Tasmania which exhibited 

the highest efficiency by means of generating the lowest error terms against four comparative 

models of ensemble empirical mode decomposition. Also, another study by Benaouda et al. 

(2006) applied a wavelet-based non-linear multiscale decomposition model for daily D 

forecasting in New South Wales which performed much better than traditional forecasting 

methods such as multilayer perceptron and recurrent neural network. However, the limitation 

of these studies is their inability to predict abnormal events such as extreme weather and energy 

fluctuations. 

Therefore, this study tests a novel hybrid copula-based model (extreme learning machine 

integrated with Markov Chain Monte Carlo, ELM-MCMC) for improved accuracy in D-

forecasting and compares its performance against the standalone ELM model and MCMC 

copula-based model. This study is the first to apply this advanced hybrid copula-based model 

as a novel technique which has never been explored and used anywhere for D-forecasting. Its 

test results present accurate D-forecasting solutions which energy utility companies such as 

AEMO and Energex could adopt to make intelligent business decisions. This would assist in 

improving forecasting efficiency by delivering accurate and timely response to meet consumer 

demand through process optimization whilst maximizing organizational profitability. 

1.6 Research Problem 

Precise and real-time information on D is vital for electricity operators in a competitive 

electricity market (e.g., Australia) as it can present critical information for energy policy 

formulation and reforms, and assist in making informed decisions on capacity planning to 

optimize operations and minimize the cost. This is achieved by the development and use of 

intelligent D-forecasting models. The accuracy level of D is of utmost importance for 

electricity operators as D is sensitive to slight errors and can account for millions of dollars of 

financial losses if there is a one percent increase in error value (Haida & Muto 1994; Fan, S. & 

Chen, L. 2006). It can also cause operational and financial instability in the energy sector and 

even jeopardise the cohesiveness of electricity markets (Erdogdu 2007). Thus, there is an 

apparent need for the NEM to have reliable and intelligent predictive models for precise D- 

forecasting to maintain a vibrant and competitive electricity markets as well as contributing to 

enabling the economic prosperity of the nation in terms of the provision of efficient electricity 

systems. 
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Despite QLD being the second largest state in Australia, research into D-forecasting has been 

lacking.  A few studies (Al-Musaylh et al. 2018a, 2019; Wu et al. 2019) have been conducted 

recently in QLD that have addressed the forecasting uncertainties associated with projecting 

D. These studies employed MARS, SVR, ARIMA, WT, B-ANN models that displayed 

accurate results. However, as stated by Nti et al. (2020), further research interventions are 

required for D-forecasting as it is a complex task that is influenced by multiple predictors such 

as GDP, demographic, temperature, and technological variables (Nasr et al. 2002; Mirasgedis 

et al. 2006; Zareipour et al. 2006a; Odhiambo 2009; Suganthi & Samuel 2012; Hu et al. 2013). 

Therefore, it demands comprehensive research that entails all factors to develop and adopt a 

robust predictive model for D-forecasting in QLD. 

1.7 Research Questions  

This Master of Science Research (MSCR) thesis entirely based on addressing the three 

research questions: 

1) Can a hybrid predictive model based on Extreme Learning Machine and Markov Chain 

Monte Carlo (ELM-MCMC) approaches help improve predictive performance in 

forecasting short-term (i.e., 6-hours, 12-hours, and daily) electricity demand for the 

State of Queensland? 

 

2) What is the most appropriate, advanced copula-based statistical model that can provide 

probabilistic forecasting of short-term electricity demand for multiple timescales (i.e., 

30-minutes, 1-hour, and daily) for the State of Queensland? 

 

 

3) What are the differences between global (i.e., Bayesian inference) and local (maximum 

likelihood) methods for estimating copula parameters for research question one when 

used to develop electricity demand forecasting models?   

The research questions (1 - 3) were addressed by employing both electricity demand and price 

datasets for Queensland for the period 2017 – 2019.  
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1.8 Research Aim and Objectives 

The primary objective of this study is to develop robust predictive models to improve the short-

term (6-hours, 12-hours, and daily) D-forecast for the QLD region using historical data of D 

and to compare their performance against existing models for improvements. The three 

objectives of this project are as follows: 

1. To develop hybrid ELM-MCMC based statistical bivariate copula models using the 

statistically significant lag, which is commonly the first lag (t-1) of historical demand 

as input for short-term forecasting of D in QLD.  

 

2. To advance a multivariate copula approach for probabilistic forecasting of short-term 

D in QLD by applying the antecedent significant lags (t-1) of the average electricity 

price (PR) as a covariate predictor at multiple forecasting horizons (30-minutes, 1-hour, 

and daily).  

 

3. To evaluate the differences between global (Bayesian inference) and local (maximum 

likelihood) methods for estimating copula parameters. 

To fulfill these objectives, historical D data for QLD are used in this study to develop and use 

the novel hybrid ELM-MCMC model for D forecasting in QLD, the second largest state in 

Australia where there is growing demand for electricity consumption. The hybrid ELM-

MCMC model incorporates two or more algorithms utilizing the merits of each model to solve 

challenges, rather than a single learning model. It is generally accurate since data features are 

pre-processed and revealed more clearly for forecasting. Also, this study separately investigates 

and evaluates the conditional bivariate copula model using PR as a covariate predictor to 

improve the short-term forecasting accuracy of D at various timescales (6-hours, 12-hours, and 

daily). It is evident from existing literature that the proposed method has not previously been 

exploited for probabilistic D-forecasting. Consequently, this forecasting technique is tested and 

evaluated as a novel data intelligent model to reduce forecasting inaccuracies experienced by 

the NEM. 
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These objectives are focused on answering the research questions and addressing the research 

gaps in forecasting inaccuracies for D in QLD, thereby providing better decision-making tool 

in terms of modelling energy demand and pricing.  

1.9 Organization of Thesis 

This Master’s thesis has been written and compiled with the following chapters. 

Chapter 1 provides an introduction to the study, with background information pertaining to 

the importance of D-forecasting globally as well as in QLD, Australia. It also defines the types 

of forecasting models used for D-forecasting. 

Chapter 2 presents the literature review, detailing existing studies of D- forecasting in QLD 

and their limitations and covers the various forecasting models that have been applied for D-

forecasting with their corresponding results. It also defines the research problem associated 

with D-forecasting in QLD and provides a novel forecasting technique as a new approach to 

addressing D-forecasting issues in QLD  

Chapter 3 provides the theoretical framework of the different models used in this study. It 

includes the mathematical equations and theorems that were applied to derive the respective 

forecasting models such as the Artificial Neural Network (ANN), Extreme Learning Machine 

(ELM), and Markov Chain Monte Carlo (MCMC) models in conjunction with the application 

of copula-based models. 

Chapter 4 outlines the novel hybrid ELM-MCMC copula-based model for forecasting D. It 

also defines the data source, the study site, and the methodology that was applied to develop 

and test the ELM- MCMC copula-based model. The results for various timescales (6-hours, 

12-hours, and daily) for this model are also displayed in this chapter. 

Chapter 5 discusses the methods that were used to develop the conditional bivariate copula 

models to make a probabilistic forecast of D. It also displays the results for these models across 

various timescales (30-minutes, 1-hour, and daily). 
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Chapter 6 provides the conclusion of the entire research thesis based on the research findings 

and points out the research limitations and opportunities for future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Importance of accurate predictive models for D-forecasting in QLD 

Supplying a specific electricity load to meet customers’ need in a specified timeframe is 

paramount. Reliable forecast models present a vital decision support tools for utility operators 

to plan and manage resource requirements for smooth and sustainable energy systems to serve 

consumers on time and when required. Without such models, the electricity supply will be 

under - or over- supplied, which destabilizes the daily and business activities undertaken by 

electricity consumers and incurs excessive costs for the utility operator, respectively. As 

inferred by Haida and Muto (1994), and Fan, S. and Chen, L. (2006), small percentage 

increases in projection can cause million-dollar losses for utility companies. Therefore, it is 

very important for utility operators to have a reliable model to accurately predict D to 

appropriate meet consumer demand, as well as avoiding excessive production costs by not 

producing excess quantities. 

Prudent and accurate forecasting is fundamental for efficient planning in any organization. In 

the case of the electricity industry, developing a reliable forecast model is crucial for accurately 

projecting D to appropriately meet future demand. Since a loss of electricity is inevitable in 

any power utility system, D-forecast is necessary for maintaining the required supply of load 

at any given time. Since it is impossible to achieve an accurate forecast model as the future is 

unforeseeable, it is always advisable to test model performance using various predictor 

variables as well as having sufficient length of data for optimized performance.  

 

2.2 Factors affecting electricity demand in Australia 
 

The factors influencing D are volatile and complex in nature, comprising non-stationary and 

non-linear variables such as local GDP, meteorological features, social and demographic 

influences (Nasr et al. 2002; Mirasgedis et al. 2006; Zareipour et al. 2006a; Odhiambo 2009; 

Suganthi & Samuel 2012; Hu et al. 2013). Because of this, D is also volatile at any timescale, 

which subsequently tends to be challenging for utility providers to optimize management and 

operational inputs to maximize the efficiency of the electricity system.   
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D-forecasting is a multivariate task that is influenced by various interconnected factors such as 

changes wind and solar radiation patterns causing instability and uncertainty in energy 

provision for both the wind and solar industries. Also, local climatic features (air temperature, 

and humidity) affect D requirements as residents use more electrical energy by means of 

heaters and air conditioning units to maintain their body temperatures during winter and 

summer seasons, when local temperatures are much more extreme. D is also impacted by the 

local population density in any region as more people use more electrical energy to fulfill their 

daily and economic needs. Moreover, D is also dependent on GDP as any region which is 

exposed to industrialization, requires large quantities of energy to meet its economic and 

technological needs to survive and prosper.  Some seasonal effects which seldom affect D are 

festive and religious events, public holidays, and sporting events (Al-Alawi & Islam 1996).  

Energex and AEMO are the leading managers of NEM the in Australia. They organize the 

market and trade between customers and sellers (generators). Since D is affected by various 

interconnected predictors, the AEMO may not be able to predict D sufficiently for QLD during 

the imminent rise in D expected by the Australian Electricity Market from 2020 to 2030 

(Brinsmead et al. 2014). This includes a likely increase in energy demand by the solar and wind 

energy sectors during the transition from conventional to renewable energy, as well as 

fluctuation in air temperature during various climatic seasons (e.g. winter and summer), 

compelling users to consume more energy to maintain their normal body temperature (Al-

Musaylh et al. 2019). It also entails the prospective transformation and participation of 

electricity trading in the local market and the growing demand for intelligent systems for 

precise and real-time forecasting in competitive electricity markets. 

The AEMO currently uses semi-parametric-type additive models (Hyndman & Fan 2010) that 

incorporate various predictors. These predictors are mainly the gross domestic product (GDP), 

air temperature, population census, and seasonal anomaly which are processed and analysed 

statistically to forecast the load requirements for all Australian states (Ball et al. 2016). 

However, since the semi-parametric-type additive model is outdated and holds high uncertainty 

due to the impacts of modernization and climate change, there is a need to explore new 

forecasting techniques to accurately forecast D to meet the growing load demand, which this 

study addresses. 
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It is crucial that Australian utility providers use precise and real-time information on D in a 

competitive electricity market as it can present valuable information for energy policy 

formulation and reforms, and can further assist in making informed decisions on capacity 

planning for process optimization and subsequent cost reduction. Such information will guide 

and maintain cohesive and sustainable policy planning and the associated energy markets 

(Erdogdu 2007). Hence, there is an apparent need for the NEM to adopt a robust predictive 

model with which intelligent business decisions can be made to address forecasting 

inaccuracies appropriately whilst meeting customers’ demand, maximizing profit and being 

competitive in the electricity market.  

2.3 Rationale for machine learning techniques in D-forecasting 

Machine learning (ML) is a sub-divisional field of artificial intelligence (AI). It uses data to 

feed machines for self-training and learning to uncover hidden trends and relationships and 

discover new insights to assist in making informed decisions for the future in various 

applications including D-forecasting. The ML technique is perceived as a powerful tool for 

data analytics that mimics human intelligence to manipulate and analyse large data to compute 

fast, consistent, and accurate estimations. However, optimizing management and operational 

inputs to maximize the efficiency of the electricity system is difficult as D is volatile at any 

time scale and is influenced by complex networks of non-stationary and non-linear variables 

such as local GDP, meteorological features, demographic, and social influences (Nasr et al. 

2002; Mirasgedis et al. 2006; Zareipour et al. 2006a; Odhiambo 2009; Suganthi & Samuel 

2012; Hu et al. 2013). Therefore, it is difficult to simulate D precisely using conventional 

computing methods given the complexity of historical explanatory variables which are mostly 

big data. However, ML perfectly address this issue as they can utilize complex data logically 

and compute fast, accurate, and consistent solutions (Wang & Ramsay 1998). Because of this, 

they have been increasingly used in the contemporary world in various engineering 

applications as reported in Florens et al. (2007) and Xydas et al. (2016). Therefore, ML 

techniques are required to accurately address forecasting uncertainties experienced by the 

National Electricity Market in developing robust forecasting models of high precision to assist 

in making intelligent business decisions. 
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2.4 Standalone machine learning techniques used for D-forecasting 
 

Machine learning techniques have been widely applied for predictive forecasting in various 

engineering applications (Salcedo-Sanz et al. 2014) as they hold promising data analytical tools 

that can solve time-series data (e.g. D) using numerous predictors. Some common standalone 

ML models that have been extensively used by the NEM for D-forecasting include the 

Multivariate Adaptive Regressive Spline (MARS) (Sigauke & Chikobvu 2010), knowledge-

based expert systems (Singh et al. 2013), genetic algorithms (Ali et al. 2018b), Support Vector 

Regression (SVR), Artificial Neural Network (ANN) (Sozen & Akcayol 2004), Autoregressive 

Integrated Moving Average (ARIMA) (Contreras et al. 2003), Wavelength Transformation 

(WT), Bootstrapping Procedure (B) and Bayesian Model Averaging (BMA). 

The SVR model can solve regression problems with many predictor variables. It is highly 

automated which automatically tunes the model parameters to achieve the optimal model 

combination. It operates by combining uniform and systematic networks by way of feature 

extractions (Smola & Schölkopf 1998; Yu et al. 2006). Its programming functions are operated 

on the conceptual framework of structural risk minimization and are intended to minimize 

overfitting data by limiting the imminent error during training.  This technique has been 

commonly practised for various forecasting applications to provide practical solutions for the 

real-world problems by delivering accurate forecasting data to assist planners and energy 

experts to make informed decisions to minimize operation cost, optimize operation, and 

maximize profitability.  

In Istanbul (Turkey), the SVR model was applied in conjunction with the Radial Basis Kernel 

Function (RBF) to predict daily D, obtaining a mean absolute percentage error (MAPE) of 

3.67% between the observed and predicted values (Türkay & Demren 2011). Also, the SVR 

model was used for forecasting D in the eastern part of Saudi Arabia which generated accurate 

results when benchmarked against the Autoregressive (AR) model. Moreover, Sivapragasam 

and Liong (2005) employed various SVR models for regional projection of stream flow in 

Taiwan and achieved accurate results compared to the ANN model. In a recent study, Al-

Musaylh et al. (2018a), used significant lagged D to feed the SVR model and attained precise 

D-forecasts for daily horizons by achieving a highest Willmott’s Index of Agreement (WI) of 

0.980 and lowest MAE of 162.363 MW against comparative MARS and ARIMA models.  

MARS is a non-parametric regression technique that is flexible in processing various data and 

can provide fast results. It operates by fitting relationships of various linear regression models 
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involving different predictors. However, its application in D-forecasting was limited as it was 

intentionally developed for piecewise function (Sharda et al. 2008; Deo et al. 2016). A study 

by Sigauke and Chikobvu (2010) used a MARS model to forecast D in South Africa and 

generated smaller RMSE when benchmarked against piecewise regression models. Also, Al-

Musaylh et al. (2018a) reported that their MARS model forecasted accurate D for 30-minutes 

and 1-hour timescales by exhibiting the highest WI of 0.993 and 0.990 and lowest MAE of 

45.363 and 86.502 MW, respectively.  

The ARIMA model has also delivered satisfactory results for PR-forecasting (Contreras et al. 

2003). Another study on PR-forecasting was conducted by Zareipour et al. (2006b) in Turkey 

by amalgamating the ARIMA model with a cointegration technique. Based on the comparative 

analysis in this study, the projection was more than 40% when benchmarked against the target 

values of the ARIMA model. Also, a study by Al-Musaylh et al. (2018a) indicated that the 

ARIMA model performs well given the shorter training dataset as it minimizes the degree of 

fluctuation thereby inhibiting cumulative errors compared to a larger dataset. In this study, 

SVR and MARS models were also tested using significant lagged demand as the predictor 

variable for forecasting D in the state of Queensland at different timescales. 

ANN is a type of AI technique that the resembles human brain and can solve complicated 

problems involving various variables of non-linear relationships in time series. It has been 

highly adopted in forecasting short-term D-forecasting involving complex data due to its self-

learning ability. This includes studies involving an adaptive ANN model to determine D- 

requirements for residential buildings (Yang et al. 2005a, 2005b) to adapt to periodic changes 

such as the emergence of new predictors data for D such as climatic and operational data with 

changing patterns. In this study, the model parameters were automatically updated to suit the 

features of the incoming data for real-time D-forecasting. Other studies involving ANN for 

short-term D-forecasting have also been undertaken in many locations using various 

methodologies (Papalexopoulos et al. 1994; Khotanzad et al. 1997; Chen et al. 2001; Taylor & 

Buizza 2002; Hsu & Chen 2003; Pai & Hong 2005; Sheikh & Unde 2012). 
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2.5 Studies on D-forecasting using climate-based predictors  
 

According to the literature review, a few research studies have been conducted on D-

forecasting using climatic variables as predictors. This includes a study by Mirasgedis et al. 

(2006) which employed solar radiation, wind speed, humidity, and air temperature to forecast 

D for a site in Greece. This study reported that air temperature and humidity are two 

fundamental parameters that influence D-forecasting. In another study conducted in South 

Africa by Lebotsa et al. (2018), they used air temperature, calendar anomaly, and time lagged 

demand to model D using a partial addictive quantile regression model and attained improved 

results. Similarly, studies in Australia (Deo & Şahin 2015; Deo & Sahin 2017) on solar 

radiation and precipitation also showed that climatic variables directly influence the solar 

radiation modelling. In a recent study by Al-Musaylh et al. (2019), they used climate-based 

predictors extracted from SILO and ECMWF reanalysis parameters to develop and test a hybrid 

Bootstrapping-ANN model and obtained accurate D-forecasting results for eight locations in 

southeast Queensland. Therefore, to build robust forecast models for both solar radiation and 

D-forecasting, climate variables are essential predictors. This would enable the delivery of 

accurate D-forecasting data which is crucial for energy experts, power planners, and utility 

operators to make informed decisions in addressing practical D-forecasting issues.  

 

2.6 Studies on D-forecasting using hybrid machine learning models 
 

The hybrid method combines two or more forecasting techniques to solve complex problems, 

of a non-linear and stochastically volatile nature, in a timely manner to significantly improve 

forecasting errors (Singh et al. 2013). Such models take advantage of the combined merits of 

both models under consideration, thereby further strengthening the predictive performance of 

D-forecasting at multiple timescales. For instance, Khan et al. (2019) applied empirical mode 

decomposition (EMD) to remove noise and randomness in D data (as noise caused inaccurate 

forecasting) before feeding the ELM model (EMD-ELM) and determined the daily, weekly, 

and monthly D of a building. The simulated results for this study were much better than those 

of the standalone Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), 

and ELM. Similarly, Marwala and Twala (2017) used an ensemble of Optimally-Pruned 

integrated with Basic Extreme Learning Machines (OP-ELM) to forecast D against other 
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traditional methods (e.g. ANN and SVR). The results outperformed both the ANN and SVR 

models. 

Furthermore, a study by Clements et al. (2016) used 30 minutes data from NEM and forecasted 

12-hourly D by the integrating a multiple equation time series method (recursive system) to 

seize the intra-day D relationship. This was reported to have outperformed the three standard 

benchmarking models utilized by AEMO by 33% against MAPE criteria. Additionally, Al-

Musaylh et al. (2019) developed and tested a hybrid ANN model to forecast D for eight station 

in south east Queensland using the statistically lagged cross-correlation of D with climate-

based predictors. In this study, they first used the bootstrapping (B) method to minimize 

uncertainties by means of rigorous resampling with substitution, prior to feeding the ANN 

model (i.e. B-ANN) and attained accurate D-forecasts for multiple timescales. Moreover, in 

another study by Al-Musaylh et al. (2018b), they first applied an improved version of the 

empirical model decomposition with adaptive noise (ICEEMDAN) tool to decompose non-

stationary time-series data to address frequency components associated with D data prior to 

model development. This followed tuning of the weights and biases from D features using 

particle swarm optimization (PSO) that was approximated at the global optimum before 

feeding the SVR model for the final D-forecast. They developed a hybrid ICEEMDAN-PSO-

SVR model which projected accurate D results in real-time for practical applications in the 

energy sector. 

The above literature affirms that model hybridization with adequate predictor variables 

improves performance in delivering accurate forecasting results. In recent years, research has 

been focused on advancing energy markets, optimizing generation and distribution operations, 

minimizing expenditure, and maximizing profitability (Marzband et al. 2015; Marzband et al. 

2017). Uncertainty about D requirements impacts the energy provision by its utility systems. 

Therefore, it is vital for utility operators and forecasters to have robust forecasting models to 

plan adequately for D requirements of various consumers to avoid destabilizing energy systems 

as well as incurring extra costs in operational expenditure. This can be achieved by integrating 

appropriate ML techniques with a wide range of D predictor variables to develop hybrid models 

for reliable forecasting. 
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2.7 Copula-statistical models in forecasting applications 
 

Copulas are powerful mathematical equations that can link numerous time-independent 

variables regardless of their marginal distribution (Joe 1997; Nelsen 2003; Nguyen-Huy et al. 

2017; Nguyen-Huy et al. 2018). They adopt a global optimization method to discover accurate 

copula parameters based on the highest marginal and joint distribution for probabilistic 

forecasting. In statistics and probability theory, a copula is a multivariate probability 

distribution for which the marginal distribution of each variable, coming from any distribution 

function is uniform.  Multivariate data can be modelled through more advanced techniques like 

copulas, which are used to conduct multivariate analyses. Copula statistical models are very 

useful in probability statistics in studying scale free measures of dependence and in 

constructing families of bivariate and multivariate distributions, which have non-linear 

dependence.  In addition, copulas can measure dependence for heavy-tail distributions and can 

allow the dependence structure to be modelled independently from the marginal selection 

(Nguyen-Huy et al. 2017). Copulas have been extensively used for predicting the dependence 

structure of water and climate-based variables (Salvadori 2003; Salvadori & De Michele 2004; 

De Michele et al. 2005). Also, the multivariate copulas have been applied in various studies for 

drought monitoring (Hao & AghaKouchak 2013), analysis of flood hazard (Jongman et al. 

2014), rainfall prediction (Li et al. 2013; Jongman et al. 2014; Vernieuwe et al. 2015), and 

agricultural science (Fousekis & Grigoriadis 2017), among others.  

Mainly, a copula is a joint distribution of random variables 𝑥ଵ, 𝑥ଶ  … . . 𝑥௣ each of which is 

marginally uniformly distributed as 𝑥(଴,ଵ) as introduced by Sklar (1959). Ranked Spearman and 

Kendall tau correlation coefficients are utilized in copula statistical models to model non-linear 

and joint dependence of bivariate and multivariate datasets for probabilistic forecasting.  

Basically, copulas are advanced data analytical tools, which have recently emerged and are 

perceived by researchers as useful tools for accurate crop and weather forecasting. They hold 

promising results, as reported in studies by Ali et al. (2018b); (Ali et al. 2018a) and Ali et al. 

(2020). However, copulas have not been used for D-forecasting anywhere. 
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2.8 Hybrid copula-based models in forecasting applications 

The hybrid copula-based models commonly integrate ML models with a copula-statistical 

model to achieve accurate forecasting for various applications. The MCMC copula-based 

model is generally the feature selection method, which creates distributions for inputs against 

target copula parameters, in which they are ranked in the highest order of copula model 

performance. For example, Ali et al. (2018a) developed and used a hybridized online sequential 

ELM-MCMC based model which demonstrated superior performance in forecasting rainfall 

for various locations in Pakistan. In another study by the same authors (Ali et al. 2018b) on 

cotton yield prediction in Pakistan, the performance of the GP-MCMC based copula model 

was demonstrated to be superior to standalone MCMC and GP models. These studies confirm 

that the integration of various models improves predictive accuracy leading to better estimation 

than standalone models. The above studies involved hybrid copula-based models for 

forecasting rainfall and cotton yield production. However, it is evident from the literature that 

a study of D-forecasting in Queensland, or indeed anywhere in the world, using a hybrid 

copula-based model is yet to be undertaken. Therefore, the hybrid copula-based model and 

conditional bivariate copula models are the novel techniques targeted to improve accuracy in 

D-forecasting. 
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CHAPTER 3: MATERIALS AND METHOD 

3.1     Study Area 

This study is focused on the entire Queensland region (20.92º S, 142.70º E) (refer to Figure 

1). It is the second largest state in Australia with a total area of 1,730,648 km² and a population 

of 5.13 million (ABS 2020). It has experienced significant growth in demand for electricity in 

the recent past (2014 - 2015), consuming 24.4% of the national consumption (Ball et al. 2016). 

However, studies for D-forecasting have been lacking and this study addresses this need. 

 

Figure 1: Study map of Queensland region 
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3.2  Data 

3.2.1  Electricity demand data and pattern 

 

The D dataset for the entire state of Queensland that was used in this thesis was downloaded 

from AEMO’s website  (AEMO 2020), covering 01-January-2017 to 31-December-2019. This 

dataset was partitioned with data from 01-January 2017 to 31-December 2018 used as training 

sets (see Table 1), while those ranging from 01-January 2019 to 31-December 2019 were used 

used as testing sets (see Table 2). This dataset is of high temporal resolution, featuring a 30 - 

minutes timescale, and has been recently used in a study conducted by Al-Musaylh et al. 

(2018a) using the ML method. However, the data not been used in copula models as pursued 

in the current study. The selected data was cleaned and sorted from extraneous features, 

including missing values, using MATLAB and R software. This process was followed by 

performing arithmetic averaging and summing was then performed to achieve average price 

and total electricity demand respectively for each timescale (e.g. 6-hours, 12-hours, daily), and 

descriptive statistics for the dataset were computed as displayed in Tables 1 and 2 for the 

training and testing phases respectively. The relationship between D and PR was also analysed 

by means of time-series plots as seen in Figure 2. Finally, the linear relationship between the 

predictor (price) and predictand (demand) was determined using scatter plots which then 

generated the value of the coefficient of determination (r²) for the assessment of linear 

dependence. Generally, values of r² of 0.5 and above imply a strong correlation between the 

target and objective variables. This means only the price variable can be used to predict 

demand. In this study, r² was less than 0.5 so time-lagged demand was used to forecast future 

D. The time-lagged demand was computed from the partial autocorrelation function (PACF) 

in the MATLAB software. 
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Table 1: Descriptive statistics of aggregated electricity demand (megawatts, MW) for 

Queensland State for training set (2017 - 2018). 

Forecast 
Period 

Data Period Minimum 
(MW) 

Maximum 
(MW) 

Mean 
(MW) 

Standard 
Deviation 
(MW) 

Skewness Kurtosis 

6 hours 01-January 2017 

to 31-December 

2018 

58495.01 

 

110573.9 

 

74820.66 

 

9451.04 

 

0.50 -0.09 

 

12 hours 01-January 2017 

to 31-December 

2018 

117487 

 

214327.6 

 

149641.3 

 

16806.01 

 

0.88 

 

0.74 

Daily 01-January 2017 

to 31-December 

2018 

253867.6 

 

383711 

 

299282.7 

 

24008.75 

 

0.84 

 

0.46 

 

 

Table 2: Descriptive statistics of aggregated electricity demand (megawatts, MW) for 

Queensland State for testing set (2019). 

Forecast 
Period 

Data Period Minimum 
(MW) 

Maximum 
(MW) 

Mean 
(MW) 

Standard 
Deviation 
(MW) 

Skewness Kurtosis 

6 hours 01-January 2019 

to 31-December 

2019 

56339.28 

 

109281.3 

 

74566.22 

 

9620.33 

 

0.58 

 

-0.20  

 

12 hours 01-January 2019 

to 31-December 

2019 

117762.6 

 

216812 

 

149132.4 

 

17400.41 

 

0.88 0.59 

Daily 01-January 2019 

to 31-December 

2019 

252230.4 

 

381046.8 

 

298264.9  

 

24996.72 

 

0.65 

 

-0.06 

 

  



22 
 

Figure 2 portrays the time series plot of the aggregated D data for the entire Queensland 

region. The stochastic features that are associated with the D dataset are attributed to 

the behaviour of electricity consumers at any one time. The D was very high in the 

beginning of 2017 that had caused spikes in corresponding PR. However, in the 

progressive months, the PR was not responsive to changes in D that was likely caused 

by consumer preferences, less population, and low-income rates for consumers. It is 

also shown that the relationship between D and PR for 2018 and 2019 has progressively 

improved. These suggested that it would not be feasible to train models using 2017 data 

and test them using 2018 and 2019 data because 2017 had some very peculiar features 

that will not be captured in test set (2019). This is further supported by an increase in 

standard deviation for each timescale in each year and the dissimilar values of skewness 

and kurtosis (i.e., 0.65 and -0.06 respectively) for daily timescale as opposed to the 6 

and 12-hours timescale in Tables 1 and 2.  

 

The 12-hours and daily timescales have positive kurtosis of 0.74 and 0.46 respectively 

for the training set. Similarly, the testing set have the kurtosis of 0.59 for 12-hours 

timescale. These positive kurtoses indicated that distribution of D data have tail 

dependence as well as outliers. All the timescales in both training and testing sets have 

positive skewness. This implies that most data are congregated at the left tail of the 

distribution while the right tail have longer distribution, meaning the mode is less than 

both mean and median.  
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Figure 2: Time-series plot of electricity demand and price for daily intervals for 2017, 

2018, and 2019 for the whole study period of 01-January-2017 to 31-December-

2019. 

Figure 3 shows that every yearly data (2017 - 2019) has different correlation between D and 

PR.  Therefore, it is not feasible to treat or develop models to behave the same way for different 

years. Of all the years, 2019 had the best correlation between D and PR with the corresponding 

coefficient of determination of 0.321. 
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Figure 3: Relationship between electricity demand and price for 30-minutes intervals for 

2017, 2018, and 2019  

 

3.2.2  Electricity price data  
 

The price of electricity (PR) is charged in Australian dollars for per megawatt (MW) of energy 

consumed per hour and is expressed as AU$/MWh. It was added as a covariate predictor to 

model D in objective two of this study. In certain dispatch events, negative PR value was 

experienced. This happens when the generator stays online, and customers purchase energy at 

a negative price. Also, when an inter-connector is constrained, energy may not freely flow from 

one region to another, implying that one’s region low-priced generation may not freely flow 

into another region. This may also push the prices into negatives, depending on the market 

conditions (AEMO 2020). In this thesis, any PR value exceeding $AU500/MW were treated 

as outliers and replaced with the average value that was computed from the other two years on 

the same dispatch date.  
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3.3  Theoretical Framework 
 

3.3.1 Extreme Learning Machine (ELM) model 
 

Extreme learning machine (ELM) is an improved version of ANN and is an algorithm for the 

single-hidden layer feed-forward neural network which was developed by Huang et al. (2006). 

Unlike the ANN model, ELM randomly generates input weights, destabilizing the network and 

creating an overfitting phenomenon, thereby detecting and analysing data features. Therefore, 

the training or tuning speed of ELM is computationally fast as it does not need iterative 

modifications of network parameters during training. It also has greater generalization 

capability and sustainability for non-linear activation and kernel functions and is convenient to 

use for forecasting applications (Zhang et al. 2013; Deo & Sahin 2015; Deo et al. 2017). Hence, 

ELM is highly preferred and can be easily updated to track real-time trends in electricity 

demand while continuously minimizing training error. 

In summary, the ELM model operates in three steps where firstly the hidden layer neurons, 

weights and biases are randomly generated and in this process the system detects and analyses 

the data features. The inputs are then passed through the hidden layer where it further generates 

hidden layer features to an output matrix. Finally, the output weights are estimated by inverting 

the hidden layer output matrix thereby computing its product against the target, resulting in 

solving the set of linear equations. 

The model incorporates several single ELMs.  They arbitrarily select a number of hidden nodes 

within a pre-determined series as well as the input parameters. This results in the generalization 

of the natural stochastic volatility by reducing large variance and bias, which enhances the 

ensemble model to generate accurate forecasting results and defeat the volatility issues of single 

ELMs.  

For any training data set with N samples, the output function of the Single Layer Feed-forward 

Neural Network (SLFN) with y hidden nodes and activation function 𝜇 can be expressed as 

follows (Zhang et al. 2013): 



26 
 

fy (Xk) = ෍ φk

y

i=1

 μ (wk xl + ck) = tj , j = 1, 2,…..N                             (1) 

Equation (1) can be simplified as follows (Huang et al. 2006) 

Hγ=T                                                                                                       (2) 

For a training data set, given the activation function and hidden node number, the ELM learning 

can be summarized into three steps: 

Step 1. Randomly generate the input weights 𝑤௞ and 𝑥௟ , 1 ≤ 𝑖 ≤N;  

Step 2. Calculate the hidden layer output matrix H;  

Step 3. Calculate output weights matrix  𝛾 =  Ηற 𝑇 ; 

where Ηற is the Moore–Penrose (MP) generalized inverse of H. 

There are several methods to calculate the MP generalized inverse H†. It is suggested that 

singular value decomposition is the most appropriate method because of its universality (Huang 

et al. 2006). In marked contrast to traditional ANN learning algorithms, ELM does not require 

iterative adjustments of network parameters during the training; therefore, its training speed 

can be thousands of times faster. In the meantime, as proved in Huang et al. (2006), it can not 

only reach the minimized training error ∥ 𝐻𝛾 −  𝑇 ∥ but also the smallest norm of output 

weights ∥ 𝛾 ∥. According to ANN theory (HariKumar et al. 2012), for feed-forward neural 

networks reaching smaller training errors, the smaller the norm of weights are, the better 

generalization performance the networks tend to have. Another important benefit of ELM is its 

efficient tuning mechanism given an activation function, where only the hidden neuron nodes 

number needs to be tuned, which can be efficient.  
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3.3.2 Copula Theory 
 

This study hybridized the ELM algorithm with copulas. Copulas are rigorous analytical tools 

used to investigate the joint dependence structure of various time-independent variables 

(Nelsen 2003). It was first explored as Sklar theorem (Sklar 1959) in a mathematical and 

statistical framework.   

Copula families differ, with each having different model parameters ranging from one to three. 

The model parameters are indicative of the intensity of correlation of the joint dependence 

between two or more variables (Balakrishna & Lai 2009).  Such correlations are either 

approximated by way of a theoretical relationship such as Kendall Tau and Linear Spearman 

coefficients, or suggested from the empirical multivariate probability distribution of the data. 

Of all the parameter estimation methods, local optimization algorithms which utilizes the 

Newton-Raphson method (Salvadori & De Michele 2004; Bárdossy 2006; Gräler et al. 2013; 

Ribatet & Sedki 2013) are the most widely used. There are strengths and weaknesses of local 

optimization methods. These respectively include the effective search algorithms, as well as 

their vulnerability to being confined in local optima (Duan et al. 1992). On the other hand, the 

global optimization parameters based on the Bayesian framework have been extensively used 

in the recent ages for exploring the best fitted copula parameters (Pitt et al. 2006; Min & Czado 

2010; Smith et al. 2012; Parent et al. 2014; Kwon & Lall 2016).  

A copula function is basically a mathematical function that is defined from 𝐼ଶ(F , G) to 𝐼(H) 

such that [F(x) , G(y) , H(x,y)] is a point in 𝐼ଷ with 𝐼∈ [0,1] and X, Y are continuous random 

variables with distribution functions F(x) = P (X ≤ x) and G(y) = P(Y ≤ y), and H(x,y) = P(X 

≤ x , Y ≤ y) is a function that describes their joint distribution.  

In this study, we utilize 26 different types of copulas to improve the performance of the ELM-

MCMC copula-based model. The primary copulas can be written mathematically as follows: 

I. The Gaussian copula (Li et al. 2013), expressed as  

න න
1

2πඥ1 - ϕ²
 exp ൬

2ϕxy - x² - y²

2 (1 - ϕ²
൰

∅-1(b)

-∞

∅-1(a)

-∞
 dxdy, ϕ ϵ [-1,1]                                            (3) 
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II.   a t-copula (Li et al. 2013), formulated as: 

 ∫ ∫
r
ቀ൫ϕ2+2൯/2ቁ

r൫ϕ2/2൯πϕ2
ට1-ϕ2

tϕ2
-1(b)

-∞

tϕ2
-1(a)

-∞
 ൬1 +   

x2-2ϕ1xy+y2

ϕ2
൰

(ϕ2+ 2)/2

dxdy,ϕ1 ϵ[-1,1],ϕ2ϵ(0,∞)                   (4) 

 

III. a Clayton copula (Clayton 1978), written as: 

                  max(a-∅ + b-∅  - 1,0)-1/Ѳ
 𝜙ଵ 𝜖[−1,1], 𝜙ଶ𝜖[−1, ∞] \ 0                                         (5) 

 

IV. a Frank copula (Li et al. 2013), defined according to the following mathematical 

formulation: 

             - 
1

∅
 ln ቆ1 + 

(exp(-ϕa) - 1)(exp(-ϕb) - 1)

exp(-∅) - 1
ቇ , ∅ ϵ R \0                                                 (6) 

 

V. a Gumbel copula (Li et al. 2013), expressed as: 

 

𝑒𝑥𝑝൫−(((−𝑙𝑛(𝑎))ఏ (−𝑙𝑛(𝑏))ఏ)ଵ/ఏ൯, 𝜃𝜖 [1, ∞]                                                                          (7) 

 

VI. a Fischer-Hinzmann copula (Fischer & Hinzmann 2006), given as: 

 

ൣ ϕ1(min(a,b)))Ѳ2 +  1 −  Ѳ1(𝑎𝑏)Ѳ2൧
ଵ/Ѳ2

, Ѳ
1
 ϵ [0,1], Ѳ2 ϵ R                                             (8)                                                        

The remaining 20 different types of copulas used in this thesis have been discussed in previous 

studies (Sadegh et al. 2017). In all types of copula-based models an unknown process κ links 

observation Ῠ to parameters Ѳ* in the modelling inference analysis (Sadegh et al. 2017) and 

can be given through the following equation. 

 Ῠ = κ(Ѳ*) + ξ                                                                                                                          (9) 

Where ξ indicates a vector of measurement errors. The vector e = Ῠ −  𝑌 is called the error 

residual and e =[𝑒ଵ, 𝑒ଶ … , 𝑒௡] where n is the number of observations that include the effects of 
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model structural errors (Sadegh et al. 2017). Bayesian analysis was performed for model 

inference and uncertainty quantification purposes because Bayesian analysis quantifies 

uncertainty with a probability distribution (Sadegh et al. 2017). 

Bayes' law attributes all modelling uncertainties to the parameters and estimates the posterior 

distribution of model parameters by the following equations (Sadegh et al. 2017): 

P (Ѳ | Ῠ) = 
P(Ѳ)P (Ῠ | Ѳ)

P(Ῠ)
                                                            (10) 

where p(θ) and p (θ | Ῠ) defines prior and posterior distribution of parameters, respectively. 

Further, P (θ | Ῠ) ≈ L (Ѳ 𝐼 Ῠ) denotes the likelihood given as: 

L (Ѳ | Ῠ) = 
n

2
 ln 

∑ [Ῠi - Ῠi(Ѳ)]²n
i=1

n
                                                                                       (11) 

To solve equation (12) analytically and numerically, a Markov Chain Monte Carlo (MCMC) 

simulation technique was adopted to sample the posterior distribution. For more details, readers 

are referred to Sadegh et al. (2017). 

3.3.3  Markov Chain Monte Carlo (MCMC) copula-based models 
 

The MCMC simulation is performed using the Multivariate Copula Adaptive Toolbox 

(MvCAT) in MATLAB software. This toolbox is used to analyse the dependence structure of 

many predictor variables rigorously and comprehensively in solving real-world problems by 

offering various copula families with varying complexity. The MvCAT applies MCMC 

simulation within a Bayesian framework to estimate copula parameters and the underlying 

uncertainties by ranking the best choice of copula for the underlying data. It also undertakes 

dependence analysis using a stringent and extensive method. The area of interest in probability 

space is pursued using MCMC simulation whereby many chains are executed in parallel. The 

chains establish the relationship, matching the characteristics of the posterior area and 

approximating the global optimum. MvCAT comprises 26 copula families, which are often 

applied in both local optimization and MCMC methods. It automatically plots posterior 

parameter distributions of any selected copula(s) and plots their corresponding empirical 

probability isolines when MCMC is selected and executed. After the execution process, a 
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summary report is automatically generated based on the performance of the best choice of 

preferred copulas in terms of MaxL, AIC, and BIC. It also presents the 95% confidence interval, 

root mean square error (RMSE), and Nash Sutcliffe efficiency (NSE) for each of the selected 

copulas and ranks them in order of the best to the worst based on their respective performance 

in the probability space (Sadegh et al. 2017). 

 

3.4 Methods 

3.4.1  Development of ELM-MCMC copula-based models 

The available data of aggregated demand for two years (2017 - 2018) was used to train the 

ELM model and tested using 2019 D data. The analysis of time series plots of D data exhibited 

that D was not stationary with time, due to changing consumer demand.  Therefore, to forecast 

future D, the Partial Autocorrelation Function (PACF) was used to compute the statistically 

significant time-lagged D from historical D which were used as the only predictors. In most 

timescales, the first lag (t-1) had the highest lagged correlation, therefore, it was used as the 

only predictor in the development of the ELM model for all timescales despite some timescales 

(for example; 6-hours and 12-hours) having highest correlation lags other than one. This was 

done to ensure the achievement of uniform simulation whilst returning an accurate D-forecast. 

Figure 4 illustrates the sample Pearson correlation coefficient based on PACF of lagged D for 

the daily timescale which was employed for constructing the ELM-MCMC copula-based 

model.   
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Figure 4: Statistically significant lags of historical D at the 95% confidence interval as 

shown in blue lines derived from sample partial autocorrelation function 

(PACF) from the training sets used as predictors to forecast D at respective 

timescales (i.e., 6-hours, 12-hours, and daily). 

 

Table 3 depicts the data points with their corresponding predictor variables for the respective 

forecast horizons. The only model input for all timescales was the significant lagged D, and in 

this case, it is the first lag (t-1) for all timescales. From Figure 3, it is noteworthy that even 

though 6 and 12-hours had the fourth and second highest significant lags D respectively, only 

the first lagged D was used with the intent to achieve uniform forecasting for all timescales.   
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Table 3: Details of predictor variables used for constructing the bivariate ELM model 

for various forecasting horizons 

Forecast 
Period 

Period of data Number 
of datum 

points 

Number of 
input 

variables 

Training 
data (2017 

- 2018) 

Testing 
data 

(2019) 

Number 
of 

significant 
lags 

6 hours 01-January 2017 

to 31-December 

2019 

4380 4379 66.66% 33.34% 1 

12 hours 01-January 2017 

to 31-December 

2019 

2190 2189 66.66% 33.34% 1 

Daily 01-January 2017 

to 31-December 

2019 

1095 1094 66.66% 33.34% 1 

 

The model simulations for both ELM and MCMC were done using MATLAB software on a 

Pentium 4, 2.93 GHz CPU system. Table 4 shows the model architecture of the optimal ELM 

model where the “hit-and-run” approach was employed to determine the optimal activation 

function for each timescale. The three-year data was sorted into timescales of 6-hours, 12-

hours, and daily. Following Ali et al. (2018a), the dataset from each timescale was partitioned 

into subsets of  two years (2017 - 2018) for training and one year (2019) for testing. From the 

training set, 20% were allocated for model validation. Subsequently, the training dataset was 

used to train the model, then the testing dataset was used to test the model performance for 

each forecast horizon.  
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Table 4: The ELM modelling framework utilized in this study. The transfer functions used 

are hardlim (hard-limit), tribas (triangular basis), radbas (radial basis), sin, 

and sig. The optimum functions are boldfaced and were used in the D-

forecasting. 

6-hours 
ELM Model 

Number of layers 3 
Neurons Input: 1 (lagged demand) 

Hidden: 3…50 

Output: 1 (D) 
Transfer function Hardlim, tribas, radbas, sin, sig 
Learning rule ELM for SLFNs 
Model architecture (Input-Hidden Neurons-Output) 1-2-1 

12-hours 
ELM Model 

Number of layers 3 
Neurons Input: 1 (lagged demand) 

Hidden: 3…50 

Output: 1 (D) 
Transfer function Hardlim, tribas, radbas, sin, sig 
Learning rule ELM for SLFNs 
Model architecture (Input-Hidden Neurons-Output) 1-1-1 

Daily 
ELM Model 

Number of layers 3 
Neurons Input: 1 (lagged demand) 

Hidden: 3…50 

Output: 1 (D) 
Transfer function Hardlim, tribas, radbas, sin, sig 
Learning rule ELM for SLFNs 
Model architecture (Input-Hidden Neurons-Output) 1-5-1 

 

Table 5 displays the forecasted D from the optimal ELM model in the test set of the respective 

timescales which were then fed into the MCMC copula-based model for final D-forecasting. 

This involved the selection of all 26 families of copula followed by the selection of the local 

and MCMC (global optimization) parameter estimation methods, which try to match the 

observed D with the best copula estimate in a single execution. This technique assists in 
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locating the global optimum value, as well as approximating the posterior distribution of the 

parameters while exploring various copulas in probability space (fitting uncertainties) for 

matching against observed D  (Ali et al. 2018b). The copula parameters are estimated using 

the MCMC simulation and this is achieved inside a Bayesian framework. The testing results 

were evaluated using stringent statistical metrics and compared against standalone ELM and 

MCMC copula models to explore the efficiency of the objective model (ELM-MCMC). It is 

worth noting that both the training and testing data were normalized before feeding the model. 

This was done to improve computational performance by conditioning them from variations in 

data patterns, and was achieved by applying the following equation (Hsu & Chen 2003): 

                                         xnorm  = 
(X - Xmin)

(Xmax -  Xmin)
      (12) 

Where x denotes any reference point of target and objective variable, 𝑥௠௔௫ and 𝑥௠௜௡ are the 

maximum and minimum values of dataset respectively, and 𝑥௡௢௥௠  is the normalized reference 

point. 

Figure 5 shows the schematics for the methodology applied in exploring D-forecasting for 

objective one of this study as discussed above. It indicates that objective one of the present 

study utilized the PACF, whereas objective two used a different methodology where the cross-

correlation function was applied to forecast D. 
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Figure 5: Schematics of partial autocorrelation function and cross - correlation function 

of objectives 1 and 2 respectively. 

 

 

Figure 6: Flow chart of the learning algorithm of hybrid extreme learning machine and 

Markov Chain Monte Carlo based copula model for objective one. 
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The ELM model as discussed in section 3.2 above, is the ML model of an improved version of 

the traditional ANN model.  It is easy to develop, computationally fast, and generally produces 

accurate forecast results. Therefore, the ELM model is applicable for real-time D-forecasting 

applications.  

The primary role of the ELM algorithm as illustrated in steps 5 to 9 in Figure 6 above, is to 

train (2017 - 2018) historical D data. This involved the use of a “hit-and-run” approach where 

several hidden neurons and transfer functions were tested to determine the optimal model 

architecture (neuronal structure) based on the respective model performance at various forecast 

horizons. The best model architecture from the training phase was selected and used to test the 

model using the independent “test” dataset of 2019 data. Following Ali et al. (2018b), the 

simulated result from the test set was then fed into MCMC copula-based model (steps 10 - 11, 

Figure 5) to further improve forecasting accuracy as well as to rank the 26 types of copulas 

from best to worst performing copula based on their respective performance matrices. This 

provides a more robust model in terms of similar results derived from training and testing sets. 

The best copula, with its corresponding forecasting result, was selected and used for short-term 

D- forecasting. 

Three layers were used for the ELM model to design and construct the neuronal structure (see 

Table 4) for short-term D-forecasting at 6-hours, 12-hours, and daily timescales using the 2017 

- 2018 dataset for training and the 2019 dataset for testing at the respective timescales. The 

optimal hidden neuron and transfer function was selected based on the “hit-and-run” approach, 

where the taxonomy of each transfer function (hard-limit, radial basis, sig, sin, and triangular 

basis) were tested individually. The number of nodes in the hidden layers in each trial was 

increased by an increment of one. Based on the testing performance, the optimal node of 2 with 

the sin transfer function was selected for the 6-hours timescale, having a neuronal structure of 

1-2-1 for the ELM model. Similarly, a neuronal structure of 1-1-1 with sin transfer function 

was selected for the 12-hour timescale while a neuronal structure of 1-5-1 with the triangular 

basis transfer function was selected for the daily timescale. This was done to obtain the 

optimum forecasted D for all timescales. 



37 
 

3.5 Evaluation of machine learning (ML) models 

To determine the merits of the hybrid ELM-MCMC model for short-term demand forecasting 

in Queensland, the results are compared against previous studies. The model also uses various 

statistical error criteria based on the performance metrics that hold the equations below and 

depend on the predicted and observed data for  D (Willmott 1981, 1982, 1984; Dawson et al. 

2007; Willmott et al. 2012; Mohammadi et al. 2015b):   

The correlation coefficient (𝑟) is expressed as:  

I. r = ቌ
∑ ቀ൫ୈ౥ౘ౩,౟ ି ୈ౥ౘ౩,౟൯ ൫ୈ౜౥౨,౟ ି ୈ౜౥౨,౟൯ቁ౤

౟సభ 

ට∑ ൫ୈ౥ౘ౩,౟ ି ୈ౥ౘ౩,౟൯
మ౤

౟స   ට∑ ൫ୈ౜౥౨,౟ ି ୈ౜౥౨,౟൯
మ౤

౟స

ቍ         (13) 

Mean square error (MSE, MW) is expressed as: 

II. MSE = 
1

N
 ∑ (Dfor,i - n

i=1 Dobs,i )²                                            (14) 

Root mean square error (RMSE, MW) is expressed as:  

III. RMSE = ට
1

n
 ∑ ൫Dfor,i  - Dobs,i ൯

n
i=1 ²     (15) 

Relative root mean square error (RRMSE, %) is expressed as:  

IV. RRMSE = 
ට

భ

౤ 
 ∑ ൫ୈ౜౥౨,౟  ି ୈ౥ౘ౩,౟ ൯²౤

౟సభ

భ

౤
 ∑ ൫ୈ౥ౘ౩,౟ ൯

౤
౟సభ

 x 100          (16)                                          

Mean absolute error (MAE, MW) is expressed as:  

V. MAE = 
ଵ

௡
 ∑ ห൫Dfor,i  - Dobs,i ൯หn

i=1                                (17) 

 

Relative mean absolute error (RMAE, %) is expressed as: 

VI. RMAE =  
ଵ

୬
 ∑ ฬ

ୈ౜౥౨,౟  ି ୈ౥ౘ౩,౟ 

ୈ౥ౘ౩,౟  
ฬ୬

୧ୀଵ  x 100                             (18) 
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Legates and McCabe’ index (LM) is expressed as: 

VII.    LM = 1 - ൤
∑ |( ౤

౟సభ ୈ౜౥౨,౟  ି ୈ౥ౘ౩,౟ )|

 ∑ |(౤
౟సభ ୈ౥ౘ ,౟  ି ୈ౥ౘ౩)|

 ൨  , ∞ ≤  ENS  ≤ 1                                     (19) 

 

where 𝐷௙௢௥,௜  is the data forecasting and 𝐷௢௕௦,௜   is the data observation for D in the test 

period, 𝐷௙௢௥,௜  and  𝐷௢௕௦,௜ are the average of the forecasted (𝐷௙௢௥,௜ ) and observed (𝐷௢௕௦,௜ ) 

respectively, and  𝑁  is the number of data points in the test period.  

In particular,  𝑟  is used to show the relationship between  𝐷௙௢௥,௜ and  𝐷௢௕௦,௜ ( 𝑟  = 1 means there 

is a strong and positive relationship and when  𝐷௢௕௦,௜ increases,  𝐷௙௢௥,௜ increases too,  𝑟  = −1 

means there is a negative relationship and when  𝐷௢௕௦,௜ increases,  𝐷௙௢௥,௜ decreases, and  𝑟  = 0 

means there is no relationship between  𝐷௢௕௦,௜ and  𝐷௙௢௥,௜ ). The most widely used and important 

measure to identify model performance is RMSE, which calculates the error between 𝐷௙௢௥,௜ , 

and 𝐷௢௕௦,௜ , which is always positive and is the best model that produces the smallest RMSE. 

However, the common measure of the forecast error is MAE. The ability of the model for data 

forecasting is measured by LM and its value is between 0 and 1, but negative values are 

accepted. The highest value of LM refers to the best model and the negative value refers to the 

poorer model performance. The model accuracy is determined according to Li et al. (2013) 

which is excellent when RRMSE < 10%; good if 10% < RRMSE < 20%; fair if 20% < RRMSE 

< 30%; and poor if RRMSE ≥ 30%. The level of overall agreement between 𝐷௢௕௦,௜ , and 𝐷௙௢௥,௜ is 

recorded by MAPE.  

3.6 Evaluation criteria for copula-based models 

The performance of the MCMC-based bivariate copula models are evaluated using statistical 

metrics different to those of the ML models. These performance matrices are mathematically 

expressed as follows: 

I. Maximum-Likelihood value (𝑀𝑎𝑥௅) (Thyer et al. 2009) is computed as: 
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MaxL = - 
n

2
 ln(2π) -  

n

2
 ln(α2 ) - 

1

2
 ln(α-2) ෍ൣDobs,i  -  Dfor,i ൧

n

i=1

²             (20) 

 

II. Akaike Information Criterion (AIC) (Akaike 1974) is calculated as: 

         AIC = 2D + n.ln - ቆ
∑ ൣDobs,i  - Dfor,i ൧²

n
i=1

n
ቇ  - 2CS                                              (21)  

 

III. Bayesian Information Criterion (BIC) (Schwarz 1978) is expressed as: 

         BIC = D.ln + n.ln - ቆ
∑ ൣDobs,i  - Dfor,i ൧²

n
i=1

n
ቇ  - 2CS                             (22)  

 

where 𝐷௢௕௦,௜  and  𝐷௙௢௥,௜ are the observed and forecasted ith value of electricity demand and n 

is the number of datapoints, and D is the number of parameters in the statistical model. The 

maximum-likelihood (𝑀𝑎𝑥௅) reduces the residuals between model forecasts and observations. 

The AIC takes into consideration the model complexity as well as reducing error residuals to 

provide a more reliable measure of the quality of model predictions. The better and appropriate 

model fit is denoted by lower AIC and BIC values. The constants 𝛼 =  
∑ ൣῨ𝒊ିῨ𝒊(Ѳ)൧

మ೙
೔సభ

௡
 , D , and 

CS, and equations (20) – (22) are used to assess the goodness of fit of the copula models, 

whereas equations (13) – (19) display the accuracy of the ELM-MCMC model performance.  
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CHAPTER 4:  ELECTRICITY DEMAND FORECASTING    

USING HISTORICAL DEMAND AND HYBRID EXTREME 

LEARNING-COPULA MODELS 

4.1     Results and Discussion 

4.1.1  ELM model performance 
 

The prediction metrics in equations (13) to (19) were used to evaluate the ML model's 

performance in terms of its ability to forecast D based on the observed measurements. In this 

study, the optimal output of the ELM model was fed as predictors into the MCMC copula-

based model for final prediction of D. The learning rule utilized for this study for the ELM 

model is “ELM for Single Layer Feedforward Neural Network” (SLFNs). 

Table 5: Testing of the optimal performance capability of the ELM Model for all 

timescales (6-hour, 12-hour, and daily)  

 RMSE (MW) RRMSE (%) MAE (MW) RMAE (%) LM 
6-hours 7066.209 9.476 5848.66 7.877 0.265 
12-hours 12523.959 8.398 9720.712 6.417 0.285 
Daily 3690.590 1.237 2983.860 0.996 0.851 

 

Table 5 shows the optimal performance of ELM model. It is noteworthy that each of the 

performance metrics have their strengths and weaknesses depending on the nature and 

complexity of data in use. Generally, the testing metrics should agree by displaying low RMSE, 

RRMSE, MAE, RMAE, and high LM. In the case for 6 and 12-hours timescale, the optimal ELM 

model generated prediction metrics of RMSE (7066.209 MW and 12523.959 MW), RRMSE 

(9.476% and 8.398%), MAE (5848.66 MW and 9720.712 MW), RMAE (7.877 % and 6.417 

%), and LM (0.265 and 0.285) respectively. This indicates that the LM disagrees with other 

metrics by exhibiting low value of 0.265 while both RRMSE and RMAE attained values less 

than 10%, implying that the model performance is excellent. This disagreement in terms of 
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percent errors are attributed to high fluctuation of observed data in the testing set (see Table 

2), which have the skewness and kurtosis of 0.58 and -0.02 respectively, indicating presence 

of outliers. 

Similarly, for the daily timescale, it yielded RMSE (3690.590 MW), RRMSE (1.237 %), MAE 

(2983.860 MW), RMAE (0.996%), and LM (0.851) for 12-hours and daily timescales 

respectively. This indicated an agreement in performance metrics whereby the LM exhibited 

high value whereas the absolute errors and percent terms attained low values. Hence, it 

demonstrates excellent model performance. 

4.1.2  Performance of ELM-MCMC copula-based model for 6-hours 

The forecasting results for the 6-hourly timescale were evaluated using many statistical 

matrices as individual error terms had their own shortcomings (Willmott 1981, 1982, 1984; 

Willmott et al. 2009; Willmott et al. 2012). Therefore, it was advisable to evaluate any model 

using a combination of error terms (as seen in Table 7) with a wide range of graphical 

illustrations to fully define the capability of its predictive performance. In this case, the 

objective model (i.e. ELM-MCMC copula-based model) and comparative MCMC copula-

based model were evaluated using both the error terms for ML models and copula models while 

the standalone ELM model was only evaluated by error terms for ML models. Hence, the 

performance of the hybrid objective model was evaluated using robust statistical error terms 

particularly, mean square error (MSE), relative mean square error (RMSE), relative root mean 

square error (RRMSE), mean absolute error (MAE) , root mean absolute error (RMAE), Legates 

and McCabe' Index (LM), Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), and Maximum Likelihood (MaxL ).  
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Table 6: Local and global (MCMC) copula parameters with 95% confidence interval of 

testing set for hybrid extreme learning machine with Markov Chain Monte 

Carlo (ELM-MCMC) copula-based and standalone MCMC copula-based 

model for forecasting electricity demand (D).  

 

6-hours: ELM-MCMC Model 

Model Copula 

Local 
para 1 

Local 
para 2 

MCMC 
para 1 

MCMC 
para 2 

95% CI 
Local-
MCMC para 
1 

95% CI Local-
MCMC para 2 

M1 
Fischer-
Hinzmann 

1.00 -34.462 1.00 34.999 [1.00 1.00] [34.786 34.997] 

M2 
Linear-
Spearman 

1.00  1.00  [1.00 1.00]  

MCMC Model 

M1 
Marshal-
Olkin 

8.674  0.220 0.909 [0.215 0.225] [0.845   0.999] 

M2 TAWN 0.220 0.916 0.220 0.914 [0.216 0.226] [0.867   0.982] 

12-hours:  ELM-MCMC Model 

Model Copula 
Local 
para 1 

Local 
para 2 

MCMC 
para 1 

MCMC 
para 2 

95% CI 
Local-MCMC 
para 1 

95% CI 
Local-MCMC 
para 2 

M1 
Fischer-
Hinzmann 

1.00 -29.723 1.00 34.995 [1.00 1.00] [33.272 34.999] 

M2 
Linear-
Spearman 

1.00  1.00  [1.00 1.00]  

MCMC Model 

M1 
Marshal-
Olkin 

0.050 22.971 0.093 0.802 [0.086 0.102] [0.631 1.161] 

M2 TAWN 0.093 0.804 0.093 0.809 [0.085 0.101] [0.631 1.161] 

Daily:  ELM-MCMC Model 

Model Copula 
Local 
para 1 

Local 
para 2 

MCMC 
para 1 

MCMC 
para 2 

95% CI 
Local-MCMC 
para 1 

95% CI 
Local-MCMC 
para 2 

M1 
Cuadras-
Auge 

0.999  1.00  [1.00 1.00]  

M2 
Fischer-
Hinzmann 

0.998 31.775 1.00 34.990 [1.00 1.00] [34.476 34.995] 

MCMC Model 
M1 Burr 0.268   0.268   [0.263   0.274]   
M2 Joe 4.535   4.535   [4.459   4.609]   
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Table 7: Testing performance for the objective model for 6-hourly timescale:  Hybrid 

extreme learning machine model integrated with Markov Chain Monte Carlo 

(ELM-MCMC) in comparison with standalone MCMC copula-based model and 

the ELM model. The results displayed below only shows the best copula in terms 

of its copula rankings and its associated model performance. The model input 

for all timescale is the lagged demand at first lag (t-1). The boldface (black) text 

indicates the best model. 

 

6-hours 

Copula RMSE 
(MW) 

RRMSE 
(%) 

MAE 
(MW) 

RMAE 
(%) LM AIC BIC MaxL 

ELM-MCMC copula-based model 
Fischer-
Hinzmann 285.480 0.345 262.241 0.336 0.980 -63136.10 -63125.53 51570.05 

MCMC copula-based model 
Marshal-
Olkin 835.909 1.160 573.119 0.829 0.947 -12109.1 -12098.53 6056.90 

ELM model 
 7066.21 9.476 5848.66 7.878 0.265    

 

Table 7 shows that the ELM-MCMC-Fischer-Hinzmann copula model attained the highest 

forecasting accuracy at 6-hours timescale by exhibiting the lowest errors in RMSE ≈ 285.480 

MW, RRMSE ≈ 0.345%, MAE ≈ 262.241, RMAE ≈ 0.336%, and highest LM of 0.98. This 

model was best fitted by exhibiting the lowest AIC and BIC values of -63136.10 and -63125.53 

respectively, and with much reduction in residual errors in terms of highest MaxL of 51570.05. 

This was followed by the MCMC-Marshall-Olkin copula with error values of RMSE ≈ 835.909 

MW, RRMSE ≈ 1.160 %, MAE ≈ 573.119 MW, RMAE ≈ 0.829 %, LM ≈ 0.947, AIC ≈ -

12109.10, BIC ≈ -12098.53, MaxL ≈ 6056.90, and  finally the standalone ELM model with 

RMSE ≈ 7066.21 MW, RRMSE ≈ 9.476%, MAE ≈ 5848.66 MW, RMAE ≈ 7.878 %, and LM ≈ 

0.265. 
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Figure 7: Posterior distribution of the ELM-MCMC copulas obtained by global MCMC 

simulation for 6-hours timescale. The blue bins are the MCMC-derived 

parameters and the crosses (aqua) denote the maximum likelihood parameter 

of the MCMC. It also shows the local optimization (red circle) method for 

comparison. 

 

The results of the ELM-MCMC copula-based models have been compared against MCMC 

based copula models and the standalone ELM model using the evaluation criteria expressed 

above (equations 13 – 22). Figure 7 shows the histogram of posterior parameter distribution 

(blue bins) of copula uncertainties obtained from MCMC simulation within a Bayesian 
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framework after all 26 families of copula were evaluated by executing the observed and 

forecasted D data in the MvCAT. It shows the posterior parameter distributions of the best 

ranked ELM-MCMC-Fischer-Hinzmann copula against the MCMC Marshal-Olkin copula 

using the global MCMC (Bayesian inference) method.  

The posterior parameter of the ELM-MCMC Fischer-Hinzmann copula is well constrained 

compared to the MCMC Marshal-Olkin copula. The first copula parameter (see Table 6) 

obtained by the local optimization method (red circle) coincides with the maximum likelihood 

parameters (blue cross) of the posterior distributions (blue bins) of the ELM-MCMC-Fischer-

Hinzmann copula. The second parameter of both the local and MCMC methods diverge 

significantly. However, this is not the case for MCMC Marshal-Olkin copula where its 

suggested local parameters diverge extensively from their counterpart global MCMC 

parameters. The results also show that the theoretical parameter (green circle) is closest to both 

the local and global MCMC parameters compared to the local parameters for MCMC based 

Marshal-Olkin copula.  

 

Figure 8: Boxplots of the observed and forecasted D for ELM-MCMC copula-based 

models vs MCMC copula-based models and the standalone ELM model for 

electricity demand for 6-hourly timescale. 
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Figure 8 clearly shows that the observed and forecasted D derived from the ELM-MCMC-

Fischer-Hinzmann copula-based model is normally distributed and symmetrical, hence more 

accurate whereas the spread of the D-observed and forecast for the other two comparative 

models was asymmetrical. This shows that forecasting from a standalone AI - based model 

(i.e., an ELM model) is not stable, as confirmed from the test results in Table 7. This accords 

with the view of Cook et al. (2019) that model hybridization improves performance irrespective 

of the nature and size of data, as each of the amalgamated models contribute to addressing the 

deficiencies that others. 

 

 

Figure 9: Boxplots of absolute forecasting error (MW) of ELM-MCMC copula-based 

models against MCMC copula-based model and the standalone ELM model in 

forecasted electricity demand (D) for 6-hours timescale. 

 

Boxplots in Figure 9 were plotted using the absolute forecasted error, |FE| = |Dobs – Dfor|, for 

6-hours timescales for the ELM-MCMC copula-based models with the counterpart MCMC 

copula-based and the standalone ELM model. The outliers are denoted by  ͦ  in each boxplot 

indicating the significant variability of |FE| in the testing period. The first line at the bottom of 

the boxplot represents the first quartile, the middle line shows the median while the third line 

at the upper end represents the third quartile of the |FE|. According to those quartiles, the larger 

spread was evident for both the MCMC copula-based models and standalone ELM models 

compared to the hybrid ELM-MCMC copula-based model. Accordingly, the ELM-MCMC-
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Fischer-Hinzmann copula model exhibited highly accurate performance for D-forecasting with 

less spread of |FE| at 6-hours timescale followed by the MCMC-Marshall-Olkin copula and the 

standalone ELM model.  

4.1.3  Performance of ELM-MCMC copula-based model for 12-hours 

The testing performance of the best ELM-MCMC copula-based model against the MCMC 

copula-based model and standalone ELM model for 12-hours timescale were evaluated using 

the model performance matrices shown in Table 8.  

Table 8: Testing performance for the objective model for 12-hourly timescale:  Hybrid 

extreme learning machine model integrated with Markhov Chain Monte Carlo 

(ELM-MCMC) in comparison with standalone MCMC copula-based model and 

the ELM model. The results displayed below only shows the best copula in terms 

of its copula rankings and its associated model performance. The model input 

for all timescale is the lagged demand at first lag (t-1). Note that the best model 

is boldfaced (black). 

12-hours 

Copula RMSE 
(MW) 

RRMSE 
(%) 

MAE 
(MW) 

RMAE 
(%) LM AIC BIC MaxL 

ELM-MCMC copula-based model 
Fischer-
Hinzmann 534.09 0.32 490.661 0.309 0.98 -34727.47 -34718.28 17365.73 

MCMC copula-based model 
Marshal-
Olkin 1635.21 1.140 1255.31 0.902 0.927 -11482.88 -11472.31 5743.60 

ELM model 
 12524 8.398 9720.71 6.417 0.285    

 

For the 12-hour timescale (Table 8), again the ELM-MCMC-Fischer-Hinzmann copula 

appeared to be the best ranked copula, having minimum error terms, maximum LM, lowest AIC 

and BIC, and highest MaxL values. Particularly, it attained RMSE ≈ 534.09 MW, RRMSE ≈ 0.32 

%, MAE ≈ 490.661 MW, RMAE ≈ 0.309 %, LM ≈ 0.98, AIC ≈ -34727.47, BIC ≈ -34718.28, 

MaxL ≈ 17365.73. This was followed by the second best performing model, the MCMC-

Marshall-Olkin copula-based model with corresponding error values of RMSE 1635.21 MW, 
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RRMSE ≈ 1.140 %, MAE ≈ 1255.31 MW, RMAE ≈ 0.902 %, LM ≈ 0.927, AIC ≈ -11482.88, 

BIC ≈ -11472.31, MaxL ≈ 5743.60, and finally the worst performing ELM model with RMSE ≈ 

12524 MW, RRMSE ≈ 8.398 %, MAE ≈ 9720.71 MW, RMAE ≈ 6.417 %, and LM ≈ 0.285. 

 

Figure 10: Posterior distribution of the ELM-MCMC copulas obtained by global MCMC 

simulation for 12-hours timescale. The blue bins are the MCMC-derived 

parameters and the crosses (aqua) denotes the maximum likelihood parameter 

of the MCMC. It also shows the local optimization (red circle) method for 

comparison. 

 

Figure 10 shows the posterior distributions (blue bins) of the best ranked ELM-MCMC-

Fischer-Hinzmann copula against the MCMC Marshal-Olkin copula-based model once all 26 

families of copula were evaluated after executing the observed and forecasted D data. The 
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posterior distributions of the ELM-MCMC-Fischer-Hinzmann copula shift to parameter 

bounds, with the best parameter located on the boundary, suggesting that the optimization 

algorithm has forcefully gone beyond the bounds to improve model fit. The first parameter of 

the MCMC Marshal-Olkin copula-based model match with parameter values suggested by both 

local and global MCMC optimization approaches, with MaxL value of zero corresponding with 

local optimization method as opposed to the ELM-MCMC copula-based model. The second 

parameter of the MCMC Marshal-Olkin copula-based model has slightly uneven distribution 

where the local and global parameters diverge significantly, with best parameter (MaxL) almost 

being zero. This implies that there is insufficient information to constrain two parameters of 

the Marshal-Olkin copula. Also, the same applies for the second parameter of the ELM-MCMC 

Fischer-Hinzmann copula.  

The copula parameters obtained by applying the global MCMC algorithm shows that the local 

optimization (red circle) corresponded with the maximum likelihood parameters (blue cross) 

of the posterior distributions (blue bins) of the best ELM-MCMC-Fischer-Hinzmann copula-

based model and the first parameter of the MCMC-Marshal-Olkin copula-based model. This 

means both local and global MCMC methods can be used to estimate the best copula 

parameters for the 12-hours timescale. However, the best parameter (MaxL) value of ELM-

MCMC-Fischer-Hinzmann copula registered a higher value compared to the MCMC Marshal-

Olkin copula which was almost zero. This implies that the ELM-MCMC-Fischer-Hinzmann 

copula had a lower residual error and has been therefore accurate compared to its counterpart 

MCMC Marshal-Olkin copula.  The results show that ELM-MCMC-Fischer-Hinzmann 

copula-based model is the optimal model for D-forecasting as its local parameters (red circle) 

equally corresponded with the global MCMC parameters, thereby achieving high projection 

accuracy.  

The results also show that the theoretical parameter (green circle) is closest to the global 

MCMC parameters compared to the local parameters for MCMC based Marshal-Olkin copula. 

This means that for 12-hours timescale, the global MCMC copula parameter estimation is 

accurate compared to its counterpart local optimization method.  
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Figure 11: Boxplots of the observed and forecasted D for ELM-MCMC copula-based 

models vs MCMC copula-based models and the standalone ELM model for 

electricity demand for 12-hourly timescale. 

 

Figure 11 displays the observed and forecasted D derived from the best ELM-MCMC-Fischer-

Hinzmann copula-based model against the best MCMC-copula-based model and the 

standalone ELM model for 12-hours timescale.  It is evident that the observed and forecasted 

D from the ELM-MCMC-Fischer-Hinzmann copula-based model is normally distributed and 

symmetrical as it demonstrates equal spread between the first and third inter-quartile range 

(IQR) with the mean of D-observed equating to D-forecast and vice versa. Hence, the model is 

optimal, more stable, and accurate whereas the IQR of both D-observed and forecast for the 

MCMC-Marshall-Olkin copula model are equal, except that the whisker between the third 

quartile and maximum values is bigger than that between the first quartile and minimum values. 

For the standalone ELM model, there is significant mismatch between the observed and 

forecasted D, hence the model is not accurate. 
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Figure 12: Boxplots of absolute forecasting error (MW) of ELM-MCMC copula-based 

models against MCMC copula-based model and the standalone ELM model in 

forecasted electricity demand (D) for 12-hours timescale. 

 

Boxplots in Figure 12 were plotted using the absolute forecasted error, |FE| = |Dobs – Dfor|, for 

12-hours timescales for the ELM-MCMC copula-based models with the counterpart MCMC 

copula-based and the standalone ELM model. The outliers are denoted by  ͦ  in each boxplot 

indicating the significant variability of |FE| in the testing period. The first line at the bottom of 

the boxplot represents the first quartile, the middle line shows the median while the third line 

at the upper end represents the third quartile of the |FE|. According to those quartiles, the larger 

spread was evident for both the MCMC copula-based models and standalone ELM models 

compared to the hybrid ELM-MCMC copula-based model. Accordingly, the ELM-MCMC-

Fischer-Hinzmann copula model exhibited  highly accurate performance for D-forecasting with 

less spread of |FE| at 12-hours timescale followed by the MCMC-Marshall-Olkin copula and 

the standalone ELM model.  

 

4.1.4  Performance of ELM-MCMC copula-based model for 24-hours 

The testing performance of the best ELM-MCMC copula-based model against the MCMC 

copula-based model and standalone ELM model for 24-hours (daily) timescale was evaluated 

using the model performance matrices shown in Table 10. 
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Table 9: Testing performance for the objective model for daily timescale:  Hybrid 

extreme learning machine model integrated with Markov Chain Monte Carlo 

(ELM-MCMC) in comparison with standalone MCMC copula-based model and 

the ELM model. The results displayed below only show the best copula in terms 

of its copula rankings and its associated model performance. The model input 

for all timescales is the lagged demand at first lag (t-1). The boldface (black) 

text indicates the best model. 

 

Daily 

Copula RMSE 
(MW) 

RRMSE 
(%) 

MAE 
(MW) 

RMAE 
(%) LM AIC BIC MaxL 

ELM-MCMC copula-based model 
Cuadras-
Auge 694.769 0.22 638.365 0.208 0.98 -14514.31 -14510.41 7258.16 

MCMC copula-based model 
Burr 835.91 1.16 573.119 0.829 0.947 -3641.12 -3637.22 1821.60 

ELM model 
 3690.59 1.234 2983.86 0.996 0.851    

 

Table 9 presents the model performance in terms of the error terms of the ELM-MCMC 

copula-based model against two comparative models, the MCMC copula-based model and the 

standalone ELM model for the daily timescale. It is evident that the ELM-MCMC Cuadras-

Auge copula outperformed both of its comparative models with corresponding error matrices 

of RMSE ≈ 694.769 WM, RRMSE ≈ 0.22 %, MAE ≈ 638.365 WM, RMAE ≈ 0.208 %, LM ≈ 

0.98, AIC ≈ -14514.31, BIC ≈ -14510.41, and MaxL ≈ 7258.16. These performance metric were 

compared against the counterpart MCMC-based Burr copula with RMSE ≈ 835.91 MW, 

RRMSE ≈ 1.16 %, MAE ≈ 573.119 WM, RMAE ≈ 0.829 %, LM ≈ 0.947, AIC ≈ -3641.12, BIC 

≈ -3637.22, and MaxL ≈ 1821.60, followed by the standalone ELM model with RMSE ≈ 3690.59 

MW, RRMSE ≈ 1.234 %, MAE ≈ 2983.86 MW, RMAE ≈ 0.996 %, and LM ≈ 0.851. 
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Figure 13: Posterior distribution of the ELM-MCMC copulas obtained by global MCMC 

simulation daily timescale. The blue bins are the MCMC-derived parameters 

and the crosses (aqua) denotes the maximum likelihood parameter of the 

MCMC. It also shows the local optimization (red circle) method for 

comparison. 

 

Figure 13 shows the posterior distributions (blue bins) of the best ranked ELM-MCMC-

Cuadras-Auge copula and the MCMC-Burr copula once all 26 families of copula were ranked 

after running the observed and forecasted D data for the daily timescale. The copula parameters 

obtained by applying the global MCMC algorithm shows that the local parameter (red circle) 

which corresponded with maximum likelihood parameters (blue cross) of the posterior 

distributions (blue bins) of the best ELM-MCMC-Cuardas-Auge copula model and the 

MCMC-Burr copula model. The posterior distributions of the ELM-MCMC-Cuadras-Auge 

copula shift to parameter bounds, with the best parameter located on the boundary. This 

suggests that the optimization algorithm has forcefully gone beyond the bound to improve 

model fit. The result also shows that the local parameter (red circle) of the ELM-MCMC-

Caudras-Auge copula model is closest to theoretical parameter (green circle) compared to its 

counterpart MCMC parameter. The posterior distributions (blue bins) and maximum likelihood 

(blue cross) resulting from the global MCMC algorithm for MCMC Burr copula coincided with 

the copula parameters obtained by the local optimization method (red circle). The MCMC-Burr 

copula has uniform distribution where the parameters obtained by local optimization technique 
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coincided with the global MCMC method. However, its best parameter (MaxL) is less compared 

to the counterpart ELM-MCMC-Cuadras-Auge model.  

 

Figure 14: Boxplots of ELM-MCMC copula-based models vs MCMC copula-based models 

and the standalone ELM model for electricity demand for daily timescale. 

Figure 14 shows the observed and forecasted D derived from the best ELM-MCMC-Cuadras-

Auge copula-based model against the best MCMC-Burr copula model and the standalone ELM 

model for the daily timescale.  It is evident that the observed and forecasted D from the ELM-

MCMC-Cuadras-Auge copula-based model is normally distributed and symmetrical as it 

demonstrates equal spread between the first and third inter quartile range (IQR) with the mean 

of D-observed equating to D-forecast and vice versa. Hence, the model is optimal, more stable, 

and accurate whereas the IQR of both D-observed and forecast for the MCMC-Marshall-Burr 

copula model are equal, except that the whisker between the third quartile and maximum values 

is bigger than that between the first quartile and minimum values. For the standalone ELM 

model, there is significant mismatch between the observed and forecasted D, denoting high 

residual error, hence the model is not accurate. 
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Figure 15: Boxplots of absolute forecasting error (MW) of the best ELM-MCMC-Cuadras-

Auge copula model against the best MCMC-Burr copula model and the 

standalone ELM model for daily timescale. 

 

Boxplots in Figure 15 were plotted using the absolute forecasted error, FE = |Dobs – Dfor|, for 

the daily timescale for the best ELM-MCMC-Cuardas-Auge copula model in comparison with 

the MCMC-Burr copula model and the standalone ELM model. The outliers are denoted by  ͦ 

in each boxplot indicating the significant variability of FE in the testing period. The first line 

at the bottom of the boxplot represents the first quartile, the middle line shows the median while 

the third line at the upper end represents the third quartile of the FE. According to those 

quartiles, the standalone ELM model had the largest spread followed by the MCMC-Burr 

copula model, while the ELM-MCMC-Cuadras-Auge copula had the least spread of FE. 

Therefore, the ELM-MCMC-Cuadras-Auge copula model exhibited highly accurate 

performance for D-forecasting exhibiting least FE at daily timescale followed by the MCMC-

Burr copula and finally the standalone ELM model.  

4.2  Comparisons of all timescales 

The performance of the objective model was compared against the comparative models for all 

timescales (6-hours, 12-hours, and daily) in terms of the relative root mean square error 

(RRMSE) and relative mean absolute error (RMAE). 
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Table 10: Periodic comparison of the predictive performance of the best ELM-MCMC vs. 

the counterpart MCMC copula-based models and standalone ELM model which 

are evaluated in terms of relative root mean square error (RRMSE), relative 

mean absolute error (RMAE), and the Legates and McCabe’ Index (LM). Note 

that the robust model is coloured black and bolded. 

 

6-hours 
ELM-MCMC 

Copula   RRMSE (%)  RMAE (%)      LM    

Fischer-
Hinzmann 

  0.345  0.336 0.980    

MCMC 
Marshal-
Olkin 

  1.160  0.829 0.947    

ELM  
  9.476  7.878 0.265 

 
  

 

Daily 
ELM-MCMC 

Copula   RRMSE (%)  RMAE (%) LM    

Cuadras-
Auge 

  0.22  0.208 0.98    

MCMC 
Burr   1.16  0.829 0.947    

ELM 
 

  1.234  0.996 0.851    

 

Table 10 shows the periodic comparisons of the ELM-MCMC copula-based models against 

the MCMC-copula-based models and the standalone ELM model based on the RRMSE, RMAE 

12-hours 
ELM-MCMC 

Copula   RRMSE (%)  RMAE (%) LM    

Fischer-
Hinzmann 

  0.32  0.309 0.98    

MCMC 
Marshal-
Olkin 

  1.14015  0.902 0.927    

ELM 
 

  8.398  6.417 0.285  
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and LM  for different timescales (6-hours, 12-hours, and daily). In terms of periodic 

comparisons, the daily timescale employing the ELM-MCMC-Cuadras-Auge copula 

performed accurately by displaying the smallest percentage errors for both RRMSE (0.22 %) 

and RMAE (0.208 %) with maximum LM (0.980). It was followed by the 12-hourly (RRMSE ≈ 

0.320 %,  RMAE ≈ 0.309 %, LM  ≈ 0.980) and finally the 6-hourly (RRMSE ≈ 0.345 %,  RMAE 

≈ 0.336 %, LM  ≈ 0.980) respectively, with both timescales employing the ELM-MCMC-

Fischer-Hinzmann copula model. The overall forecast generated at each timescale by the 

respective models displayed excellent performance as their relative errors were less than the 

10% threshold as stated in Ertekin and Yaldiz (2000) and Mohammadi et al. (2015a). 

 

4.3 Concluding Remarks 

This chapter investigated the performance of a novel hybrid ELM-MCMC copula-based model 

for forecasting D at various timescales (6-hours, 12-hours, and daily). Based on the results in 

sections 4.6.2–4.6.4, the hybrid ELM-MCMC copula-based model displayed highly accurate 

results for all timescales. For both 6-hours and 12-hours, the ELM-MCMC-Fischer-Hinzmann 

copula outclassed its counterparts by means of displaying consistent results in these timescales. 

Hence, the results of the study in this chapter accords with the view of  Cook et al. (2019) that 

hybridization of models improves forecasting accuracy. Moreover, the performance ranking of 

both objective and comparative models for all timescales in descending order is the ELM-

MCMC copula-based models followed by the MCMC-copula-based models and closing with 

the ELM model.   
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CHAPTER 5: ELECTRICITY DEMAND FORECASTING 

USING HISTORICAL PRICE AND PROBABALISTIC-

COPULA MODELS  

5.1  Development of conditional bivariate copula 

A copula is a joint distribution with two or more random variables in play in a particular 

probability problem where each of the single-dimensional margins is marginally uniformly 

distributed over the distribution scale (0,1).  The copula models can attract random time-

independent variables regardless of the type of their marginal distributions. According to 

Sklar’s theorem (Sklar 1959), presuming that each continuous variable 𝑋௜ (i.e. D and PR in this 

study) with its independent marginal cumulative distribution function (CDF) is expressed as 

𝐹௞(𝑋௞) while the probability distribution function (PDF) is given as  𝑓௞(𝑋௞). Given the S-

dimensional variables (𝑋ଵ . . . . 𝑋௦), the CDF can be expressed as: 

F(x1, x2...., xs) = C[F1(x1),F2(x2),...,Fs(xs)]                                                   23  

And the equivalent marginal PDF can be expressed as: 

 

𝑓(𝑥ଵ, . . . , 𝑥௦)  =  ⌈∐ 𝑓௜(𝑥௜)
௦
௜ୀଵ ⌉𝑐[𝐹ଵ(𝑥ଵ), . . . , 𝐹௦(𝑥௦)]                                                     24 

 

The unit hypercube 𝐶: [0,1]௦  →  [0,1] relates to s-variate distribution with a copula (c) of 

unique uniform marginal distribution with its associated copula density 𝑐 =

 
డೞ

డభ...డೞ
𝐶(𝑢ଵ, . . . , 𝑢௦). In this function, 𝑢ଵ represents 𝐹ଵ(𝑥ଵ) while 𝑢ଵ 𝜖(0,1) is defined as the 

probability integral transform (PIT), (Killiches et al. 2017; Kraus & Czado 2017).  This c can 

further be disintegrated to create a conditional bivariate copula densities s(s-1)/2. This result 

is consistent with equation (29) which clearly shows that both the dependence structure and 

marginal distributions can be modeled independently which gives rise to copula model 

approach. 
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5.1.1  Type of copula families 
 

There is a wide range of copula families such as elliptical, Archimedean, vine, extreme value, 

among others (Czado et al. 2013; Tosunoglu & Singh 2018; Tosunoglu et al. 2020). The 

Archimedean copula family is used extensively in different applications and can either have 

symmetric or asymmetric distributions. Also, the use of multivariate elliptical copula is 

prevalent in real-world applications but does have its shortfalls so as the Archimedean copula. 

For example, the performance capability in higher dimensions is limited when elliptical copulas 

are applied as they portray symmetric tail dependence while Archimedean copulas possess 

numerous dependence parameters. However, such limitations can be subdued by adoption of 

vine copulas in disintegrating the multivariate copulas into many bivariate copulas (Aas et al. 

2009; Fischer et al. 2017) to identify the dependence between complex variables. 

 

5.1.2  Vine Copula 
 

The three basic types of vine copulas are the Regular vine, Drawable vine, and Canonical vine. 

The concepts of vine copulas were introduced by Joe (1997).  Bedford and Cooke (2001) then 

assessed their performance in depth by way of graphical reliance models in utilizing Markov 

trees for developing bivariate copulas as well as defining multivariate variables. Studies by 

AghaKouchak et al. (2010) and Nguyen-Huy et al. (2017) for precipitation forecasting 

indicated that vine copulas suitably address tail dependence and asymmetries issues. 

  

5.2 Conditional probability of electricity demand given lagged value of 
price 

 

Copulas are statistical models having computational capability for solving non-linear 

dependence. This is efficiently achieved by ranking the dependence structure using Kendall’s 

tau correlations, which the linear correlation coefficient is unable to solve (Manner et al. 2019). 

Copulas employ advanced statistical techniques that can model multivariate data for 

investigating dependence. The method also includes the determination of bivariate/multivariate 

distributions having non-linear dependence. Moreover, the marginal distributions sometimes 

exhibit asymmetric distributions.  
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This method develops a copula-statistical model (Sklar 1959; Sklar 1996) for probabilistic 

forecasting of D using significant lagged correlation of PR. It involves the use of conditional 

bivariate copula models to examine the joint behaviour of D and the significant lagged PR for 

probabilistic forecasting of D. Thus, it is necessary to investigate the lagged correlation 

between PR and D first. In this study, the correlation between PR and D was computed using 

the cross-correlation function (CCF). Based on the CCF plots, the first lag (t-1) had the highest 

correlation (refer to Figure 16). Therefore, it was used as the covariate predictor in the 

bivariate copula model for probabilistic forecasting of D.  Figure 17 summarizes the main 

steps for developing a probabilistic forecast model. This approach provides a more robust fit 

than single-equation models and computes accurate forecasts for spike probabilities (Manner 

et al. 2016). 

 

Figure 16: Crosscorrelation plots of electricity demand and price for (a) 30-minutes, (b) 

1-hour, (c) and daily timescales from 2017 to 2019. 

(a)    (b)  

 

(c )  
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Figure 17: Steps for developing probabilistic forecast model for objective two. 

 

In the next step, a copula function (C) was used to model the joint probabilistic behaviour of 

the joint cumulative distribution function (CDF)  FPRD(pr,d) between PR and D, i.e. 

 FPRD(pr,d) = 𝐶[𝐹௉ோ(𝑝𝑟), FD(𝑑)]. The most appropriate copula function used to describe the 

dependence structure between PR and D, among many candidates, was selected based on 

different criteria including AIC, BIC, and logarithmic likelihood (logLik). It is noted that the 

copula parameters were estimated using the maximum likelihood estimate (i.e. local method), 

which is different to the one in the MCMC model mentioned in Chapters 3 and 4. Also, it is 

worth repeating that the ranked Kendall tau correlation coefficient was used to model non-

linear dependence between D and PR. Finally, the probabilistic forecast of D based on the first 

lag of PR (i.e., PR(t-1)) was derived via the conditional probability P (X<x | Y =y). Three 

different timescales (30-minutes, 1-hour, and daily) were selected to examine the model 

performance. 

This chapter studies two scenarios of D-forecast based on the first lag of PR and the copula 

model. First, we explore the nonexceedance probabilities of D, given that the PR peak exceeds 

certain thresholds of pr. According to Madadgar and Moradkhani (2013), the conditional 

probability based on bivariate copulas is expressed as follows: 
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P(D ≤ d)|PR ≥ pr) = 
 P(D ≤ d , PR ≥ pr) 

P(PR ≥ pr)
 = 

FD(d) - FPRD(pr,d)

1 -   FPR(pr)
  

=
𝐹஽(𝑑) − 𝐶[𝐹௉ோ(𝑝𝑟), FD(𝑑)]

1 − 𝐹௉ோ(𝑝𝑟)
                                                                    (25) 

 

Conversely, the exceedance probabilities of D, given that the PR peak exceeds certain 

thresholds of pr, can be expressed as (Nguyen-Huy et al. 2018): 

𝑃(𝐷 ≥ 𝑑|𝑃𝑅 ≥ 𝑝𝑟)  =  
𝑃(𝐷 ≥ 𝑑,   𝑃𝑅 ≥ 𝑝𝑟)

𝑃(𝑃𝑅 ≥ 𝑝𝑟)
 

=  
1 −  𝐹௉ோ(𝑝𝑟)  −  𝐹஽(𝑑)  −  𝐶[𝐹௉ோ(𝑝𝑟), 𝐹஽(𝑑)]

1 − 𝐹௉ோ(𝑝𝑟)
                                                (26) 

 

5.3 Results and Discussion 

5.3.1 Conditional nonexceedance probabilistic forecasting of electricity demand (D). 

The results for conditional nonexceedance probabilistic forecasting of D for 30-minutes, 1-

hour, and daily timescales, given lagged price PR (t-1) greater than or equal to certain threshold 

price (AU$/MW) by applying conditional bivariate copula models are provided in Figure 18 

(a - c).  
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(a)  

 

 

(b)  
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(c)  

 

Figure 18: Conditional nonexceedance probability forecasting of electricity demand (D) 

for various timescales (a) 30-minutes, (b) 1-hour, and (c) daily, given lagged 

price PR (t-1) greater than or equal to a certain threshold price (AU$/MW) by 

applying conditional bivariate copula models 

 

Figure 18 (a - c) portrays the joint probabilistic forecasting model derived from conditional 

bivariate copulas for predicting D at 30-minutes, 1-hour, and daily timescales. In Particular, it 

illustrates the demand of the conditional nonexceedance probability given the price value 

exceeding a certain threshold when the bivariate BB8 copula is utilized in accordance with AIC 

criteria for 30-minutes and 1-hour while the bivariate BB7 copula is utilized for the daily 

timescale. As shown in Figure 18 (a - c), if the given price exceeds AU$150/MW, 

AU$200/MW, and AU$175/MW for 30-minutes, 1-hour, and daily timescales respectively, a 
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shortage for electricity demand is not likely to happen at any time, meaning the electricity 

supply will be sufficient to meet consumer-demand. Figure 18 presents a decision-making tool 

which energy forecasters and planners could use to appropriately estimate the provision of 

electricity demand for users at a certain time and locality. 

In Figure 18 (a), for the 30-minutes timescale the conditional probability of electricity demand 

less than 7000MW given a price greater than AU$25/MWh (i.e., normal price) and 

AU$150/MWh (i.e., maximum price) could be approximately 80% and 32% respectively. This 

indicates that consumers practice cost saving measures in consuming less electricity when the 

price is high and vice versa. Also, for Figure 18 (b), for the 1-hour timescale, the conditional 

probability of electricity demand less than 14000 MW given the price greater than 

AU$60/MWh and AU$100/MWh could be approximately 72% and 32% respectively. 

Likewise for the daily timescale (Figure 18-c), the conditional probability of electricity 

demand less than 360,000MW, given a price greater than AU$20/MWh, AU$85/MWh, 

AU$105/MWh, AU$165/MWh, and AU$175/MWh could be approximately 98%, 97%, 89%, 

70%, 50% and 32% respectively. 

 

5.3.2 Conditional exceedance probabilistic forecasting of electricity demand (D). 

The results for conditional exceedance probabilistic forecasting of D for 30-minutes, 1-hour, 

and daily timescales, given lagged price PR (t-1) greater than or equal to a certain threshold 

price (AU$/MW) by applying conditional bivariate copula models are provided below in 

Figure 19 (a - c).  
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(a) 

 

(b) 
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(c)   

 

Figure 19: Conditional exceedance probability forecasting of electricity demand (D) for 

(a) 30-minutes, (b) 1-hour, and (c) daily, given lagged price PR (t-1) exceeding 

certain threshold price (AU$/MW) by applying conditional bivariate copula 

models 

 

Conversely, the interpretation of Figure 19 (a - c) is straightforward. For the 30-minutes 

timescale (Figure 19-a), the conditional exceedance probability of electricity demand greater 

than 7000 MW given a price greater than AU$25/MWh (i.e., normal price) and AU$150/MWh 

(i.e., maximum price) could be approximately 20% and 68% respectively. For the 1-hour 

timescale (Figure 19-b), the conditional probability of electricity demand greater than 14,000 

MW given a price greater than AU$60/MWh and AU$100/MWh could be approximately 30% 

and 48% respectively. Likewise for the daily timescale (Figure 19-c), the conditional 

probability of electricity demand greater than 360,000MW given a price greater than 
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AU$50/MWh, AU$85/MWh, AU$105/MWh, AU$125/MWh, AU$165/MWh, and 

AU$175/MWh could be approximately 2%, 3%, 11%, 28%, 50%  and 68% respectively. 

 

5.3.3 Local method for copula parameters estimate 
 

The local method for copula parameter estimates is derived by maximum likelihood estimation. 

Table 11 shows the details of the tail dependence measures and model fit statistics of the 

respective conditional bivariate copulas for each timescale (30-minutes, 1-hour, and daily).  

 

Table 11: Copula parameters, tail dependence measures, and model fit statistics derived 

from the local (maximum likelihood) method 

 

 30-minutes 1-hour Daily 

Best copula BB8 BB8  
 

BB7 

Parameter 1 6 6 1.27 

Parameter 2 0.57 0.57 0.16 

Kendall Tau 0.43 (empirical 
= 0.44, p value 
< 0.01) 
 

0.42 (empirical = 
0.42, p value < 0.
01) 
 

0.19  
empirical = 0.16, 
p value < 0.01 
 

Upper tail dependence 0 0 0.28 

Lower tail dependence 0 0 0.01 

logLik 12277.73  5800.93 
 

64.23 

AIC -24551.45  -11597.86  -124.45 

BIC -24533.71  -11581.51 -114.45 

 

Table 11 shows that BB8 copula appeared to be the best copula for 30-minutes probabilistic 

forecasting of D in the State of Queensland.  It attained the first and second local copula 

parameters of 6 and 0.57 with logarithmic likelihood, AIC, and BIC of 12277.73, -24551.45, 

and -24533.71, respectively. For 1-hour timescale, also the BB8 copula was ranked highly with 
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first and second local copula parameters values of 6 and 0.57, respectively. It also exhibited 

the logarithmic likelihood, AIC, and BIC of 5800.93, -11597.86, and -11581.51, respectively. 

Similarly, for the daily timescale, BB7 copulas was ranked highly with its corresponding local 

copula parameter 1 and 2 values of 1.27 and 0.16, respectively, and logarithmic likelihood, 

AIC, and BIC of 64.23, -124.45, and -114.45, respectively.  

 

 

  



70 
 

CHAPTER 6: CONCLUSION 

6.1 Summary of the research findings 

Electricity demand forecasting was undertaken for the state of Queensland, which is the second 

largest state in Australia and where electricity demand is ever increasing. The hybrid extreme 

learning-copula models generated accurate D-forecast for all timescales (6-hours, 12-hours, 

and daily).  A copula approach was also utilized to evaluate the joint behaviour of D and PR 

based on their historical lagged relationship. The results illustrated that BB7 copula was 

suitable for the probabilistic forecasting of daily D while BB8 was best suited for 30-minutes 

and 1-hour timescales. The analytical results from the conditional probability indicated that 

prices greater than or equal to AU$50/MW, AU$75/MW, AU$100/MW and, AU$150/MW 

show the lowest requirements for D,; whereas prices greater than or equal to AU$150/MW 

displayed the highest D requirements by consumers. This indicated that consumers were cost 

conscious where they practiced cost saving measures during price surge in electricity supply.  

This study also explored both the local and global (Bayesian inference) optimization methods 

to estimate the best predictive uncertainties of copula parameters for developing a model for 

D-forecasting in the State of Queensland. The limitation of the local optimization for 

approximating copula parameters is that it frequently gets confined in the local minima 

(optima) and is not able to deliver any approximation of fundamental uncertainties. Hence, it 

may lead to providing biased results. In contrast, the global MCMC optimization method also 

estimates copula parameters by way of posterior distributions as well as presenting the 

uncertainty range. It generates and explores a good estimate of the global optimum as well as 

presenting an estimation of the primary uncertainty in a global MCMC simulation within a 

Bayesian framework. Therefore, in this study, the global MCMC approach is the best method 

for approximating the predictive uncertainties of copula parameters for developing models for 

6 and 12-hours while local method is best for daily D-forecasting model in the State of 

Queensland.  
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6.2 Synthesis 

The results presented in this study confirm that hybrid models deliver accurate more D- 

forecasting results than standalone models. The integration of ELM with MCMC copula-based 

models further improved forecasting efficiency by ranking the best performing copulas based 

on their respective performance metrics in achieving robust prediction for short-term D-

forecasting in Queensland. The results generated by the hybrid ELM-MCMC copula-based 

models, namely the ELM-MCMC-Fischer-Hinzmann copula model for both 6-hours and 12-

hours timescales, and the ELM-MCMC-Cuadras-Auge copula model for daily timescale, are 

highly accurate than that presented in previous studies by Al-Musaylh et al. (2018a) for short-

term D-forecasting in Queensland. Also, the D-forecasting results in terms of the evaluation 

metrics for this study are highly accurate when compared with a similar study by Ali et al. 

(2018b) for predicting cotton yield in Pakistan. Therefore, the novel hybrid ELM-MCMC 

copula-based models developed in this study are highly accurate and reliable for short-term D-

forecasting in Queensland as well as other regions. 

This study also developed a copula-statistical model for the probabilistic forecasting of D using 

significant lagged correlation of PR as a covariate. It explored a joint probabilistic forecasting 

model from conditional bivariate copulas for predicting D at 30-minutes, 1-hour, and daily 

timescales under two conditions. Firstly, the probabilistic forecasting of D was achieved when 

the conditional nonexceedance probability given price (PR) exceeding a certain threshold when 

the bivariate BB8 copula model was executed in accordance with the AIC criteria. Secondly, 

D was probabilistically forecasted when the conditional exceedance probability given PR 

exceeding a certain threshold when the bivariate BB8 copula model was used in respect of the 

AIC criteria. This method attained a novel forecasting model by utilizing copula-statistical 

models, which had never been applied for short-term probabilistic forecasting of D anywhere 

previously. It therefore presents a vital decision-making tool which energy forecasters and 

planners can use to appropriately estimate the provision of electricity demand for users at 

certain times and localities. 
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6.3 Limitations and opportunity for future research 

Since the scope of this Master’s degree project was restricted to only the specified objectives 

set - out for this study over a duration of 1.5 years, the following recommendations are 

highlighted for future researchers to pursue.  

I. This study only used the historical data for average electricity price (PR) and 

demand (D) to forecast future D. Since D-forecasting is a complex problem that 

involves various interconnected variables, future research may be targeted at 

investigating the lagged relationship between climate variables, population density, 

and GDP data, and incorporate these data to further enhance the forecasting of D. 

 

II. This study used aggregated D and PR data for the entire Queensland region for 

model training and testing. For site-specific D-forecasting, it may be valuable to 

source data for D and PR for substations to build forecasting models to determine 

respective D requirements as each site may experience varying climatic patterns 

that may influence D. These results may be useful for planners and forecasters in 

the energy sectors to plan and execute appropriate electricity generation systems 

and distribution to specific sites where required. 

 

  



73 
 

REFERENCES 

Aas, K, Czado, C, Frigessi, A, et al. 2009, 'Pair-copula constructions of multiple dependence', 
Insurance: Mathematics and economics, vol. 44, no. 2, pp. 182-98. 

ABS 2020, Population growth, Queensland, December quarter 2019, ABo Statistics, 
Queensland, Australia, https://www.qgso.qld.gov.au/statistics/theme/population/population-
estimates/state-territories>. 

AEMO 2020, Aggregated price and demand data - Historical, Australian Energy Market 
Operator (AEMO), The Australian Energy Market Operator, https://aemo.com.au/en/energy-
systems/electricity/national-electricity-market-nem/data-nem/aggregated-data>. 

AghaKouchak, A, Bárdossy, A & Habib, E 2010, 'Copula‐based uncertainty modelling: 
application to multisensor precipitation estimates', Hydrological Processes, vol. 24, no. 15, pp. 
2111-24. 

Akaike, H 1974, 'A new look at the statistical model identification', IEEE transactions on 
automatic control, vol. 19, no. 6, pp. 716-23. 

Akay, D & Atak, M 2007, 'Grey prediction with rolling mechanism for electricity demand 
forecasting of Turkey', Energy, vol. 32, no. 9, pp. 1670-5. 

Al-Alawi, SM & Islam, SM 1996, 'Principles of electricity demand forecasting. I. 
Methodologies', Power Engineering Journal, vol. 10, no. 3, pp. 139-43. 

Al-Musaylh, MS, Deo, RC, Adamowski, JF, et al. 2018a, 'Short-term electricity demand 
forecasting with MARS, SVR and ARIMA models using aggregated demand data in 
Queensland, Australia', Advanced Engineering Informatics, vol. 35, no. 1, pp. 1-16. 

Al-Musaylh, MS, Deo, RC, Li, Y, et al. 2018b, 'Two-phase particle swarm optimized-support 
vector regression hybrid model integrated with improved empirical mode decomposition with 
adaptive noise for multiple-horizon electricity demand forecasting', Applied Energy, vol. 217, 
pp. 422-39. 

Al-Musaylh, MS, Deo, RC, Adamowski, JF, et al. 2019, 'Short-term electricity demand 
forecasting using machine learning methods enriched with ground-based climate and ECMWF 
Reanalysis atmospheric predictors in southeast Queensland, Australia', Renewable and 
Sustainable Energy Reviews, vol. 113, pp. 2-22. 

Alexander, C 2004, Managing Energy Price Risk: The New Challenges and Solutions, London: 
Risk Books. 

Ali, M, Deo, RC, Downs, NJ, et al. 2018a, 'Multi-stage hybridized online sequential extreme 
learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall 
forecasting', Atmospheric Research, vol. 213, pp. 450-64. 

Ali, M, Deo, RC, Downs, NJ, et al. 2018b, 'Cotton yield prediction with Markov Chain Monte 
Carlo-based simulation model integrated with genetic programing algorithm: A new hybrid 
copula-driven approach', Agricultural and Forest Meteorology, vol. 263, pp. 428-48. 



74 
 

Ali, M, Deo, RC, Downs, NJ, et al. 2020, 'Monthly rainfall forecasting with Markov Chain 
Monte Carlo simulations integrated with statistical bivariate copulas', in Handbook of 
Probabilistic Models, pp. 89-105. 

Altinay, G & Karagol, E 2005, 'Electricity consumption and economic growth: Evidence from 
Turkey', Energy Economics, vol. 27, no. 6, pp. 849-56. 

Assembly, G 2015, Resolution adopted by the General Assembly on 19 September 2016, 
A/RES/71/1, 3 October 2016 (The New York Declaration). 

Balakrishna, N & Lai, CD 2009, 'Distributions expressed as copulas', in Continuous Bivariate 
Distributions, Springer, pp. 67-103. 

Ball, A, Ahmad, S, McCluskey, C, et al. 2016, Australian Energy Update, Department of 
Industry, Innovation and Science, Canberra, http://www. industry. gov. au/Office-of-the-Chief-
Economist/Publicat ions/Documents/aes/2015-australian-energy-statistics>. 

Bárdossy, A 2006, 'Copula‐based geostatistical models for groundwater quality parameters', 
Water Resources Research, vol. 42, no. 11. 

Bedford, T & Cooke, RM 2001, 'Probability density decomposition for conditionally dependent 
random variables modeled by vines', Annals of Mathematics and Artificial intelligence, vol. 
32, no. 1-4, pp. 245-68. 

Bello, A, Reneses, J & Muñoz, A 2016, 'Medium-term probabilistic forecasting of extremely 
low prices in electricity markets: Application to the Spanish case', Energies, vol. 9, no. 3, pp. 
1-27. 

Benaouda, D, Murtagh, F, Starck, JL, et al. 2006, 'Wavelet-based nonlinear multiscale 
decomposition model for electricity load forecasting', Neurocomputing, vol. 70, no. 1, pp. 139-
54. 

Brinsmead, TS, Hayward, J & Graham, P 2014, Australian electricity market analysis report 
to 2020 and 2030, CSIRO Technical Report No. EP141067. 

Bunn, D & Farmer, ED 1985, Comparative models for electrical load forecasting, United 
States. 

Campbell, A 2018, 'Price and income elasticities of electricity demand: Evidence from 
Jamaica', Energy Economics, vol. 69, pp. 19-32. 

Cao, Z, Liu, L, Hu, B, et al. 2019, 'Short-Term Load Forecasting Based on Variational Modal 
Decomposition and optimization Model', 2019 IEEE 15th International Conference on 
Automation Science and Engineering (CASE),  pp. 121-6. 

Chen, H, Canizares, CA & Singh, A 2001, 'ANN-based short-term load forecasting in 
electricity markets', 2001 IEEE power engineering society winter meeting. Conference 
proceedings (Cat. No. 01CH37194), IEEE, pp. 411-5. 

Chui, F, Elkamel, A, Surit, R, et al. 2009, 'Long-term electricity demand forecasting for power 
system planning using economic, demographic and climatic variables', European Journal of 
Industrial Engineering, vol. 3, no. 3, pp. 277-304. 



75 
 

Clayton, DG 1978, 'A model for association in bivariate life tables and its application in 
epidemiological studies of familial tendency in chronic disease incidence', Biometrika, vol. 65, 
no. 1, pp. 141-51. 

Clements, AE, Hurn, AS & Li, Z 2016, 'Forecasting day-ahead electricity load using a multiple 
equation time series approach', European Journal of Operational Research, vol. 251, no. 2, pp. 
522-30. 

Contreras, J, Espinola, R, Nogales, FJ, et al. 2003, 'ARIMA models to predict next-day 
electricity prices', IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1014-20. 

Cook, R, Lapeyre, J, Ma, H, et al. 2019, 'Prediction of Compressive Strength of Concrete: 
Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone 
Models', Journal of Materials in Civil Engineering, vol. 31, no. 11, p. 04019255. 

Czado, C, Brechmann, EC & Gruber, L 2013, 'Selection of vine copulas', in Copulae in 
mathematical and quantitative finance, Springer, pp. 17-37. 

da Silva, FLC, Cyrino Oliveira, FL & Souza, RC 2019, 'A bottom-up bayesian extension for 
long term electricity consumption forecasting', Energy, vol. 167, pp. 198-210. 

Dalkey, N & Helmer, O 1963, 'An experimental application of the Delphi method to the use of 
experts', Management science, vol. 9, no. 3, pp. 458-67. 

Dawson, CW, Abrahart, RJ & See, LM 2007, 'HydroTest: a web-based toolbox of evaluation 
metrics for the standardised assessment of hydrological forecasts', Environmental Modelling 
& Software, vol. 22, no. 7, pp. 1034-52. 

De Michele, C, Salvadori, G, Canossi, M, et al. 2005, 'Bivariate statistical approach to check 
adequacy of dam spillway', Journal of hydrologic engineering, vol. 10, no. 1, pp. 50-7. 

Deo, RC & Şahin, M 2015, 'Application of the Artificial Neural Network model for prediction 
of monthly Standardized Precipitation and Evapotranspiration Index using 
hydrometeorological parameters and climate indices in eastern Australia', Atmospheric 
Research, vol. 161-162, pp. 65-81. 

Deo, RC & Sahin, M 2015, 'Application of the extreme learning machine algorithm for the 
prediction of monthly Effective Drought Index in eastern Australia', Atmospheric Research, 
vol. 153, pp. 512-25. 

Deo, RC & Sahin, M 2017, 'Forecasting long-term global solar radiation with an ANN 
algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional 
locations in Queensland', Renewable & Sustainable Energy Reviews, vol. 72, pp. 828-48. 

Deo, RC, Samui, P & Kim, D 2016, 'Estimation of monthly evaporative loss using relevance 
vector machine, extreme learning machine and multivariate adaptive regression spline models', 
Stochastic environmental research and risk assessment, vol. 30, no. 6, pp. 1769-84. 

Deo, RC, Tiwari, MK, Adamowski, JF, et al. 2017, 'Forecasting effective drought index using 
a wavelet extreme learning machine (W-ELM) model', Stochastic environmental research and 
risk assessment, vol. 31, no. 5, pp. 1211-40. 



76 
 

Duan, Q, Sorooshian, S & Gupta, V 1992, 'Effective and efficient global optimization for 
conceptual rainfall‐runoff models', Water Resources Research, vol. 28, no. 4, pp. 1015-31. 

Erdogdu, E 2007, 'Electricity demand analysis using cointegration and ARIMA modelling: A 
case study of Turkey', Energy Policy, vol. 35, no. 2, pp. 1129-46. 

Ertekin, C & Yaldiz, O 2000, 'Comparison of some existing models for estimating global solar 
radiation for Antalya (Turkey)', Energy Conversion and Management, vol. 41, no. 4, pp. 311-
30. 

Fan, S & Chen, L 2006, 'Short-term load forecasting based on an adaptive hybrid method', 
IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 392-401. 

Fan, S & Chen, LN 2006, 'Short-term load forecasting based on an adaptive hybrid method', 
IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 392-401. 

Fischer, M, Kraus, D, Pfeuffer, M, et al. 2017, 'Stress testing German industry sectors: Results 
from a vine copula based quantile regression', Risks, vol. 5, no. 3, p. 38. 

Fischer, MJ & Hinzmann, G 2006, A new class of copulas with tail dependence and a 
generalized tail dependence estimator, Diskussionspapier. 

Florens, MSL, Cairns, IH, Knock, SA, et al. 2007, 'Data-driven solar wind model and 
prediction of type II bursts', Geophysical Research Letters, vol. 34, no. 4, pp. 1-5. 

Fousekis, P & Grigoriadis, V 2017, 'Joint price dynamics of quality differentiated commodities: 
copula evidence from coffee varieties', European Review of Agricultural Economics, vol. 44, 
no. 2, pp. 337-58. 

Gräler, B, van den Berg, M, Vandenberghe, S, et al. 2013, 'Multivariate return periods in 
hydrology: a critical and practical review focusing on synthetic design hydrograph estimation', 
Hydrology and Earth System Sciences, vol. 17, no. 4, pp. 1281-96. 

Grégoire, V, Genest, C & Gendron, M 2008, 'Using copulas to model price dependence in 
energy markets', Energy risk, vol. 5, no. 5, pp. 58-64. 

Haida, T & Muto, S 1994, 'Regression-Based Peak Load Forecasting Using a Transformation 
Technique', IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 1788-94. 

Hao, Z & AghaKouchak, A 2013, 'Multivariate standardized drought index: a parametric multi-
index model', Advances in Water Resources, vol. 57, pp. 12-8. 

HariKumar, R, Vasanthi, N & Balasubramani, M 2012, 'Performance analysis of artificial 
neural networks and statistical methods in classification of oral and breast cancer stages', 
International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 3, pp. 263-9. 

He, Y, Liu, R, Li, H, et al. 2017, 'Short-term power load probability density forecasting method 
using kernel-based support vector quantile regression and Copula theory', Applied Energy, vol. 
185, pp. 254-66. 

Hsu, C-C & Chen, C-Y 2003, 'Regional load forecasting in Taiwan––applications of artificial 
neural networks', Energy Conversion and Management, vol. 44, no. 12, pp. 1941-9. 



77 
 

Hu, ZY, Bao, YK & Xiong, T 2013, 'Electricity Load Forecasting Using Support Vector 
Regression with Memetic Algorithms', Scientific World Journal, vol. 2013, pp. 2-10. 

Huang, GB, Zhu, QY & Siew, CK 2006, 'Extreme learning machine: Theory and applications', 
Neurocomputing, vol. 70, no. 1-3, pp. 489-501. 

Hyndman, RJ & Fan, S 2010, 'Density Forecasting for Long-Term Peak Electricity Demand', 
IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 1142-53. 

Joe, H 1997, Multivariate models and multivariate dependence concepts, CRC Press, 
Edinburgh, England. 

Jongman, B, Hochrainer-Stigler, S, Feyen, L, et al. 2014, 'Increasing stress on disaster-risk 
finance due to large floods', Nature Climate Change, vol. 4, no. 4, pp. 264-8. 

Khan, S, Javaid, N, Chand, A, et al. 2019, 'Forecasting day, week and month ahead electricity 
load consumption of a building using empirical mode decomposition and extreme learning 
machine', 2019 15th International Wireless Communications & Mobile Computing Conference 
(IWCMC),  pp. 1600-5. 

Khotanzad, A, Afkhami-Rohani, R, Lu, T-L, et al. 1997, 'ANNSTLF-a neural-network-based 
electric load forecasting system', IEEE Transactions on Neural networks, vol. 8, no. 4, pp. 835-
46. 

Killiches, M, Kraus, D & Czado, C 2017, 'Examination and visualisation of the simplifying 
assumption for vine copulas in three dimensions', Australian & New Zealand Journal of 
Statistics, vol. 59, no. 1, pp. 95-117. 

Kraus, D & Czado, C 2017, 'D-vine copula based quantile regression', Computational Statistics 
& Data Analysis, vol. 110, pp. 1-18. 

Kwon, HH & Lall, U 2016, 'A copula‐based nonstationary frequency analysis for the 2012–
2015 drought in California', Water Resources Research, vol. 52, no. 7, pp. 5662-75. 

Lebotsa, ME, Sigauke, C, Bere, A, et al. 2018, 'Short term electricity demand forecasting using 
partially linear additive quantile regression with an application to the unit commitment 
problem', Applied Energy, vol. 222, pp. 104-18. 

Li, C, Singh, VP & Mishra, AK 2013, 'A bivariate mixed distribution with a heavy‐tailed 
component and its application to single‐site daily rainfall simulation', Water Resources 
Research, vol. 49, no. 2, pp. 767-89. 

Madadgar, S & Moradkhani, H 2013, 'Drought Analysis under Climate Change Using Copula', 
Journal of hydrologic engineering, vol. 18, no. 7, pp. 746-59. 

Mamun, MA & Nagasaka, K 2004, 'Artificial neural networks applied to long-term electricity 
demand forecasting', Fourth International Conference on Hybrid Intelligent Systems (HIS'04), 
IEEE, pp. 204-9. 

Manner, H, Türk, D & Eichler, M 2016, 'Modeling and forecasting multivariate electricity price 
spikes', Energy Economics, vol. 60, pp. 255-65. 



78 
 

Manner, H, Fard, FA, Pourkhanali, A, et al. 2019, 'Forecasting the joint distribution of 
Australian electricity prices using dynamic vine copulae', Energy Economics, vol. 78, pp. 143-
64. 

Marwala, L & Twala, B 2017, 'Electricity Load Forecasting Using an Ensemble of Optimally-
Pruned and Basic Extreme Learning Machines', 2017 9th IEEE-GCC Conference and 
Exhibition (GCCCE),  pp. 1-6. 

Marzband, M, Azarinejadian, F, Savaghebi, M, et al. 2015, 'An optimal energy management 
system for islanded microgrids based on multiperiod artificial bee colony combined with 
Markov chain', IEEE Systems Journal, vol. 11, no. 3, pp. 1712-22. 

Marzband, M, Ardeshiri, RR, Moafi, M, et al. 2017, 'Distributed generation for economic 
benefit maximization through coalition formation–based game theory concept', International 
Transactions on Electrical Energy Systems, vol. 27, no. 6, p. e2313. 

Min, A & Czado, C 2010, 'Bayesian inference for multivariate copulas using pair-copula 
constructions', Journal of Financial Econometrics, vol. 8, no. 4, pp. 511-46. 

Mirasgedis, S, Sarafidis, Y, Georgopoulou, E, et al. 2006, 'Models for mid-term electricity 
demand forecasting incorporating weather influences', Energy, vol. 31, no. 2-3, pp. 208-27. 

Mohammadi, K, Shamshirband, S, Anisi, MH, et al. 2015a, 'Support vector regression based 
prediction of global solar radiation on a horizontal surface', Energy Conversion and 
Management, vol. 91, pp. 433-41. 

Mohammadi, K, Shamshirband, S, Tong, CW, et al. 2015b, 'A new hybrid support vector 
machine–wavelet transform approach for estimation of horizontal global solar radiation', 
Energy Conversion and Management, vol. 92, pp. 162-71. 

Morimoto, R & Hope, C 2004, 'The impact of electricity supply on economic growth in Sri 
Lanka', Energy Economics, vol. 26, no. 1, pp. 77-85. 

Nasr, GE, Badr, EA & Younes, MR 2002, 'Neural networks in forecasting electrical energy 
consumption: univariate and multivariate approaches', International Journal of Energy 
Research, vol. 26, no. 1, pp. 67-78. 

Nelsen, RB 2003, 'Properties and applications of copulas: A brief survey', Proceedings of the 
first brazilian conference on statistical modeling in insurance and finance, Citeseer, pp. 10-28. 

Nguyen-Huy, T, Deo, RC, An-Vo, D-A, et al. 2017, 'Copula-statistical precipitation forecasting 
model in Australia’s agro-ecological zones', Agricultural Water Management, vol. 191, pp. 
153-72. 

Nguyen-Huy, T, Deo, RC, Mushtaq, S, et al. 2018, 'Modeling the joint influence of multiple 
synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based 
approach', European Journal of Agronomy, vol. 98, pp. 65-81. 

Nti, IK, Teimeh, M, Nyarko-Boateng, O, et al. 2020, 'Electricity load forecasting: a systematic 
review', Journal of Electrical Systems and Information Technology, vol. 7, no. 1, pp. 1-19. 



79 
 

Nwankwo, O & Njogo, B 2013, 'The effect of electricity supply on industrial production within 
the Nigerian economy (1970–2010)', Journal of Energy Technologies and Policy, vol. 3, no. 4, 
pp. 34-42. 

Odhiambo, NM 2009, 'Electricity consumption and economic growth in South Africa: A 
trivariate causality test', Energy Economics, vol. 31, no. 5, pp. 635-40. 

Pai, P-F & Hong, W-C 2005, 'Forecasting regional electricity load based on recurrent support 
vector machines with genetic algorithms', Electric Power Systems Research, vol. 74, no. 3, pp. 
417-25. 

Papadopoulos, S & Karakatsanis, I 2015, 'Short-term electricity load forecasting using time 
series and ensemble learning methods', 2015 IEEE Power and Energy Conference at Illinois 
(PECI),  pp. 1-6. 

Papalexopoulos, AD, Hao, S & Peng, T-M 1994, 'An implementation of a neural network based 
load forecasting model for the EMS', IEEE Transactions on Power Systems, vol. 9, no. 4, pp. 
1956-62. 

Parent, E, Favre, A-C, Bernier, J, et al. 2014, 'Copula models for frequency analysis what can 
be learned from a Bayesian perspective?', Advances in Water Resources, vol. 63, pp. 91-103. 

Pitt, M, Chan, D & Kohn, R 2006, 'Efficient Bayesian inference for Gaussian copula regression 
models', Biometrika, vol. 93, no. 3, pp. 537-54. 

Ribatet, M & Sedki, M 2013, 'Extreme value copulas and max-stable processes', Journal de la 
Société Française de Statistique, vol. 154, no. 1, pp. 138-50. 

Sadegh, M, Ragno, E & AghaKouchak, A 2017, 'Multivariate C opula A nalysis T oolbox 
(MvCAT): describing dependence and underlying uncertainty using a B ayesian framework', 
Water Resources Research, vol. 53, no. 6, pp. 5166-83. 

Salcedo-Sanz, S, Rojo-Alvarez, JL, Martinez-Ramon, M, et al. 2014, 'Support vector machines 
in engineering: an overview', Wiley Interdisciplinary Reviews-Data Mining and Knowledge 
Discovery, vol. 4, no. 3, pp. 234-67. 

Salvadori, G 2003, 'A generalized pareto intensity duration model of storm rainfall exploiting 
2-copulas', J Geophys Res, vol. 108, no. 2, p. 4067. 

Salvadori, G & De Michele, C 2004, 'Frequency analysis via copulas: Theoretical aspects and 
applications to hydrological events', Water Resources Research, vol. 40, no. 12. 

Schwarz, G 1978, 'Estimating the dimension of a model', The annals of statistics, vol. 6, no. 2, 
pp. 461-4. 

Sharda, V, Prasher, S, Patel, R, et al. 2008, 'Performance of Multivariate Adaptive Regression 
Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited 
data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision 
d'écoulement au sein de micro-bassins versants Himalayens d'altitudes intermédiaires avec peu 
de données', Hydrological sciences journal, vol. 53, no. 6, pp. 1165-75. 



80 
 

Sheikh, SK & Unde, M 2012, 'Short term load forecasting using ann technique', International 
Journal of Engineering Sciences & Emerging Technologies, vol. 1, no. 2, pp. 97-107. 

Sigauke, C & Chikobvu, D 2010, 'Daily peak electricity load forecasting in South Africa using 
a multivariate non-parametric regression approach', ORiON, vol. 26, no. 2. 

Singh, AK, Ibraheem, SK, Muazzam, M, et al. 2013, 'An overview of electricity demand 
forecasting techniques', Network and Complex Systems, vol. 3, no. 3, pp. 38-48. 

Sivapragasam, C & Liong, S-Y 2005, 'Flow categorization model for improving forecasting', 
Hydrology Research, vol. 36, no. 1, pp. 37-48. 

Sklar, A 1996, 'Random variables, distribution functions, and copulas: a personal look 
backward and forward', Lecture notes-monograph series, pp. 1-14. 

Sklar, M 1959, 'Fonctions de repartition an dimensions et leurs marges', Publ. inst. statist. univ. 
Paris, vol. 8, pp. 229-31. 

Smith, MS, Gan, Q & Kohn, RJ 2012, 'Modelling dependence using skew t copulas: Bayesian 
inference and applications', Journal of Applied Econometrics, vol. 27, no. 3, pp. 500-22. 

Smola, AJ & Schölkopf, B 1998, Learning with kernels, vol. 4, Citeseer. 

Sozen, A & Akcayol, MA 2004, 'Modelling (using artificial neural-networks) the performance 
parameters of a solar-driven ejector-absorption cycle', Applied Energy, vol. 79, no. 3, pp. 309-
25. 

Stern, DI, Burke, PJ & Bruns, SB 2019, 'The impact of electricity on economic development: 
A macroeconomic perspective'. 

Suganthi, L & Jagadeesan, T 1992, 'Energy substitution methodology for optimum demand 
variation using Delphi technique', International Journal of Energy Research, vol. 16, no. 9, pp. 
917-28. 

Suganthi, L & Samuel, AA 2012, 'Energy models for demand forecasting—A review', 
Renewable and Sustainable Energy Reviews, vol. 16, no. 2, pp. 1223-40. 

Taylor, JW & Buizza, R 2002, 'Neural network load forecasting with weather ensemble 
predictions', IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 626-32. 

Thyer, M, Renard, B, Kavetski, D, et al. 2009, 'Critical evaluation of parameter consistency 
and predictive uncertainty in hydrological modeling: A case study using Bayesian total error 
analysis', Water Resources Research, vol. 45, no. 12, pp. 1-22. 

Toman, MA & Jemelkova, B 2003, 'Energy and Economic Development: An Assessment of 
the State of Knowledge', Energy Journal, vol. 24, no. 4, pp. 93-112. 

Tosunoglu, F & Singh, VP 2018, 'Multivariate modeling of annual instantaneous maximum 
flows using copulas', Journal of hydrologic engineering, vol. 23, no. 3, p. 04018003. 

Tosunoglu, F, Gürbüz, F & İspirli, MN 2020, 'Multivariate modeling of flood characteristics 
using Vine copulas', Environmental Earth Sciences, vol. 79, no. 19, pp. 1-21. 



81 
 

Türkay, BE & Demren, D 2011, 'Electrical load forecasting using support vector machines', 
2011 7th International Conference on Electrical and Electronics Engineering (ELECO), IEEE, 
pp. I-49-I-53. 

Vernieuwe, H, Vandenberghe, S, De Baets, B, et al. 2015, 'A continuous rainfall model based 
on vine copulas', Hydrology and Earth System Sciences, vol. 19, no. 6, pp. 2685-99. 

Wang, AJ & Ramsay, B 1998, 'A neural network based estimator for electricity spot-pricing 
with particular reference to weekend and public holidays', Neurocomputing, vol. 23, no. 1-3, 
pp. 47-57. 

Willmott, CJ 1981, 'On the validation of models', Physical Geography, vol. 2, no. 2, pp. 184-
94. 

Willmott, CJ 1982, 'Some comments on the evaluation of model performance', Bulletin of the 
American Meteorological Society, vol. 63, no. 11, pp. 1309-13. 

Willmott, CJ 1984, 'On the evaluation of model performance in physical geography', in Spatial 
statistics and models, Springer, pp. 443-60. 

Willmott, CJ, Matsuura, K & Robeson, SM 2009, 'Ambiguities inherent in sums-of-squares-
based error statistics', Atmospheric Environment, vol. 43, no. 3, pp. 749-52. 

Willmott, CJ, Robeson, SM & Matsuura, K 2012, 'A refined index of model performance', 
International Journal of Climatology, vol. 32, no. 13, pp. 2088-94. 

Wu, J, Cui, Z, Chen, Y, et al. 2019, 'A new hybrid model to predict the electrical load in five 
states of Australia', Energy, vol. 166, pp. 598-609. 

Xydas, E, Marmaras, C, Cipcigan, LM, et al. 2016, 'A data-driven approach for characterising 
the charging demand of electric vehicles: A UK case study', Applied Energy, vol. 162, pp. 763-
71. 

Yang, J, Rivard, H & Zmeureanu, R 2005a, 'On-line building energy prediction using adaptive 
artificial neural networks'. 

Yang, J, Rivard, H & Zmeureanu, R 2005b, 'Building energy prediction with adaptive artificial 
neural networks', Ninth International IBPSA Conference Montréal,  pp. 15-8. 

Yu, P-S, Chen, S-T & Chang, IF 2006, 'Support vector regression for real-time flood stage 
forecasting', Journal of Hydrology, vol. 328, no. 3, pp. 704-16. 

Zareipour, H, Bhattacharya, K & Canizares, CA 2006a, 'Forecasting the hourly Ontario energy 
price by multivariate adaptive regression splines', 2006 IEEE Power Engineering Society 
General Meeting: Proceedings of the 2006 IEEE Power Engineering Society General Meeting 
IEEE, pp. 1-7.  

Zareipour, H, Bhattacharya, K & Canizares, CA 2006b, 'Forecasting the hourly Ontario energy 
price by multivariate adaptive regression splines', 2006 IEEE Power Engineering Society 
General Meeting, IEEE, p. 7 pp. 



82 
 

Zhang, R, Dong, ZY, Xu, Y, et al. 2013, 'Short-term load forecasting of Australian National 
Electricity Market by an ensemble model of extreme learning machine', Iet Generation 
Transmission & Distribution, vol. 7, no. 4, pp. 391-7. 

Ziel, F & Steinert, R 2018, 'Probabilistic mid- and long-term electricity price forecasting', 
Renewable & Sustainable Energy Reviews, vol. 94, pp. 251-66. 


