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This paper considers estimation of the regression vector of the multiple
regression model with elliptically symmetric contoured errors. The generalized
least square (GLS), restricted GLS and preliminary test (PT) estimators for
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1 Introduction

Multiple regression model is arguably the most widely used statistical tool applied in

almost every discipline of modern time. The estimation of parameters of the multiple

regression model is a common interest to many users. Often the properties of the
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estimators are of prime concern. Selection of any specific statistical property of any

estimator often depends on the objective of the study. The choice of any particular

estimator may very well be determined by the aim of the end users. It is well known

that the ordinary least squares estimators are best linear unbiased. However, if the

objective of any study is to minimize some specific risk function then other types of

estimators perform better than the ordinary least squares estimator. In recent years

there has been growing interest to estimate parameters under different loss functions

(cf. Saleh 2006). This paper proposes estimators under the multiparameter linex

(MLINEX) loss function. It provides the dominance order of the generalized least

squares (GLS), restricted GLS (RGLS) and preliminary test (PT) estimators based

on the MLINEX loss.

Consider the multiple regression model

y = Xβ + e, (1.1)

where y is an (n× 1) vector of observations, X is an (n× p) matrix of full rank p,

β = (β1, · · · , βp)
′ is the vector of p parameters and e = (e1, · · · , en)′ is the n × 1

error vector distributed as elliptically contoured distribution (ECD).

The ECD of the error vector e can be denoted by e ∼ En(0, σ2V, g), and its density

function is written as

f(e) = Kn|σ2V |−1/2g

(
e′V −1e

2σ2

)
, (1.2)

where Kn is the normalizing constant, V is known positive definite (p.d.) scale

matrix, σ2 > 0 is unknown and g is an unknown nonnegative real valued function.

Also the characteristic function of e is as follows

Φe(t) = Ψ

(
t′V t

2σ2

)
, (1.3)

for Ψ : [0,∞) → <; where g and Ψ determine each other for any specified mem-

ber of the family of distributions. See Fang et al. (1990) and Gupta and Varga

(1993) for more details. Some of the well known members of the multivariate spher-

ically/elliptically contoured family of distributions are the multivariate normal, Kotz

Type, Pearson Type VII, Multivariate t, Multivariate Cauchy, Pearson Type II, Lo-

gistic, Multivariate Bassel, Scale mixture and Stable laws.

Assume that in addition to the sample information y in the model (1.1), that

information also exists in the form of q independent linear hypotheses about the
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unknown vector parameter β where q ≤ p. These general restriction can be shown

as Hβ = h, where H is a q × p known hypothesis design matrix of rank q and h is

a q × 1 vector of prespecified hypothetical values.

In this paper, the generalized least squares (GLS), restricted generalized least

squares (RGLS) under the constraint Hβ = h and preliminary test (PT) estimators

are obtained for the regression vector parameter β when the p.d. scale matrix V is

known and σ2 is unknown in the model (1.2). Also, under the multivariate linear

exponential (MLINEX) loss function, dominance orders of the three generalized

estimators have been given. Unlike the quadratic error loss function, the linex

loss function assigns unequal weights to the underestimation and overestimation by

introducing a shape parameter. For small values of the shape parameter the linex

loss function is approximately symmetric and not much different from the quadratic

loss function. The linex loss function is more general than the quadratic error loss

function as the latter is a special case of the former.

2 Estimation of Regression Vector

Given classical conditions, it is well known that for known p.d. scale matrix V , the

GLS estimator of β is

β̂ = (X ′V −1X)−1X ′V −1y. (2.1)

Also the least squares estimator of σ2 is

σ̂2 =
(y −Xβ̂)′V −1(y −Xβ̂)

n
. (2.2)

It follows that

S2 =
nσ̂2

n− p
(2.3)

is an unbiased estimator of σ2
e = −2σ2Ψ′(0).

Obtaining GLS estimator of β under the constraint H0 : Hβ = h, using method

of Lagrangian multipliers the RGLS estimator of β, subject to the linear restrictions

H0 : Hβ = h as β̃, is

β̃ = β̂ − (X ′V −1X)−1H ′[H(X ′V −1X)−1H ′]−1(Hβ̂ − h). (2.4)
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See Ravishanker and Dey (2002) for detailed related discussions in this approach.

Consequently

S2
R =

(y − β̃)′V −1(y − β̃)

n− p + q
(2.5)

is an unbiased estimator for σ2
e under Hβ = h.

Set G1 = (X ′V −1X)−1 and G2 = (HG1H
′)−1, then E(β̃) = β−G1H

′G2(Hβ−h);

which is equal to β under Hβ = h.

In order to define the preliminary test estimator of β, first we need obtain the

test statistic for testing H0 : Hβ = h. So, we represent the following Theorem from

Chu (1973) which is used in obtaining the test statistic.

Theorem 1. If z is an n-dimensional elliptically contoured random vector with

mean equal to µ, scale matrix σ2V and density function h(z), then, under some

regularity conditions, there exists a scalar function w(t) defined on (0,∞) such that

h(z) =

∫ ∞

0

w(t)φz|t(µ, t−1σ2V )dt, (2.6)

where φz|t(µ, t−1σ2V ) denotes the density function of Nn(µ, t−1σ2V ), and

w(t) = (2π)n/2|σ2V |1/2t−n/2L−1(f(s)), (2.7)

in which L−1(f(s)) denotes the inverse Laplace transform of f(s) with f(s) = h(z)

when s = z′V −1z
2σ2 . For details on the properties of Laplace transform and its inverse

see Gradshteyn and Ryzhik (1980).

On integrating h(z) over <n, w(t) integrates to 1. Thus for nonnegative function

w(t), it is a density. Some explicit representations of h(.) and w(t) for s = x′V −1x/2

are given in the Table below from Cheong (1999).

Distribution h(s) w(t)

Multivariate Normal |V |−1/2e−s

(2π)n/2 δ(t)

Multivariate Pearson Γ(m)|V |−1/2

(qπ)n/2Γ(m−n/2)
tm−n/2−1e−qt/2

(q/2)n/2−mΓ(m−n/2)

Type V II ×(1 + 2s/q)−m

Multivariate Student-t νν/2Γ((ν+n)/2)|V |−1/2

πn/2Γ(ν/2)

ν(νt/2)ν/2−1e−νt/2

2Γ(ν/2)

with ν d.f. ×(ν + 2s)−(ν+n)/2

Generalized Slash νs−n/2−ν |V |−1/2

(2π)n/2 νtν−1

×[Γ(n/2 + ν)− Γ(n/2 + ν, s)]
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where δ(.) is the unit impulse function or the Dirac delta function with the fol-

lowing property

∫ ∞

0

δ(t)dt = 1. (2.8)

See Spiegel (1989) for more details.

The following Theorem gives the test statistic to test Hβ = h and the sampling

distribution of the statistic.

Theorem 2. Let ℘ is a set in the space of (β, V ), V > 0, such that if (β, V ) ∈ ℘

then (β, cV ) ∈ ℘ for all c > 0. Assume in the model (1.1), e ∼ En(0, σ2V, g). Further

suppose g is such that g(y′y) is a density in <n and tn/2g(t) has one finite positive

maximum tg. Then the test statistic for testing the hypothesis H0 : Hβ = h is

ζ =
(Hβ̂ − h)′G2(Hβ̂ − h)

qS2
, (2.9)

which has the following density function:

f(ζ) =
∞∑

r=0

(
q

n− p
)q/2+r 2n−1πn/2|σ2V |1/2Γ(n/2 + r − 1)Γ( q+n−p

2
+ r)

∆n/2−1Γ(r + 1)Γ(q/2 + r)Γ(n−p
2

)

×ζq/2+r−1L−1 (h(s))

(1 + q
n−p

ζ)
q+n−p

2
+r

, (2.10)

where h(s) = f(e) for s = e′V −1e
2σ2 , and f(e) is given by (1.2).

Proof. Let ω = {β : β ∈ Ep, Hβ = h, σ2 > 0} and Ω = {β : β ∈ Ep, σ2 > 0}.
Then using Corollary 1 from Anderson et al. (1986) the likelihood ratio test (LRT)

criterion for testing H0 : Hβ = h is

ζ =
|σ̂2V |1/2

|σ̃2V |1/2

=
(Hβ̂ − h)′G2(Hβ̂ − h)

qS2
. (2.11)

In order to obtain the distribution of ζ, first assume in the linear model (1.1),

e ∼ Nn(0, σ2t−1V ), then direct computations lead to the test statistic ζ follows the

non-central F distribution with q and (n− p) degrees of freedom and non-centrality

parameter t∆ = θ/σ2 where θ = (Hβ−h)′G2(Hβ−h), denoted by Fq,n−p,t∆(·). Then

applying Theorem 1 for the case in which e ∼ En(0, σ2V, g) in the model (1.1), using
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weight function w(t) given by (2.7), and Theorem 1.27 from Rudin (1987), we can

obtain the density function of ζ as follows

fq,n−p(ζ; ∆, σ2V ) =

∫ ∞

0

w(t)Fq,n−p,t∆(ζ) dt

=

∫ ∞

0

(2π)n/2|σ2V |1/2t−n/2L−1(h(s))

×
∞∑

r=0

[q/(n− p)]q/2+rΓ( q+n−p
2

+ r)( t∆
2

)re−t∆/2ζq/2+r−1

Γ(r + 1)Γ(q/2 + r)Γ(n−p
2

)(1 + q
n−p

ζ)
q+n−p

2
+r

dt

=
∞∑

r=0

(
q

n− p

)q/2+r 2n−1πn/2|σ2V |1/2Γ(n/2 + r − 1)Γ( q+n−p
2

+ r)

∆n/2−1Γ(r + 1)Γ(q/2 + r)Γ(n−p
2

)

×ζq/2+r−1L−1(h(s))

(1 + q
n−p

ζ)
q+n−p

2
+r

. (2.12)

Now following Bancroft (1944), we define the preliminary test estimator (PTE) of

β as a convex combination of β̂ and β̃ by

β̂PT = β̃ + [1− I(ζ ≤ Fα)](β̂ − β̃), (2.13)

where I(A) is the indicator of the set A and Fα is the upper 100α percentile of

Fq,n−p,0.

The PTE has the disadvantage that it depends on α (0 < α < 1), the level of

significance and also it yields the extreme results, namely β̂ or β̃ depending on the

outcome of the test.

3 Bias and Risk Analysis

In such conditions where negative bias and positive bias of the same magnitude

have different importance, symmetric loss functions are improper. Also in practical

situations, overestimating and underestimating of the same magnitude often have

different economic and physical implications and the appropriate loss function is

asymmetric. In these conditions for an asymmetric loss function, consider the fol-

lowing multiparameter linear exponential (MLINEX) loss function with the scale

parameter b and the p-vector shape parameter a

L(β∗, β) = b{ea′(β∗−β) − a′(β∗ − β)− 1}, (3.1)

where β∗ is an estimator of vector parameter β.

For more details on the properties of the loss function under study, see Zellner (1986).
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Several authors have considered asymmetric loss functions in their studies; for more

discussion in this area with different approaches see Ferguson (1967), Varian (1975),

Parsian (1990) and Parsian and Kirmani (2002).

In this section, we evaluate the bias and risk function of the three different underlying

estimators using the risk function associated with (3.1).

Let µ = G1H
′G2(h−Hβ) then it follows the bias of LS and RLS estimators can be

given respectively by

b1 = E[β̂ − β] = 0,

b2 = E[β̃ − β] = µ. (3.2)

By (2.2) and (2.13)

b3 = E[β̂PT − β]

= E[β̂ − β]− E[I(ζ ≤ Fα)(β̂ − β̃)]

= −G1H
′G1/2

2 E[I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)]. (3.3)

Let u = G
1/2
2 (Hβ̂ − h), then under normal theory u/t−1/2σ ∼ Nq(G

1/2
2 (Hβ −

h)/t−1/2σ, Iq), u′u ∼ t−1σ2χ2
q(t∆) and using Theorem 4.1 of Judge and Bock (1978)

we have

E

[
I

(
u′u

qS/(n− p)
≤ Fα

)
G

1/2
2 (Hβ̂ − h)

]
= G

1/2
2 (Hβ − h)E[I(Fq+2,n−p,t∆ ≤ Fα)]

(3.4)

Now applying Theorem 1 to (3.4) and using Theorem 1.27 from Rudin (1987), we

get

E[I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)] = G

1/2
2 (Hβ̂ − h)

∫ ∞

0

w(t)P (Fq+2,n−p,t∆ ≤ Fα) dt

= G
1/2
2 (Hβ̂ − h)ℵq+2,n−p(∆, σ2V, Fα), (3.5)

where

ℵq+2,n−p(∆, σ2V, x) =
∞∑

r=0

2n−1πn/2Γ(n/2 + r − 1)|σ2V |1/2L−1(f(ζ))

Γ(r + 1)∆n/2−1

×P

(
Fq+2r,n−p ≤ qx

q + 2r

)
. (3.6)

Then using (3.3) and (3.5) we obtain

b3 = −µℵq+2,n−p(∆, σ2V, Fα). (3.7)
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Now we calculate risks of estimators β̂, β̃ and β̂PT . Using (2.1) the risk of the GLS

estimator under the MLINEX loss is

R1(β̂; β) = E[b{ea′(β̂−β) − a′(β̂ − β)− 1}]
= bE[ea′(β̂−β) − 1]. (3.8)

But applying Theorem 1 to y = (β̂ − β), we get

E(ea′y) =

∫ +∞

−∞
ea′y

∫ ∞

0

w(t)φy(0, t
−1σ2G1) dt dy

=

∫ ∞

0

w(t)Mx(a) dt, (3.9)

where

w(t) = (2π)p/2|σ2G1|1/2t−p/2L−1(f(s)), (3.10)

with f(s) = g(y) when s =
y′G−1

1 y

2σ2 and MX(·) is the moment generating function of

X in which X ∼ Np(0, t
−1σ2G1).

Therefore using (3.8) and (3.9) we get

R1(β̂; β) = b

[ ∫ ∞

0

w(t) exp

(
σ2a′G1a

2t

)
dt− 1

]
. (3.11)

Similarly the risk of the RGLS estimator under the MLINEX loss is

R2(β̃; β) = E[b{ea′(eβ−β) − a′(β̃ − β)− 1}]
= b

[ ∫ ∞

0

w(t) exp

(
a′µ +

σ2a′G3a

2t

)
dt− a′µ− 1

]

= b

[
ea′µ

∫ ∞

0

w(t) exp

(
σ2a′G3a

2t

)
dt− a′µ− 1

]

= b

[
ea′µ

∫ ∞

0

w(t) exp

{
σ2a′G1a

2t
− σ2tr[WG1H

′G2HG1]

2t

}

×dt− a′µ− 1

]
, (3.12)

where W = aa′ and tr(·) stands for trace operator.

Now consider that R = G
1/2
1 H ′G2HG

1/2
1 is a symmetric idempotent matrix of rank

q ≤ p. Thus, there exists an orthogonal matrix Q (Q′Q = Ip) (Schott, 2005) such

that

QRQ′ =

[
Iq 0
0 0

]
, (3.13)

QG
1/2
1 WG

1/2
1 Q′ =

[
A11 A12

A21 A22

]
= A. (3.14)
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The matrices A11 and A22 are of order q and p− q respectively.

Now, we can write

tr{W [G1H
′G2HG1]} = tr{QG

1/2
1 WG

1/2
1 Q′QRQ′}

= tr

{[
A11 A12

A21 A22

] [
Iq 0
0 0

] }

= tr(A11). (3.15)

Therefore by (3.12) and (3.15), we get

R(β̃; β) = b

[
ea′µ

∫ ∞

0

w(t) exp

{
σ2a′G1a

2t
− σ2tr(A11)

2t

}
dt− a′µ− 1

]
.(3.16)

From the definition in (3.1), the risk function of the PTE under MLINEX loss

becomes

R3(β
PT ; β) = E[b{ea′(βPT−β) − a′(βPT − β)− 1}]

= bE{exp(a′[β̂ − I(ζ ≤ Fα)(β̂ − β̃)− β])

−a′[β̂ − I(ζ ≤ Fα)(β̂ − β̃)− β]− 1}
= bE{exp(a′[β̂ − β]− a′G1H

′G1/2
2 [I(ζ ≤ Fα)G

1/2
2 (Hβ̂ − h)])

−a′[β̂ − β] + a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)]− 1}.

= bE{exp(a′[β̂ − β]− a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)])}

−ba′µℵq+2,n−p(∆, σ2V, Fα)− b, (3.17)

where ℵq+2,n−p(∆, σ2V, Fα) is given by (3.6). Note that the expression E{exp(a′[β̂−
β]−a′G1H

′G1/2
2 [I(ζ ≤ χα)G

1/2
2 (Hβ̂−h)])} in the risk function of β̂PT can be solved

via numerical computations.

4 Comparison of Risks

In this section, analyzing the risks of the estimators under study, the dominance

order of β̂ and β̃, under special conditions is proposed. Also making condition on

the shape parameter of the MLINEX loss function, it is shown that under some

regular conditions β̃ performs better than β̂.

Now, note that for any t ∈ (0,∞), 0 < exp[− t−1σ2tr(A11)
2

] < 1; then direct computa-

tions lead to

b[−a′µ− 1] < R(β̃, β) < b[ea′µ(R(β̂, β)/b + 1)− a′µ− 1]. (4.1)
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Therefore, under H0 because µ = 0, β̃ performs better, having smaller risk, than β̂

(β̃ Â β̂). Also for such vector shape parameter a for which a′µ = 0, β̃ Â β̂.

Define random variable

w = QG
−1/2
1 β̂ −QG

−1/2
1 H ′G2h, (4.2)

it can be considered

η = E(w) = QG
−1/2
1 β −QG

1/2
1 H ′G2h. (4.3)

Partitioning the vectors w = (w′
1, w

′
2)
′ and η = (η′1, η

′
2)
′ where w1 and w2 are inde-

pendent sub-vector of order q and p− q respectively, we obtain

β̂ − β = G
1/2
1 Q′(w − η). (4.4)

Now, for c = R(β̂, β)/b + 1 define

l(a′µ) = cea′µ − a′µ− 1. (4.5)

Clearly l(a′µ) attains its minimum at a′µ = −lnc. In other words, we have

a′µ = ±(a′µµ′a)1/2

= ±tr1/2(µµ′W )

= ±(µ′Wµ)1/2

= ±[(Hβ − h)′G2HG1WG1H
′G2(Hβ − h)]1/2

= ±(η′1A11η1)
1/2. (4.6)

By Theorem A.2.4 from Anderson (2003), and using (4.3) for θ = η′1η1 we have

θch1(A11) ≤ η′1A11η1 ≤ θchq(A11),

or

[θch1(A11)]
1/2 ≤ a′µ ≤ [θchq(A11)]

1/2, (4.7)

or

−[θchq(A11)]
1/2 ≤ a′µ ≤ −[θch1(A11)]

1/2, (4.8)

where ch1(A11) and chq(A11) are the minimum and maximum eigenvalues of A11

respectively.

Using (4.1) and (4.8) we get the lower bound for the risk of β̃ as

R2(β̃, β) > b[(θch1(A11))
1/2 − 1]. (4.9)
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Also, for a special value of the shape parameter in MLINEX loss function, say

W = G−1
1 = X ′V −1X, we get R2(β̃, β) > b[θ1/2 − 1].

Using (4.7) and the minimum of the equation (4.5), we get l(−lnc) ≤ l([θchq(A11)]
1/2).

Therefore solving the following inequality numerically, we can find the upper bound

for R1(β̂, β).

ln c− ce
√

θchq(A11) +
√

θchq(A11) + 1 ≤ 0. (4.10)

Theorem 3. Under the conditions in which 0 ≤ a′µ ≤ a′G4(β̂ − β), for G4 =

G1H
′G2H, β̂PT º β̂.

Proof: Using (3.11), (3.17) and Cauchy-Schwartz inequality (Chung, 2001), we

get

d1 = R3(β̂
PT ; β)−R1(β̂; β)

= bE{exp(a′[β̂ − β]− a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)])}

−ba′µℵq+2,n−p(∆, σ2V, Fα)− b

∫ ∞

0

w(t) exp

(
σ2a′G1a

2t

)
dt

≤ bEea′(β̂−β) E exp{−a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)]}

−ba′µℵq+2,n−p(∆, σ2V, Fα)− b

∫ ∞

0

w(t) exp

(
σ2a′G1a

2t

)
dt

= b[E exp{−a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)]} − 1]

×
∫ ∞

0

w(t) exp

(
σ2a′G1a

2t

)
dt− ba′µℵq+2,n−p(∆, σ2V, Fα)

= b[E exp{−I(ζ ≤ Fα)a′G4(β̂ − β) + I(ζ ≤ Fα)a′µ]} − 1]

×
∫ ∞

0

w(t) exp

(
σ2a′G1a

2t

)
dt− ba′µℵq+2,n−p(∆, σ2V, Fα). (4.11)

If 0 ≤ a′µ ≤ a′G4(β̂−β), then I(ζ ≤ Fα)[a′µ−a′G4(β̂−β)] ≤ 0; which leads d1 ≤ 0.

Theorem 4. Under one of the following conditions and tr(WG1) ≤ tr(A11), β̃ º
β̂PT .

(i) : 1 ≤ ℵq+2,n−p(∆, σ2V, Fα) and a′µ ≥ 0, (4.12)

(ii) : 0 ≤ ℵq+2,n−p(∆, σ2V, Fα) ≤ 1 and a′µ ≤ 0. (4.13)

Proof: Using Theorem 1, (3.16) and (3.17) and Jensen’s inequality (Chung,
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2001), we have

d2 = R(β̂PT ; β)−R(β̃; β)

= bE{exp(a′[β̂ − β]− a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)])}

−ba′µℵq+2,n−p(∆, σ2V, Fα)− bea′µ
∫ ∞

0

w(t) exp

(
σ2a′G1a

2t
− σ2tr(A11)

2t

)
dt + ba′µ

≥ b exp{E[a′[β̂ − β]− a′G1H
′G1/2

2 [I(ζ ≤ Fα)G
1/2
2 (Hβ̂ − h)]]}

−bea′µ
∫ ∞

0

w(t) exp

(
σ2a′G1a

2t
− σ2tr(A11)

2t

)
dt

−ba′µℵq+2,n−p(∆, σ2V, Fα) + ba′µ

≥ b{exp[a′µℵq+2,n−p(∆, σ2V, Fα)]− a′µℵq+2,n−p(∆, σ2V, Fα)}
+ba′µ− bea′µ

∫ ∞

0

w(t) exp

(
σ2a′G1a

2t
− σ2tr(A11)

2t

)
dt. (4.14)

Note that for any t ∈ (0,∞) and a′G1a ≤ tr(A11), 0 < exp[−σ2(a′G1a−tr(A11))
2t

] < 1,

therefore by (4.14), we obtain

d2 ≥ b

[
{exp[a′µℵq+2,n−p(∆, σ2V, Fα)]− a′µℵq+2,n−p(∆, σ2V, Fα)}

+a′µ− ea′µ
∫ ∞

0

w(t)dt

]

= b

{
ea′µℵq+2,n−p(∆,σ2V,Fα) − ea′µ + a′µ− a′µℵq+2,n−p(∆, σ2V, Fα)

}
.

Now consider f(x) = ex − x is an increasing function for all positive values of x.

Therefore under the conditions in which ℵq+2,n−p(∆, σ2V, Fα) ≥ 1 and a′µ ≥ 0, or

0 ≤ ℵq+2,n−p(∆, σ2V, Fα) ≤ 1 and a′µ ≤ 0, we have d2 ≥ 0.

Remarks:

1. If W = X ′V −1X, then by (3.15), tr(WG1) = tr(A11) = q. Thus the conditions

of Theorem 4, reduce to (4.12) or (4.13) for β̃ dominating β̂PT . Further, for

the multivariate normal distribution, because of (2.8),

ℵq+2,n−p(∆, σ2V, Fα) =

∫ ∞

0

δ(t)P (Fq+2,n−p,t∆ ≤ Fα) dt

≤
∫ ∞

0

δ(t) dt = 1,

the conditions of Theorem 4 reduce to that a′µ ≤ 0.

2. Under the null hypothesis H0 : Hβ = h, using Theorems 3 and 4, the domi-

nance order of β̂, β̃ and β̂PT is as follows.

β̃ º β̂PT º β̂.

12



Acknowledgments

We wish to thank Prof. A. K. Md. E. Saleh (Carleton University, Ottawa) for his

valuable comments. Partial support from the ”Ordered and Spatial Data Center of

Excellence” of Ferdowsi University of Mashhad, Iran is acknowledged.

References

Anderson, T. W. (2003). An introduction to multivariate statistical analysis, 3rd
ed., John Wiley and Sons, New York.

Anderson, T. W., Fang, K. T. and Hsu, H. (1986). Maximum-likelihood estimates
and likelihood-ratio criteria for multivariate elliptically contoured distributions,
The Canadian J. Statist., 14, 55–59.

Bancroft, T. A. (1944). On biases in estimation due to the use of preliminary test
of significance, Annals of Math. Stat., 15, 195–204.

Cheong, Y.-H. (1999). The distribution of quadratic forms in elliptically contoured
random vectors, Ph.D. Thesis, The University of Western Ontario, London.

Chu, K. C. (1973). Estimation and decision for linear systems with elliptically
random process. IEEE Transactions on Automatic Control, 18, 499–505.

Chung, K. L. (2001). A course in probability theory, 3rd edition, Academic Press,
USA.

Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related
Distributions, Chapman and Hall, London, New York.

Ferguson, T. S. (1967). Mathematical statistics: A decision theoretic approach,
Academic Press, New York.

Gradshteyn, I. S. and Rychik, I. M. (1980). Table of Integrals, Series and Products,
Corrected and Enlarged Edition, Academic Press, New York.

Gupta, A. K. and Varga, T. (1993). Elliptically Contoured Models in Statistics,
Kluwer Academic Press.

Judge, W. and Bock, M. E. (1978). The statistical implication of pre-test and Stein-
rule estimators in Econometrics, North-Holland, New York.

Ravishanker, N. and Dey, D. K. (2002). A first course in linear model theory,
Chapman and Hall/CRC.

Parsian, A. (1990). On the Admissibility of an Estimator of a Normal Mean Vector
Under a LINEX Loss Function, Annals of the Institute of Statistical Mathemat-
ics, 42(4): 657-669.

Parsian, A., and Kirmani, S. N. U. A. (2002). Estimation under LINEX loss func-
tion. Handbook of applied econometrics and statistical inference, Statistics Text-
books Mono-graphs, 53-76.

Rudin, W. (1987). Real and complex analysis, 3rd ed., McGraw-Hill, Singapore.
Saleh, A. K. Md. E. (2006). Theory of Preliminary Test and Stein-Type Estimation

with Applications, Wiley, New York.
Schott, J. R. (2005). Matrix Analysis for Statistics, John Wiley, New York.
Spiegel, M. R. (1989). Theory and Problem of Laplace Transformations, 3rd edition,

Schaum’s Outline Series, McGraw-Hill, Singapore.
Varian, H. R. (1975). A Bayesian approach to real state assessment, Studies in

Bayesian econometrics and statistics in honor of Leonard J. Savage, (eds. S.
E. Fienberg and A. Zellner), 195–208, North Holland, Amsterdam.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss func-
tion, J. Amer. Statist. Assoc., 81, 446-451.

13


