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Abstract
Aim: Climate change has increased the risk of biological invasions, particularly by in-
creasing the climatically suitable regions for invasive alien species. The distribution of 
many native and invasive species has been predicted to change under future climate. 
We performed species distribution modelling of invasive alien plants (IAPs) to iden-
tify hotspots under current and future climate scenarios in Nepal, a country ranked 
among the most vulnerable countries to biological invasions and climate change in 
the world.
Location: Nepal.
Methods: We predicted climatically suitable niches of 24 out of the total 26 reported 
IAPs in Nepal under current and future climate (2050 for RCP 6.0) using an ensem-
ble of species distribution models. We also conducted hotspot analysis to highlight 
the geographic hotspots for IAPs in different climatic zones, land cover, ecoregions, 
physiography and federal states.
Results: Under future climate, climatically suitable regions for 75% of IAPs will ex-
pand in contrast to a contraction of the climatically suitable regions for the remaining 
25% of the IAPs. A high proportion of the modelled suitable niches of IAPs occurred 
on agricultural lands followed by forests. In aggregation, both extent and intensity 
(invasion hotspots) of the climatically suitable regions for IAPs will increase in Nepal 
under future climate scenarios. The invasion hotspots will expand towards the high‐
elevation mountainous regions. In these regions, land use is rapidly transforming due 
to the development of infrastructure and expansion of tourism and trade.
Main conclusions: Negative impacts on livelihood, biodiversity and ecosystem ser-
vices, as well as economic loss caused by IAPs in the future, may be amplified if 
preventive and control measures are not immediately initiated. Therefore, the man-
agement of IAPs in Nepal should account for the vulnerability of climate change‐in-
duced biological invasions into new areas, primarily in the mountains.
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1  | INTRODUC TION

Biological invasions and climate change are two major drivers of 
biodiversity loss and ecosystem service change worldwide (Pecl et 
al., 2009; Urban, 2015; Vilà & Hulme, 2017; Walther et al., 2009). 
Invasive alien plants (IAPs; sensu Pyšek et al., 2014) pose the great-
est threats to natural ecosystems, human health, economy, agricul-
ture and fisheries (Pimentel, Zuniga, & Morrison, 2009; Vilà et al., 
2010; Vilà & Hulme, 2017). The threat and loss constituted by in-
vasive species are exacerbated by climate change through multiple 
mechanisms including the removal of climate barriers for establish-
ment and the spread of many invasive species (Bradley, Blumenthal, 
Wilcove, & Ziska, 2010; Hellmann, Byers, Bierwagen, & Dukes, 
2008). For example, Petitpierre et al. (2017) have shown that the 
upslope spread of the lowland IAPs to mountains is limited by low 
temperatures in the mountains. Yet, climate change will shift regions 
of optimal suitability for these IAPs from lowlands to highlands. 
Invasive species have a greater capacity to shift their niches more 
rapidly than native species, and they are more likely to adapt to new 
climatic conditions faster (Dukes & Mooney, 2004; Hellmann et al., 
2008). The climatic niche shift has been demonstrated as one of the 
mechanisms used by IAPs to spread rapidly into introduced ranges 
(e.g., Treier et al., 2009; Gallagher, Beaumont, Hughes, & Leishman, 
2017). Furthermore, the IAPs benefit from global warming and at-
mospheric CO2 enrichment more than native plants (Liu et al., 2013; 
Verlinden & Nijs, 2010). Therefore, an integrated understanding of 
biological invasions and climate change is necessary for the manage-
ment of IAPs.

Projected changes in climate in the future may influence the dis-
tribution of many native and invasive species (Bellard, Bertelsmeier, 
Leadley, Thuiller, & Courchamp, 2012; Walther et al., 2009). At the 
species level, climate change causes range expansions of many inva-
sive species and contraction to few (Bellard et al., 2013; Bradley et 
al., 2010). Therefore, these potential changes in distribution need to 
be incorporated into the management and conservation of ecosys-
tems and biodiversity in the face of biological invasions and climate 
change (O'Donnell et al., 2012). A better understanding of threats 
and an ability to accurately predict the impacts of climate change on 
species distribution are necessary to make an informed decision for 
biodiversity conservation (Pimm et al., 2005). This will help to min-
imize the threat of invasive species into the future and support ef-
fective conservation efforts. Although the impact of climate change 
on the distribution of multiple invasive species is known in devel-
oped regions such as Australia, North America and Europe (Allen 
& Bradley, 2016; O'Donnell et al., 2012), little is known about how 
the distribution of invasive species will change with future climatic 
changes in developing countries such as Nepal.

With the estimated annual cost of US$ 1.4 billion, due to bi-
ological invasions to Nepal's agriculture sector, Nepal is ranked 
among the topmost countries (ranked 3rd out of 124 countries) in 
terms of invasion threats to agriculture sectors (Paini et al., 2016). 
The concentration of vertebrate species threatened by biological 

invasions is also high in the Indian subcontinent including Nepal 
(Bellard, Genovesi, & Jeschke, 2016). Currently, there are 241 alien 
plants and animals in Nepal and 45 of them are considered invasive 
(Shrestha, Budha, Wong, & Pagad, 2018). These invasive species 
can be found from lowland plains in the south to hills and moun-
tains in the north. Globally, mountain ecosystems are generally 
less invaded compared to the surrounding lowlands (McDougall 
et al., 2011). However, the intensity of biological invasions is likely 
to increase in future with changing climate and increasing anthro-
pogenic disturbances in the mountains (Pauchard et al., 2016; 
Petitpierre et al., 2017). In Nepal, most of the IAPs are found below 
2,000 m in elevation (Shrestha, 2016) but recent studies based on 
field observations and models suggest that some of these IAPs are 
already expanding their ranges into new geographic locations at a 
higher elevation (Lamsal, Kumar, Aryal, & Atreya, 2012; Shrestha, 
Sharma, Devkota, Siwakoti, & Shrestha, 2018; Thapa, Chitale, Rijal, 
Bisht, & Shrestha, 2018).

The severity of threats to Nepal's economy and ecosystems from 
biological invasions is considered in national conservation policies 
and sectoral conservation strategies such as the Plant Protection 
Act (2007), National Biodiversity Strategy and Action Plan (2014), 
Forestry Sector Strategy (2016–2015) and National Ramsar Strategy 
and Action Plan (2018–2024). However, the implementation of 
these policies and strategies is very poor, partially because of the 
lack of scientific knowledge required to control invasive alien species 
(MFSC, 2014; Shrestha et al., 2015). National Biodiversity Strategy 
and Action Plan (2014–2020) has identified priorities of actions for 
the management of invasive alien species that includes, among oth-
ers, research and prioritization of problematic IAPs (MFSC, 2014). 
To this end, this study is an important contribution to enhance the 
knowledge and understanding of invasive species by identifying po-
tentially suitable niches for 24 IAPs (out of reported 26 species) in 
Nepal under current and future climate using an ensemble of species 
distribution models.

We also performed a hotspot analysis to identify areas suit-
able for a maximum number of IAPs. In biodiversity conservation, 
the concept of a biodiversity hotspot—an area with high species 
richness, endemism and threatened taxa—is well established (e.g., 
Myers, Mittermeier, Mittermeier, Fonseca, & Kent, 2003). Hotspot 
analysis provides a framework for cost‐effective conservation pro-
grammes, thus helping to prioritize conservation efforts (Myers, 
2004). Similarly, hotspot analysis can help streamline management 
efforts in a way to prevent, eradicate and control the maximum num-
ber of invasive species at the lowest cost possible (Adhikari, Tiwary, 
& Barik, 2015; O'Donnell et al., 2012). Attempts at applying the 
hotspot concept to biological invasions were made at a global scale 
(Drake & Lodge, 2013), according to country (Australia by O'Donnell 
et al., 2012, United States by Allen & Bradley, 2016, India by Adhikari 
et al., 2015) and according to the local scale (Corangamite Catchment 
in Australia by Catford, Vesk, White, & Wintle, 2011), using different 
tools and techniques. In this study, we used the invasion hotspot 
approach to identify regions with high concentrations of potentially 
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suitable niches for multiple IAPs under current and future climate in 
Nepal. We also examined changes in invasion hotspots according to 
different land covers, climatic zones, physiographic regions, ecore-
gions and federal states. This study provides the first‐ever com-
prehensive national‐level assessment of biological invasions using 
occurrence data of most of the IAPs found in Nepal. By highlighting 
the geographic hotspots for IAPs, our results provide wide‐ranging 
evidence of current and future risks constituted by IAPs at the na-
tional scale. The results of this study will be important when consid-
ering cost‐effective strategies for managing IAPs and will support 
long‐term biodiversity conservation and sustainable development 
goals in Nepal.

2  | METHODS

2.1 | Invasive alien plants’ occurrence data

We selected 24 out of the total 26 species of IAPs reported in 
Nepal (Shrestha, 2016; Tiwari, Adhikari, Siwakoti, & Subedi, 2005) 
for the modelling exercise (Figure 1). Location information suffi-
cient for the distribution modelling of the remaining two species 
(Myriophyllum aquaticum and Spergula arvensis) is not yet available. 
The description (name, family, native origin, functional group, 

distribution range and mode of dispersal) of the selected species 
is given in Table 1. Four of the modelled species (Chromolaena odo‐
rata, Eichhornia crassipes, Lantana camara and Mikania micrantha) 
are among the 100 of the world's worst invasive species (Lowe, 
Browne, Boudjelas, & DePoorter, 2017). Sixteen of the modelled 
species are considered highly problematic species by the local 
people of Nepal due to their negative impacts on agriculture, 
local livelihood and natural ecosystems (Shrestha, Shrestha et al., 
2018). Modelled species were introduced either deliberately for 
ornamental purpose (e.g., L.  camara, E.  crassipes) or accidentally 
(e.g., Ageratina adenophora, Parthenium hysterophorus) to Nepal at 
various times.

The occurrence data were collected through field surveys by ex-
perts in various localities of Nepal at different times from 2013 to 
2018 (Shrestha, 2014; Shrestha, Joshi et al., 2018; Shrestha, Kokh, 
& Karki, 2016; Siwakoti et al., 2016). The number of occurrence lo-
cations for each species ranged from 25 (Leersia hexandra) to 1,910 
(Bidens pilosa). Species distributional data often display spatial au-
tocorrelation which has implications for predicting species occur-
rences under changing environmental conditions (Dormann, Grime, 
& Thompson, 2000; Dormann, 2007). We removed the multiple 
presence locations in the same grid of ~1 km2 spatial resolution and 
retained only one unique record per grid by applying spatial filtering 

F I G U R E  1  Occurrence of 24 invasive alien plants in Nepal. Each dot represents geographic coordinates of the species
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using sdmtoolbox 2.3 (Brown, 2014). We also checked differences 
in Moran's I index values after removing the multiple records using 
the ape package in r. This approach reduces spatial autocorrelation, 
which could lead to overfitting the models and therefore reduce 
model performance (Boria, Olson, Goodman, & Anderson, 2014). 
After spatial filtering, the total number of occurrence locations com-
prising 24 species was reduced from 17,682 records to 10,951, and 
these were then used for modelling.

2.2 | Environmental variables

We used nineteen bioclimatic variables with a spatial resolution of 30 
arcsec (~1 × 1 km) downloaded from worldclim 2 (http://world​clim.org; 
Fick & Hijmans, 2009). The current bioclimatic variables were computed 
from monthly values of minimum, average and maximum temperature 
and monthly precipitation from 1970 to 2000 (Hijmans, Cameron, Parra, 
Jones, & Jarvis, 2006). Pairwise diagnostic tools such as correlation 

TA B L E  1  Characteristic features of the studied invasive alien plant species (Hara & Williams, 1979; Hara, Chater, & Williams, 1982; 
Shrestha, 2016; Tiwari et al., 2005)

Scientific name (family) Common name Growth form
Mode of 
reproduction Native range

First year of 
report in Nepal

Ageratina adenophora (Spreng.) R.M.King & 
H.Rob. (Asteraceae)

Crofton weed Shrub Seed/vegetative Mexico 1952

Ageratum conyzoides L. (Asteraceae) Billygoat Annual herb Seed Central and South 
America

1910

Ageratum houstonianum Mill. (Asteraceae) Blue billygoat Annual herb Seed Mexico to Central 
America

1929

Alternanthera philoxeroides (Mart.) Griseb. 
(Amaranthaceae)

Alligator weed Perennial herb Vegetative South America 1994

Amaranthus spinosus L. (Amaranthaceae) Spiny pigweed Annual herb Seed Tropical Americas 1954

Argemone mexicana L. (Papaveraceae) Mexican poppy Annual herb Seed Tropical Americas 1910

Bidens pilosa L. (Asteraceae) Black jack Annual herb Seed Tropical Americas 1910

Chromolaena odorata (L.) R.M.King & H.Rob. 
(Asteraceae)

Siam weed Shrub Seed/vegetative Mexico to South 
America

1825

Eichhornia crassipes (Mart.) Solms 
(Pontederiaceae)

Water hyacinth Perennial herb Seed/vegetative South America 1966

Erigeron karvinskianus DC. (Asteraceae) Karwinsky's 
fleabane

Perennial herb Seed/vegetative Mexico to Central 
America

1966

Galinsoga quadriradiata Ruiz & Pav. 
(Asteraceae)

Shaggy soldier Annual herb Seed Mexico 1966

Hyptis suaveolens (L.) Poit. (Lamiaceae) Bush mint Annual herb Seed Tropical America 1956

Ipomoea carnea Jacq. (Convolvulaceae) Bush morning 
glory

Shrub Seed/vegetative Mexico to South 
America

1966

Lantana camara L. (Verbenaceae) Lantana Shrub Seed/vegetative Central and South 
America

1848

Leersia hexandra Sw. (Poaceae) Southern cut 
grass

Perennial herb Seed/vegetative Americas 1820

Mikania micrantha Kunth. (Asteraceae) Mile‐a‐minute Perennial vine Seed/vegetative Central and South 
America

1963

Mimosa pudica L. (Fabaceae) Sensitive plant Perennial herb Seed Mexico to South 
America

1910

Oxalis latifolia Kunth. (Oxalidaceae) Purple wood 
sorrel

Perennial herb Seed/vegetative Central and South 
America

1954

Parthenium hysterophorus L. (Asteraceae) Parthenium Annual herb Seed Southern USA to 
South America

1967

Pistia stratiotes L. (Araceae) Water lettuce Perennial herb Seed/vegetative South America 1952

Senna occidentalis (L.) Link (Fabaceae) Coffee senna Subshrub Seed Tropical Americas 1910

Senna tora (L.) Roxb. (Fabaceae) Sicklepod senna Annual herb Seed Central America 1910

Spermacoce alata Aubl. (Rubiaceae) Broadleaf 
buttonweed

Perennial herb Seed/vegetative West Indies and 
Tropical America

1966

Xanthium strumarium L. (Asteraceae) Cocklebur Annual herb Seed South America 1952

http://worldclim.org
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matrices and variance inflection factors (VIFs) can be used to detect 
multicollinearity in a set of bioclimatic variables (Dormann et al., 2000). 
Bioclimatic variables with high correlation (Pearson's correlation coef-
ficients r > 0.70) were removed to reduce multicollinearity (Rogerson, 
2001). The VIF values of the resulting predictor variables were less than 
5. A VIF greater than 10 signals a collinearity problem (Chatterjee & 
Hadi, 2015). The remaining seven bioclimatic variables, namely annual 
mean temperature, mean diurnal range [mean of monthly (max temp‐
min temp)], isothermality, temperature annual range (max temperature 
of warmest month‐min temperature of coldest month), precipitation in 
the driest month, precipitation in the warmest quarter and precipita-
tion in the coldest quarter, were used as predictors to model the cur-
rent distribution of the selected IAPs.

We also modelled distributions of the 24 IAPs for future climatic 
conditions. We used projected bioclimatic variables for the period 
2050 for RCP 6.0 from the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) as presented by the Intergovernmental Panel on 
Climate Change (Stocker et al., 2013) to model future distribution. 
Several groups around the world have been involved in climate model 
experiments, producing different global climate models (GCMs) which 
were submitted to the Couple Modelling Intercomparison Project 
(Taylor, Stouffer, & Meehl, 2012). The outputs of the GCMs for a 
range of time periods in the twenty‐first century are used to produce 
gridded bioclimatic variables for future climate scenarios (Kriticos 
et al., 2005). GCMs mathematically represent physical processes in 
the atmosphere, ocean, cryosphere and land surface (McGuffie & 
Henderson‐Sellers, 2011). Climate models capture the fundamental 
processes that respond to climate forcing such as concentrations of 
greenhouse gases, aerosols, surface albedo changes and solar irradi-
ance. Therefore, GCMs are used to understand climate and forecast 
climate change. The same seven bioclimatic variables used for model-
ling current distribution were used to predict future distribution of the 
IAPs. We downloaded bioclimatic data of 12 global circulation models 
(GCMs): BCC‐CSM1‐1, CCSM4, GFDL‐ESM2G, GISS‐E2‐R, HadGEM2‐
AO, HadGEM2‐ES, IPSL‐CM5A‐LR, MIROC‐ESM‐CHEM, MIROC‐
ESM, MIROC5, MRI‐CGCM3 and NorESM1‐M from WorldClim (Fick 
& Hijmans, 2009). The details of the GCMs are provided in Table S1. 
Rather than relying on a single model, we created an ensemble of the 
twelve GCMs by taking average values and used the ensemble values 
as predictors. The multimodel ensemble average not only accounts 
for variability among different GCMs, but also yields results superior 
to individual models at global and regional scales (Aguirre‐Gutiérrez, 
Treuren, Hoekstra, & Hintum, 2017; Murphy et al., 2005; Pierce, 
Barnett, Santer, & Gleckler, 2016). At a high greenhouse gas emission 
scenario, RCP 6.0 represents a target forcing of 6.0 W/m2 above the 
pre‐industrial baseline, predicted to occur by the end of the century 
(Clarke et al., 2007). According to this scenario, the projected average 
temperature will rise by about 1.3 and 2.2°C by mid‐ (2046–2065) and 
late 21st century (2081–2100), respectively. The average temperature 
is projected to stabilize after the 21st century by the employment of 
a range of technologies and strategies for reducing greenhouse gas 
emissions (Collins et al., 2013).

2.3 | Species distribution modelling

Species distribution modelling is an approach that predicts the dis-
tribution of a species across geographic space and time using the 
correlation between the geographic occurrence or abundance of 
a species and corresponding environmental conditions (Elith & 
Leathwick, 2010). This approach has been used in studies of bioge-
ography, conservation biology, ecology, palaeoecology and wildlife 
management for more than a decade (Araújo & Guisan, 2006) and 
forecasts the range shifts of species under future climate change 
scenarios (Beaumont, Pitman, Poulsen, & Hughes, 2007; Wiens, 
Stralberg, Jongsomjit, Howell, & Snyder, 2009) including invasive 
species (Bellard et al., 2013). Various species distribution modelling 
tools such as statistical regression, machine learning and geographic 
extrapolation are in current use to model species distribution (Elith 
et al., 1999). The performance of various algorithms available for 
species distribution modelling varies significantly (Elith, Kearney, 
& Phillips, 2006). An ensemble modelling of species distributions 
involves simulations across more than one set of initial conditions, 
model classes, model parameters and boundary conditions (Araújo & 
New, 2007). BIOMOD (biomod2 package in r) is a platform for ensem-
ble forecasting of species distributions (Thuiller, Lafourcade, Engler, 
& Araújo, 2009). The ensemble model accounts for the uncertainties 
in predictions of different algorithms and uses a wide range of ap-
proaches to test models (Aguirre‐Gutiérrez et al., 2017; Thuiller et 
al., 2009). We used ensemble modelling as this consensus approach 
can perform better than a single modelling algorithm (Araújo & New, 
2007; Thuiller et al., 2009). The analysis was conducted in r environ-
ment v 3.4.2 (R Core Team, 2016) using the biomod2 package (Thuiller 
et al., 2009). The selected algorithms used to produce an ensemble 
model were as follows: three regression methods (GAM: general ad-
ditive model; GLM: general linear model; and MARS: multivariate 
adaptive regression splines), three machine learning methods (ANN: 
artificial neural network; GBM: generalized boosting model; and RF: 
random forest) and two classification methods (CTA: classification 
tree analysis; FDA: flexible discriminant analysis).

As these models required background data (e.g., pseudo‐ab-
sence) and the actual absence data were unavailable, we used 
10,000 pseudo‐absences selected randomly outside a buffer of 
10 km from the presence points by following Barbet‐Massin, Jiguet, 
Albert, and Thuiller (2012). The models were calibrated by using 70% 
of the occurrence points (presence and pseudo‐absence) as train-
ing data and evaluated by using the remaining 30% as testing data 
(Araújo, Pearson, Thuiller, & Erhard, 2005). We repeated the pro-
cess of pseudo‐absence generation three times and three evaluation 
runs per species, resulting in a total of 72 models per species (eight 
models, three evaluation runs and three pseudo‐absence selection 
procedures) under each climate scenario.

We used two evaluation measures of model validation and pre-
dictive performance namely the area under the curve (AUC) of re-
ceiver operating characteristics and true skills statistics (TSS). The 
AUC value represents the predictive power of a model (Allouche, 
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Tsoar, & Kadmon, 2006) although study suggested additional criteria 
(e.g., report of sensitivity and specificity) to assess the model per-
formance (Lobo, Jiménez‐Valverde, & Real, 2013). According to the 
AUC value, the model was graded as poor (if AUC = 0.6–0.7), fair 
(AUC = 0.7–0.8), good (AUC = 0.8–0.9) or excellent (AUC = 0.9–1.0) 
(Swets, 1988). TSS measure ranges from −1 to +1 where +1 indi-
cates a perfect agreement, and a TSS value below 0.4 indicates poor 
model discrimination (Allouche et al., 2006; Beaumont et al., 2016). 
From the 72 models per species, we built ensemble models using 
a weighted‐mean approach in which weights are awarded for each 
model proportionally to their evaluation metrics scores; hence, the 
discrimination is fair in this approach (Marmion, Parviainen, Luoto, 
Heikkinen, & Thuiller, 2000). Only the models with good predictive 
accuracy (TSS > 0.6 and AUC > 0.8) were used to build an ensemble 
from the projection outputs (Bellard et al., 2013; Gallien, Douzet, 
Pratte, Zimmermann, & Thuiller, 2010; Thuiller et al., 2009). Binary 
maps (suitable and unsuitable) were produced using the optimal 
threshold that maximizes the TSS score as a cut‐off value, which 
then converted the projected occurrence probabilities during the 
cross‐validation procedure (Allouche et al., 2006; Liu, White, & 
Newell, 2016; Marmion et al., 2000). This threshold is unaffected 
by the prevalence of species occurrence and favours sensitivity 
(the number of false positives) over specificity (the number of false 
negatives), which is considered superior for modelling invasive spe-
cies (Gallardo & Aldridge, 2009). For all species, we built a minimum 
convex hull (MCH) around current locations of a species to deter-
mine the extent of their occurrence (IUCN, 2012; Wright, Hijmans, 
Schwartz, & Shaffer, 2015; Figure S1). For each species, we measured 
the size of their range as represented by the number of climatically 
suitable pixels within the convex hull for the designated period and 
calculated changes in the range sizes among two different periods 
(current and 2050). This allowed us to exclude the predicted suit-
able areas for future climate outside the convex hull where climatic 
conditions might not be analogous to present conditions. It also re-
duced the chances of overestimating the species niche (Capinha & 
Pateiro‐López, 2014). We also computed the change in the total area 
of predicted niches within a MCH of currently occupied locations for 
each species under current and future climate (number of pixels suit-
able under future climate—number of pixels suitable under current)/
number of pixels suitable under current).

2.4 | Invasion hotspot map

We conducted a hotspot analysis (e.g., O'donnell, 2011) to identify 
the regions potentially suitable for the maximum number of IAPs 
under current and future climate. We aggregated maps of climati-
cally suitable niches for all species to generate species diversity (cells 
with a higher value indicating high species diversity) and extent maps 
(cells occupied by at least a single species). We calculated changes in 
the areas of both diversity and extent of potentially suitable regions 
under current and future climate. The species diversity map was 
later reclassified using the combined values greater than or equal to 

the 25th percentile. The regions with potentially suitable niches for 
the top 25th percentile of the combined values were considered as 
“invasion hotspots” (Allen & Bradley, 2016; O'donnell et al., 2011). 
We calculated changes in the areas of so‐called invasion hotspots 
under current and future climate with respect to climatic zones, 
land cover, ecoregions, physiographic regions and federal states. We 
used publicly available maps of ecoregions (Olson et al., 2012), land 
cover (Uddin et al., 2015), physiography and administrative units. A 
layer of climatic zones was created by using digital elevation model 
as tropical (<1,000 m asl), subtropical (1,000–2,000 m asl), temper-
ate (2,000–3,000 m asl), subalpine (3,000–4,000 m asl) and alpine 
(>4,000 m asl) following Shrestha (2008).

3  | RESULTS

The model performance was evaluated by the scores of two (AUC 
and TSS) performance matrices (Figure S2). The average AUC val-
ues of the 24 studied IAPs ranged from 0.74 (Leersia hexandra) to 
0.93 (Erigeron karvinskianus), indicating that the models have fair 
to excellent predictive accuracy. Likewise, the average TSS value 
ranged from 0.50 to 0.83 indicating good predictive accuracy. 
Moreover, we only used the model with the higher predictive ac-
curacy (AUC > 0.8 and TSS > 0.6) to build an ensemble from the 
projection outputs.

Based on our species distribution models, areas of potentially 
suitable niches for the studied IAPs vary widely (Table 2; Figure 
S3). Out of the 24 species, 15 had potentially suitable areas that 
covered more than 10% of Nepal's land area under current cli-
mate. Parthenium hysterophorus, Amaranthus spinosus, Senna tora, 
Ageratum houstonianum and Ageratum conyzoides had a potentially 
widespread distribution, whereas Pistia stratiotes, Leersia hexandra, 
Erigeron karvinskianus, Oxalis latifolia and Alternanthera philoxeroides 
had a restricted distribution under the current climatic condition 
(Table 2). The predicted suitable niches for three species Pistia stra‐
tiotes, Leersia hexandra and Erigeron karvinskianus under the current 
climate covered less than 1% of the land area of the country.

We observed both expansion and contraction of suitable 
niches of the IAPs from current to future climate in Nepal (Table 2). 
Climatically suitable regions for 75% of the IAPs would increase in 
contrast to the decrease in the remaining 25%. The proportion of 
change in suitable niches was also greater for expanding than for 
contracting species. For example, a maximum increase in suitable 
niche was by 923% (Pistia stratiotes) while the maximum decrease in 
suitable niches was only by −36% (Oxalis latifolia). Therefore, climate 
change will create more areas suitable for the IAPs in Nepal in the 
future. However, for aquatic species as Pistia stratiotes, availability of 
water bodies will determine the actual expansion of species.

Climate change will increase both the extent and the intensity (in-
vasion hotspots) of the climatically suitable regions for IAPs in Nepal 
(Figure 2). Under the current climate, around 59,700 km2 (40%) of 
the country were predicted as suitable for IAPs, while 33,600 km2 
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(23%) were identified as invasion hotspots in Nepal. The niche ex-
tent and invasion hotspots will expand by 2% and 5%, respectively, 
suggesting an increase in the potential niche of IAPs from current to 
future climate.

Changes in the invasion hotspots were evident in different cli-
matic zones, ecoregions, land covers, physiographic regions and 
federal states in Nepal (Figure 3). The maximum increase in the 
area of invasion hotspots was observed in the tropical zone, which 
is situated below 1,000 m (+2,747 pixels, 8%). Under the current 
climate, there were no invasion hotspots in the subalpine region 
(3,000–4,000  m asl); however, the hotspots will expand towards 
temperate and subalpine regions in the future, indicating an ex-
pansion towards higher elevation regions under future climate. Out 
of the ten ecoregions, eight coincided with the invasion hotspots. 
Terai‐Duar savanna and grasslands had the highest area of invasion 
hotspots under the current climate. Both expansion and contraction 
in invasion hotspots were observed in the four ecoregions under fu-
ture climate. However, the magnitude of expansion is higher than 
contraction. Himalayan subtropical broadleaf forests (+1,556 pixels, 
8%) had the highest increase (+1,276 pixels, 7%) in climatically suit-
able region followed by the Terai‐Duar savanna and grasslands. A 
decrease in the invasion hotspots was noticed in the Himalayan sub-
tropical pine forests (−477 pixels, 7%) and Eastern Himalayan broad-
leaf forests (−110 pixels, 5%).

A higher level of overlap was seen between invasion hotspots 
and agricultural lands followed by forests under the current climate. 
The areas of invasion hotspots will increase in all land use types 
under the future climate, and the highest increase (+1,956 pixels, 
10%) was predicted in forests while the lowest increase (+33 pixels, 
6%) in built‐up areas. Physiographically, under the current climate, 
Middle Mountains had the largest area of invasion hotspots followed 
by Terai. A maximum proportion of surge (+395 pixels, 41%) in the 
areas of invasion hotspots would occur in the High Mountain region, 
while Middle Mountains would lose some areas (−970 pixels, 5%) of 
the invasion hotspots under future climate. At the state level, State 
Five has the highest area of invasion hotspots while State Six has the 
lowest. With climate change projections, the highest proportion of 
increase in the area of invasion hotspots was found in State Six (+331 
pixels, 61%) followed by State One (+751 pixels, 26%).

4  | DISCUSSION

To our knowledge, this study of modelling the distribution of 24 IAPs 
presents the most comprehensive analysis of biological invasions in 
Nepal. To date, most research either has focused on a handful of 
species (Shrestha, Sharma, et al., 2018) or has been limited to smaller 
geographic area of Nepal (Thapa et al., 2018). We identified the geo-
graphic areas with different land cover, ecoregions, physiography 
and climatic zones that are climatically suitable for invasions using 
a novel approach of invasion hotspots. As consistent with the previ-
ous studies (Shrestha, Sharma, et al., 2018; Thapa et al., 2018), our 
results show that changing climate will create additional climatically 

suitable areas for IAPs in Nepal in the future. This study provides 
baseline information for decision‐makers for cost‐effective manage-
ment of IAPs by showing the areas which have suitable niches for 
a high number of IAPs. Our results will be helpful for the preven-
tion and early detection of IAPs in their potentially suitable niches. 
Therefore, our research has important implications for the manage-
ment and monitoring of biological invasions in Nepal and contributes 
to the growing global body of literature on the impacts of climate 
change on biological invasions. Our analysis also highlights the need 
of integrating biological invasions into Nepal's climate change poli-
cies and generally in the Himalayas.

The climatic condition of central Nepal, characterized by sub-
tropical climate that is under cropping and forests, has the maximum 
suitable areas for a majority of IAPs under current climate. As the 
climate changes, a new suit of habitats will emerge that may be suit-
able for alien species (Hellmann et al., 2008). Climate change facil-
itates dispersal, introduction and naturalization of alien species as 
well as reduces the resilience of local ecosystems to alien species 
(Walther et al., 2009). Our models also predict that additional suit-
able areas for IAPs are expected to emerge in the higher elevation 

TA B L E  2  Change in the climatically suitable niches (km2) of the 
invasive alien plant species

Species Current Future % change

Ageratina adenophora 24,866 26,186 5.3

Ageratum conyzoides 26,664 25,611 −3.9

Ageratum houstonianum 26,776 30,406 13.6

Alternanthera philoxeroides 10,287 11,594 12.7

Amaranthus spinosus 28,337 18,913 −33.3

Argemone mexicana 13,807 10,924 −20.9

Bidens pilosa 23,409 20,931 −10.6

Chromolaena odorata 20,605 20,742 0.7

Eichhornia crassipes 12,160 10,400 −14.5

Erigeron karvinskianus 732 958 30.9

Galinsoga quadriradiata 14,234 14,245 0.1

Hyptis suaveolens 26,338 26,483 0.6

Ipomoea carnea 16,956 18,761 10.6

Lantana camara 19,606 27,231 38.9

Leersia hexandra 428 465 8.4

Mikania micrantha 12,447 12,779 2.7

Mimosa pudica 24,543 25,303 3.1

Oxalis latifolia 6,267 4,032 −35.7

Parthenium hysterophorus 30,915 34,437 11.4

Pistia stratiotes 198 2,024 922.8

Senna occidentalis 20,850 25,758 23.5

Senna tora 27,146 27,905 2.8

Spermacoce alata 16,883 18,185 7.7

Xanthium strumarium 18,413 19,824 7.7

Note: Areas of suitable region for each species were calculated within a 
minimum convex hull of its currently known localities within Nepal.
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zones of both the eastern and western regions of the country. At the 
species level, our results have broader similarities with the results 
of Shrestha, Sharma, et al. (2018) who found a consistent increase 
in the amount of climatically suitable regions for six IAPs of Nepal 
from current to future climate despite some variations in methods 
and data. However, the extent of suitable regions and percentages 
of changes in suitable regions are different. They found that the 
areas of potential niches under current climate for Ageratum housto‐
nianum, Hyptis suaveolens and Parthenium hysterophorus are slightly 
smaller while Chromolaena odorata, Lantana camara and Mikania mi‐
crantha are greater than what we found. Although both expansion 

and reduction of suitable niches of IAPs were observed at an individ-
ual species level, in aggregation, the extent and intensity of invasion 
hotspots are expected to increase in Nepal under future climate.

Globalization and climate change will likely increase the threat 
posed by invasive plants to high‐elevation biodiversity, although 
high‐elevation mountain ecosystems are still less invaded by IAPs 
as compared to lowland ecosystems (Pauchard et al., 2009). The 
invasion hotspots as predicted by our models will expand towards 
the higher elevation areas, especially in the temperate and subal-
pine regions, making these regions susceptible to biological inva-
sions under future climate. The expansion on invasion hotspots will 

F I G U R E  2  Extent and hotspot of predicted suitable niches of 24 invasive alien plants (IAPs) and their richness in these niches. (a) 
Combined extent of climatically suitable niches under current climate and future climate (for 2050 under RCP 6.0), (b) hotspot of suitable 
niches under current and future climate, (c) richness of suitable niches of IAPs under current and future climate. Inset graph shows the total 
number of pixels
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also be visible in the tropical region. Some field‐based studies also 
showed that IAPs are currently invading higher elevation regions as 
compared to the past (Shrestha, Shabbir, & Adkins, 2015; Tiwari et 
al., 2005). At high‐elevation regions, the impact of climate change 

is likely to be more severe than in low elevation, as the magnitude 
of temperature change is greater in those areas (Shrestha, Gautam, 
& Bawa, 2012). Our analysis showed that the maximum increase in 
the area of climatically suitable niches occurred at lower elevations 

F I G U R E  3  Change in the invasion hotspots for 24 invasive alien plants of Nepal between current and future climate (for 2050 under RCP 
6.0). (a) Elevation bands, (b) land use types, (c) ecoregions, (d) physiographic regions and (e) federal states (Nepal has been recently divided 
into seven federal states and numbered from 1 (east) to 7 (west). Official names of the states have yet to be declared)
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(below 2,000 m) while the proportion of change in suitable niches 
is greater at higher elevations (above 2,000 m). The creation of cli-
matically suitable regions for IAPs in the high‐elevation regions, 
which are already vulnerable to climate change and are currently ex-
periencing its impact, will have severe consequences in the future. 
Therefore, biological invasions will add pressure and increase risks to 
the most vulnerable ecosystems in Nepal.

Along with climate change, anthropogenic disturbance is con-
sidered a major driver that promotes plant invasion in mountain 
ecosystems (Davis, Grime, & Thompson, 2014; Pauchard et al., 
2016). Nepal has undergone a significant transformation due to in-
frastructure development, tourism and trade expansion (Lennartz, 
2018; Nepal, 2000). In the mountain and lowland regions of Nepal, 
newly built roads destabilize slopes and trigger landslides, creating 
bare ground suitable for colonization by the IAPs (Lembrechts et al., 
2012; Lennartz, 2018). Roads play an important role in the spread 
of alien species by facilitating dispersal pathways and by provid-
ing disturbed sites for percolation from roadsides into the natural 
adjacent vegetation (McDougall et al., 2018). With tourism indus-
try predicted to be grown in the future, human mobility, trade and 
transport will increase significantly. This may promote the dispersal 
of IAPs from lowlands to high‐elevation regions and to new areas 
in the lowlands. All of these socio‐economic transformations favour 
the spread of IAPs, and climate change will open up suitable regions 
by reducing climatic barriers for them to invade higher elevation 
zones (Hellmann et al., 2008; Pauchard et al., 2009). However, the 
suitable regions identified may not be occupied by IAPs due to nat-
ural dispersal barriers in mountains, which are predominant physical 
features in Nepal. Therefore, monitoring and management of IAPs in 
Nepal should account for the vulnerability posed by climate change 
combined with an unprecedented increase in anthropogenic distur-
bances. The results of this study might be useful for taking a pre-
cautionary approach and encourage vigilance in these climatically 
suitable areas.

Currently, the maximum amount of suitable regions for IAPs is 
located in agricultural areas and areas with forest cover. The high 
suitability of agriculture and forest lands for IAPs will be a threat to 
the economy and local livelihoods. A global study roughly estimated 
that the total cost of IAPs to Nepal's agriculture was approximately 
US$ 1.4 billion per year (Paini et al., 2016). Local communities, who 
primarily rely on farming and forests for their livelihood and em-
ployment, have already been negatively impacted by IAPs, such as 
through increased labour input in weeding, reduced crop produc-
tion, livestock poisoning, reduced supply of forage and negative im-
pacts on forests (Shrestha, Shrestha et al., 2018). Future climate will 
increase the distribution of the IAPs that were ranked by local com-
munities as the worst, such as Ageratum houstonianum, Chromolaena 
odorata, Ageratina adenophora and Mikania micrantha (Shrestha, 
Shrestha et al., 2018). Furthermore, the distribution of Parthenium 
hysterophorus and Lantana camera, which are considered the most 
troublesome weeds in the region (Thapa et al., 2018), will also in-
crease in the future. Therefore, the economic loss and negative im-
pacts caused by IAPs on food security, livelihood, biodiversity and 

ecosystem services in the future may be augmented if preventive 
and control measures are not immediately taken seriously.

The models developed from the current distribution are extrapo-
lated in time and space to forecast potential IAP invasions under fu-
ture climate and may not capture the issue of non‐analogous climatic 
space (Fitzpatrick & Hargrove, 2007). Shifts in species range involve 
multiple ecological processes such as dispersal, demography, phys-
iology, species interactions, population interactions and evolution 
operating at multiple scales (Urban et al., 2016). Furthermore, the 
correlation structure of future climatic conditions could be differ-
ent from current conditions, thereby leading to errors in predictions. 
Therefore, SDMs do not explicitly consider these uncertainties 
caused by non‐analogous climate space and ecological processes 
that affect the species (Elith & Leathwick, 2010). Limiting the areas 
within the current extent of occurrence (e.g., a MCH) in analysing 
the change in climatically suitable niches under current and future 
climate prevents severe changes in the total amount of suitable 
area (Wright et al., 2015). Furthermore, there are other potential 
issues such as modelling algorithm (Elith et al., 1999), the choices 
of environmental variables used (Synes & Osborne, 2011), for fu-
ture climate, GCMs used (Steen, Sofaer, Skagen, Ray, & Noon, 2017), 
collinearity (Dormann et al., 2000), model complexity (Wright et al., 
2015), model evaluation method (Lobo et al., 2013) and threshold 
values to produce binary maps (Liu et al., 2016) that can influence 
model outcomes. In addition, future land use change scenarios can 
also alter future species distributions (Martin, Dyck, Dendoncker, & 
Titeux, 2017). There is no agreement on optimal ecological model-
ling strategy, and such a strategy is unlikely to emerge due to the 
context‐specific nature of the modelling process (Heikkinen et al., 
1982; Wright et al., 2015). Despite the uncertainties, it was argued 
that some amount of model extrapolation for ecological manage-
ment in a changing climate is essential for practice (Mahony, Cannon, 
Wang, & Aitken, 2008). Improvements of models are a crucial issue 
for enhancing the predictive accuracy of the models.

Despite global and local efforts to manage biological invasions, 
the number of alien species has been ever increasing across all 
taxonomic groups and geographic regions of the world (Seebens 
et al., 2017). Climate change has a potential to create more fa-
vourable regions in the future for IAPs as shown by this research 
and other studies (O'donnell et al., 2011; Shrestha, Sharma et al., 
2018). By creating climatically suitable regions in the most vul-
nerable natural and agro‐ecosystems that provide essential eco-
system services, climate change is likely to amplify the impacts 
on ecosystems and economy in the future by two major ways. 
First, climate change negatively affects ecosystems and native 
species by changing their distribution, composition and phenology 
(Walther et al., 2002) and hence reduces their resilience to bio-
logical invasions. Second, climate change facilitates the encroach-
ment of invasive species by removing current climatic barriers 
(Hellmann et al., 2008). Cold temperatures limit invasion by many 
alien species in high‐elevation regions (Alexander et al., 2011), but 
climate change will elevate this barrier to a higher elevation. The 
increase in biological invasions will have a serious consequence on 
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the country's economy and local livelihoods. Given that little at-
tention is paid to biological invasions in biodiversity conservation 
and climate adaptation policies in Nepal, where the formulation of 
a national strategy for the management of invasive species is still 
underway, the result of this study as a precautionary note might 
be helpful to formulate such policies. With this result, we urge that 
early detection and preventive actions should focus on the moun-
tainous areas of the country. Apart from distribution modelling, a 
better understanding of species traits, dispersal pathways and the 
mechanism of the natural filters that prevent colonization of inva-
sive species, as well as the community perceptions and involve-
ment in management, are necessary. Our results show a diverse 
response of IAPs to climate change; therefore, species‐specific 
prioritization exercises may be helpful to better manage and mon-
itor specific IAPs.
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