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Abstract: Erosion is a powerful force that has moulded the Earth ever since water has been present on
its rocky surface. In its seemingly harmless pursuit, erosion threatens ecosystems, reduces agricultural
production, and impacts water quality. When trying to investigate erosion, there is no easy way to
identify hotspots, only leaving the possibility of predicting where erosion should be occurring. This
study aimed to develop a method to identify erosion using Synthetic Aperture Radar (SAR) images in
a process called Coherent Change Detection (CCD). In doing so, it was found that CCD can be used
to identify erosion due to rain events; however, false positives were also found due to soil moisture
changes. This study used a new method for removing soil moisture effects that utilised the drying
out of the soil to map where changes had occurred. This helped limit false positives, but more work
is required to ensure soil moisture does not interfere with the results. Field data comprising aerial
imagery and soil sampling were collected to improve the SAR processing as well as validate the
results. The results of this study indicate the feasibility of developing an erosion analysis system
capable of providing near real-time data specifically for arid regions.

Keywords: erosion; Interferometric Synthetic Aperture Radar (InSAR); Coherent Change Detection
(CCD)

1. Introduction

For millions of years, the unrelenting power of erosion has carved and sculpted
the world. It stimulates soil formation, shapes geological features, influences sediment
transportation, and initiates carbon storage. However, erosion also threatens ecosystems,
reduces agricultural production, and overall represents a loss of a non-renewable resource.
In fact, erosion has been noted as the largest widespread threat to the environment [1,2]. In
particular, soil erosion causes 75 billion metric tons of soil to be displaced each year around
the world [3]. Due to anthropogenic activities, rain events now pose an increased risk of
irreparable soil erosion. As such, it is imperative to identify hotspots of erosion caused by
rain events, allowing targeted mitigation strategies to be implemented.

A significant portion of Australia’s soil is old and weathered, leaving it vulnera-
ble to erosion, something that significantly impacts Australia’s $90 Billion agricultural
industry [4,5]. Studies have found that a 10 cm loss of soil could result in an $18 billion
dollar impact on the industry [6–8]. Additionally, erosion affects the quality of surrounding
waterways. The increased turbidity from suspended soil particles can block sunlight from
reaching the river bed, while nitrogen and phosphorus found in some soils can cause eu-
trophication [9,10]. Together, these can decimate river ecosystems, which are the lifeblood
of outback Australia [11]. Soil erosion and deposition can also alter the natural flow of
water, causing flooding in areas that would not normally receive water while leaving others
dry. Through these limited examples, it is clear the significant impact erosion can cause
and why it needs to be closely monitored.
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Despite its detrimental effects, the identification and monitoring of erosion is an
arduous practice, particularly at large scales. The current erosion identification/monitoring
techniques can be split into two categories, namely, predictive models and observational
erosion analysis. Predictive models use erosion risk factors like slope, rainfall intensity,
and land cover, to try and predict where erosion is likely to occur in an area [12]. The
most popular predictive model is the Revised Universal Soil Loss Equation (RUSLE)
developed by the United States Department of Agriculture, which was released to the
public in 1992 [13]. Other studies have been completed using various predictive models
ranging from looking at the multispectral signal of eroded areas to using land classification
indexes to find gullies [14–17]. These models, like all other predictive models, are great
for informing policy on a large scale but do not help accurately map erosion as it happens.
This can only be completed using observational techniques, which are any processes where
actual erosion is measured. Some examples of this are field studies and satellite data [18].
Field studies involve looking for evidence of erosion or using erosion plots to determine
impacts in a small area. These studies are expensive and labour-intensive whilst only
gaining data for a small area [19]. Satellite images can also be used by comparing different
epochs to find any changes on the ground. Again, this method involves a large amount
of human data interpretation and often does not reveal the full degree of erosion. More
recently, a new technique of erosion analysis has been developed using Synthetic Aperture
Radar (SAR) images to complete a CCD study [20].

Synthetic Aperture Radar (SAR) is a satellite observation technique that can observe
changes in the earth’s surface [21]. SAR sensors emit radar waves towards the earth, mea-
suring the intensity and phase difference in the backscattered wave. When readings from
two different epochs are compared, changes in the earth’s surface can be identified [22].
When comparing SAR images from different epochs, coherence is used to assess the corre-
lation between backscatter signals, highlighting areas where the backscattering changes.
Equation (1) is used to calculate coherence [23].

γ =
〈s1 × s∗2〉√〈

s1 × s∗1
〉 〈

s2 × s∗2
〉 (1)

where s1 and s2 are the complex pixel values of each of the SAR images and the angular
brackets represent ensemble averaging. Using this equation results in a value from 0 to
1, with 1 being a strong correlation between the two epochs and 0 being no correlation.
The factors that contribute to correlation can be split into four categories, being geometric,
volumetric, thermal, and temporal [23–25].

Y = Ygeometric × Yvolume × Ythermal × Ytemporal (2)

The geometric factor refers to the distance between the satellite’s position at each epoch,
known as the baseline. Any value greater than zero will create additional decorrelation;
however, values of less than a few hundred metres result in an insignificant effect [25,26].
Volumetric decorrelation is the most common and occurs when radar waves bounce off
multiple surfaces before returning to the satellite. This is often caused by vegetation but
can also be the result of soil moisture, buildings, gullies, and other influences [27]. As long
as there have been no changes in these factors between the two epochs, extra decorrelation
should not occur. The third factor is thermal and is largely due to random errors of the
receiver and, as such, cannot be easily adjusted for [24]. The last factor is temporal; changes
due to temporal factors are often what studies are examining, looking for any changes in
the ground surface between epochs. This is where the change detection part is established.
Using coherence values between pairs and comparing these values to other pairs, the
temporal effects on decorrelation can be studied. This allows for changes in the ground
surface structure to be highlighted at particular periods of time.

CCD is particularly useful for finding erosion as it can be used in all weather conditions
over large areas, has a sizable amount of historical data, and can detect small changes in
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surface structure. As SAR is an active sensor, it can be used to detect changes through cloud
cover and at any time of the day. This is extremely beneficial when trying to investigate rain
events where cloud cover is likely. Many methods used to investigate erosion are limited in
scope, only being possible in small areas, whilst remote-sensing techniques offer the ability
to investigate the entire earth due to their space-borne nature and significant history of data.
Lastly, when measuring erosion, CCD can measure small changes in the surface structure.
This is due to the nature of backscattered waves. If the ground is disturbed, it will reflect
a different signal than the previous epoch, allowing any such changes to be detected in a
coherence image. One disadvantage of coherence is that some areas will always have a low
coherence due to vegetation or gullies. However, this has been overcome by calculating the
background coherence of an area and correcting for the impact of vegetation and gullies.

To the best of the authors’ knowledge, only a limited number of studies have been
performed using CCD to measure erosion, with only one being completed in Australia [28]
and one other being used in Chile to measure erosion from rain events [20]. These
studies both used very different techniques. The study in Australia was completed by
Castellazzi et al., 2023 [28] and aimed at mapping gully erosion using CCD. It used a novel
technique of creating large stacks using a small baseline subset (SBAS) method, creating a
separate stack for dry and rainy conditions. Using this method, a large amount of data from
the dry stack was used to estimate the background coherence, giving a highly accurate
result. From this stack, the average and standard deviation for each pixel per temporal
baseline were established. This is another advantage of the SBAS method as it allows a
comparison between different temporal baselines. The background coherence was then
used with the rain stack to highlight areas of erosion using a complex relationship between
the two. Although using an SBAS method can give more accurate results, it also requires
significant computer power and labour to complete the processing. As one proposed
benefit of CCD is the reduced labour required, the need for computing power and human
interaction with this method could be improved upon. The study from Chile completed by
Cabré et al. (2020) [20] uses a much simpler method.

Cabré et al. (2020) [20] studied the erosion caused by a single rain event in the Ata-
cama Desert using CCD. They used five coherence pairs with the same temporal baseline
before the rain event to establish the average and standard deviation. They then deter-
mined the 95% confidence interval of each pixel and removed all values except the lower
2.5 percentile. Thus, this should only highlight areas that are very likely to have changed.
The method used has a lower computational requirement; however. it did not validate its
data successfully, only showing small areas that were examined during a field study.

This study aimed to refine the approach of previous work by proposing a method
more rigorous than that used by Cabre et al. (2020) [20], but not as computationally heavy
as Castellazzi et al., 2023 [28] and will provide a well-established validation of the results.
This will be achieved by using fewer coherence pairs to estimate background coherence and
correcting for still water and moisture changes while still utilising a streamlined approach.

2. Materials and Methods
2.1. Study Area and Data

The study area chosen was near Quilpie (in south-western Queensland, Australia),
surrounding the Bulloo River, and spans an area of 12,000 km2 (Figure 1a). Colloquially, it
is known as channel country due to the flatness of the land, with the only changes being
the large channels the rivers create. In these areas, it rarely rains, with this region receiving
less than 300 mm of rain each year [29]. However, when it does rain, it does so with high
intensity, often causing widespread flooding [30]. Considering the significant flood events
and the sandy soils of the area, this region experiences considerable erosion. Due to the
remote nature of the land, this erosion often goes unnoticed and can cause significant
environmental impacts. In 2022, this region and its catchment experienced higher than
average rainfall as seen in Figure 1b. Figure 1b also shows the river levels as erosion may
often be caused by rainfall from the catchment further north. One large rain event is evident
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on 2 February 2022. This rain was the first significant event in Quilpie since March 2020
and was examined in this study.
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Figure 1. (a) Study area is Quilpie, an arid region, located in southern Queensland, Australia
(Imagery Source: Google Earth). (b) Rainfall and water levels from river gauge in Quilpie throughout
2022 [29,31].

Five datasets, collected by space-borne techniques and field surveys, were used to
analyse erosion in the study area. These can be seen in Table 1.

SAR data were acquired from the Sentinel-1 mission, the product being L1 SLC in
interferometric wide swath mode with VV polarisation. This polarisation was used as
it often has a greater backscatter than VH, meaning it will provide better results for this
study [32]. The data are provided by the European Space Agency via Copernicus Open
Access Hub, with acquisition dates for each pair shown in Tables 2 and S2. SAR data
processing was carried out using SNAP software version 9.0.
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Table 1. The five datasets used in this study along with their product and usage.

Dataset Product Use

Sentinel-1 L1 SLC wide swath VV SAR data is used to identify erosion.

Sentinel-2 L1 Used to create NDVI maps and locate areas of
still water.

SMAP L3 SM P E SMAP data used for measuring soil moisture
changes in the study area.

Drone Phantom 4 RTK RGB Drone used to create aerial pictures for validation.

Soil Samples Tested on Shear Trak II Soils used to find shear strength of soil, thus
finding erodibility.

Table 2. The coherence pairs used in finding erosion, noting their dates and rainfall amounts.

Pair Number Reference Date Secondary Date Rainfall (mm)

Rain 1 26 January 2022 7 Feburary 2022 77
Dry 1 2 January 2022 14 January 2022 0
Dry 2 7 June 2022 19 June 2022 0
Dry 3 19 June 2022 1 July 2022 0
Dry 4 1 July 2022 13 July 2022 0
Dry 5 13 July 2022 25 July 2022 0
Dry 6 21 January 2023 2 Feburary 2023 0
Dry 7 2 Feburary 2023 14 Feburary 2023 0

Sentinel-2 data were used to calculate the Sentinel Water Index (SWI). These data
were also provided by the European Space Agency via the Copernicus Open Access Hub.
Sentinel-2 data have a spatial resolution of between 10 and 60 m, with the bands used in
this study having a resolution of 20 m. Multispectral processing was also undertaken in
SNAP. The Normalised Difference Vegetation Index (NDVI) was used to assess vegetation
growth in the study area. NDVI was calculated using Sentinel-2 bands 4 (red) and 8 (NIR),
giving it a resolution of 10 m. The Soil Moisture Active Passive (SMAP) mission by NASA
was also used to identify changes in soil moisture. The L3_SM_P_E product was used, with
a spatial resolution of 9 km, and was accessed through the Earth Data Hub.

A field campaign was conducted to collect the required field data for validation. A
Phantom 4 RTK Drone with an RGB sensor and an RTK base station was used for imagery
in pre-defined sections of the study area. The flights were completed at a height of 100 m,
giving a ground sampling distance of 2.6 cm. There was a side and longitudinal overlap of
70%. The data were processed in Agisoft for mosaicking and geo-registration. Additionally,
soil samples were collected from the study to test the sheer strength of the soils and their
susceptibility to erosion [33].

2.2. Coherent Change Detection Method and Validation

The coherence pairs in Table 1 were calculated using the steps in Figure 2 and the
parameters from Table 3. Firstly, the background coherence was established to identify
erosion from the rain event. This was achieved by calculating the average and standard
deviation (Figure 3) of seven coherence pairs (Table 1) that had little to no rainfall. These
pairs will be referred to as the dry stack. The number of images used was such that it
limited the computational requirements but still provided adequately accurate results. This
was found through trial and error as it was found that the average and standard deviation
did not change significantly when more than seven pairs were included in the process.
The average percentage difference between using seven and eight pairs was 0.5% for the
average and 1.6% for the standard deviation. This small change was seen as insignificant.
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Table 3. Parameters used in the Sentinel Applications Program (SNAP) to calculate coherence values.

Process Parameter Value

TOPSAR Split Subswath IW2
Bursts 1–7 or 3–9

Back Geocoding Resampling Method Bicubic Interpolation
Coherence Range Window Size 10
Multilook Range Looks 4

Azimuth Looks 1
Terrain Correction Pixel Spacing 10 m
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deviation with whiter pixels representing a higher value.

The estimated average and standard deviations were then used to determine the
Z-value for each pixel using Equation (3):

Z =
x− µ

σ
(3)

where Z is the Z-value, x is the coherence value from the rain event, µ is the coherence
mean from the dry stack, and σ is the standard deviation from the dry stack. This Z value
represents the number of standard deviations the value from the rain event is away from
the average value. To identify areas of erosion, any Z-values greater than−3 were removed.
This means only values below −3 remained, which represents a 99% confidence interval.
This 99% confidence interval was chosen through a process of trial and error using visual
interpretation, with the 95% confidence interval leaving some artifacts visible in the data.

As water has a large effect on coherence values, the areas that have water on 7 February
2022 needed to be removed. Sentinel 2 data were used to calculate the Sentinel Water Index
(SWI) to identify bodies of water [34]. The formula to calculate SWI is shown below in
Equation (4):
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SWI =
VNIR− SWIR
VNIR + SWIR

(4)

where VNIR is the vegetation red edge, which equates to band 5 and SWIR is the short-
wave infrared, which equates to band 11.

This equation was used to create a binary map identifying bodies of water in the
subject area on 7 February 2022. Any areas that had water were then removed from the
erosion identification map. This binary map can be seen in Figure 4 and clearly shows that
large sections of the area were inundated with water.
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Figure 4. Areas where water was lying on the 7 February 2022. The white pixels represent water
while the black pixels are no water.

As soil moisture affects radar signals, any changes in soil moisture need to be mitigated.
This was completed by using the same process as in Figure 2 but using the next coherence
pair after the rain event, which was from 7 to 19 February 2022. As no rain occurred during
this period, any areas highlighted should only be due to a loss of soil moisture or laying
water. As such, any areas highlighted were removed from the erosion identification over
the rain event. This correction may also remove some eroded areas but is necessary for
removing false positives.

Due to the speckly nature of SAR data, small artefacts are present after completing
the process above. These artefacts are only 1–4 pixels in size and obviously do not denote
erosion but are more likely a result of the randomness in the one-coherence images from
the rain event. Therefore, spatial filtering was applied to remove any pixel groups that
were four pixels or less in size to achieve the final erosion identification map.

To validate this map, three different techniques were employed. These included
assessing the effects of environmental factors, fieldwork using aerial photogrammetry, and
temporal coherence variation. Details regarding these three techniques will be provided in
the remainder of this section.
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Using Equation (2), there are three environmental factors, namely geometric, volume,
and thermal, that affect coherence and need to be controlled. These were each checked
individually. To help assess the volumetric factors, coherence pairs with longer temporal
baselines were produced. The pairs used can be seen in Table 4. This table shows the length
of the temporal baselines and the rainfall amounts during these times.

Table 4. The four coherence pairs used to analyse the effects of longer baselines on coherence.

Pair Number Start Date End Date Temporal
Baseline (Days) Rainfall (mm)

Temporal 1 26 January 2022 7 February 2022 12 77
Temporal 2 26 January 2022 19 February 2022 24 77
Temporal 3 26 January 2022 3 March 2022 36 77
Temporal 4 26 January 2022 27 March 2022 60 144

Along with this, NDVI maps were created to assess any changes in vegetation over
the course of the rain event. These were calculated using Formula (5).

NDVI =
NIR− RED
NIR + RED

(5)

where NDVI is the Normalised Difference Vegetation Index, NIR is sentinel 2 band 8 or
Near-infrared, and RED is sentinel 2 band 4.

Fieldwork was also completed to help validate the results. This first consisted of
finding areas that likely contained erosion from the CCD analysis output. Suitable sites
were chosen based on a few criteria including the density of pixels and localised increase in
pixel values. Once a few suitable sites were selected, these areas were identified in the field
and initial visual observations were undertaken. If obvious erosion could be identified
visually, a drone flight was carried out. This consisted of using a Phantom 4 RTK Drone
with the RTK base station. This drone survey was then compiled in Agisoft Metashape
using a standard RTK process [35]. The ground control points (GCPs) measured by the
field survey using a total station at each site were used to adjust the drone imagery. Testing
determined that well-defined ground locations had an RMSE of 3 cm. In total, four drone
flights were completed. The location of these flights and the other investigated areas are
shown in Figure 5.

In addition to the drone survey, soil samples from each site were also collected. Two
samples from sites 1–4 were collected in soil sampling rings and stored in airtight containers.
The location of each sample was chosen so that the sample would reflect the most prominent
soil type of the area. In all test sites, the soil type found was Kandosol Red, a sandy surface
soil with sandy-clay subsoils. A sheer strength test was completed on these samples to
show the erodibility of the soils. This test was undertaken using the Shear Trak II by
following the standards from AS1289.6.2.2 [36]. This standard outlines the correct methods
and quality assurance to be used when testing the shear strength of soils. The results were
then averaged between the two samples from each site, although only small differences
were seen.

Lastly, temporal coherence variation was completed to help validate the erosion data.
This consisted of finding the coherence of each 12-day pair over the entirety of 2022. This
allowed for any variation in coherence to be examined over the course of the year. The SAR
images used for this stage can be seen in Table S1 (Supplementary Materials). Using the
same process as shown in Figure 2, coherence was calculated for each neighbouring pair,
giving each coherence image a temporal baseline of 12 days. Next, five areas were chosen
to be monitored, which consisted of three areas where erosion was identified, one control
area with high coherence, and one control area with low coherence. The three eroded areas
coincide with Site 1, Site 2, and Site 3 from Figure 5. Due to the aforementioned noisy
nature of SAR images, a small area of 5000 m2 at each site was used to find the average
value of the area. These data were then plotted with rainfall to show any relationship.
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Figure 5. The six sites investigated through the fieldwork were all situated south of Quilpie surround-
ing the Bulloo River.

3. Results

This study clearly demonstrated widespread erosion around the river system as a
result of the rain event on 2 February 2022 as shown in Figure 6. The speckly nature of SAR
was evident in this image; however, it did suggest some areas of likely erosion. A number
of these areas were then explored more in-depth during the field investigation.

As seen in Equation (2), there are four factors that contribute to coherence, being
geometric, volumetric, thermal, and temporal. To ensure the results seen are only erosion,
all other factors need to be removed. The geometric factors relate to changes in the physical
position of the satellite between images. As stated earlier, pairs that have baselines larger
than a few hundred metres may suffer from added decorrelation. The largest baseline in
this study was 148 m as seen in Table S2 (Supplementary Materials). As such geometric
factors should not be contributing towards coherence changes [25].

Next, the volumetric factors were explored. In this study, the most likely volumetric
factors would be vegetation, soil moisture changes, and water. An assessment of the
vegetation is shown in Figure 7. It can be seen there was only a small amount of vegetation
change between the first and second SAR images. The most notable difference between the
images occurs in the rivers where water is lying in the second image causing the pixels to
become whiter. Normally, vegetation growth in arid and semi-arid environments tends to
occur 1–2 months after rainfall [37,38]. As the temporal baseline between images is 12 days,
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the difference in vegetation cover should be relatively small. As such, vegetation should
not create a difference in coherence.
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Figure 6. (a)The erosion identification map after completing all corrections. Green pixels show where
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Soil moisture changes were examined in two ways, first using the Soil Moisture
Active Passive (SMAP) mission and, secondly, using coherence pairs over longer temporal
baselines. Figure 8 shows the difference between values gained from the SMAP mission
L3_SM_P_E product on 27 January 2022 and 7 February 2022. This SMAP product has
a spatial resolution of 9 km and, as such, can only be used to provide an approximate
assessment of changes in soil moisture.
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As indicated in Figure 8, there has been a small increase in soil moisture; how-
ever, this increase is not considered significant. The SMAP mission has an accuracy of
0.04 m3/m3 [39], and as the largest difference in the study area is 0.053 m3/m3, it is only
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slightly higher than the accuracy of the equipment and, as such, is not considered a signifi-
cant change.

To assess the moisture changes at a higher resolution, coherence pairs with different
temporal baselines were investigated (Figure 9). If soil moisture was affecting the coherence
signal, it would be expected that there would be an increase in coherence in some areas as
soil moisture dissipated. This cannot be seen in Figure 9 as the coherence values decrease
with time, with the average percentage difference between Figure 9a and d being −9.3%.
This is what would normally be expected from longer temporal baselines. This same
comparison was made in Figure 10 but over a dry period. Here, the average percentage
difference was −5.2%, with a big portion begin concentrated in one area. This shows
that there was a higher-than-normal decrease in coherence following the rain event, likely
because of increased vegetation growth. This also shows that there were no increases in
coherence due to soil moisture. Although these two data sources show that soil moisture
should not have affected the study, soil moisture was still corrected as part of the method.
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Lastly, laying water needs to be considered. Like most satellite data, SAR images
cannot penetrate water bodies easily and, as such, in areas that may have still water,
coherence values will be greatly affected. This factor was removed while processing as any
areas with laying water were masked out.

The last factor to correct is the thermal factors. These factors are largely due to the
limitations of the sensor, the atmospheric effects, and the randomness in any dataset [24].
Thermal factors cannot be easily corrected, so in this study, they have been limited by
averaging pairs to create a dry stack and then utilising this stack to apply spatial filtering.
These solutions do not totally remove all effects, as seen by the noisy nature of the final
product. Through careful interpretation of the results, this factor did not contribute to
large coherence changes. With all other factors largely removed from the dataset, it was
assessed that the only remaining cause for coherence loss could be attributed to temporal
factors. For this study, the possible temporal factors were all related to changes in the
surface structure, either by natural or anthropogenic processes. Due to the remoteness
of the study area, it can be assumed that direct anthropogenic effects would be very low.
As such, it can be concluded that any effects seen in the final data are effects of natural
processes. As there was a large amount of rainfall in the study area over the 12 days that
covered these analyses, it can be assumed that most of the natural changes would be due to
water erosion. However, in the data, some effects from wildlife are present.

The data collected from the field campaign can assist in interpreting the outcome of
the SAR data processing. In total, six sites were visited, with four drone surveys and four
soil samples being completed. These sites can be seen in Table 5 and are shown in Figure 5.
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Table 5. This table shows each of the sites visited along with a description of any erosion or site
conditions seen.

Site Figure Z-Value Average Visible Erosion
or Deposition Description

1 Figures 11a and 12 −5.61 X
Bare ground with scattered trees. Large amount
of visible erosion ranging from very established
erosion to newly formed rills.

2 Figure S1
(Supplementary Materials) −5.19 X

Bare ground with many small rocks
surrounding dry creek. Obvious erosion
leading into creek consisting of small to
medium rills.

3 Figure S2
(Supplementary Materials) −4.07 X

Bare ground with scattered trees surrounds the
river. Clear formation of medium to large
gullies flowing into river

4 Figure 11b −4.30

Bare ground on relatively flat land. Surface
changes likely. Small areas of disturbed soil are
present but nothing substantial. Cattle tracks
are present.

5 Figure 13a −3.89 Bare ground with many small rocks on flat land.
Surface changes likely.

6 Figure 13b −4.82 Bare ground with many small rocks on flat land.
Surface changes likely

Figures 11, S1 and S2 show the four drone surveys with the erosion results overlayed.
Some conclusions about the accuracy of the data can be drawn from these results; however,
it is difficult with erosion to pinpoint newly eroded areas from past erosion. As erosion
does not occur uniformly over a site, areas where erosion was determined in the images
may not have eroded during the rain event on 2 February 2022. As such, these images can
be used as a guide only to help validate the possible location of erosion.

Figure 11a shows the results gained mostly coincide with erosion seen on the ground.
Importantly, the data appears to suggest that erosion is occurring towards the end of the
gullies, which is consistent with the natural formation of erosion. This is best seen in
the detailed view in Figure 11a. The area contained within the red square can be seen in
Figure 12. This area has obvious newly formed erosion.

Figure 13 shows the two sites that were visited but no drone survey was undertaken.
These sites were likely highlighted due to a combination of soil moisture changes and
changes in the surface like flattened grass and disturbed rocks. It is obvious that little or no
erosion had occurred in these areas largely due to their flatness. Water moving through this
area would have a very low flow rate and, as such, would struggle to cause erosion. Figure 11b
also highlights the need for continued improvement of this technique as it is obvious that
some areas identified are likely soil moisture changes in the flat ground rather than erosion.

The shear strength of the soil from each of the drone flight areas can be seen in Table 6.
Using the typical shear strength values from the GeotechniCal Reference Package by the
University of West England, soft soil is rated as 20–40 kPa [40]. Each of the soil samples
comfortably fit into this category, which is the second lowest possible strength category.
This shows the weakness of these soils, which translates into a higher susceptibility to
erosion [41].
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Table 6. The shear strength of soil samples taken from each of the drone survey sites.

Site kPa

1 29.15
2 25.43
3 27.14
4 27.67

In addition to the fieldwork, the temporal coherence variation was investigated as
shown in Figure 14. Here, it can be seen that the coherence of five areas over the course of
2022 was plotted against rainfall data. Here Tests 1, 2, and 3 correspond to Sites 3, 2, and
1, respectively.

It is evident from Figure 14 that there is a correlation between coherence and rainfall,
although this correlation is not strong. Test areas 1, 2, and 3 had an average correlation
coefficient of 0.61 while the control areas had a correlation of 0.24. However, this is to be
expected as rainfall is not a perfect determinant of erosion. During the first rain event, all
test areas where erosion is likely to have occurred saw a steep decrease in coherence, which
resulted in high Z values, which can be seen in Table 4. This occurred while the two control
areas remained largely unchanged. This same pattern occurs multiple times throughout
the year.

It should be noted that even though Control 2 in Figure 14 was within a high coherence
area, it did decrease throughout September to November 2022, likely due to changes in soil
moisture; however, the decrease is small compared to that of the eroded areas. Another
notable anomaly is the large rain event on 13 March 2022 that did not create a loss of
coherence. This can be explained in two ways. By examining Figure 1b, during this rain
event, the river levels were only slightly raised and did not reach the same heights as the
2 February rain event. Along with this, due to the large rain event that had occurred
recently, any areas likely to easily erode would have already eroded. As such, experiencing
lower erosion rates is expected. Figure 14 shows that coherence does appear to match
erosion patterns over the course of 2022.
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4. Discussion

The results presented from this model have identified areas that are likely to have
eroded during the 2 February 2022 rain event. However, although the results are promising,
further improvement is required to fully remove the effects of soil moisture. This study
represents a new method for generating such results; a method that has advantages over
similar studies. This study uses only seven coherence pairs to calculate the background
coherence, resulting in significantly fewer computation resources than the SBAS method
similar to Castellazzi et al. [28].

The approach utilised in this study used two vital corrections that had not been seen
in previous studies, namely laying water and soil moisture corrections. The laying water
correction was only required in areas that were prone to laying water such as in the channel
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country; however, the soil moisture correction is vital to all CCD analyses that revolve
around rain. Castellazzi et al. [28] attempted to account for soil moisture using the stacking
of coherence pairs with different temporal baselines; however, this did not completely
explain how this removes soil moisture. As a result, the authors found that only 6 of the
13 identified areas could be attributed to erosion. Therefore, using a dedicated soil moisture
correction like in this study may improve these results and are important to the validity of
this study.

Even when considering the use of soil moisture removal, the largest impact on the
accuracy of the erosion identification was the changes in soil moisture. Due to the flatness
of the study area, many areas are inundated with water when rain occurs that then accumu-
lates in the soil. When using soil moisture indices like SMAP or the Normalized Difference
Moisture Index (NDMI), only small changes in soil moisture are evident. However, it
appears that these small changes have a significant effect on the backscattered radar waves.
Even when correcting for soil moisture changes seen in these indices, areas that do not
seem to have erosion and likely have just experienced soil moisture changes are identified.
This effect is not widespread, and with the knowledge of its existence, the data can be
interpreted to determine the areas with actual erosion. Along with soil moisture, some
other limitations exist, with these being the impacts of vegetation and the resolution of the
mission. The lack of vegetation in the study area helped contribute to the strength of the
results; however, in areas with higher vegetation, some artifacts existed. If this method
were to be replicated in a highly vegetated area, it may struggle to identify erosion. This
could be alleviated by using SAR satellites with longer wavelengths.

Additionally, the resolution of the Sentinel-1 SAR sensor means that some small
amounts of erosion may not be detected in the large pixels. Identifying the implications
of this factor is difficult due to two aspects. On the one hand, the effect of this factor is
small as any changes to the surface structure do impact the intensity of the backscattered
wave. On the other hand, small changes could be missed as they would be assumed to be
noise. Even when considering these limitations, the method employed in this study is still
widely usable.

Future studies should aim to better understand the effects of soil moisture on coherence
values and attempt to find better ways for removing soil moisture content. This may be
achieved using other sensors to measure soil moisture or by utilising a machine learning
program to remove any defects. Such a process would create a more accurate representation
of erosion.

5. Conclusions

Erosion is relentless, removing the precious resources of the land and leaving only
scars behind. In doing so, it causes a loss in agricultural production, affects ecosystems,
and disrupts waterways. Even with all these detrimental effects, the accurate and timely
measurement of erosion continues to be challenging. This study aimed to contribute to
knowledge on erosion by improving a method of locating erosion across large areas using a
technique that was not computationally demanding. Data collected by the Sentinel-1 SAR
mission throughout 2022 was used to determine erosion locations using coherence change
detection, with other remotely sensed datasets being used to improve the erosion detection
process. As a complementary analysis and to validate the results, a field campaign was
also conducted. It was found that the method employed did locate erosion throughout the
study area; however, it also showed false positives likely due to soil moisture changes. This
study used a new method for removing soil moisture effects that did improve the accuracy
of the data, but still left behind artefacts of soil moisture. Therefore, further minimisation
of the soil moisture effects should be considered, but this study highlights the significant
potential that an accurate and reliable erosion detection system could present.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16071263/s1, Figure S1: Site 2 Imagery from drone survey with
erosion identification results, Figure S2: Site 3 imagery from drone survey with erosion identification
results, Table S1: SAR images used to assess the temporal coherence variation. It also states the
spatial baseline of each image from the reference image, Table S2: SAR images used in finding erosion
including their baseline distance from the reference image, Table S3: Coordinates of points used in
the temporal coherence variation investigation (WGS 84 Zone 55S).
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