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ABSTRACT 

Accurate prediction of electric vehicle (EV) charging load serves as a foundational step in the establishment of expressway charging 
infrastructure. This study introduces an approach aimed at enhancing the precision of expressway EV charging load predictions. The 
method incorporates considerations for both the battery dynamic state-of-charge (SOC) and users' charging decisions. To begin, the 
extraction of expressway network nodes was conducted using the open Gaode Map API, leading to the establishment of a model 
incorporating expressway network and traffic flow features. Subsequently, a Gaussian mixture model was employed to formulate a 
SOC distribution model for mixed traffic flow. An innovative SOC dynamic translation model was introduced to capture the dynamic 
characteristics inherent in traffic flow SOC values. Building upon this foundation, an EV charging decision model, which takes into 
account expressway node distinctions, was developed. The extraction of EV travel characteristics from the NHTS2017 datasets 
informed the construction of this model. Differentiated decision-making was achieved through the utilization of an improved 
Lognormal function and an improved Sigmoid function. In the final stage, the proposed method was applied to a case study involving 
the Lian-Huo Expressway. The analysis of EV charging power, converging with historical data, revealed that the method accurately 
predicts the charging load of EVs on expressways, and underscores the efficacy of the proposed approach in predicting EV charging 
dynamics in expressway scenarios. 
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1 Introduction	

n light of China’s steadfast commitment to the “dual carbon” strategy aimed at attaining carbon peak and 
neutrality, the EV industry within the country is experiencing an unprecedented surge in development 
opportunities. As of the conclusion of 2022, the EV number in China has soared to 10.45 million [1], leading 
to a substantial influx of high-capacity EV charging demands that are exerting discernible effects on the power 

supply infrastructure [2]. The expressway power supply system, characterized by its specific structure, is particularly 
susceptible to intermittent load disruptions, resulting in a compromised stability of the expressway power grid. 
Consequently, it becomes imperative to elucidate the spatiotemporal distribution of EVs, investigate the charging 
decision-making patterns of EV owners, and prognosticate the impending EV charging loads on expressways. These 
endeavours are prerequisites for fostering the secure functioning of the expressway power grid, which expedites the 
electrification of Chinese expressways and enhances the efficiency of societal electricity service [3]. 

Currently, research on EV charging load prediction predominantly centers on two aspects: precise characterization 
of the EV travel environment and the application of more accurate simulation sampling methods. Regarding the 
characterization of the EV travel environment, M. B. Arias et al. [4] established a model for the urban road network 
based on the Seoul Metropolitan Area in South Korea. They employed a Markov chain to derive the EV charging load 
for each city section. In [5], an urban transportation network, accounting for traffic congestion, was developed to predict 
EV charging loads. Additionally, [6] presented a multi-regional urban transportation network model which divided the 
city’s traffic network into various regions. A hybrid method was proposed to predict the charging load of urban EVs. 

In Italy, G. Napoli et al. [7] constructed a national expressway topology model. By integrating this model with the 
distribution network, they identified the optimal construction location for charging stations. In terms of simulation 
sampling methods, P. Zhang et al. [8] introduced the traditional Monte Carlo method to sample the EV charging load of 
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mixed vehicle flow, yielding fundamental EV charging load values. Conversely, W. Yin et al. [9] enhanced the EV 
charging load calculation model by incorporating coupling characteristics using kernel density functions which enables 
quantitative prediction of the spatiotemporal distribution of EV charging loads. 

In [10] and [11], a Markov chain model incorporating multiple random processes was formulated, starting from the 
perspective of user psychological decision-making, to predict the charging load of urban network EVs. To achieve more 
accurate predictions, deep learning methods have been employed to predict the ultra-short-term charging load of EVs 
[12]. This approach has demonstrated superior performance compared to traditional artificial neural networks which 
achieves an accuracy of 30%. 

The preceding research overview highlights a prevailing emphasis on investigating the driving behaviour and 
charging decisions of EVs within urban transportation networks. Conversely, there is a noticeable scarcity of studies 
examining EV driving range and charging behaviour in the context of expressways. It is evident that accurately 
modelling the flow of EVs on expressways is essential for predicting the charging load of EVs in this specific 
environment. Consequently, this paper aims to contribute to the existing knowledge base by delving into research on 
EV driving energy consumption, EV charging decision-making, and expressway charging load prediction within the 
expressway framework. The detailed modelling process is delineated in Figure 1, illustrating the sequential steps 
involved in this comprehensive investigation. 
 

	
Fig.	1	Flowchart	of	expressway	EV	charging	load	predicting	process.	

This paper initiates its investigation by developing an origin-destination (OD) matrix model tailored for 
expressway traffic. Utilizing geographic information system (GIS) data, a road topology network is constructed, with a 
particular focus on extracting information from three distinct types of traffic nodes: expressway service areas, county 
nodes, and downtown nodes. The expressway topology model is then formulated. Subsequent to this, the modelling of 
SOC for EV batteries is undertaken, incorporating a Gaussian mixture model (GMM) to simulate a mixed traffic flow 
encompassing multiple vehicle types. 

Drawing from the NHT2017 datasets, the paper establishes a charging decision model for county and downtown 
nodes, taking into account EV trip mileage and trip ending time characteristics. Furthermore, the Huff model is 
employed to discern charging decisions specifically for county and downtown nodes. In the proposed approach, an 
improved Sigmoid function is innovatively introduced for charging decision-making at service area nodes. Finally, the 
proposed method is applied to the Taohuaping-Dingyuan section of the Lian-Huo Expressway for simulating analysis 
and the simulation results verify the feasibility of the proposed method by comparing them with conventional methods. 

2 Expressway	road	network	and	traffic	characterizations model	

The expressway network model mainly contains four types of nodes: service area nodes, county nodes, downtown 
nodes, and transportation hub nodes. Given the typically smooth traffic flow at expressway hubs, where the SOC 
distribution entering and exiting remains relatively equivalent, this paper exclusively focuses on modelling the 
expressway topology by considering service area nodes, county nodes, and downtown nodes. The omission of 
transportation hub nodes is deliberate, recognizing their characteristic equilibrium in SOC distribution inflow and 
outflow within the expressway network. 
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2.1	Expressway	topology	model	

The expressway section chosen for modelling in this paper is the Taohuoping-Dingyuan section of the Lian-Huo 
Expressway with a total distance of 396.2 kilometers. Within this section, there are 29 nodes, comprising 17 county 
nodes, 4 downtown nodes, and 8 service area nodes, as shown in [13]. Each node is uniquely indexed by an integer i 
(i=1,2…29). The flow of EVs from one node to another is represented by the vector (i, j). Following the modelling 
processes detailed earlier, the resulting expressway area map is depicted in Figure 2, providing a comprehensive 
representation of the object expressway area under consideration. 
2.2	Expressway	real‐time	velocity‐flow	model	

The analysis of EV driving velocity is imperative for investigating EV battery energy consumption. It is crucial to 
precisely determine EV velocity at each time instance [14]. Existing research often focuses on urban road networks 
where EV velocity tends to be low, leading to the prevalent use of linear velocity-flow models. However, there is a 
noticeable gap in the availability of nonlinear velocity models tailored for expressway scenarios. Recognizing this gap, 
this paper addresses the deficiency by developing a real-time road traffic flow-based nonlinear velocity-flow model to 
accurately characterize EV driving velocity within expressways. The velocity model is expressed in Eq. (1) and Eq. (2). 
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where vij.max is the zero-flow velocity of EVs from node i to node j, which means the maximum velocity of the 
expressway section. Cij is the maximum mobility of the expressway section. This parameter is dependent on the railway 
classification of this expressway section. qij(t) is the traffic flow value at the t juncture. The ratio of parameter qij(t) and 
Cij is the congestion degree of this expressway section. β is the experimental constant. a, b, n are adaptative factors for 
different railway classifications respectively. By referring to Expressway Traffic Survey Statistical Reporting System, it 
can be obtained that for Class I arterials, the factors a, b, n are 1.726, 3.15, and 3 respectively. 

 
Fig.	2	Taohuoping‐Dingyuan	section	of	the	Lian‐Huo	Expressway	under	investigation.	

2.3	Expressway	real‐time	velocity‐flow	model	

Previous studies have indicated that the energy consumption of EVs is comprised of two primary components: 
driving energy consumption and in-vehicle air conditioning energy consumption. Inspired by these findings, this paper 
considers both factors when computing the overall energy consumption of EVs [15]. Building upon the aforementioned 
analysis, the calculation model for unit mileage power consumption is expressed in Eq. (3), (4), and (5). 



ARTICLE Predicting Tie Strength of Chinese Guanxi ARTICLE Predicting Tie Strength of Chinese Guanxi https://mc03.manuscriptcentral.com/ienergy Short Title for this manuscript 

4 iEnergy | VOL 1| September 2021| 1–5 

 

 

T TF K E               (3) 

L max

T

R min

,

,

p p
ij

p p
ij

S
W T T

v
K

S
W T T

v

 
 
 


           (4) 

1.531
0.21 0.001 ij

ij

E v
v

               (5) 

where KT is the energy consumed by the air conditioner of a vehicle travelling S kilometers at speed vij when the 
environment temperature is Tp. The real-time velocity can be calculated through Eq. (1). Tp min and Tp max are the lower 
and upper temperature limits of the air conditioner, while WL and WR are the power of the air conditioner in cooling 
mode and heating mode, respectively. E is the energy consumption in different real-time velocities for unit kilometer. 
FT is the total energy consumption of a vehicle in environment temp of Tp with velocity of vij. 

3 Dynamic	transfer	processes	of	SOC	of	EVs	

The traffic flow is conceptually treated as a particle fluid composed of traffic entities [16], with EVs representing 
the individual particles constituting the flow. In this conceptualization, the SOC values of a single vehicle can be 
characterized by the collective SOC distribution of the entire vehicle flow, leveraging the inherent characteristics of 
traffic flow. To capture and comprehend the dynamic evolution of SOC among EVs as they traverse different nodes, 
this paper introduces a dynamic transfer model. This model is designed to delineate the dynamic transfer process of 
SOC within the EV flow, offering valuable insights into how vehicle SOC undergoes changes across different nodes 
within the traffic flow. 
3.1	SOC	model	of	expressway	traffic	flow		

In the context of widespread EV usage, the SOC distribution of EV batteries is expected to follow a normal 
distribution [17]. However, previous studies have predominantly focused on individual EV models, neglecting the real-
world scenario of multi-EV hybrid driving. To address this limitation, this paper employs the principle of probability 
invariance when normal distributions are superimposed. A GMM is then utilized to model the SOC values of different 
vehicle types. The GMM model can be considered as a weighted superposition of multiple Gaussian models, and its 
mathematical expression can be described by Eq. (6) and (7). 
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where, the K is the fitting component value of GMM, which is an artificially set constant. If the GMM model was set by 
two fitting Gaussian models, then K=2. αk is a mixture factor that is used to represent the weighting ratio for each 
Gaussian component model N(x,μk,Σk), which meets the constraints given in Eq. (7). 
3.2	SOC	dynamic	moving	model	of	expressway	traffic	flow	

In this study, the modelling primarily centers on private vehicles characterized by random travelling patterns, with 
no consideration given to vehicles with fixed itineraries such as buses. The probability attributes of vehicle travel are 
elucidated through the OD matrix. Throughout subsequent sections, the subscript i signifies the origin node number in 
the OD matrix, while j denotes the destination node number, and lij represents the mileage between nodes i and j. It is 
notable that the OD matrix constructed for expressways differs from that of urban transportation networks. In 
expressway OD matrices, vehicle travel direction and mileage are predetermined and fixed. Therefore, when conducting 
vehicle flow simulation research on expressways, the focus lies in accounting for variations in charging decisions as 
vehicles reach different nodes. The ensuing assumptions are to be considered in modelling expressway EVs within this 
paper:  

(1) When the vehicles drive to nodes in the expressway, the number of vehicles flowing out of the expressway is 
equal to the number of vehicles flowing in, which means the total number of EV traffic flow remains unchanged when 
the vehicles pass through the node [18]. 

(2) EVs driving on the expressway follow a unified energy consumption model. 
(3) The proportion of vehicle types flowing into each node for charging is consistent with the proportion of vehicle 
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types assumed on the expressway [19]. 
Building upon the aforementioned assumptions, the process delineating changes in traffic flow is expounded as 

follows: 1) EVs with specific SOC values traverse expressway nodes; 2) EVs make decisions based on their SOC 
values or vehicle mileage; 3) The SOC model representing the total traffic flow on the main road is updated, excluding 
the SOC values of vehicles exiting the main road; 4) The SOC model of expressway traffic flow is refreshed whenever 
a vehicle with a new SOC value enters the traffic flow. By implementing this sequence, the simulation effectively 
captures the dynamics of SOC value changes within expressway traffic flow as it traverses different nodes [20]. This 
simulation process is illustrated in Figure 3. 

It is known that the SOC distribution of an EV model in the traffic flow follows the Gaussian invariance principle, 
which is also reflected in the basic mathematical operation of independent Gaussian distribution, and whose main 
feature is computational linearity [21]. In this paper, the Gaussian invariance is extended to the SOC Gaussian mixture 
model of traffic flow, and the SOC translation model shown in Figure 4.  

Through a comparison of the SOC value at the origin and destination of a trip as illustrated in Figure 4, it becomes 
apparent that the energy loss between the origin node and the destination node demonstrates linearity with the loss of 
vehicle mileage in the OD matrix. This observation establishes the feasibility of employing the OD-SOC translation 
model to effectively characterize the changes in SOC distribution within the vehicle flow on expressways. 

 
Fig.	3	Illustration	of	charging	decision	for	traffic	flow	of	expressway.	

 
Fig.	4	Probability	distribution	of	SOC	for	traffic	flow	of	expressway.	
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4 EV	charging	decision	considered	expressway	nodes	difference	

Acknowledging substantial variations in the influx of EVs entering each node and the distinct social 
responsibilities shouldered by these nodes, this paper adopts diverse EV charging strategies for each node in its 
modelling approach. 
4.1	EV	charging	strategy	for	county	and	downtown	nodes	

The decisions regarding EV charging in different scenarios are commonly influenced by factors such as trip 
mileage and trip time. Drawing insights from NHTS2017 data and existing research [22], it is observed that the 
distribution of EV trip mileage adheres to the Lognormal distribution constraint. In this paper, the cumulative 
distribution function Fm(x) derived from historical mileage data is employed as the activation function for EV charging 
decisions. Furthermore, the framework incorporates the dynamic characteristics of EVs as additional parameters 
influencing attractiveness. By employing fitting techniques on vehicle trip mileage and trip ending time data from 
NHTS2017, the probability distribution of EV trip is illustrated in Figure 5. 

 
Fig.	5	Fitting	curves	of	NHTS2017	data.	(a) trip ending time. (b) trip mileage. 

Subsequently, by extracting the fitting parameters of the fitting curve in Figure 5, the Lognormal probability 
distribution function can be obtained as shown in Eq. (8). 
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where  μm=2.98, and σm=1.14 through data fitting. x stands for the mileage data of OD matrix. 
While county and downtown nodes share similar social responsibilities, this paper acknowledges the substantial 

differences in economic scale and the scale of charging facility construction between counties and downtowns. To 
account for these variations, the paper employs the Huff model to emphasize distinctions in charging strategies when 
vehicles arrive at county and downtown nodes. The Huff model is particularly useful in capturing and illustrating the 
diverse factors that influence charging decisions, taking into consideration the economic and infrastructural differences 
between counties and downtowns. 

The Huff model serves as a decision-making model to ascertain whether EV owners decide to charge based on 
economic benefits. Within this model, an attractiveness parameter Ai is introduced to capture variations in charging 
choices among users in different city regions [23]. Traditionally, the formulation of attractiveness parameters in the 
Huff model has predominantly focused on the psychological impact of diverse functional areas and economic levels on 
urban users. In this paper, the attractiveness parameter Ai is redefined by integrating a time influence parameter in 
conjunction with economic factors. The mathematical expression for the redesigned attractiveness parameter Ai is 
delineated in Eq. (9): 

i i iA y c                           (9) 

where yi is the economic scale difference parameter of the i-th node. In this paper, the base value for the county node is 
set as 1, while that for downtown is set as 0.8. ci is the time decision parameter for driving to the ith node. α, β are the 
economic effect influence coefficient and EV entry time influence coefficient, which can be obtained by analyzing 
historical data. γ is a constant [24]. 

By introducing the attractive parameter Ai of the Huff model into Eq. (8), an improved Lognormal function with 
the characteristics of economic difference of nodes and trip time difference can be obtained as Eq. (10). 
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Based on Eq. (10), the EV charging differentiation decision at downtown and county nodes can be realized, which 
reflects the temporal and spatial dynamic differences of EV charging strategies. 

For EVs with low SOC values, a distinct charging strategy is warranted. When a vehicle with a lower SOC value 
arrives at a specific node, the user must assess whether the existing SOC is sufficient to support the vehicle to the next 
node. In such instances, the charging decision of EVs can be succinctly characterized as follows: when the SOC of the 
EV is insufficient to support the vehicle’s journey to the next node, the EV mandates a detour to the current node for 
charging. Otherwise, conventional charging decisions are adhered to [25]. The aforementioned behaviour can be 
mathematically expressed as Eq (11). 
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where δj 
n represents a decision variable in the traffic flow that determines whether the vehicle is charged when the n-th 

EV is marked as driving to node j. Its decision criterion is whether the EV’s existing power En is able to support the EV 
drives to the next node. Considering that in the expressway scenario, EV is usually single-direction driving, therefore, 
this paper uses the energy consumption amount that EV drives to j+1-th node to characterise the EV decision gauge in a 
detailed way. 

In this paper, the calculation of the charging load Pi(t) at node i of the expressway is conducted based on the 
coupling relationship between the traffic node and the distribution network. The spatiotemporal load of each node is 
systematically incooperated. The charging load Pi(t) is expressed as Eq (12). 
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where NEV represents the number of EVs entering the i-th node for charging, while represents the total EV charging 
power of the i-th node at time t. 
4.2	EV	charging	decision	for	service	area	nodes 

Given that charging facilities on expressways are centrally located in service areas, and drawing upon the earlier 
constructed OD-SOC translation model, it can be deduced that when vehicles reach service area nodes, some EV users 
with lower SOC values may choose to enter the service area for charging. To precisely characterize the decision-making 
behaviour of EV users entering the service area, this paper employs an improved Sigmoid function as the decision 
activation function. This function is utilized to model EVs whether enter service areas. 

Recognizing the challenge of precisely describing the spatiotemporal distribution characteristics of EV charging 
decision-making using the Sigmoid function, this paper introduces an enhancement to endow the Sigmoid activation 
function with the capability to accurately capture the SOC value of EVs. Specifically, the average SOC value of a 
GMM representing traffic flow is denoted as μ and incorporated into the Sigmoid function. This ensures that the 
decision-making, as modelled by the improved Sigmoid function, closely adheres to the real-time SOC distribution of 
traffic flow on the expressway [26]. The enhanced Sigmoid function, synthesized by integrating the mentioned 
parameters, is expressed in Eq. (13) and Eq. (14). 

   
1

1
n
i

n
i f SOC

f SOC
e




   


          (13) 

with 

   n n
i i if SOC SOC


             (14) 

where σ [f (SOCn 
i )] is the improved Sigmoid function. μi is the average SOC value of the Gaussian mixture model of 

traffic flow at the i-th node on the expressway. SOCn 
i  represents the individual vehicle SOC value of the input decision 

model in the traffic flow. φ is the shaping parameter that controls the shape of the Sigmoid function, which is a constant. 
Similar to county nodes, for vehicles with low SOC values, users will assess whether the vehicle can reach the next 

road section. If the current power level of the vehicle is insufficient to meet the energy consumption required for 
reaching the next node, the EV will be compelled to divert into the service area for charging. 

5 Case	study	and	result	analysis	

5.1	Case	description	
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For the case study, it is recommended to choose expressways with stable traffic flow and consistent congestion as 
the data source. Upon investigation, it was determined that the traffic flow on the Taohuaping-Dingyuan section from 
Shaanxi to Gansu is stable, and the congestion value remains relatively fixed, strictly within the range of 0.25 to 0.3. 
Furthermore, the vehicles traversing this section are primarily private cars, aligning with the current types of EVs. 
Given these conditions, this paper selects the Taohuaping-Dingyuan section of the Lian-Huo Expressway as the case 
study for in-depth analysis. 

This paper simplifies the traffic flow and constructs a traffic flow model that only includes private cars. To 
accurately simulate the real traffic flow, multiple brands of EVs were selected to construct a mixed traffic flow. In order 
to ensure the universality of the results, a total of 8 common vehicle brands on the market are selected to construct a 
mixed traffic flow, including the BYD Alto 3, BYD Han, BYD Tang, Tesla Model X, Tesla Model Y, Zeeker X, Zeeker 
001, and Nissan Arria. The proportion of various vehicle types in the traffic flow, vehicle battery capacity and battery 
SOC value are shown in Table I. 
 
Table	1	Description of different brands of EVs in the traffic flow on expressway.	

EV types 
Battery capacity 

(kWh) 
Minimum SOC Maximum SOC Proportion 

BYD Atto3 60.5 0.1 0.9 5% 
BYD Han 85.4 0.1 0.9 25% 
BYD Tang 86.4 0.1 0.9 25% 

Tesla Model X 95 0.1 0.9 15% 
Tesla Model Y 57.5 0.1 0.9 5% 

Zeeker X 64 0.1 0.9 5% 
Zeeker 001 94 0.1 0.9 5% 

Nissan Ariya 87 0.1 0.9 15% 
 

In the process of constructing traffic flow, this paper first uses the Monte Carlo method to generate an initial SOC 
sequence, then mixes the initial SOC values of different vehicles to construct a mixed traffic flow, and finally uses the 
maximum expectation algorithm to fit a Gaussian mixture model. To improve the fitting efficiency of Gaussian mixture 
models, this paper adopts a 4th-order Gaussian mixture model fitting that balances accuracy and efficiency [27]. The 
final results of the traffic flow Gaussian mixture model are shown in Figure 6. 

 
Fig.	6	GMM	fitting	results	of	traffic	flow	SOC	on	expressway.	

5.2	Simulation	results	and	discussions	

In the simulation, the total number of EVs is set at 200 which is derived from the observation of vehicle data on the 
Taohuaping-Dingyuan section of the Lian-Huo Expressway provided by the transportation department. The Monte 
Carlo method is employed to conduct the experiment iteratively 5 times. The simulation results yield spatiotemporal 
dynamic vehicle flow patterns and line diagrams for each node of the expressway. The simulation results are shown in 
Figure 7. 

The temperature map of vehicle flow shown in Figure 7a reflects the spatiotemporal distribution characteristics of 
charging vehicles. By analyzing the temperature chart data horizontally (temporal characteristics), the temporal 
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dynamic distribution curves of charging vehicles flowing into each node can be obtained as shown in Figure 7b. From 
Figure 7b, it can be seen that the number of vehicles flowing into each node of the expressway on the same day has an 
increasing trend over time. Compared with the fitting curve obtained from NHTS2017 data, the trend of the two curves 
is consistent. Meanwhile, through longitudinal analysis (spatial characteristics) of the temperature map shown in Figure 
7a, the spatial dynamic distribution of vehicles flowing into each node at a certain moment can be obtained, as shown in 
Figure 7c. Comparing the spatial distribution curve shown in Figure 7c with the distribution in Eq. (8), it is clear that 
the charging decisions of EV users on the expressway have similar distribution characteristics to the trip mileage 
described by NHTS2017 historical data. This is mainly due to the small proportion of EVs on expressways (by the end 
of 2022, the EVs only accounted for 5.7% in China). Based on the above results, it can be proven that the EV 
distribution data obtained using the method proposed in this paper has certain spatiotemporal distribution characteristics. 

 
Fig.	7	Spatiotemporal	distribution	of	expressway	charging	loads. (a) temperature map of EVs charging 

loads. (b) temporal characteristics of EVs charging loads. (c) spatial characteristics of EVs charging loads.	

Upon investigating EV charging behaviour, it is evident that EV charging methods predominantly fall into two 
categories: ordinary charging and fast charging. Furthermore, in accordance with expressway service area planning 
guidelines, the current ratio of fast charging base stations to regular charging base stations is maintained at 1:4. 
Leveraging this charging facility data alongside the results presented in Figure 7, the spatiotemporal distribution curve 
of the average charging load can be derived, as illustrated in Figure 8. A more in-depth analysis of the curve in Figure 8 
allows for the generation of a comparative chart between the average EV charging load and the travel data curve, as 
shown in Figure 9. It is apparent from this comparison that the EV charging load depicted in Figure 8 shares the same 
distribution characteristics as trip mileage described by Eq. (8). This consistency aligns with the distribution pattern 
observed in NHTS2017 data, which further validates the proposed method’s ability to capture the spatiotemporal 
distribution characteristics of EV charging behaviour. 

 
Fig.	8	Spatiotemporal	distribution	of	EV	average	charging	load.	
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Fig.	9	Comparison	of	EV	charging	load	curve	and	trip	mileage	probability	distribution	curve.	

Furthermore, this paper takes into account extreme charging scenarios for EVs: 1) the minimum charging load 
scenario, where EVs exclusively utilize regular charging; and 2) the maximum charging load scenario, where all EVs 
exclusively opt for fast charging. The simulation analysis results in the charging load curve for expressway EVs under 
these extreme scenarios are depicted in Figure 10. 

 
Fig.	10	EV	charging	load	at	different	nodes	on	expressway.	

The simulation results reveal that during the initial hours of each day (0:00-8:00), there is a relatively low quantity 
of traffic flow entering each node of the expressway, resulting in low charging load values at most charging nodes. 
From 9:00 to 14:00, each node on the expressway section experiences normal charging, with stable power distribution. 
Starting at 15:00, EVs gradually exit the expressway, leading to an increase in charging load at each node. This upward 
trend continues between 18:00 and 23:00. The charging load at each node of the expressway, as obtained through 
simulation on the same day, demonstrates a consistent upward tendency over time. This trend converges with statistical 
data from NHTS2017, corroborating the real-time and spatial distribution characteristics of EVs. 

To validate the effectiveness of the EV charging power prediction method proposed in this paper, a comparison is 
conducted with the Monte Carlo simulation method, Latin hypercube sampling method, and the traditional Sigmoid 
function. The comparison is made against real historical data curves, demonstrating the strong practicality of the 
method proposed. The curve comparison between each method and real data is illustrated in Figure 11. 

Considering the charging equipment for downtown nodes and county nodes is installed in city centers and requires 
additional urban modelling for accurate data, this paper focuses solely on comparing the node charging power in 
expressway service areas as the reference data. As depicted in Figure 11, the combined prediction method proposed in 
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this paper exhibits an excellent performance with real EV charging data, which accurately describes the charging trends. 
In contrast, the traditional Sigmoid function proves to be overly sensitive to the SOC value of EVs, leading to an 
overestimation of charging vehicles and resulting in inflated load predict values. However, with the improvements made 
by the proposed method, the EV charging load values align more closely with the actual data. 

 
Fig.	11	EV	charging	load	prediction	results	of	service	area	nodes.	

6 Conclusion	

This paper introduces a combined EV charging load prediction method for expressways which incorporates 
dynamic SOC and user charging decisions. The effectiveness of the proposed method is validated using real expressway 
data and public datasets. Conclusions drawn from the simulation experiment results include: 

1) Previous studies have only analyzed a single EV model, while this paper selected 8 EV models to construct a 
Gaussian mixture model for expressway traffic flow, and the results obtained are closer to the real situation. 

2) The OD-SOC translation model constructed in this paper can truly reflect the changes in SOC during EV 
driving in traffic flow. This model can not only dynamically characterize the overall SOC value of EVs on expressways, 
but also reflect the SOC value of individual EVs, facilitating differentiated analysis of charging decisions for EVs on 
expressways. 

3) By using an improved Lognormal decision function and Sigmoid function, differential modelling was conducted 
on the charging decisions of three types of nodes: county nodes, downtown nodes, and service area nodes. The accurate 
description of charging decisions made by EV users at different nodes made EV charging decisions more in line with 
real-life cases and improved the accuracy of EV charging load prediction results. 

It should be noted that the conclusions drawn in this paper are based on historical data from the Lian-Huo 
Expressway. Further in-depth investigation is desired to assess the universality of scenarios and time, ensuring the 
applicability and generalizability of the findings in diverse contexts and over extended periods in the future. 
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