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Abstract

Statistical analysis of data for treatment of traumatic brain injury (TBI) from randomized

clinical trials (RCTs) regularly fails to identify statistically significant changes in patient con-

dition. Patient outcome is typically measured on an ordinal scale which is then analyzed with

statistical methods that lack sensitivity to detect changes across all measured outcomes, have

restrictive assumptions, or lack adequate statistical power. The conventional binary regression

model, the proportional odds model, partial proportional odds model, and the continuation

ratio model are four standard methods applied in the analysis of ordinal variables, traditionally

deemed effective in a number of cases. To overcome their known deficiencies in some scenarios,

the sliding dichotomy model was recently developed to accurately analyze the changes in pa-

tient condition across ordinal scales and has had several productive applications in specific cases.

This study compares the sample size, type I error rate and power among these models. This

study attempts to detect the consistency among the contemporary models and also the weak-

ness of the sliding dichotomy model in controlling the type I error rate. A few recommendations

for handling ordinal variables in applied research are also proposed.

This study used data from Corticosteroid Randomisation after Significant Head Injury

(CRASH), a baseline observed data set consisting of 10,008 patients, as the primary data

set. Varying the sample sizes, the number of covariates, the band size of the sliding dichotomy

approach and randomizing the treatment effect created different scenarios. A number of pos-

sible contexts that might occur in practical clinical trials was simulated to try and test the

applicability of the models. For each scenario, the effect on statistical power and type I error

rates of the models was assessed. Another supplementary primary data set, already collected

from Bangladesh, was applied to compare the two data sets. Apart from these two, we tested

two other non-clinical trial data sets to assess the models’ application in the field of public

health.

Although previous studies have suggested that smaller samples sizes can maintain desired

power for some applications of the sliding dichotomy model, the results of this study indicate

that consideration of the type I error rates does not encourage this approach, due to the risk of

false-positive inferences from application of this method. The model could not even maintain

the error rate even when the sample size was high (over 1000); often times the type I error rate
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were higher than 5%.

Inconsistent results were observed from all the models applied to different data sets. These

inconsistencies across all the ordinal methods suggest that researchers may find value in evalu-

ating multiple methods and using goodness of fit statistics to help report and interpret results,

and also encourages use of meta-analysis in some studies. However, this is not the best or

ultimate solution to inconsistent performance of methods. Specific problems with the current

methods were detected as part of this research and some potential solutions were outlined.

Empirical studies with both clinical and non-clinical data are required to devise a model that

can adequately balance the errors and statistical power, and have less (or no) restrictive as-

sumptions.

Keywords: Clinical trial; Ordinal methods; Statistical assumptions; Binary logistic re-

gression; Proportional odds model; Partial proportional odds model; Continuation ratio model;

Sliding dichotomy model; Cumulative proportion of type I error.
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Chapter 1

Introduction

This thesis provides a rigorous assessment of past studies evaluating ordinal outcome variables,

analyzes the deficiencies of the contemporary models from these studies, and provides a path-

way to develop a robust methodology for clinical trials, particularly for Traumatic Brain Injury

(TBI). Ordinal outcome variables, or variables with more than two ranked scales, are popular

in many contemporary large scale studies as they are easily applied and interpreted by practi-

tioners, with categories or levels reflecting treatment policies and protocols (Harrell, 2015). A

number of statistical methods are available for analysis of such outcome variables. However,

each of these methods have their own strengths and weaknesses and none has been accepted as

providing consistent unambiguous interpretation, particularly in clinical trials.

Clinical trials of traumatic brain injury (TBI) have a disappointing history in terms of

results, with a long track record of indecisive phase III trials (McHugh et al., 2010). The

current methods in analyzing phase trials, where the ordinal outcome variables are used, are

not robust enough to properly detect the improvements (or deteriorations) in the patients’

outcome. A similar level of inadequacy has been observed in stroke trials (Bath et al., 2012). In

recent years, the sliding dichotomy model was developed within the area of TBI research (Price

et al., 2013) to specifically address this problem of low-power analysis leading to unsuccessful

detection of treatment effects when the response variable is ordinal. As it has led to more

decisive conclusions from clinical trials, the sliding dichotomy model has gained support among

medical researchers, especially when the probability of a favorable outcome is high (Price et al.,

2013).

The development processes of the traditional models are important to understand as path-

ways to design a new model to overcome their existing shortcomings. The chi-square test

(Fisher, 1922) or Fisher’s exact test (Upton, 1992) are common and reliable statistical tools
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for applied studies. The chi-square test has limitations including over dependence on sample

size and lack of sensitivity in the orders of outcome scales (Mann and Wald, 1942). The most

commonly used traditional (fixed) dichotomous methods are the binary logistic regression and

the proportional odds model; however, they also have limitations. For use with ordinal data

these models first require that the outcome variables be converted into binary form to avoid

complicated analysis (e.g. convergence error) and interpretation (Scott et al., 1997). Although

mathematical flexibility and simpler interpretation validate the suitability of the binary linear

logistic regression model (Cox, 1972; Hosmer Jr and Lemeshow, 2004), ranked data with more

than two scale outcome variables are not efficiently analyzed in this process and valuable in-

formation is lost. The most popular method in analyzing ordinal outcomes is the proportional

odds model, which is fairly straightforward to apply. However, it has a strict assumption: the

proportional odds assumption or parallel assumption, an expectation of similar effects from

the covariates for all levels of the outcome scales (Hemri et al., 2016). Another model often

considered is the continuation ratio model, which is not flexible enough to incorporate variety

of data types. These weaknesses in currently accepted methods paved the way to introduce a

more robust methodology in analysis of clinical trial data: the sliding dichotomy model (Berge

and Barer, 2002).

Previous studies have shown that the sliding dichotomy model has performed better in

achieving higher statistical power with a limited sample size in comparison with other fixed

dichotomous methods in certain scenarios (Price et al., 2013). Accepting these studies, it is

a natural expectation that sliding dichotomy, in-line with the traditional methods, would also

control the type I error rate (the false positives resulting from noise when there is no true effect).

However, no assessment on the control of type I error rates of the sliding dichotomy model was

previously performed and this study will do so. A method of analysis with a tendency to

falsely detect significant effects is of as much, if not more, concern as those that fail to detect

meaningful effects at all.

The focus of most social science and public health studies is not on the characteristics of

the statistical methods but on the meaningful interpretation of results within the application

area (Easterbrook et al., 1991; Stern and Simes, 1997; Sterne et al., 2001). In many cases the

method chosen by a researcher may be based simply on the most frequently applied model

within their specific discipline area or the availability of relevant software packages (Diez-Roux,

2000; Homer and Hirsch, 2006). As no particular method is unanimously accepted or endorsed

for analyzing ordinal outcome data, the analysis approach can also often include the fitting of

several different models to determine the best approach (Chu and Ghahramani, 2005). However,
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from an applied researcher’s perspective, this assessment is often based on the results of the

analysis and not necessarily on consideration of the process and limitations of the statistical

methods themselves (Jüni et al., 2001; Morgan and Ziglio, 2007).

Traumatic brain injury (TBI) is a global public health problem. When an external force

causes alteration to brain function, or there is other evidence of brain pathology, it is regarded

as TBI (Menon et al., 2010). Each year, 100 per 100 000 persons in the United States alone

sustain a TBI, resulting in hospitalization and potential life-long disability due to a complex

variety of cognitive, physical, and emotional consequences in the aftermath of the original TBI

event (Thurman et al., 1999; Wells et al., 2005). Schneier et al. (2006) showed that paediatric

TBI of US children under 17 years accounted for more than $1 billion in total hospital costs in

2000. These figures show both the clinical and the economic need to study TBI.

The choice of an appropriate primary-outcome measures for a clinical trial is the critical

first step to minimize the potential of the type I or II error rates (Bagiella et al., 2010). Ad-

vances in the treatment of TBI require that success in treatment interventions be identifiable

in clinical trial studies, so that they can be further improved and refined. At least 21 ran-

domized clinical trials (RCTs) have been conducted from 1980 to 2007 in search of the clinical

effectiveness of interventions to treat head injury. However, none of these trials has reported

convincing ‘positive’ findings (Maas et al., 2007). As the traditional dichotomous methods were

not performing satisfactorily, the concept of the sliding dichotomy model developed. This study

critically analyzes this model to further contribute to the existing literature and each methods’

mathematical model is detailed in section 2.2 .

1.1 Power and Type I error

Statistical power is a key parameter to measure the effectiveness of a mathematical (statistical)

model. The power of any test of statistical significance is defined by the probability of correctly

rejecting a false null hypothesis (Moore et al., 2012). A type I error is the inaccuracy that

occurs when the null hypothesis (H0) is rejected despite being true. Type II error is the exact

opposite defined by the probability of accepting null hypothesis when it is false. Types I and II

error rates are a zero-sum game for any given sample size; which means any model providing

more protection against one type of error is bound to increase the rate of the other kind of

error (Lieberman and Cunningham, 2009). Generally type I error is regarded as being more

critical than type II.
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(a) The Errors and power distribution in bell curves

(Goos and Meintrup, 2016)

(b) Relationship direction among the errors and

power

Figure 1.1: Type I error, type II error and power explained graphically

Statistical power (1 − β) and the type I error rate (α) are related in such a way that

when power is increased, α also increases (Blomberg, 2014). Hence a balance between these

two is necessary to attain an ‘optimal’ robust model. For clinical studies, p = 0.05 is the

generally accepted threshold for type I error rate (Jakobsen et al., 2014), which means a 5%

probability of making a mistake is acceptable while rejecting a null hypothesis. However,

this year Benjamin et al. (2017) proposed to change the default P-value threshold for statistical

significance for claims of new discoveries from 0.05 to 0.005. This change has been proposed due

to the increasing evidence concern over non-reproducible research claims of significant effects

or relationships within the scientific community. Reducing the accepted P-value would likely

reduce the number of significant findings and within each application of a statistical model

the type I error rate would also be reduced. Use of appropriate primary-outcome measures

(the difference in patient condition before and after treatment) in clinical trials (Bagiella et al.,

2010) and their evaluating methods are important for minimizing the potential of type I or II

error rates. Past studies with ordinal outcomes, particularly in clinical trials, have not been

successful, detailed in section 1.5.

1.2 Traumatic brain injury (TBI)

Alteration in brain function takes a number of forms: any period of loss of or a decrease in level

of consciousness (LOC); loss of memory for events immediately before (retrograde amnesia)

or after the injury; or any alteration in mental state at the time of the injury (confusion,

disorientation, slowed thinking) (Menon et al., 2010). TBI usually occurs as a result of bumps,
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blows, or jolts to the head or penetration of the head in any manner which interrupts the

regular function of the brain, although not all blows to the head cause TBI (Faul et al., 2010).

Studies regarding the treatment of TBI have been increasing significantly in recent years due

to the growing global frequency of TBI’s.

The severity and frequency of TBI, as mentioned before, is overwhelming. TBI and its

subsequent injuries result in more than 50,000 deaths yearly in the USA (Tiesman et al., 2011).

Each year approximately 370,000 new cases of TBI are hospitalized in USA (Reeves et al.,

2000) and the figure is more than 100,000 for Europe (Maas et al., 2012). Young people are

the most common sufferers of TBI and often experience long-term disabilities, which take a toll

on both the work force and the economy (Rutland-Brown et al., 2006). It is estimated that

TBI results in yearly expenditure of $17 billion dollars in the United States alone (National

Center for Injury Prevention and Control (US), 2003). Due to the absence of vital statistics,

the impact of TBI’s in low-income countries is not easily attainable. From one study conducted

in Bangladesh, it was found that individuals with the highest risk of TBI were between 26 and

35 years of age and the second highest frequency occurred among individuals aged 16-25 years,

which is similar to American statistics (Mondol et al., 2013). Motor vehicle related trauma

accounts for two thirds of moderate and severe TBI in Australia (Khan et al., 2003). These

statistics establish TBI as a global issue occurring both in industrialized and third-world nations

acting as a “silent global epidemic” (Goldstein, 1990; Myburgh et al., 2008).

1.3 Phase III trials

The method of clinical trials is longstanding and was first introduced in Avicenna’s The Canon

of Medicine in 1025 CE, where he defined the rules for experiments and testing of drugs and

treatments, including the use of control groups (Huff, 2003). Generally, in contemporary inter-

vention studies, the investigators provide a ‘new’ medicine or method of treatment to one group

and their changes are compared with a similar homogeneous group without any interventions

to test the effectiveness of that treatment (Singh, 2011). Clinical trials are divided into six

different stages, called phases. They are commonly referred to as phase 0, I, II, III, IV, and

V (Rogers, 2009). Treatment for humans is experimental in the Phase III trials. This ‘pre-

marketing phase’ consists of randomized controlled multi-centre trials on large patient groups

(300 to 3,000 or more depending upon the disease/medical condition studied) and targets a

conclusive assessment on the effectiveness of the ‘new’ drug or treatment, in comparison with

a current ‘best standard’ treatment (Friedman et al., 2010). While not required in all cases,
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it is typically expected that there be at least two successful phase III trials, demonstrating a

drug’s safety and efficacy, in order to obtain approval from the appropriate regulatory agencies

such as FDA (USA) (Food and Drug Administration (FDA), 2014), or the EMA (European

Union) (European Medicines Agency, 2003). We applied data sets of phase III trials as the ac-

curacy of this stage is the most important for assessing the treatment effect on human subjects.

Many of these types of trials, particularly brain injury trials, measure outcomes on ordinal

scales. Thus, for a practical clinical trial, it is important to apply ordinal statistical models to

assess the trial outcome; this leads to section 1.4.

1.4 Problems associated with Common Statistical Meth-

ods Used for Ordinal Outcomes

Ordered categorical outcomes are popular in various fields of study; however, in many cases

they are not precisely analyzed (Anderson and Philips, 1981). Sometimes continuous variables

are converted into ordinal groups for easier interpretations and their application in various

policies, particularly in the physical science and thus, the applications of the ordinal responses

are increasing.

The conventional model, commonly known as the binary logistic regression model,

requires data in a dichotomous (good v bad) form. This does not accord with everyday clinical

practice because patient’s condition is practically on a continuum either scale or ordinal. A

patient’s outcome following a severe head injury or a major stroke lies on such continuum and

there is no such arbitrary boundary separating a ‘bad’ outcome from a ‘good’ outcome (Berge

and Barer, 2002). Thus, application of the binary logistic model in such cases results in loss

of valuable information, as the model lacks statistical sensitivity in detecting clinically relevant

benefit (or harm) from an intervention, and resists sample size calculations (Murray et al.,

2005). Hence, the conventional analysis, based on a fixed dichotomy of an ordered outcome

scale, neither makes efficient use of the available information nor is it in tune with clinical

practice.

The Proportional Odds Model (POM) is an efficient method, although it has some

drawbacks. The main weakness of the proportional odds model is the parallel assumption,

explained in section 2.2.2. It restricts the application of the PPM in various data sets when the

assumption is not satisfied, despite attaining high statistical power (Lall et al., 2002). Nonethe-

less, the ordinal logistic model provides a robust estimate of treatment effect even when this
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assumption is not met. Proportional odds modeling is applied in both head injury and stroke

trials (Bolland et al., 1998). The proportional odds model explores ordering of the outcome

scale and it sensitively detects a shift over the entire ordered scale (Ilodigwe et al., 2013). In

some cases, this method has shown robust results compared to the sliding dichotomy model

(Price et al., 2013). The Partial Proportional Odds Model (PPOM) is an improvement of

the proportional odds model, because it does not have any strict odds assumption. However,

lack of proper interpretation of data have made the model quite unpopular and it is rarely

applied in clinical trials (Washington et al., 2010).

Another possibility, but again not the most widely applied, is the Continuation Ratio

Model (CRM). This model compares the probability of a response with the probability of the

responses in higher scales (Fagerland and Hosmer, 2016). This creates a specific application for

the model. However, a number of variations of this model has been developed over the years

(Shen et al., 2015). In this study, the constrained continuation ratio model, the most common

one, is assessed and reported. These four models are the prominent four models applied in

traditional ordinal outcome analysis.

1.5 Applications of models in practice

A range of approaches have been proposed to analyze ordinal responses in their original mea-

sured form. A rating experiment resulting in a compound model was proposed by Andrich

(1979) Andrich (1979). Two types of estimators for the ordinal outcomes were proposed based

on Clayton’s (1974) simple odds-ratio statistics (Mocullagh, 1977). In 1981, for the first-time

maximum likelihood estimation procedures were established for ordered variables (Anderson

and Philips, 1981). It was shown that analysis of ordinal outcomes substantially increased the

statistical power compared to the analysis of fixed dichotomous or binary outcomes (Roozen-

beek et al., 2011). Farewell (1982) proposed a new class of models based on the introduction of

variability of classification into the proportional hazards model. Greenland (1985) illustrated

some extensions of logistic models to the modeling of probabilities of the ordinal responses.

In all of these models, a number of constraints, or assumptions, were proposed to maintain

the ranking of the ordinal outcomes and achieve a meaningful interpretation (Campbell et al.,

1991). One of the earliest studies that focused on comparing the performance of existing meth-

ods concluded that “the ordering of the response was more intuitive than objective” and “the

stereotype model may be more appropriate than the grouped continuous model for data where

the ordering is in doubt” (Greenwood and Farewell, 1988). Anderson’s (1981) ordinal logis-
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tic model, a rank based method, was assumed to be the best-fitted model by these authors

(Greenwood and Farewell, 1988). The ordinal least square regression method requires homoge-

neous variance in the ordinal outcome scales to ensure unbiased parameter estimates; however,

variance estimates within ordinal scales are often inconsistent, violating this assumption and

resulting in false conclusions (Lipsitz and Buoncristiani, 1994). Any strict assumptions required

for an ordinal outcome analysis method can not only make model fitting more mathematically

challenging, but may also limit model application as the scale distance in the ranked categories

vary from data to data and thus, any uniform assumption may jeopardize the model fitness

(Scott et al., 1997). Among the existing analysis techniques, the POM or ordinal logistic re-

gression is the most popular for analyzing ordinal outcomes due to its ease of interpretation

(Harrell, 2015; Hemri et al., 2016).

The POM is the favored method due to its ease of application and interpretation (Scott

et al., 1997). However, the proportional odds assumption, otherwise known as the parallel

lines assumption, can limit its suitability for analysis of many data sets (McCullagh, 1980).

The odds assumption is relaxed for the PPOM (Peterson and Harrell Jr, 1990); however,

the interpretation of this model is not as straight forward as the POM. For some forms of

ordinal data, current membership within any category requires that individuals must have

passed through stages leading to their current level, and for these specific types of data the

CRM is considered the most appropriate method of analysis (Hardin et al., 2007). The SDM

has recently been promoted for demonstrating higher statistical power and providing easily

interpretable parameters (Murray et al., 2005); however, subjectivity in choosing the fitted

model and untested control over the type I error rate has also led to concerns about the

reliability of this method (Price et al., 2013).

Some studies have compared the available methods for ordinal outcome variables within

respective disciplines. Scott et al. (1997) demonstrated, based on a public health data set, that

the application of the binary logistic model resulted in a substantial loss of information and that

the chi-square test was unreasonable for such analysis . Comparing the POM and the CRM,

the authors suggested that the POM was more suitable for ranked data analysis for clinical and

epidemiological studies (Scott et al., 1997). Fixed dichotomous approaches were also found to be

statistically inefficient and inappropriate methods in the analysis of stroke trial data (Bath et al.,

2012) and neurological disease trials (Roozenbeek et al., 2009a,b). O’Connell and Liu (2011)

applied residual analysis to compare between the POM and the PPOM using an education data

set. They suggested that researchers should apply both the ordinary least square (OLS) and

the binary logistic models to locate the influential or unusual cases in the data. Furthermore,
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the authors also emphasized that the case-wise fit to the POM can be challenging and vigorous

testing of assumptions is required, as the existence of outliers can significantly influence the

analysis (O’Connell and Liu, 2011). Analysis of data from a clinical trial measuring traumatic

brain injury, showed that the SDM allowed sample sizes to be reduced by up to 40% without

the loss of any statistical power. Although the POM gave modest additional gains alongside

the SDM, it was noted by these authors that the strict proportional odds model assumption

may limit its application (McHugh et al., 2010). A comparison of the POM, PPOM and the

multinomial regression model in the analysis of crash injury severity data concluded that the

PPOM performed better with fewer strict assumptions to be met (Mooradian et al., 2013).

Ananth and Kleinbaum (1997) applied six different ordinal models to a perinatal database and

compared their goodness of fits and recommended sensitivity analysis along with assumptions

testing prior to the fitting of any model to ordinal data.

Ordinal analyses are recommended for analyzing the numerological diseases in clinical trials,

where adjustment of the covariates and the enrollment criteria tends to provide more statistical

power (Roozenbeek et al., 2009a,b). As mentioned before, the fixed dichotomous approach

is statistically inefficient in such trials. In these cases, the ordinal approaches like the POM,

CRM or SDM are recommended (Bath et al., 2012). None of the models could uniformly fit

every type of data, which creates a literature gap. Due to the lack of single robust model,

meta-analysis is increasing in popularity.
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Table 1.1: Strengths and weakness of the commonly used ordinal models

Models Strengths Weaknesses

Binary

Logistic

Robust for binary outcome Cannot incorporate ranked outcomes

Easy to apply Limited information interpreted

Simple interpretation

No major assumption

Proportional

Odds

Incorporate rank order outcomes
Strict Proportional odds

assumption

One odds ratio for all levels
Cannot adjust to higher variation

among ordinal scales

Simple interpretation

Continuation

Ratio

No major assumption
Application is restricted to

special scenarios

Higher power than POM in specific

scenarios

Interpretation can be tricky

sometimes

Sliding

Dichotomy

Appropriate for clinical trials
Subjective judgment while creating

dichotomous bands

Requires less sample to attain

high power
Type I error rate untested

Better goodness of fit in most

studies compared to POM or CRM

The Sliding Dichotomy Model (SDM) is the latest addition (Berge and Barer, 2002) to the

ordinal model analysis of clinical trials, and shows much promise in analyzing clinical trial

outcomes like Glasgow Outcome Scales (GOS). Murray et al. (2005) showed that fitting the

SDM had an impact equivalent to more than doubling the sample size in phase III trials of

head injury. The effective application of fitted values and formulating bands (explained in

section 2.2.5) make the model more productive over the binary logistic model. The SDM

does not require adherence to strict assumptions like the POM. Furthermore, this model is

simpler to apply and statistically sound as well. Different studies have analyzed this approach

and have achieved sample size reductions ranging from 14% to 50% (Young et al., 2005).

Additionally, this model is assumed to provide the highest possible power and more robust

results compared to the traditional methods in a number of scenarios, particularly when the

probability of a favorable outcome is high (Price et al., 2013). For these reasons, the SDM is the
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most recommended application in the head injury trials. The mathematical process underlying

each method is explained in section 2.2.

In summary, the conventional binary logistic approach of analysis of a phase III trial in

head injury takes an ordered scale, the GOS and collapses the scale to a binary outcome

of favorable versus unfavorable. This step discards the steps of ranked outcome and limits

statistical power (Murray et al., 2005). SDM also applies dichotomization but also attempts to

retain information about differences between all ordinal levels. In addition, SDM helps to reduce

the required sample size by the order of 40-50% compared to the traditional models, specifically

the POM, for which it is only 25% (McHugh et al., 2010). The SDM attained superior statistical

power and reduced sample sizes in post hoc analysis of some head injury trials (Murray et al.,

2005). Cases do exist where the fixed dichotomy and the POM performed better than the

SDM (Ilodigwe et al., 2013). There are differences among the binary logistic model, the POM,

the CRM and the SDM in the magnitude and precision of the quantified odds ratios; however,

more studies are required to reach a substantial conclusion regarding these differences in head

injury trials (Ilodigwe et al., 2013). The current paradigm still requires a definitive method to

help reach conclusive research outcomes. So in this study, the available models were evaluated

and their statistical power along with error control algorithms were compared, thus providing

a clear road map to develop a robust model for the future trials.

1.6 Objectives

The primary aim of this research is to evaluate a set of commonly used models for analysis

of ordinal data when they are applied consistently to a common group of Traumatic Brain

Injury (TBI) clinical trial data sets. The results and inferences drawn from each analysis, as

well as the statistical performance of each model under several scenarios, will be considered

in order to properly evaluate the known and suspected weaknesses of each model, particularly

the recently proposed SDM which is assumed (in current literature) to overcome some of the

problems associated with the more traditional models. The specific objectives are:

1. Apply the models in public health data sets and check if the results are consistent with

use in analysis of clinical trials (section 3.1)

2. Compare the models’ results in assessing the effect of two standard public health research

covariates (Age, sex) on TBI when applied to two different data sets (including the data

sets of Objective 1) (section 3.2)
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3. Evaluate and compare the type I error control of the binary regression, the POM, and

the SDM using the data sets of Objective 1 (section 3.3)

4. Identify and compare the relationship between power, sample size and type I error rate

in ordinal outcomes of phase III trials of TBI (section 3.4)

5. Identify possible ways to develop the SDM or the POM (section 3.5)

The project is not intending to analyse or interpret the significance of the treatment covariate

(age and sex) applied in each analysis, but rather apply them consistently as covariates to

determine if their significance is substantially influenced by the model chosen by the researcher

to be applied.

The first two objectives are detailed as papers in Chapter 3.1 and 3.2 respectively, and

recent literature supporting the choice of age and sex as exemplar covariates is given in the

introductions to each of these papers. These two objectives provide a detailed comparison of

the potential inferences made from the application of the four models when applied to the same

data sets. Although the SDM has been reported to perform well up till now, the following

section (3.3) presents a quantitative analysis of the weaknesses of the SDM in maintain type

I error rate. This analysis was further extended in section 3.4 with the power and sample

size comparison. Therefore, the first four objectives provide a comprehensive assessment of

the current literature gap; the comparative performance of the most popular models used for

analysis of ordinal data in various scenarios for given data sets.

These results and assessment of performance then provides new information to help define

the extent of the known and suspected weaknesses in the current models to help researchers

(generally non-statisticians) make more informed choices about the most appropriate model

for their context. The results from the first four objectives also inform suggested pathways for

future improvement of the models and possible development of a new ordinal model.

Each objective is discussed in detail in the results and discussion section of each results

section, and then the broader context of all results is discussed in Chapter 4 with a summary

of the project. Altogether these five specific objectives provide a comprehensive exploration of

a current literature gap, performance of the ordinal models in various scenarios, each model’s

specific weaknesses, and pathways to new development of ordinal outcome models.
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Chapter 2

Methodology

The methodology chapter is divided into two sections. The first section (2.1) explains the data

sets used in the thesis to assess the models. In the second section (2.2), the methods and their

contextual relevance in the study is described.

2.1 Data Description

The data set applied in this study is from CRASH (Corticosteroid Randomisation after Signif-

icant Head Injury). The data set is a baseline observed data set consisting of 10,008 patients

(ISRCTN74459797). This trial is one of the most recent randomized trials of corticosteroids

used to treat head injury. Early results from the CRASH trial were published on 8 October

2004 (Lancet 2004; 364:1321-28) and the 6-month follow-up results in May 2005 (Lancet 2005;

365:1957-59) (Collaborators et al., 2005; CRASH, 2005a). The CRASH trial was a multi-centre

collaboration, which includes data from various countries of Europe, Africa, South America,

Asia and Oceania.

CRASH is a placebo controlled trial, with a large sample, for assessing the effects of a 48-

hour infusion of corticosteroids on death or on neurological disability, among adults with head

injury and some loss of consciousness. The total number of patients in the specific trial being

discussed was 10,800. After removing cases with missing values in various variables, the final

sample size forming the basis of this study was 7,236 patients.

In-hospital deaths, complications, and short-term recovery were recorded on the ‘Early

Outcome’ form which can be completed entirely from the hospital notes - no extra tests were

conducted. Long term recovery was assessed at six months using the Glasgow Outcome Scale

(GOS), whifch assesses disability and handicap in major areas of life. The GOS was adminis-

tered by a postal questionnaire (CRASH, 2005b), completed by the patient or a carer, or by
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telephone interview. When the patient was admitted into the hospital, his/her condition was

measured using the Glasgow Comma Scale (GCS), which has three important components: eye

opening, verbal response and motor response (Freeman, 1987; Ivan and Bruce, 1982). Generally,

GCS eye opening is measured from 1 to 4, where 1 indicates the best (spontaneous) condition

of eyes and 4 indicates no response (cannot open) in a patient’s eyes. The similar measurement

scale is applied for both GCS verbal response (range 1 to 5) and GCS motor response (range 1

to 6). Thus, a patient having a total GCS score of 3 (1+1+1) is assumed to have no TBI and

a patient with a score of 15 (4+5+6) is in the worst possible condition. Overall, the CRASH is

a thorough trial and one of the largest for TBI in recent years. A treatment variable with two

levels, ‘Treatment A’ and ‘Treatment B’, was generated and membership to treatment levels

was assigned randomly among cases.

The outcome measure for TBI is the GOS. It has become the most widely used scale for

assessing outcome after head injury and non-traumatic acute brain insults (Jennett et al.,

1981). Many studies employ variations of this scale, often including additional sub-levels for

each main level (Weir et al., 2012). In the CRASH data set, GOS was recorded as an 8-point

scale, which has been simplified to the standard five-point scale for this analysis. The standard

GOS is a five-point ordinal scale consisting of five main levels: Death (D), Vegetative State

(VS), Severe Disability (SD), Moderate Disability (MD) and Good Recovery (GR) (Wright,

2011). In addition, the Death (D) and Vegetative State (VS) levels were merged into a single

level (retaining the name Vegetative State (VS)) as the frequency of Death (D) were low in the

data set. The stages for surviving patients are explained sequentially from the worst to the

best condition.

1. Vegetative Stage: This stage is defined as conditions where patients show no evidence of

meaningful responsiveness (Jennett and Plum, 1972).

2. Severe Disability: This stage is simply termed as ‘conscious but dependent’ (Teasdale

et al., 1998) where the patients’ need assistance in day to day life because when physical

disability is severe after head injury there is almost always considerable mental deficit

(Jennett et al., 1981).

3. Moderate Disability: In this section the patients are considered ‘independent but disabled’.

They can take care of themselves and live on their own.

4. Good recovery: This is the stage where patients almost return to normal life and social

activities, although a chance of mild stress exists (Teasdale et al., 1998).
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A primary data with 151 respondents were collected from National Institute of Nuero Sci-

ences and Hospital, Sher-e-Bangla Nagar, Dhaka for understanding the depth of head injury

data, specifically for GOS and GCS. This data contains the same variables as the CRASH data

set.

Apart from these two TBI data sets, two other public health data were used to check the

adequacy of the models in applied fields. One is a primary data from Ibrahim Medical College

(BIRDEM), Bangladesh and the other is Bangladesh Demographic and Health Survey (BDHS),

a nationwide health survey. These data sets are explained in their respective sections in results

(Chapter 3).

2.2 Statistical models for ordinal outcomes

The five statistical methods applied to the data for this research are explained here along with

the underlying mathematical models. No particular study design is reported in this chapter

as the relevant study designs for each objective are detailed in the results (Chapter 3), as a

section or within the relevant paper manuscript.

2.2.1 Binary Logistic Model

The conversion of an ordinal response variable with four scales (such as GOS) into a binary

variable is most commonly achieved by merging levels 1 and 2 into ‘unfavorable’ and levels 3

and 4 into ‘favorable’. The binary logistic model is then fitted with the relevant covariates.

Even with the obvious loss of information, this method is widely applied because of its easy

interpretation and mathematical flexibility (Hosmer Jr and Lemeshow, 2004). According to

Harrell (2015), binary logistic model is defined, probability that Y = 1 given X, the value of

the predictors:

Pr{Y = 1|X} = [1 + exp(−Xβ)]−1 (2.1)

where xi is a vector measurement considered as the covariates and dummy variables correspond-

ing to factor levels, Xβ represents β0 + β1X1 + β2X2 + ...+ βkXk, and β is the parameter

vector. In this study, the R function glm was applied for fitting the binary logistic model. The

dichotomisation of the GOS outcome variable was achieved by combining Moderate Disability

(MD) and Good Recovery (GR) as favourable outcomes and Severe Disability (SD) along with

Vegetative State (VS) as unfavourable outcomes. The strengths and weaknesses of the model

was explained in Table 1.1.
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2.2.2 Proportional Odds Model

A member of the cumulative logistic regression family, the proportional odds model avoids the

necessity for näıve or coarse dichotomization of the outcome variable, allowing for the analysis

of the effect of covariates on all original ordinal levels (McCullagh, 2005; Liu and Mukherjee,

2008). Let a random variable be Y with J categories. The cumulative logit model is defined

by Harrell (2015), for an outcome with levels 0, 1, 2, ..., k:

Pr[Y ≥ j|X] =
1

1 + exp[−(αj +Xβ)]
j = 1, 2, ..., k. (2.2)

where the x’s are the covariates, α is the overall intercept, and the β’s are the unknown

parameters. The R function polr was applied to fit this model. Although all the ordinal levels

are retained for analysis, the model estimates a common odds ratio over all of the possible

boundaries between levels of the ordinal outcome variable (Roozenbeek et al., 2011). This

limitation is due to the proportional odds assumption, which states that the effects of the

covariates x1, ..., xp−1 are the same for all levels of the outcome scale, or that the relationship

between each pair of outcome groups is the same (Dobson and Barnett, 2008). This is rarely

a reasonable assumption within TBI research. The proportional odds assumption is frequently

violated. However, Senn and Julious (2009) advised that this issue should not be overstressed.

They also accepted that two studies will reach separate conclusions if the cut points for the

outcome variable (Y ) are different. Many liberal tests for the assumption are available (Peterson

and Harrell Jr, 1990). However, an additional limitation of the method is that the odds are

strongly affected by sample size and the number of covariates (O’Connell and Liu, 2011).

Table 1.1 showed the summary of this model’s attributes and deficiencies.

2.2.3 Partial Proportional Odds Model

The PPOM, an extension of the POM, allows the odds assumption to be relaxed. It allows

each covariate to vary over the outcome level with separate coefficients (βj) estimated for each

level. The model can be defined as (Harrell, 2015; Mooradian et al., 2013):

Pr[Y ≥ j|X] =
exp(αj +Xiβj)

1 + exp(αj +Xiβj)
, j = 1, 2, ..., k. (2.3)

The clear difference between the POM and this model is the conversion of β to βj . Stata

package gologit2 was applied to calculate the PPOM in this paper.

In this model, the coefficients of intermediate categories need careful interpretation as the

sign of the parameters estimated for categories does not always determine the direction of the
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effect (Washington et al., 2010). Sometimes it is not possible to come to an precise conclusion.

Despite having a reduced burden of assumptions, this model is far from ideal. The advantages

and disadvantages of the model was provided in Table 1.1.

2.2.4 Continuation Ratio Model

The CRM is generally applied when the stepwise ranks are given priority in ordinal analysis (Liu,

2010). When estimating the conditional probability of surpassing a category given that the

individual is presently in that particular category, given Y = 0, ..., k, the CRM model can be

defined as (Harrell, 2015),

Pr(Y = j|Y ≥ j,X) =
1

1 + exp[−(θj +Xγ)]
, j = 1, 2, ..., k. (2.4)

where x1, x2, ..., Xp are a set of predictors, θ0 ≡ 0, and θ1, ..., θk−1 are increments of inter-

cept, and γ is the vector of regression coefficients. Package vglm from R was applied to fit this

model.

Researchers of clinical trials have been hesitant to utilize adaptive designs; however, due

to the complexity of design methods and lack of proper methods, the CRM was applied as an

alternative to the traditional models (López et al., 2012). The CRM may provide improvement

over the POM in clinical trial designs (Iasonos et al., 2011). However, Scott et al. (1997)

showed the POM exhibited better goodness of fit than the CRM in clinical studies. The

specific weaknesses and usefulnesses was summarized in Table 1.1.

2.2.5 Sliding Dichotomy Model

This model extends the application of the binary logistic model across multiple, successive

dichotomizations within the one ordinal scale, to improve detection and interpretability of ef-

fects across all ordinal groups measured. Firstly, based on typical favorable and unfavorable

dichotomization of the ordinal response, the binary logistic model is fitted with important

covariates that affect the outcome scale and the fitted values are stored within the data set.

The patients (cases) are then sorted in descending order of the fitted values and grouped into

the maximum number of bands possible, where each band is formulated to represent a change

in the scale of the outcome (Ilodigwe et al., 2013). Within the first band, and based on a

four-point ordinal scale, scales 2, 3 and 4 of the original GOS are clustered separately (as ‘fa-

vorable’) from scale 1 (as ‘unfavorable’). In the next band, scales 1 and 2 are merged separately
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Figure 2.1: Sliding dichotomy explained graph-

ically

from scales 3 and 4. This process continues

for all possible dichotomous cut points as dis-

played in Figure 2.1. Therefore, from an n

point ordinal scale, a total of n − 1 different

bands are articulated and each band has its

own reformed version of ‘favorable’ and ‘un-

favorable’ outcomes (Figure 2.1). All of the

‘favorable’ and ‘unfavorable’ values from all of

the bands are pooled as a new outcome vari-

able so that the original k ordinal scales are

transformed into a final, single binary scale

(Mendelow et al., 2005). The traditional bi-

nary logistic model is then applied to fit the

new binary outcome and attain the final result.

The R function glm was used to fit this model. Three GCS variables from CRASH (i.e.,

eye opening, verbal response and motor response) were used as covariates in the initial model

to estimate fitted values (based on standard coarse dichotomization of the GOS). Cases were

sorted based on fitted values and three GOS bands were defined: ‘Worst’, ‘Intermediate’ and

‘Best’ prognosis bands (Figure 2.1). For the worst prognosis band, the favorable outcome scales

were SD, MD, and GR; for the intermediate band, MD and GR and the only favorable outcome

scale for the best prognosis band was GR. The robustness and limitations of the SDM was given

in Table 1.1.
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Chapter 3

Results

This chapter has five sections. The first two sections contain papers (one published and one

under-review), each dealing with a different objective of the thesis. In section 3.3, the type I

error analysis is discussed (the manuscript for this chapter is still in preparation and the work

is therefore presented in a chapter form and not paper form), Section 3.4 contains the power

analysis work and section 3.5 outlines considerations for new model development.

3.1 Statistical Analysis of Ordinal Outcomes: Compari-

son of the existing methods

This work is presented as a manuscript that is currently under peer review in BMJ Open (ref-

erence ID: bmjopen-2017-021145) titled ‘Statistical Analysis of Ordinal Outcomes: Comparison

of the existing methods’. RK Biswas initiated the idea and conducted the statistical analysis

along with drafting the manuscript. He undertook most of the research work. N Ananna was

part of the data collection, provided the ethical review and gave feedback regarding sampling

process. E Kabir and R King supervised the whole process and critically edited the manuscript.

The first objective of the thesis (section 1.6) was assessed in this paper. The four models

(POM, PPOM, CRM, SDM) were compared in five different covariate categories from a pri-

mary data from Bangladesh. Comparing AIC, BIC and Pseudo−R2, we concluded that the

SDM showed the best fitness among the four models. This paper further demonstrated the

importance of considering multiple models for analyzing ordinal outcome variables, due to the

want of a single robust model to fit all data sets to ordinal outcomes.
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Abstract 

Objective The contemporary statistical models applied to analyze ordinal variables have 
limitations such as strict model assumptions, uncontrolled type I error rates, lack of power 
etc. Data manipulation is sometimes necessary to come to a favorable and meaningful 
conclusion. This paper compares the proportional odds, partial proportional odds, 
continuation ratio, and sliding dichotomy model in detecting the rank order changes of an 
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ordinal outcome variable. 
Methods Primary data, collected in a sub-urban region of Bangladesh, was used for the 
study. A range of covariates were divided into four categories and their effects on BMI were 
quantified separately using the four models. The significant variables were then fitted to the 
four models again. AIC, BIC and Pseudo−R2 were calculated in all cases to determine the best-
fitted model. 
Results The four models did not consistently identify the same significant factors and the 
proportional odds model violated the proportional odds assumption. The sliding 

dichotomy model attained the lowest AIC and BIC along with the highest Pseudo−R2 

compared to the three other ordinal models. 
Conclusions The assumptions for many ordinal models are strict and restrictive. Before 
analyzing any ordinal data, the assumptions of the models must first be satisfied. 
Inconsistencies in results across these methods suggests that researchers may find value in 
evaluating multiple methods and using Goodness-of-Fit indices to help report and interpret 
results. Analyzing sub-sets of covariates may limit the overfitting of the models.   The initial 
significant factors and the most common significant factors across multiple models may then 
be included in the final model for interpretation. 
 

Keywords: The proportional odds model, The partial proportional odds model, The 
continuation ratio model, The sliding dichotomy model, Ordinal variable 

 

Strengths and limitations of this study 

 Comparison among the application of contemporary ordinal models and the consistency in 
results obtained 

 Model fitness was evaluated using AIC, BIC and Pseudo−R2  

 Simulation of multiple scenarios based on a higher initial sample size were not analyzed. 

 Changes among the models’ fitness statistics were not compared based on various sample 
sizes 

 

 

Introduction 

Ordered categorical variables are regularly used as outcome or response variables in various 
fields of study, particularly in the areas of social science and epidemiological research. (1) The 
analysis of variables comprised of more than two ranked scales are, in many cases, not robustly 
analyzed. (2)  There are a number of statistical methods commonly applied to these types of 
data, however  each have  demonstrated limits to their efficacy,  primarily related to test 
assumptions or features of the sample. (3) The limitations of these traditional approaches 
recently led to the development of a new method, the sliding dichotomy model, which itself 
has its own constraints and limitations. (4) This paper compares the effectiveness of the 
exiting traditional statistical methods regularly applied for analyzing ordinal dependent 
variables, with that of the sliding dichotomy method. The methods discussed in this paper 
are the Proportional Odds Model (POM), Partial Proportional Odds Model (PPOM), 
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Continuation Ratio Model (CRM), and Sliding Dichotomy Model (SDM). 

 
The application of ordinal responses is increasing in medical and epidemiological studies; 

however, model selection remains speculative. (5) In many cases ordinal responses are 
preferred by practitioners and researchers as they allow interpretation across and between 
practically relevant categories or scales rather than along a continuum (or continuous 
variable) (1). However, from a statistical perspective: analysis of discrete data often requires 
larger sample sizes to make equivalent inferences to those that can be made based on 
continuous data; discrete and categorical data are generally considered less sensitive or less 
able to capture small variations; and partitioning of variance or identifying sources of 
variance is more difficult when the measurement scale has low sensitivity, which has led to 
limited options for statistical analyses of ordinal data. (6) 

 
Some statistical methods can lead to further loss of information by requiring ordinal 

variables to be converted into binary form to simplify analysis and interpretation. (7) The 
resulting dichotomous outcome variables allow the application of common and reliable 
statistical tools such as the chi-square test or Fisher’s exact test. (8, 9) The chi-square test 
has its own limitations, in particular not being flexible enough to adjustments and over 
dependence on sample size. (10) The binary linear logistic model offers a mathematically 
flexible model and ease of interpretation for researchers; however, ordinal information is 
still lost through the conversion to a binary outcome for analysis. (11, 12)  The polytomous 
logistic model is applied to outcome variables with more than two levels; however, it cannot 
incorporate information on the order of categories which are fundamental to ordinal 
variables. (13) Conversion of an ordinal response to a binary form may also be performed 
naïvely assuming the distance between the consecutive scales are equal, which will give false 
results in most cases. (14) 

 
A range of approaches has been proposed to analyze ordinal responses in their original 

measured form. A rating experiment resulting in a compound model was proposed by 
Andrich (1979). (15) Two types of estimators for the ordinal outcomes were proposed based 
on Clayton’s (1974) simple odds-ratio statistics. (16) In 1981, for the first time maximum 
likelihood estimation procedures were established for ordered variables (2). It was shown 
that analysis of ordinal outcomes substantially increased the statistical power compared to 
the analysis of fixed dichotomous or binary outcomes. (17) Farewell (1982) proposed a new 
class of models based on the introduction of variability of classification into the proportional 
hazards model. (18) Greenland (1985) illustrated some extensions of logistic models to the 
modeling of probabilities of the ordinal responses. (19)  In all of these models, a number    of 
constraints, or assumptions, were proposed to maintain the ranking of the ordinal outcomes 
and achieve a meaningful interpretation. (20) One of the earliest studies that focused on 
comparing the performance of existing methods concluded that “the ordering of the 
response was more intuitive than objective” and “the stereotype model may be more 
appropriate than the grouped continuous model for data where the ordering is in doubt”. 
(21) Anderson’s (1981) ordinal logistic model, a rank-based method, was assumed to be the 
best-fitted model by these authors. (21) The ordinal least square regression method requires 
homogeneous variance in the ordinal outcome scales to ensure unbiased parameter 
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estimates; however, variance estimates within ordinal scales are often inconsistent, 
violating this assumption and resulting in false conclusions. (22) Any strict assumptions 
required for an ordinal outcome analysis method can not only make model fitting more 
mathematically challenging, but it may also limit model application as the scale distance in 
the ranked categories vary from data to data and thus, any uniform assumption may 
jeopardize the model fitness. (7) Among the existing analysis techniques, the POM or ordinal 
logistic regression is the most popular for analyzing ordinal outcomes due to its ease of 
interpretation. (5; 23) 

 
The POM is the favored method due to its ease of application and interpretation. (7) 

However, the proportional odds assumption, otherwise known as the parallel lines 
assumption, can limit its suitability for analysis of many data sets. (24) The odds assumption 
is relaxed for the PPOM; (25) however, the interpretation of this model is not as straight 
forward as the POM. For some forms of ordinal data, current membership within any 
category requires that individuals must have passed through stages leading to their current 
level, and for these specific types of data, the CRM is considered the most appropriate 
method of analysis. (26) The SDM has recently been promoted for demonstrating higher 
statistical power and providing easily interpretable parameters; (27) however, subjectivity 
in choosing the fitted model and untested control over the type I error rate has also led to 
concerns about the reliability of this method. (4) 

 
Some studies have compared the available methods for ordinal outcome variables within 

respective disciplines. Scott et al. (1997) demonstrated, based on a public health data set, 
that the application of the binary logistic model resulted in a substantial loss of information 
and that the chi-square test was unreasonable for such analysis. (7) Comparing the POM and 
the CRM, the authors suggested that the POM was more suitable for ranked data analysis for 
clinical and epidemiological studies. (7) Fixed dichotomous approaches were also found to 
be statistically inefficient and inappropriate methods in the analysis of stroke trial data (3) 
and neurological disease trials. (28; 29) O’Connell and Liu (2011) applied residual analysis 
to compare between the POM and the PPOM using an education data set. (30) They 
suggested that researchers should apply both the ordinary least square (OLS) and the binary 
logistic models to locate the influential or unusual cases in the data. Furthermore, the 
authors also emphasized that the case-wise fit to the POM can be challenging and vigorous 
testing of assumptions is required, as the existence of outliers can significantly influence the 
analysis. (30) Analysis of data from a clinical trial measuring traumatic brain injury showed 
that the SDM allowed sample sizes to be reduced by up to 40% without the loss of any 
statistical power. Although the POM gave modest additional gains alongside the SDM, it was 
noted by these authors that the strict proportional odds model assumption might limit its 
application. (31) A comparison of the POM, PPOM and the multinomial regression model in 
the analysis of crash injury severity data concluded that the PPOM performed better with 
fewer strict assumptions to be met. (32) Ananth and Kleinbaum (1997) applied six different 
ordinal models to a perinatal database, and compared their goodness-of-fit indices and 
recommended sensitivity analysis along with assumptions testing prior to the fitting of any 
model to ordinal data. (33) 

 
The focus of most social science and epidemiological studies is not on the characteristics 
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of the statistical methods but the meaningful interpretation of results within the application 
area. (34; 35; 36) In many cases, the method chosen by a researcher may be based simply on 
the most frequently applied model within their specific discipline area or availability of 
relevant software packages. (37; 38) As no particular method is unanimously accepted or 
endorsed for analyzing ordinal outcome data, the analysis approach can also often include 
the fitting of several different models to determine the best approach. (39) However, from an 
applied researcher’s perspective, this assessment is often based on the results of the 
analysis and not necessarily on consideration of the process and limitations of the statistical 
methods themselves. (40; 41) 

 

This paper aims to compare the performance of four ordinal models when applied to a 
common data set, based on their identification of significant covariates and statistical 
measures of performance.   The POM, PPOM, CRM and SDM are applied to a primary public 
health data set from Bangladesh to evaluate their performance. The objective was to 
assess the significant socio-economic factors that influenced Body Mass Index (BMI), 
where the ordinal BMI variable was categorized into four scales/groups namely 
underweight, normal, overweight and obese. 

 
Methods 

Data Description 

The data collection was conducted by Ibrahim Medical College (BIRDEM), Bangladesh 
for assessing the health condition in the sub-urban areas of Bangladesh. The data were 
collected as a part of residential field site training (RFST) for 4th year medical students. 
841 respondents were randomly sampled in the unions of Sreepur upazilla of Gazipur 
district. There was no missing data within the sample. BMI (kg/m2) was measured as a 
continuous variable, which was later converted into four ordinal categories by the authors 
before analysis. These categories were defined based on the World Health Organization 

guidelines. (42) BMI under 18.5 kg/m2  was considered ‘underweight’, between 18.5 to 

24.9 kg/m2 was ‘normal’, 24.9 to 30 kg/m2 was ‘overweight’ and over 30 kg/m2 was ‘obese’. 
The effect of 12 independent socio-economic covariates were of interest; however, inclusion 
of all in each of the four methods would have over-populated each model. Therefore, 
covariates were categorized into four groups broadly representing individual status, family 
demography, social level and exterior health status (Table 1). The four categories of 
covariates were fitted to all of the models separately and the significant (5% level) 
variables were identified. All significant covariates from each category were then fitted to 
the models again as covariates. R (Version 3.4.0) and Stata (version 12.0) were used for 
analysis. 

 
Table 1:  Categorizing covariates for model formulation 

No. Covariates Category No. Covariates Category 

1 
2 

Age 
Sex 

 

Individual Status 
7 
8 

Social Class 
Education 

Social Level 

3 Marital Status  9 Occupation  
4 
5 

Number  of  family Member 
Residence  in Boyhood 

 

Family Demography 
10 
11 

Physical exercise 
Smoking Habit 

Exterior Health Status 

6 Residence for 3/4th or more life-time  12 Tobacco  
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In the ‘Individual Status’ category age, sex and marital status were included, where sex 
had two scales (male and female) and marital status had four (unmarried, married, 
widowed and others). Age had three scales: young (below 25), adult (25 - 59) and old 
(over 59). Number of family members in ‘Family demography’ was a continuous variable. 
Residence in childhood was measured by categorizing the locality of the individual until 
s/he completed high school into urban, sub-urban, rural and other regions. The locality 
where an individual spent most (3/4 or more) of his/her time used the same categories as 
residence in childhood. Social class under ‘Social Level’ included the wealth quantiles: rich, 
upper middle, lower middle, poor and destitute. Education level was subdivided into 
illiterate, ability to ready only, write only, secondary or higher secondary education level 
and tertiary level. ‘Exterior Health Status’ status had four covariates: occupation (stressful, 
partially stressful, stress free), physical exercise (< 30 min, 30-60 min, 61-90 min and     
> 90 min per day), smoking habit (never, stopped more than 6 months, and current 
smoker) and tobacco use (yes and no). Tobacco use referred to the chewing of tobacco 
leaves, not the smoking of cigarettes. 

 

Proportional Odds Model 

A member of the cumulative logistic regression family, the POM is generally applied for 
ordinal outcome analysis, which is preferred over the dichotomous models. (43) Let a 
random variable be Y with J categories.  The cumulative logit model is defined, (5) for an 
outcome with levels    0, 1, 2, . . ., k: 

Pr[𝑌 ≥ 𝑗 | 𝑋] =  
1

1 + 𝑒𝑥𝑝[−(𝛼𝑗 +  𝑋𝛽)]
,                 𝑗 = 1, 2, … , 𝑘 

where the x’s are the covariates, α is the overall intercept, and the β’s are the unknown 
parameters. The R function polr was applied to fit this model. 

 
Although all the ordinal levels are retained for analysis, the model estimates a common 

odds ratio over all of the possible boundaries between levels of the ordinal outcome variable. 
(17) This limitation is due to the proportional odds assumption, which states that the effects 
of the covariates x1, ..., xp−1 are the same for all levels of the outcome scale, or that the 

relationship between each pair of outcome groups is the same. This is rarely a reasonable 
assumption for any outcome variable and the proportional odds assumption is frequently 
violated. However, Senn and Julious (2009) advised, this issue should not be overstressed. 
(44) They also accepted that two studies would reach separate conclusions if the cut points 
for the outcome variable (Y) were different. Many liberal tests for the assumption are 
available. (25) However, an additional limitation of the method is that the odds are strongly 
affected by sample size and the number of covariates. (30) 

 
 

Partial Proportional Odds Model 

The PPOM, an extension of the POM, allows the odds assumption to be relaxed.  It allows 
each covariate to vary over the outcome level with separate coefficients (βj) estimated for 
each level. The model can be defined as, (5; 32) 
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Pr[𝑌 ≥ 𝑗 | 𝑋] =  
𝑒𝑥𝑝(𝛼𝑗 + 𝑋𝑖𝛽𝑗)

1 + 𝑒𝑥𝑝(𝛼𝑗 +  𝑋𝑖𝛽𝑗)
,                 𝑗 = 1, 2, … , 𝑘 

The clear difference between the POM and this model is the conversion of β to βj. Stata 
package gologit2 was applied to calculate the PPOM in this   paper. 

 
In this model, the coefficients of intermediate categories need careful interpretation, as 

the sign of the parameters estimated for categories does not always determine the direction of 
the effect. (45) Sometimes it is not possible to come to a precise conclusion. Despite having a 
reduced burden of assumptions, this model is far from ideal. 

 
 

Continuation Ratio Model 

The CRM is generally applied when the stepwise ranks are given priority in ordinal 
analysis. (46) When estimating the conditional probability of surpassing a category given 
that the individual is presently in that particular category, given Y = 0, ..., k, the CRM model 
can be defined as, (5) 

 

Pr[𝑌 = 𝑗 | 𝑌 ≥ 𝑗, 𝑋] =  
1

1 + 𝑒𝑥𝑝[−(𝜃𝑗 +  𝑋𝛾)]
,                 𝑗 = 1, 2, … , 𝑘 

where x1, x2, ..., xp are a set of predictors, θ0 ≡ 0, and θ1, ..., θk−1 are increments of intercept, 

and 𝜸 is the vector of regression coefficients. Package vglm from R was applied to fit this 
model. Researchers of clinical trials have been hesitant to utilize adaptive designs; however, 
due to the complexity of some trial designs and a lack of analysis options for the resulting 
data from these trials, the CRM has been applied as an alternative to the traditional 
models. (47) Application of this model has had varying results, with some researchers 
finding improved fit of the CRM over the POM and others finding no improvement. ( 7, 48) 

 
Sliding Dichotomy Model 

The SDM extends the application of the binary logistic model across multiple, 
successive dichotomizations within the one ordinal scale, to improve detection and 
interpretability of effects across all ordinal groups measured. Firstly, based on typical 
favorable and unfavorable dichotomization of the ordinal response, the binary logistic model 
is fitted with the important covariates that affect the outcome scale and the fitted values are 
stored within the data set. The respondents (cases) are then sorted in descending order of the 
fitted values and grouped into the maximum number of bands possible, where each band is 
formulated to represent a change in the scale of the original ordinal outcome variable. (49) 
Within the first band, and based on a four-point ordinal scale, scales 2 (normal), 3 
(overweight) and 4 (obese) of the original BMI are clustered separately (as ‘favorable’) from 
scale 1 (underweight) (as ‘unfavorable’). In the next band, scales 1 and 2 are merged 
separately from scales 3 and 4. This process continues for all possible dichotomous cut points, 
as displayed in Figure 1.  Therefore, from an n point ordinal scale, a total of n− 1 different 
bands are articulated and each band has its own reformed version of ‘favorable’ and 
‘unfavorable’ outcomes (Figure 1). All of the ‘favorable’ and ‘unfavorable’ values from all of 
the bands are pooled as a new outcome variable, so that the original k ordinal scales are 
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transformed into a final, single binary scale. (50)  The traditional binary logistic model is then 
applied to fit   the new binary outcome. 

 

 
Figure 1: The sliding dichotomy model explained graphically 

 

The R function glm was used to fit this model. Age and education of the respondents were 
used as covariates in the initial model to estimate fitted values (based on standard coarse 
dichotomization of the BMI). Cases were sorted based on fitted values and three BMI bands 
were defined: ‘Worst’, ‘Intermediate’ and ‘Best’ prognosis bands (Figure 1). For the worst 
prognosis band, the favorable outcome scales were normal, overweight, and obese; for the 
intermediate band, overweight and obese, and the only favorable outcome scale for the best 
prognosis band was obese. This method is highly praised in the area of clinical trial research 
for achieving high statistical power (51). The predictive model can be created using any 
number of covariates from the data set, which may vary from study to study. Hence, the 
choice of variables leads to subjectivity within the first stage of analysis. 

 
Comparison of the models 

Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) and Pseudo−R2 

were quantified to assess the model fitness. These three criteria were calculated for each 
covariate category (Table 1) along with the final set of significant covariates. In total, five sets of 
AIC, BIC and Pseudo−R2 were computed and compared. 

 
AIC, a relative measure, can numerically express the amount of information in a model 
incorporating the number of covariates with maximized log-likelihood (52). It is defined 
by, 𝐴𝐼𝐶 =  −2𝐿𝑚  +  2𝑚, where 𝐿𝑚 is the maximized log-likelihood and m is the number of 
parameters in the model. (53) BIC is an extension of AIC, where sample size is taken into 
consideration. (54) It is defined by, 𝐵𝐼𝐶 =  −2𝐿𝑚 +  𝐾𝑙𝑜𝑔(𝑛), where𝐿𝑚 is maximized log-
likelihood, K is the number of estimable parameters and n is the sample size. (55) 
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R2 describes the proportion of variance in the dependent variable explained by the model. 
(56) It is quantified comparing the conditional variation of the response to the marginal 
variation, using the deviance of the observed, null and saturated model. One slightly 
controversial application of the deviance is to derive a Pseudo−R2 measure, known as the log-
likelihood or Hosmer-Lemeshow R2. (57) Although Pseudo−R2 is not the most reliable method, 
different versions of it have been developed.  This study applied Mcfadden-R2, which is 

defined by, 𝑀𝑐𝑓𝑎𝑑𝑑𝑒𝑛 −  𝑅2
  

=  1 − 
𝑙𝑜𝑔 (𝐿1)

𝑙𝑜𝑔 (𝐿2)
 where L1 denotes the (maximized) likelihood 

value from the current fitted model and L0 denotes the corresponding value of the null 
model. (58) 

 
Results 

The four models did not show uniform results, with different variables identified as 
significantly influencing BMI in different models based on analysis of the same samples and 
covariates. Age (‘Adult’ group) was a significant covariate (P − value < 0.05) both in the POM 
and SDM; however, the CRM did not show any variable in the ‘Individual Status’ category to 
be significant (Table 2). Females were found to have a 45% greater chance of having higher 
BMI compared to males, according to the SDM. In the ‘Family Demography’ category, the CRM 
and SDM identified only the quantity of family members as a significant covariate; however, 
their odds were in opposite directions, which leads to a conflicting conclusion (Table 2). The 
POM identified both social class and education as significant factors, while the SDM only 
showed social class as a significant covariate. In the ‘Exterior Health Status’ category, the SDM 
showed only occupation as a significant covariate while the POM and CRM identified no 
significant covariates within this category (Table 2). The odds assumptions of the POM was 
assessed and Figure 2-5 shows that they were violated in all cases. Equal proportion was not 
evident in any of the variable levels. The PPOM identified age, number of family members, 
social class, education, physical exercise and smoking habit to be significant factors for BMI 
(Table 3). 



10  

Table 2: The four categories fitted with relevant models 

Model Individual Status [Odds ratio (95% C.I.)] 
 

 
Gender: Female 
(ref: male) 

Age: Adult 
(ref: Old) 

Age: Young 
(ref: Old) 

Marital Status: 
Married 
(ref: Unmarried) 

Marital Status: 
Widowed 
(ref: 
Unmarried) 

Marital Status: 
Others 
(ref: 
Unmarried) 

  

POM 
1.223 (0.91, 
1.65) 

0.594* (0.41, 
0.86) 

0.943 (0.48, 
1.84) 

1.000 (0.46, 2.18) 
1.099 (0.42, 
2.85) 

0.966 (0.14, 
6.64) 

  

CRM 
1.014 (0.85, 
1.22) 

0.988 (0.78, 
1.24) 

1.000 (0.66, 
1.52) 

1.009 (0.62, 1.64) 
1.008 (0.55, 
1.85) 

0.988 (0.31, 
3.12) 

  

SDM 1.449* (1.04, 
2.02) 

0.667* (0.45, 
0.99) 

1.437 (0.71, 
2.91) 

1.463 (0.62, 3.45) 
0.983 (0.34, 
2.87) 

0.717 (0.06, 
8.14) 

  

 Family Demography 

 

No.  of family 
Members 

Residence in 
Childhood: 
Urban (ref: 
Rural) 

Residence in 
Childhood: 
Sub-urban 
(ref: Rural) 

Residence in 
Childhood: (ref: 
Rural) 

3/4th or more 
lifetime spent: 
Urban (ref: 
Rural) 

3/4th or more 
lifetime spent: 
Sub-urban (ref: 
Rural) 

3/4th or 
more lifetime 
spent: Others 
(ref: Rural) 

 

POM 
0.979 (0.91, 
1.05) 

2.598 (0.49, 
13.89) 

2.258 (0.59, 
8.61) 

No Observation 
1.987 (0.35, 
11.24) 

2.143 (0.50, 
9.19) 

1.744 (0.09, 
30.94) 

 

CRM 
0.577* (0.34, 
0.98) 

1.175 (0.43, 
3.19) 

1.162 (0.52, 
2.57) 

No Observation  
1.099 (0.40, 
3.02) 

1.079 (0.47, 
2.46) 

0.939 (0.18, 
4.90) 

 

SDM 1.095* (1.02, 
1.18) 

3.018 (0.43, 
21.20) 

2.209 (0.43, 
11.39) 

 No Observation 1.588 (0.22, 
11.23) 

1.147 (0.23, 
6.10) 

0.902 (0.05, 
16.91) 

 

 Social Level 

 
Social Class:  
Upper middle 
(ref: Rich) 

Social  Class:  
Lower middle 
(ref: Rich) 

Social Class: 
Poor 
(ref: Rich) 

Social Class:  
Destitute 
(ref: Rich) 

Education:  
Read only 
(ref: Illiterate) 

Education: 
Write address 
(ref: Illiterate) 

Education:  
Secondary  or  
higher 
(ref: 
Illiterate) 

Education: 
Tertiary/+ 
(ref: 
Illiterate) 

POM 
0.667 (0.31, 
1.44) 

0.551 (0.26, 
1.17) 

0.432* (0.19, 
0.94) 

One observation 
1.040 (0.62, 
1.73) 

0.716* (0.51, 
0.99) 

0.688 (0.45, 
1.05) 

0.680 (0.41, 
1.14) 

CRM 
0.902 (0.52, 
1.58) 

0.848 (0.49, 
1.47) 

0.790 (0.45, 
1.39) 

One observation  
1.015 (0.74, 
1.39) 

0.979 (0.79, 
1.20) 

0.964 (0.74, 
1.26) 

1.007 (0.73, 
1.39) 

SDM 11.714* (1.49, 
91.91) 

11.366 (1.47, 
87.80) 

11.194 (1.43, 
87.38) 

One observation 1.197 (0.68, 
2.10) 

1.182 (0.82, 
1.69) 

0.900 (0.56, 
1.45) 

0.790 (0.42, 
1.48) 

 Exterior Health Status 

 
Occupation: 
Stress less (ref: 
Stressful) 

Occupation: 
Partial Stressful 
(ref: Stressful) 

Physical 
Exercise: 
31-60 min 
(ref:  <30 
min) 

Physical 
Exercise: 
61-90 min 
(ref:  <30 min) 

Physical 
Exercise: 
>90 min 
(ref:  <30 min) 

Smoking: 
stopped more 
than 6 months 
(ref:  Never) 

Smoking: 
Current (ref: 
Never) 

Tobacco: No 
(ref: Yes) 

POM 
1.099 (0.66, 
1.83) 

0.989 (0.58, 
1.68) 

0.793 (0.56, 
1.12) 

0.870 (0.56, 1.36) 
0.602 (0.28, 
1.28) 

0.636 (0.34, 
1.19) 

0.706 (0.42, 
1.18) 

1.115 (0.82, 
1.51) 

CRM 
1.025 (0.76, 
1.39) 

1.006 (0.73, 
1.38) 

0.966 (0.78, 
1.19) 

0.959 (0.73, 1.26) 
0.899 (0.59, 
1.38) 

0.937 (0.66, 
1.33) 

0.915 (0.68, 
1.23) 

1.031 (0.85, 
1.24) 

SDM 0.514* (0.30, 
0.87) 

0.469* (0.27, 
0.82) 

0.846 (0.57, 
1.25) 

0.768 (0.47, 1.27) 
0.869 (0.39, 
1.89) 

0.593 (0.30, 
1.16) 

0.791 (0.46, 
1.37) 

1.074 (0.76, 
1.51) 

* Significance at 5%, POM = Proportional odds model, CRM = Continuation Ratio Model, SDM = Sliding dichotomy model 
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Table 3: Partial Proportional Odds Model results for all covariate 
category 

Covariate Category Variable (reference cat.) Panel I Panel II Panel III 

 Odds (C.I.) 

Individual Status Gender (male) 0.839  (0.56, 1.25) 1.140  (0.81, 1.61) 3.35*  (1.27, 8.81) 

 Age (Old) 0.630* (0.44, 0.91) 0.717  (0.49, 1.03) 0.629  (0.27, 1.47) 

 Marital Status (Unmarried) 1.042  (0.62, 1.75) 1.110  (0.69, 1.77) 1.590  (0.72, 3.54) 

Family Demography No.  of  family Members 0.949  (0.87, 1.03) 0.906* (0.83, 0.99) 1.020  (0.87, 1.19) 

 Residence in Childhood  (Rural) 0.526  (0.16, 1.71) 1.099  (0.57, 2.12) 0.594  (0.26, 1.35) 

 3/4th or more lifetime spent 
(Rural) 

0.666  (0.22, 2.02) 0.963  (0.49, 1.87) 0.858  (0.35, 2.04) 

Social Level Social Class (Rich) 0.920  (0.70, 1.20) 0.567* (0.45, 0.71) 0.560  (0.37, 0.85) 

 Education (Illiterate) 1.413  (1.21, 1.65) 1.153* (1.02, 1.31) 1.113  (0.87, 1.42) 

Exterior Health 
Status 

Occupation (Stressful) 1.118  (0.81, 1.54) 1.128  (0.86, 1.48) 1.430  (0.79, 2.57) 

 Physical Exercise (<30  min) 0.965  (0.76, 1.22) 0.761* (0.62, 0.94) 0.606* (0.38, 0.97) 

 Smoking (Never) 0.939 (0.69.  1.29) 0.624* (0.45, 0.86) 0.341  (0.11, 1.09) 

 Tobacco (Yes) 1.047  (0.68, 1.61) 1.270  (0.89, 1.80) 1.240  (0.62, 2.45) 

Overall Age (Old) 0.696* (0.49, 0.99) 0.837  (0.58, 1.19) 0.749  (0.36, 1.58) 

 No.  of  family Members 0.972  (0.89, 1.06) 0.922  (0.84, 1.01) 1.020  (0.87, 1.19) 

 Social Class (Rich) 0.727* (0.57, 0.93) 0.527* (0.43, 0.65) 0.546* (0.37, 0.79) 
 

* Significance at 5% 

 
 
 

From the initial results, portrayed in Table 2 and 3, three variables age, number of family 
members and social class were chosen for re-analysis, as they were significant in at least two 
models. These factors were again fitted using the four models and the results are provided in 
Table 4 and 3. Age was a significant covariate in the POM, SDM and PPOM (Table 4 and 3).  
The PPOM identified social class as an important factor as well; however, it was not 
significant in the other models. Hence, among the 12 original covariates only one, age, was 
found significant in the three models out of four. These results illustrate the variability 
among the models and the lack of consistency in the traditional methods in ordinal outcome 
analyses. In addition, the most popular model, the POM, violated the proportional odds 
assumption again, when the final three covariates were fitted (Figure 6). 

 
 

Table 4: Fitting the models with selected variables 
 

Models [Odds ratio (C.I.)] Age: Adult 
(ref: Old) 

Age: Young 
(ref: Old) 

No. of family 
Members 

Social Class: 
Upper middle 
(ref: Rich) 

Social Class: 
Lower middle 
(ref: Rich) 

Social Class: 
Poor (ref: 
Rich) 

Social Class: 
Destitute 
(ref: Rich) 

POM 0.545* (0.38, 0.79) 0.878 (0.48, 1.61) 0.959 (0.89, 1.03) 0.719 (0.33, 1.58) 0.637 (0.30, 1.34) 0.548 (0.26, 1.16) One observation 

CRM 0.969 (0.77, 1.22) 0.973 (0.67, 1.42) 0.989 (0.95, 1.03) 0.901 (0.52, 1.57) 0.847 (0.50, 1.43) 0.797 (0.47, 1.35) One observation 

SDM 0.932 (0.62, 1.39) 1.966* (1.03, 3.76) 1.027 (0.96, 1.11) 1.072 (0.30, 3.78) 1.577 (0.47, 5.29) 1.920 (0.57, 6.45) One observation 
 

   * Significance at 5%, POM = Proportional odds model, CRM = Continuation Ratio Model, SDM = Sliding dichotomy model 
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Sex 

Male 

Female 

 
Marital status 

Unmarried 

Married 

Widowed 

Others 

 
Age group 

 
 

No of Family members 
[2, 5) 

5 
6 

[7, 18] 
 

 
Residence in Childhood 

Rural 

Sub-urban 

Urban 
 

3/4th or more life 

Old 

Adult 

Young 

time spent 
Rural 

Sub-urban 

Urban 

Others 

 
 

Overall 
 

Overall 
 
 

 
N=841 

 

 
−1.5 −1.0 −0.5 0.0 

 

 
−2.0 −1.5 −1.0 −0.5 0.0 

N=841 

(a) Odds assumption in ‘Individual Status’                       (b) Odds assumption in ‘Family Demography’ 

 
 

Social Class 

Rich 
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Lower middle 
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Destitute 
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Illiterat

e Ready 

only Write 

only 

Secondary or higher 

Tertiary/
+ 

 

Occupation 
Stressful  
Partially stressful 
Stress less 

 
Physical exercise 

<30 min 
30-60 min 
61-90 min 

>90 min 

 
Smoking habit 

Never 
Stopped > 6 months 

Current smoker 
 

Tobacco 
Yes 
No 

 
Overall 

Overall 
 
 
 

N=841 

 
 

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 

 
 

−2.0 −1.5 −1.0 −0.5 0.0 

N=841 

(c) Odds assumption in ‘Social Level’ (d)  Odds assumption in ‘Exterior Health Status’ 
 

Figure 2: Test of odds assumption for Proportional Odds 
Model 

 
 

 
 

 
 

Age group 
Old 

Adult 

Young 

No. of family 
members [2, 5) 

5 

6 

[7, 18] 

 
 

Social Class 
Rich 

Upper Middle 

Lower middle 

Poor 

Destitute 

 
 

Overall 
 
 

−2.0 −1.5 −1.0 −0.5 0.0 
 

N=841 

 

Figure 3: Test of odds assumption for Proportional Odds Model for selected variables 



13  

The goodness-of-fit indices of the models were assessed based on AIC, BIC and 
Mcfadden−R2. Low values of AIC and BIC and high values of McFadden−R2 indicate better fits 
of the models to the data. The SDM had obtained the lowest AIC and BIC among the four 
models followed by the CRM, PPOM and POM respectively (Figure 7). The Pseudo−R2 

accentuates these results, as the SDM and CRM achieved the highest R2 value in five different 
models; except for ‘Individual Status’, where the PPOM had the highest R2 Score (Figure 8). 
These results indicate that the sliding dichotomy model outperformed the other models for 
this particular data set. 

 
 

  

(a) AIC and BIC for  the models (b) Mcfadden − R2 for the models 

Figure 4:  Test of goodness-of-fit:  a) AIC and BIC b) Mcfadden − R2 

Discussion 

Results from one model were not consistent with other models. According to the POM, 
age, social class, and educational status significantly influenced BMI. However, only the 
number of family members was significant based on the CRM results. Gender, age, number of 
family members, social class, and occupation were all significant covariates based on the 
SDM. The PPOM showed age, number of family members, social class, education, physical 
exercise and smoking habit as significant factors for BMI. Each of these models fitted for 
another study like this one, would likely provide varying and potentially misleading results. 
Such variability in the results could undermine any study conclusions if the models are not 
cautiously fitted. 

 
This paper used three goodness-of-fit indices to compare the results of the four models 

The SDM showed the highest fit across all three statistics. The final model comprised of the 
preliminary significant factors, showed only one variable, age, significantly influenced the 
BMI levels, which is consistent with the current literature. (59) However, this result was a 
derived from a combination of the all four models, and their goodness-of-fit indices. The 
variability in the outcomes of the models shows the necessity of evaluating models’ 
performance based on such indices. (60; 61) We suggest application of multiple models and 
evaluation of multiple goodness of fit statistics, for analysis of a primary data where there is 



In addition to the work in this paper, this supplementary material also contributes to

objective 1 (section 1.6). This work investigates whether micro-level health condition improves

gradually for every income class despite the existence of growing income inequality as macro-

level economy flourishes. Bangladesh, exhibiting development in both economy and health, is

chosen as a sample for assessing the hypothesis. Bangladesh Demographic and Health Surveys

(BDHS) of 2007, 2011 and 2014 were applied in this paper. Only the data of female respondents

were taken as BHDS focuses on women health.

Three statistical models: the proportional odds model, the continuation ratio model and

the sliding dichotomy model were applied for robustness. The proportional odds model showed

the highest Pseudo−R2 and it was fitted to determine the relationship between wealth index

and various health components. The direction of the relationship over the years were explored

by trend of the odds ratios. The fitted models showed that most of the health components

(e.g. family health consciousness, women’s empowerment and reproductive health) significantly

influenced wealth index, the outcome variable, at 5% level for all three data sets (Table 3.1 and

Table 3.2). However, the odds showed a trend towards one (Odds = 1) depicting a reduction of

influence on household economic status from 2007 to 2014. From 2007 to 2014, Bangladesh has

doubled its per-capita GDP and showed remarkable achievements in Millennium Development

Goals (MDGs) despite increasing inequality. Most health parameters showed less influence on

wealth as the economy progressed. The pattern suggests that health accessibility increases as

the country advances economically even though there exists high inequality. Therefore, overall

development of a country is a blessing even for the most vulnerable part of the economic quantile

because they can access health service despite their insolvency.
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Table 3.1: Proportional odds model fitted with three categories of variables from 2007, 2011 &

2014

Variables
2007 2011 2014

Frequency (%) Odds (95% C.I.) Frequency (%) Odds (95% C.I.) Frequency (%) Odds (95% C.I.)

Family Health Consciousness

BMI Underweight 2349 (21.4) 1.00 3177 (17.8) 1.00 2543 (14.2) 1.00

BMI Normal 6557 (59.6) 1.47* (1.35, 1.60) 10162 (56.9) 1.71* (1.59, 1.83) 9742 (54.6) 1.63* (1.50, 1.76)

BMI Overweight 1687 (15.3) 5.59* (4.95, 6.32) 3519 (19.8) 4.88* (4.45, 5.34) 4614 (25.8) 4.06* (3.71, 4.45)

BMI Obese 403 (3.7) 6.13* (4.96, 7.58) 984 (5.5) 5.63* (4.91, 6.46) 964 (5.4) 7.25* (6.29, 8.36)

Number of Son Died: None 9411 (85.6) 1.00 15761 (88.3) 1.00 16046 (89.8) 1.00

Number of Son Died: One 1254 (11.4) 0.76* (0.68, 0.84) 1748 (9.8) 0.73* (0.67, 0.80) 1530 (85.6) 0.79* (0.72, 0.87)

Number of Son Died: >2 331 (3.0) 0.88 (0.72, 1.08) 333 (1.9) 0.89 (0.74, 1.09) 287 (1.6) 0.69* (0.56, 0.86)

Number of Daughter Died: None 9539 (86.8) 1.00 15977 (89.5) 1.00 16263 (91.1) 1.00

Number of Daughter Died: One 1168 (10.6) 0.85* (0.76, 0.95) 1151 (8.7) 0.83* (0.76, 0.91) 1400 (7.8) 0.72* (0.58, 0.89)

Number of Daughter Died: >2 289 (2.6) 0.78* (0.63, 0.97) 314 (1.8) 0.62* (0.51, 0.77) 200 (1.1) 0.58* (0.45, 0.75)

Aware of Com. Clinic: No 1072 (9.7) 1.00 14678 (82.3) 1.00 12662 (70.9) 1.00

Aware of Com. Clinic: Yes 9924 (90.3) 0.53* (0.47, 0.59) 3164 (17.7) 0.71* (0.66, 0.76) 5201 (29.1) 0.67* (0.63, 0.71)

Aware of AIDS: No 3308 (30.1) 1.00 5330 (29.9) 1.00 5270 (29.5) 1.00

Aware of AIDS: Yes 7687 (69.9) 4.18* (3.85, 4.53) 12512 (70.1) 3.94* (3.69, 4.19) 12593 (70.5) 3.78* (3.55, 4.03)

Women Empowerment

Decision maker for

Child health-care: Herself
3095 (33.3) 1.00 2423 (16.8) 1.00 2823 (19.3) 1.00

Decision maker for

Child health-care: Joint
4459 (48.1) 0.76* (0.69, 0.82) 8894 (61.7) 0.75* (0.69, 0.82) 8667 (59.3) 0.73* (0.67, 0.79)

Decision maker for

Child health-care: Husband
1723 (18.6) 0.63* (0.56, 0.69) 3109 (21.5) 0.61* (0.56, 0.68) 3124 (21.4) 0.56* (0.51, 0.61)

Working Status: Unemployed 7759 (70.6) 1.00 15468 (86.7) 1.00 12234 (68.5) 1.00

Working Status: Employed 3233 (29.4) 0.66* (0.62, 0.72) 2374 (13.3) 1.01 (0.92, 1.10) 5624 (27.5) 0.83* (0.78, 0.88)

Education: None 3525 (32.1) 1.00 4639 (26.0) 1.00 4206 (23.5) 1.00

Education: Primary 3268 (29.7) 1.25* (1.36, 1.14) 5332 (29.9) 1.25* (1.16, 1.35) 5226 (29.3) 1.18* (1.09, 1.28)

Education: Secondary 3345 (30.4) 2.11 (1.90, 2.33) 6406 (35.9) 2.18* (1.99, 2.37) 6722 (37.6) 1.98* (1.82, 2.16)

Education: Higher 855 (7.8) 5.81 (4.73, 7.14) 1465 (8.2) 5.47* (4.68, 6.38) 1709 (9.6) 4.52* (3.93, 5.19)

Partner’s education: None 3602 (32.8) 1.00 5197 (29.1) 1.00 5062 (28.3) 1.00

Partner’s education: Primary 2881 (26.2) 1.67* (1.52, 1.83) 4834 (27.1) 2.02* (1.87, 2.19) 4855 (27.2) 1.77* (1.64, 1.91)

Partner’s education: Secondary 2900 (26.4) 3.63* (3.28, 4.02) 5175 (29.0) 4.66* (4.28, 5.08) 5266 (29.5) 4.10* (3.77, 4.47)

Partner’s education: Higher 1598 (14.6) 9.07* (7.77, 10.59) 2627 (14.8) 12.04* (10.65, 13.61) 2677 (14.9) 10.51* (9.33, 11.85)

Reproductive Health

Respondent’s age

at first birth
1.12* (1.11, 1.13) 1.11* (1.10, 1.12) 1.12* (1.11, 1.13)

Contraceptive Method: None 5368 (48.8) 1.00 7563 (42.3) 1.00 7391 (41.4) 1.00

Contraceptive Method: Folkloric 50 (0.5) 0.48* (0.29, 0.78) 64 (0.4) 0.64* (0.42, 0.98) 28 (0.2) 0.90 (0.46, 1.77)

Contraceptive Method: Traditional 827 (7.5) 1.38* (1.20, 1.58) 1499 (8.4) 1.13* (1.02, 1.25) 1310 (7.3) 1.13* (1.01, 1.26)

Contraceptive Method: Modern 4751 (43.2) 1.19* (1.10, 1.28) 8716 (48.9) 1.01 (0.96, 1.08) 9134 (51.1) 0.90* (0.85, 0.95)

Aware of MR: No 2167 (19.7) 1.00 12517 (70.2) 1.00 9433 (52.8) 1.00

Aware of MR: Yes 8828 (80.3) 1.85* (1.69, 2.03) 12517 (70.2) 2.04* (1.91, 2.17) 8430 (47.2) 2.40* (2.27, 2.54)

Ideal number of Boys: None 2568 (23.4) 1.00 3458 (19.4) 1.00 4923 (28.1) 1.00

Ideal number of Boys: One/two 8060 (73.4) 0.70* (0.64, 0.77) 14054 (79.0) 0.82* (0.77, 0.89) 12480 (71.2) 0.86* (0.81, 0.92)

Ideal number of Boys: >=3 123 (1.1) 0.48* (0.35, 0.65) 115 (0.7) 0.56* (0.39, 0.79) 118 (0.7) 0.48* (0.34, 0.67)

Ideal number of Boys: Faith decides 230 (2.1) 0.66* (0.51, 0.85) 158 (0.9) 0.58* (0.43, 0.78) 2 (0) 0.65* (0.08, 1.13)

* at 5% level of significance
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Table 3.2: Continuation Ratio model and Sliding Dichotomy model fitted with three categories

of variables from 2007, 2011 & 2014
Continuation Ratio Model (Odds (C.I.)) Sliding Dichotomy Model (Odds (C.I.))

Variables 2007 2011 2014 2007 2011 2014

Family Health Consciousness

BMI Underweight 1 1 1 1 1 1

BMI Normal 1.01 (0.98, 1.04) 1.01 (0.98, 1.03) 0.99 (0.97, 1.02) 0.99 (0.89, 1.09) 1.02 (0.94, 1.11) 1.07 (0.98, 1.17)

BMI Overweight 1.11 (1.07, 1.15)* 1.07 (1.04, 1.09)* 1.05 (1.02, 1.08)* 1.02 (0.89, 1.16) 0.96 (0.87, 1.06) 1.14 (1.03, 1.26)

BMI Obese 1.13 (1.07, 1.19)* 1.09 (1.05, 1.14)* 1.09 (1.05, 1.14)* 1.16 (0.93, 1.44) 1.02 (0.88, 1.18) 0.97 (0.83, 1.12)

Number of Son Died: None 1 1 1 1 1 1

Number of Son Died: One 0.98 (0.94, 1.01) 0.99 (0.96, 1.02) 0.98 (0.95, 1.02) 0.97 (0.86, 1.09) 0.97 (0.88, 1.08) 1.03 (0.93, 1.15)

Number of Son Died: >2 0.99 (0.93, 1.06) 0.98 (0.92, 1.05) 0.99 (0.92, 1.06) 0.92 (0.74, 1.16) 0.99 (0.79, 1.24) 0.98 (0.78, 1.24)

Number of Daughter Died: None 1 1 1 1 1 1

Number of Daughter Died: One 0.99 (0.95, 1.02) 0.99 (0.96, 1.02) 0.98 (0.95, 1.02) 0.97 (0.86, 1.10) 1.06 (0.95, 1.18) 1.09 (0.97, 1.22)

Number of Daughter Died: >2 0.99 (0.93, 1.07) 0.98 (0.91, 1.05) 0.99 (0.91, 1.08) 1.23 (0.96, 1.58) 1.07 (0.84, 1.35) 0.87 (0.66, 1.15)

Aware of Com. Clinic: No 1 1 1 1 1 1

Aware of Com. Clinic: Yes 0.96 (0.93, 0.99)* 0.97 (0.95, 0.99)* 0.97 (0.95, 0.99)* 0.92 (0.81, 1.04) 0.91 (0.84, 0.99) 1.11 (1.04, 1.19)

Aware of AIDS: No 1 1 1 1 1 1

Aware of AIDS: Yes 1.03 (1.00, 1.06)* 1.02 (1.00, 1.04)* 1.01 (0.99, 1.03) 1.07 (0.98, 1.17) 1.03 (0.96, 1.10) 1.15 (1.08, 1.23)

Women Empowerment

Decision maker for

Child health-care: Herself
1 1 1 1 1 1

Decision maker for

Child health-care: Joint
0.99 (0.97, 1.03) 0.87 (0.79, 0.95)* 0.98 (0.89, 1.07) 1.02 (0.93, 1.12) 0.99 (0.97, 1.02) 0.99 (0.97, 1.02)

Decision maker for

Child health-care: Husband
0.97 (0.94, 1.01) 0.94 (0.84, 1.04) 0.99 (0.89, 1.10) 1.06 (0.94, 1.19) 0.98 (0.95, 1.01) 0.99 (0.96, 1.02)

Working Status: Unemployed 1 1 1 1 1 1

Working Status: Employed 0.99 (0.97, 1.02) 0.99 (0.89, 1.07) 0.93 (0.87, 0.99)* 0.78 (0.71, 0.84) 1.00 (0.97, 1.03) 0.98 (0.96, 0.99)

Education: None 1 1 1 1 1 1

Education: Primary 1.00 (0.97, 1.03) 1.05 (0.96, 1.14) 1.08 (0.99, 1.18) 0.97 (0.88, 1.07) 0.98 (0.95, 1.01) 0.99 (0.96, 1.01)

Education: Secondary 1.02 (0.99, 1.05) 1.02 (0.92, 1.12) 1.07 (0.98, 1.18) 0.99 (0.88, 1.11) 0.99 (0.97, 1.03) 0.99 (0.96, 1.02)

Education: Higher 1.08 (1.02, 1.14)* 1.20 (1.03, 1.41)* 1.08 (0.93, 1.25) 0.87 (0.72, 1.07) 1.07 (91.02, 1.11)* 1.05 (1.01, 1.09)

Partner’s education: None 1 1 1 1 1

Partner’s education: Primary 0.98 (0.95, 1.01) 1.07 (0.99, 1.17) 1.03 (0.95, 1.13) 1.10 (0.99, 1.22) 0.98 (0.96, 1.01) 0.98 (0.96, 1.01)

Partner’s education: Secondary 1.02 (0.99, 1.06) 1.06 (0.96, 1.16) 1.06 (0.97, 1.16) 1.08 (0.96, 1.21) 0.98 (0.99, 1.05) 1.01 (0.98, 1.04)

Partner’s education: Higher 1.10 (1.05, 1.15)* 1.18 (1.04, 1.34) 1.05 (0.93, 1.19) 1.10 (0.94, 1.29) 1.09 (1.06, 1.13) 1.09 (1.05, 1.13)*

Reproductive Health

Respondent’s age

at first birth
1.01 (1.00, 1.01)* 1.01 (1.01, 1.01)* 0.99 (0.99, 1.00) 1.00 (0.99, 1.01) 1.01 (0.99, 1.02) 1.01 (1.00, 1.01)*

Contraceptive Method: None 1 1 1 1 1 1

Contraceptive Method: Folkloric 0.98 (0.82, 1.17) 0.96 (0.82, 1.11) 0.91 (0.43, 1.95) 1.16 (0.65, 2.07) 1.61 (0.95, 2.72) 0.97 (0.78, 1.21)

Contraceptive Method: Traditional 1.02 (0.98, 1.07) 1.00 (0.97, 1.03) 0.89 (0.79, 1.01) 0.85 (0.73, 0.99)* 0.95 (0.85, 1.07) 1.01 (0.98, 1.05)

Contraceptive Method: Modern 1.01 (0.99, 1.04) 0.99 (0.98, 1.02) 0.97 (0.91, 1.03) 0.95 (0.87, 1.03) 0.98 (0.92, 1.05) 0.99 (0.98, 1.02)

Aware of MR: No 1 1 1 1 1 1

Aware of MR: Yes 1.03 (0.99, 1.06) 1.02 (1.00, 1.04)* 1.27 (1.19, 1.35)* 0.93 (0.84, 1.03) 1.09 (1.01, 1.16)* 1.03 (1.01, 1.05)

Ideal number of Boys: None 1 1 1 1 1 1

Ideal number of Boys: One/two 0.98 (0.95, 1.00) 0.99 (0.97, 1.01) 1.06 (0.99, 1.14) 1.06 (0.96, 1.17) 1.13 (1.04, 1.23)* 0.99 (0.97, 1.01)

Ideal number of Boys: >=3 0.95 (0.85, 1.07) 1.00 (0.89, 1.13) 0.99 (0.69, 1.44) 0.91 (0.63, 1.32) 1.25 (0.85, 1.85) 0.99 (0.88, 1.11)

Ideal number of Boys: Faith decides 0.99 (0.91, 1.08) 0.99 (0.88, 1.11) 0.79 (0.05, 12.64) 0.93 (0.69, 1.24) 0.61 (0.44, 0.86) 0.83 (0.38, 1.81)

* at 5% level of significance
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Figure 3.1: Odds assumption

for Family Health Conscious-

ness in 2007

Figure 3.2: Odds assumption

for Women Empowerment in

2007

Figure 3.3: Odds assump-

tion for Reproductive Health

in 2007

Figure 3.4: Odds assumption

for Family Health Conscious-

ness in 2011

Figure 3.5: Odds assumption

for Women Empowerment in

2011

Figure 3.6: Odds assump-

tion for Reproductive Health

in 2011

Figure 3.7: Odds assumption

for Family Health Conscious-

ness in 2014

Figure 3.8: Odds assumption

for Women Empowerment in

2014

Figure 3.9: Odds assump-

tion for Reproductive Health

in 2014
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The important take from the section is the application of POM, CRM and SDM and their

goodness of fit (Table 3.3). The POM was the best-fitted model according to the Pseudo−R2,

whereas the SDM performed better in AIC and BIC scale. It also showed the most number

of significant variables. According to the results, the POM seemed to find more significant

variables compared to the CRM or SDM in all three different periods of time. The odds

assumption of the POM were calculated for three covariate categories namely family health

consciousness (FHC), women empowerment (WE) and reproductive health (RH), displayed in

Figure 3.1 to Figure 3.9. Figure 3.1 to Figure 3.3 represented the odds assumptions of variables

in 2007. Almost all the covariates seemed to maintain the odds assumption except the third

scale of ‘Ideal number of boys’. It is to be noted that sample size of ‘Higher’ educated class in the

covariate ‘Respondent’s level of education’ was very low (7.8%). Covariate categories of 2011

data sets were shown in Figure 3.4 to Figure 3.6, where the odds assumptions were moderately

maintained for most of the variables. However, ‘Education level’ of both the respondent and

their partner’s did not fulfill it strictly. Similar pattern was observed in Figure 3.7 to Figure 3.9

which displayed the case of 2014. Considering the literature, the POM provided the most

feasible outcomes. The results from the POM were consistent with previous studies on similar

contexts. However, the goodness of fit statistics created a confusion (Table 3.3).

Table 3.3: Goodness of fit of the models
2007 2011 2014

Models POM CRM SDM POM CRM SDM POM CRM SDM

Covariate category Pseudo−R2

Family Health Consciousness 0.0892839 0.0364856 0.0008662 0.0842164 0.0234319 0.0011381 0.0824582 0.0188594 0.0017967

Women Empowerment 0.1085427 0.0506828 0.0041048 0.1740152 0.1000024 0.0654576 0.1589352 0.0906695 0.0585122

Reproductive Health 0.1232335 0.1184091 0.1052463 0.1232949 0.1179843 0.1036988 0.1304737 0.1142604 0.1021853

AIC

Family Health Consciousness 31964.28 64906.29 14907.71 52437.76 104692.5 23229.43 52715.01 104383 24643.57

Women Empowerment 31293.01 64841.65 14903.04 47304.62 98050.5 22946.92 48331.55 98352.14 23256.49

Reproductive Health 30769.9 58051.09 13472.75 50199.32 93918.04 22034.55 49955.87 93804.83 22174.7

BIC

Family Health Consciousness 32081.16 65015.86 15002.68 52546.81 104793.7 23314.44 52824.08 104484.3 24729.27

Women Empowerment 31424.49 64965.83 15012.61 47435.92 98174.08 23055.05 48470.71 98483.56 23372.46

Reproductive Health 30870.64 58144.62 13551.89 50299.18 94010.22 22111.37 50055.78 93897.05 22251.56

This result in this chapter again shows the subjectivity involved in choosing models by the

investigators. As suggested in the first paper (section 3.1), multiple models should be applied

before concluding results from one model. Furthermore, goodness of fit statistics help to report

and interpret results in accordance with the literature.
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3.2 Effect of Sex and Age on Traumatic Brain Injury

The paper presented in this section was accepted in Archives of Public Health (reference ID:

AOPH-D-17-00072) titled ‘Effect of Sex and Age on Traumatic Brain Injury: A Geograph-

ical Comparative study’ and scheduled for publication on 9 October 2017. RK Biswas was

the primary contributor, where he conceptualized the study, collected the data, performed the

statistical analysis, interpreted the findings and drafted the manuscript. The manuscript was

critically reviewed and edited by E Kabir and R King. They supervised the whole process.

This paper addressed the second objective (section 1.6) of the thesis. We had two different

data sets of head injury: a primary collected from Bangladesh and the multi-centre trial of

CRASH data, collected from various parts of the world apart from Bangladesh. The objective

was to assess the effect of sex and age on the recovery of TBI, and if these effects are different

between Bangladesh and rest of the world. The results showed that age and sex significantly

contributed to the TBI in CRASH data with old women being the worst victim of TBI. However,

there was no such significant effects in Bangladesh. Figure 1 inside the following paper is the

same Figure 2.2.5, mentioned in section 2.2.

38



Biswas et al. Archives of Public Health  (2017) 75:43 
DOI 10.1186/s13690-017-0211-y

RESEARCH Open Access

Effect of sex and age on traumatic brain
injury: a geographical comparative study
Raaj Kishore Biswas1* , Enamul Kabir2 and Rachel King2

Abstract

Background: Traumatic brain injury (TBI) is a much researched topic in medical health, which requires additional
studies to understand various effects of demographic and geographic factors that can assist in developing the most
effective treatments. Thousands of people of different ages are suffering from lifelong disabilities, either mild or
severe, from TBI and the number is increasing. This study aims to increase our understanding of the effect of sex and
age by applying five different statistical methods to evaluate the effect of these covariates on two independent TBI
data sets representing patients from different geographical cohorts. A primary data was collected from Bangladesh
and it was compared with CRASH (Corticosteroid Randomisation after Significant Head Injury) data, representing
various countries around the world.

Methods: The outcome variable for TBI considered in this paper is Glasgow Outcome Scale, which is a four point
scale. It was converted to a binary outcome scale for fitting of Fisher’s exact test, a test of proportions and a binary
linear model. For analyzing ordinal outcomes, the proportional odds model and the sliding dichotomy model were
fitted. As the sample size of the Bangladeshi data set was small, parametric bootstrapping was applied for the
consistency of results.

Results: Females were the worse sufferers of TBI compared to men, according to CRASH data set. The old (aged
above 58 years) followed by adults (age 25 to 58) were the most vulnerable victims. Interaction effects concluded that
old women tended to endure the worst outcomes of TBI. This conclusion came from the CRASH data set representing
the world in general, whereas such effects were not present in the Bangladesh data set. Additional application of
parametric bootstrapping for the smaller Bangladesh data set did not result into any significant outcome.

Conclusion: The effect of gender and age could be stronger in some countries than others which is driving the
significance in CRASH and was not found in Bangladesh. It reflects the necessity of incorporating geographic patterns
as well as demographic features of patients while developing treatments and designing clinical trials.

Keywords: Public health, Glasgow outcome scale, Health geography, Bangladesh, Ordinal outcome scale

Background
Identification of effective treatments for traumatic brain
injury (TBI) has been the focus of much medical research
in recent years [1]. Improved understanding of the role of
sex and age will contribute to the development of more
patient and geographic specific treatments. TBI is defined
as an alteration in brain function, or other evidence of
changed brain pathology, caused by an external force to
the brain [2]. Alteration in brain function generally means
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1Faculty of Health, Engineering and Sciences (HES), University of Southern
Queensland, Darling Heights, Toowoomba QLD 4350, Australia
Full list of author information is available at the end of the article

any period of loss or a decreased level of consciousness
(LOC). Although not all blows or jolts to the head result
in TBI [3]. TBI is one of the most common forms of severe
injury with a high death toll or life-long disabilities seen
among patients. Among the injuries that occur due to TBI,
the recorded deaths number more than 50,000 yearly in
the USA [4]. Each year approximately 370,000 new cases
of TBI are hospitalized in USA [5] and the figure is more
than 100,000 for Europe [6]. Young people are the most
common sufferers of TBI, resulting in long term disabili-
ties which, in addition to the personal toll, affects both the
work force and economy [7]. Expenditure on TBI related
costs in the USA alone is estimated to be $17 billion per

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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year [8]. Severe and moderate forms of TBI, accidental
or self-inflicted, are a major health and socioeconomic
problem throughout the world [9]. Sex has been shown
to be a key differentiating factor in many areas of med-
ical research, and is often found to significantly interact
with other predictor variables [10]. In the case of TBI
patients it has been shown that the fatality rates are sig-
nificantly higher for females than for males. Kraus et al.
(2000) concluded that the mortality rate of women com-
pared to men suffering from TBI was 1.28 times higher on
average [11]. Moreover it was also found that even when
death was not considered, women were 1.57 times more
likely to suffer from post-traumatic symptoms than men.
Klauber et al. (1981) also showed that fatality was higher
for women compared to men in different age groups [12].
Even after one year of injury, severity of symptoms were
more evident in women [13]. Several studies have also
shown that women are prone to suffer more from TBI
within one to three months of the traumatic incident
[14–16]. On the other hand, the frequency of acci-
dents leading to brain injury are more common in men
than in women [17]. Males are more likely to be in
recurrent accidents [11]; for example, motor cycle acci-
dents are one of the most frequent causes of TBI in
men [18]. Another common contributing factor leading
to TBI incidents is the consumption of alcohol, which
is more regularly consumed by men in general [19].
In summary, Farace et al. (2000) showed that in 17
out of 20 studies, which analyzed the effect of sex on
TBI outcomes women suffered worse overall from TBI
events [20].
It is generally accepted that the effect of diseases and

injuries gradually worsens as age increases. TBI has shown
to conform to this trend and different age groups are
considered an important covariate in TBI studies [21].
Children have shown better recovery rates than older
patients due to their greater degree of neuroplasticity
[22]. Susman et al. (2002) found that mortality after a
TBI event was approximately 24% in the elderly popu-
lation while only 12.8% in other age groups [23]. Falls
are the most common causes of brain injury in older
patients and assaults or accidents in younger cohorts [24].
Even when older patients suffer comparatively minor head
injuries and their overall injuries are seemingly less severe
than non-elderly patients, they still have slower recov-
ery rates and tend to experience more distress. Gómez
et al. (2000) showed that the chance of an adverse out-
come was 10 times higher for patients over 35 years of
age compared to those aged between 15 to 25 years [21].
The large effect that age can play in long term outcomes
for patients was shown in a study by Heiskanen et al.
(1970), who found that less than 30% of patients aged
50 years or more went back to their former work, while
more than 70% of patients under 20 years were able to

go back to a normal life after their treatment [25]. Addi-
tionally, elderly patients had lower recovery rates than the
young, while the young were more frequent sufferers of
TBI [26].
Among older patient groups there is often a greater

chance of co-morbidity occurring along with the primary
disease or injury [27], as shown in studies of cardiovas-
cular diseases [28], depression [29] and Alzheimer [30].
A positive association between depression and age fol-
lowing a TBI has been identified [31], indicating that
older patients are more likely to suffer episodes of
depression after head injury than younger patients.
Guralnik and Jack (1996) identified a significant inter-
action effect between sex and age, with older women
more likely to have higher prevalence of co-morbidity
in contrast to older men [27]. Interestingly, sex differ-
ence had no impact on outcome scales if TBI was sus-
tained by children, however for middle aged women TBI
outcomes were significantly worse than for middle aged
men. More elderly people suffered from TBI than middle
aged people, however the difference between outcomes
for elderly men and women (aged above 45) was less
pronounced [19].
The aim of this paper is to investigate both the inde-

pendent and interaction effects of age and sex on the TBI
outcome scale, commonly known as the Glasgow Out-
come Scale (GOS), (described in the following section).
This study aims to increase our understanding of the
effect of sex and age by applying five different statis-
tical methods to evaluate the effect of these covariates
on two independent TBI data sets representing patients
from different geographical cohorts and find out the most
vulnerable age-sex group for TBI.

Method
Data description
The first of the two data sets used in this study was the
CRASH (Corticosteroid Randomisation after Significant
Head Injury) data set which is comprised of data collected
from TBI patients in a range of countries worldwide.
The second data set, measuring the same variables as
CRASH, was collected from TBI patients in Bangladesh,
which was not one of the countries included in CRASH.
These two data sets represent very different popula-
tions, with different levels of variation among a range
of demographic and socio-economic variables not mea-
sured or included as covariates in this study. Of interest,
was whether the different data sets suggested differences
in the effects of age and sex on TBI for these different
populations.
The CRASH data set was the result of a randomized

controlled trial (ISRCTN74459797) [32]. This large trial
was one of the most recent randomized trials monitoring
the effect of corticosteroids on head injury and provided
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a large data set; which was suitable for applying differ-
ent statistical models on the ordinal outcome variable
measuring changes in patients’ post-treatment outcomes.
Only the patients who were at least 16 years old and were
observed whilst in hospital (in the absence of sedation) to
have a GCS of 14 or less, and were within 8 hours of injury,
were eligible for the trial entry. The CRASH collaboration
includes data from various countries of Europe, Africa,
South America, Asia and Oceania. The total number of
patients in this data set was 10,800. Early results from the
original CRASH study were published on 8 October 2004
(Lancet 2004;364:1321-28) and the 6-month follow-up
results in May 2005 (Lancet 2005;365:1957-59) [33]. After
removing cases with missing values, the final sample size
was 7236. Results presented in this paper based on this
data set do not distinguish between contributing coun-
tries. This Bangladesh data were collected from National
Institute of Neuro Sciences and Hospital, Sher-e-Bangla
Nagar, Dhaka in Bangladesh. The data is comprised of all
brain injury patients treated in the hospital from May to
September in 2015 with a total sample size 151. Patient
information was collected from the hospital data base and
cross checked with the resident physicians.
Glasgow Outcome Scale (GOS) was the outcome vari-

able in both data sets. GOS is an ordinal variable com-
monly used to measure a recovering patients’ neurological
responses after some form of treatment, [34]. Although
the TBI treatments applied in the CRASH and Bangladesh
data sets were different, they were each applied consis-
tently across sex and age groups within the data sets.
There have been some recent adjustments to the GOS
scale within the medical community; however, the general
format from worst to best outcome scales are Death (D),
Vegetative State (VS), Severe Disability (SD), Moderate
Disability ( MD) and Good Recovery (GR). In this study
Death (D) and Vegetative State (VS) were merged into
a single category (named Vegetative State (VS)) because
the sample size of deaths in the data sets was small. The
independent variables were sex and age. The grouping cri-
teria of age has evolved over generations of research and
varies due to differing research aims [35]. The following
age groupings are commonly accepted and they have been
utilized in this study: ‘old’ (greater than 59 years), ‘adult’
(in between 25 and 58 years), and ‘young’ (aging 0 to 24
years). A separate category with patients aged below 15
was not created as their proportion in either data set was
very small.

Statistical methods
Frequencies for each level of the independent variables
were calculated for each data set to provide a clear
description of the data distributions. A cross tabulation of
sex (two categories) and age (three categories) distribution
with the GOS outcome variable (four categories) were also

calculated. Five statistical models were applied as there
is currently no single model that is considered the most
robust approach when analyzing the ordinal outcomes of
clinical trials [1, 9, 36, 37]. For the binary outcome analy-
sis the GR&MD categories of the GOS scale were merged
as favorable outcome and SD & VS were considered as
unfavorable outcome. These binary levels of the outcome
variable were created to analyze the effects of the covari-
ates by applying Fisher’s exact test, test of proportions and
linear logistic regression model. To analyze the four point
ordinal outcome scale of GOS, the proportional odds
model and sliding dichotomy model were applied. All of
the tests assessed the probability of a favorable outcome
over a non-favorable or less favorable outcome which was
consistently defined as the reference group. The multino-
mial regression model was not considered in this study as
it does not provide one unique odds ratio for each cat-
egory unlike other models. All statistical analyses were
performed in R (version3.2.3).
All of the statistical methods were applied to both data

sets and results were compared. As the primary data set
from Bangladesh was small, the analysis was performed a
second time implementing parametric bootstrapping with
1000 replications to attain more precision.

Binary outcome analysis
For assessing the significance of frequency distribu-
tions within a two-way contingency table, the common
approach is to apply a chi-square goodness of fit test.
However, this approach is only valid when expected fre-
quency within cells is large [38]. Fisher’s exact test, devel-
oped by R.A. Fisher [39], was applied to the collected
data in Bangladesh due to insufficient expected values.
The test is also valid for large samples as well allowing its
application on comparatively bigger CRASH trial as well.
The test of proportions was applied to analyze the

null hypothesis that the proportion of ‘favorable outcome’
results (probabilities of success) in several groups are sim-
ilar [40]. It is an alternate to the Fisher’s exact test and was
applied here to consolidate the results from Fisher’s test.
Fisher’s exact test and the test of proportions are appro-
priate methods only when the explanatory factor is also
binary (e.g. sex).
The conventional binary linear logistic regression, or

logit regression, first developed by D.R. Cox [41], is a
popular model to analyze dichotomous forms of outcome
variables. The logistic model is favored for its mathemat-
ical flexibility as well as clinically meaningful interpreta-
tion [42]. The linear logistic model is defined by Eq. 1,

logitπ i = log
π i

1 − π i
= XTβ (1)

where xi is a vector measurement corresponding to
covariates and dummy variables corresponding to factor
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levels of the X covariate matrix and β is the parameter
vector [43]. This model, referred in Eq. 1, is very widely
used for analyzing data involving binary or binomial
responses with several explanatory variables. It accom-
modates explanatory variables with more than two
categories (e.g Age), providing a powerful technique anal-
ogous to multiple regression and ANOVA for continuous
responses. The glm in R MASS Package was applied to fit
this model.

Ordinal outcome analysis
The first method used to analyze the ordinal form of the
GOS outcome variable was the proportional odds model.
Naïve dichotomization of the full ordinal scale leads to
loss of information and efficiency, when analyzing the out-
comes. The proportional odds model is a popular choice
for analyzing the full range of ordinal outcomes and avoid-
ing the need for arbitrary dichotomization [44]. Where a
random variable be Y with J categories and π1,π2, . . . ,π J
denote the respective probabilities, with π1 + π2 + · · · +
π J = 1. The cumulative logit model is defined by Eq. 2,

log
π1 +...+ π j

π j+1 +...+ π J
= xTj β j = β0j+β1x1+...+βp−1xp−1

(2)

where the x’s are the covariates and the β ’s are the
unknown parameters with the intercept term β0j (if exists)
[43]. This model has a crucial odds assumption which
claims that, the effects of the covariates x1, . . . ,xp−1 are
same for all categories of the logarithmic outcome scale,
resulting in a constant β value. The method estimates a
common odds ratio over all possible cut-offs of the out-
come scale for a given change in category within the
covariates [45]. Package Polr from R was applied to fit this
model.
The sliding dichotomy model is a comparatively newer

approach developed for clinical trials, particularly for TBI
research [36]. This method is an improved version of
the conventional logistic regression model. This model
is assumed to provide the highest possible power and
most robust results compared to the traditional meth-
ods in a number of scenarios. However, these scenarios
are mostly limited to those cases when the probability
of favorable outcomes is high [46]. Cases do exist where
the fixed dichotomy and the proportional odds model
performed better than the sliding dichotomy model [37].
Prior to analysis, outcome bands or successive dichoto-
mous groups are created by segregating the fitted values
(prognostic scores) from a binary logistic model [37]. Each
band, displayed in Fig. 1, has its own reformed version
of dichotomous ‘favorable’ and ‘unfavorable’ outcomes by
combining a different subset of sequential outcomes from
the original ordinal scale. The binary outcomes from all

the bands are then compiled together and the traditional
logistic regressionmodel applied again to fit with available
covariates, whichwere sex and age groups here. The glm in
RMASS Package was applied to attain the fitted values as
well as to analyze the complied favorable and unfavorable
outcomes.

Results and discussion
Table 1 shows the frequency of female patients was pro-
portionately higher in the Bangladeshi data (32.5%, n =
102) compared to the CRASH data (19%, n = 7236).
Based on the age group categories chosen for this anal-
ysis, there were relatively more ‘adults’ in the CRASH
data (59%, n = 4286) compared to the Bangladeshi data
(40%, n = 60). In the Bangladeshi data, patients in
the ‘old’ and ‘adult’ categories together represented the
majority of the sample (75.5%, n = 114); however, ’old’
category only comprised of 8.5% of the data in CRASH
where the majority of patients were consisted of ‘adult’
and ‘young’.

Sex
Table 2 displays the frequency distribution of patients by
sex for each of the two forms of outcome variable, binary
and ordinal.
Based on the binary outcome data (Table 2), the

Bangladeshi data appeared to have a higher proportion
of unfavorable outcomes for both males and females
(24.5% & 24.5%, n = 25 & 12) compared to the CRASH
data (16.3% & 20%, n = 952 & 286). The proportion
of males and females did not vary much between the
data sets for the GR and MD categories of the four point
GOS ordinal scale; however, the SD and VS proportional
differences were comparatively high.
Fisher’s exact test and the test of proportions did not

show any significant difference (P > 0.05) between sexes
on the binary GOS measure (Table 3) for the primary
data collected from Bangladesh. In contrast, the difference
between sexes was found to be highly significant (p <

0.001) in the CRASH data for these same statistical meth-
ods. The odds indicate that females were 26% more likely
to have unfavorable outcomes after treatment for TBI than
men. In general terms, women were more prone to suffer
unfavorable outcomes due to TBI than men demonstrated
by global data. In addition, Table 3 presents the results
of the binary logistic regression for dichotomous form
of GOS and the proportional odds modeling and sliding
dichotomy method for the four point ordinal GOS. The
data from Bangladesh did not show any significant dif-
ference (P > 0.05) between males and females, neither
in considering the binary GOS nor the four scale ordinal
GOS. These results were consistent both with and with-
out parametric bootstrapping; indicating that the smaller
sample size of the Bangladeshi data (when compared to
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Fig. 1 Sliding Dichotomy model: binary bands are created from ordinal scales

CRASH) was not influencing the method performance
or results. However, a significant difference was detected
between males and females in the CRASH data for all the
three methods (P < 0.001). The odds of unfavorable out-
comes for women were 0.74 (0.64 ∼ 0.86), 0.91 (0.81 ∼
1.03) and 0.97 (0.82 ∼ 1.14) in the logistic regression, the
proportional oddsmodel and the sliding dichotomymodel
respectively. These values agreed with previous tests and
indicated that women have higher chance of having more
suffrage from TBI, varying from 03 to 26%, compared to
men.

Age
The data sets did not vary much in the proportion of
different categories of age (Table 4). The ‘young’ cate-
gory is comparatively higher in proportion in the CRASH
data compared to the Bangladeshi data. The GR and MD
groups had the higher proportion of samples for both
Bangladeshi data and CRASH data.
The binary logistic model, the proportional odds model

and the sliding dichotomy model were applied to fit age

Table 1 Frequency distribution of sex and age in both data sets

Covariates Levels Bangladeshi data (151) CRASH data (7236)

Gender Female 102(67.5%) 5856 (80.9%)

Male 49 (32.5%) 1380 (19.1%)

Age Groups Old (>59) 54 (35.8%) 616 (8.5%)

Adult (25∼58) 60 (39.7%) 4286 (59.2%)

Young (0∼25) 37 (24.5%) 2334 (32.2%)

groups with GOS. Both the binary regression and propor-
tional odds model agreed that the ‘adult’ and the ‘young’
groups were significantly different (P < 0.001) from the
‘old’ in CRASH data (Table 5). However, no significance
was found in the sliding dichotomy model for the age
groups in either data sets. According to the binary logis-
tic model, applied in CRASH data, adults were 2.1 times
and youths were 3.8 times more likely to have favorable
outcomes in TBI compared to the olds. The Proportional
odds model determined the likeliness of favorable out-
comes in case of adults and youths were 1.6 and 2.5 times
higher as TBI patients than olds respectively. These gave
a summary stating olds were the worst victims of TBI. A
contrasting conclusion was attained from the Bangladeshi
data, both for normal and bootstrapping procedures.
There were no mentionable differences between the age
groups over the TBI outcomes in Bangladesh for the three
models.

Sex and age
The demography of age groups and sex in each data set
in cross-frequency distribution (Table 6) showed the pro-
portions of adults varied between the data sets. The ‘old’
group and the ‘young’ group appeared to be similarly pro-
portioned in both male and female. The percentage of
female patients in both data sets were comparatively lower
than males.
Sex, age and their interaction effect were fitted in the

same model for the binary logistic regression, propor-
tional odds model and the sliding dichotomymethod. The
results obtained from the Bangladeshi primary data set are
displayed in Table 7 and CRASH data in Table 8. None
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Table 2 Distribution of sex by GOS in binary and four point ordinal form

Bangladeshi data (151) CRASH data (7236)

Outcome scales Male (% among male) Female(% among female) Male (% among male) Female(% among female)

Favorable (GR & MD) 77 (75.5%) 37 (75.5%) 4904 (83.7%) 1094 (79.3%)

Unfavorable (SD & VS) 25 (24.5%) 12 (24.5%) 952 (16.3%) 286 (20.7%)

GR 55 (53.9%) 23 (46.9%) 3511 (60%) 822 (59.6%)

MD 22 (21.6%) 14 (28.6%) 1393 (23.8%) 272 (19.7%)

SD 06 (5.9%) 07 (14.3%) 747 (12.8%) 209 (15.1%)

VS 19 (18.2%) 05 (10.2%) 205 (3.5%) 77 (5.6%)

of the tests displayed any significant covariates or inter-
actions in the Bangladeshi data. In contrast, CRASH data
showed the significance of sex (reference group ‘male’)
and the two age groups: ‘adult’ and ‘young’ (reference
group ‘old’) in the logistic regression model and the pro-
portional odds model. The interaction effect between
‘sex (female) and age (adult)’ along with ‘sex (female)
and age(young)’ were found to be significant (p value <

0.05). As the interaction effects were detected only in the
CRASHdata set, further analysis were conducted to assess
the significance of interaction effects in that data set, dis-
played in Table 9. The interaction models were fitted for
the binary regression model and the proportional odds
model only, as the sliding dichotomy model failed to show
any significant interactions.
Both the tests showed adult male, adult female, young

male and young female groups face less severity in TBI
compared to old males, however this was not true for old
females. Additionally, the binary regressionmodel showed
that old females had a 47% lesser chance of favorable
outcome than old men. Both adult and young females suf-
fered more than adult and young men. However, adult

women and young women faced 1.5 and 2.8 times bet-
ter outcomes than old men respectively. The odds of
favorable outcome were 1.7 and 3.0 for adult and young
men respectively compared to old men showing the faster
recovery by youths and adults in contrast with the older
patients. Although the difference in odds between adult
men and adult women were comparatively closer in the
proportional odds model, the gap between young males
and females were evident in both models but in opposite
directions. CRASH, themulti country data which sampled
a wider and more varied population, showed a signifi-
cant interaction of age and sex on TBI. This suggests that
the effect of gender and age could be stronger in some
countries than others, which is driving the significance in
CRASH that was not found in Bangladesh.
The worst victims of TBI, sequentially in descending

order were old females, old men, adult women, adult men
and then the young. This conclusion was derived from the
CRASH data, which was a multi-country data set. These
effects were not evident in the data from Bangladesh.
The sensitivity of the human brain is higher than other
organs and therefore it is likely that effective treatment

Table 3 Statistical models on GOS by sex

Tests Bangladeshi data Bootstrap of Bangladeshi data CRASH data

Fisher’s exact test P-value 1 <0.001
CI 0.427 ∼ 2.441 0.639 ∼ 0.863
Odds 1.001 0.743

Test of proportions
P-value 0.99 <0.001
CI -0.174 ∼ 0.173 -0.074 ∼ -0.023

Binary logistic model P-value 0.998 0.998 <0.001
CI 0.453 ∼ 2.211 0.453 ∼ 2.211 0.641 ∼ 0.861
Odds 1.001 1.001 0.743

Proportional odds model CI 0.477 ∼ 1.682 0.477 ∼ 1.682 0.813 ∼ 1.025
Odds 0.896 0.896 0.913

Sliding dichotomy model P-value 0.841 0.841 0.688
CI 0.441 ∼ 2.735 0.441 ∼ 2.736 0.816 ∼ 1.144

Odds 1.098 1.098 0.966

The reference level for sex was ‘male’
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Table 5 Statistical tests on age groups vs GOS

Tests
Bangladeshi data Bootstrap of Bangladeshi data CRASH data

Adult Young Adult Young Adult Young

Binary logistic model P-value 0.455 0.946 0.455 0.946 <0.001 <0.001
CI 0.308 ∼ 1.695 0.376 ∼ 2.849 0.308 ∼ 1.695 0.376 ∼ 2.849 1.751 ∼ 2.542 3.031 ∼ 4.640
Odds 0.723 1.034 0.723 1.036 2.110 3.751

Proportional odds model CI 0.452 ∼ 1.761 0.650 ∼ 3.331 0.452 ∼ 1.761 0.649 ∼ 3.331 1.331 ∼ 1.849 0.855 ∼ 7.299
Odds 0.892 1.471 0.892 1.471 1.569 2.498

Sliding dichotomy model P-value 0.815 0.955 0.815 0.955 0.513 0.332
CI 0.338 ∼ 2.349 0.334 ∼ 3.19 0.337 ∼ 2.349 0.334 ∼ 3.198 0.714 ∼ 1.18 0.673 ∼ 1.143
Odds 0.891 1.0333 0.891 1.0333 0.919 0.877

The reference level for age group was ‘old’

Table 6 Cross table of sex and age in both data sets

Bangladeshi data (151) CRASH data (7236)

Sex Male (% among the age group) Female (% among the age group) Male (% among the age group) Female (% among the age group)

Age groups

Old (>59) 37 (68.5%) 17 (31.5%) 411 (66.7%) 205 (33.3%)

Adult (25∼58) 39 (65%) 21 (35%) 3534 (82.5%) 752 (17.5%)

Young (15∼25) 26 (70.3%) 11 (29.7%) 1911 (81.9%) 423 (18.1%)

Table 7 Statistical tests on age groups and sex with interactions for Bangladesh data

Bangladeshi data

Tests Sex (Female) Adult Young Sex*Adult Sex*Young

Binary logistic model P-value 0.876 0.681 0.627 0.774 0.289
CI 0.229 ∼ 3.517 0.276 ∼ 2.315 0.233 ∼ 2.407 0.128 ∼ 4.613 0.300 ∼ 56.222
Odds 0.897 0.800 0.749 0.769 4.109

Proportional odds model CI 5.0218 ∼ 0.063 0.273 ∼ 1.972 0.350 ∼ 2.528 0.408 ∼ 6.831 0.649 ∼ 24.912
Odds 0.563 0.734 0.941 1.669 4.020

Sliding dichotomy model P-value 0.516 0.913 0.716 0.568 0.554
CI 0.323 ∼ 9.477 0.334 ∼ 3.402 0.334 ∼ 4.931 0.061 ∼ 4.653 0.038 ∼ 5.795
Odds 1.750 1.067 1.283 0.531 0.468

The reference level for sex was ‘male’ and age group was ‘old’

Table 8 Statistical tests on age groups and sex with interactions for CRASH data

CRASH data

Tests Sex (Female) Adult Young Sex*Adult Sex*Young

Binary logistic model P-value <0.001 <0.001 <0.001 0.018 0.024
CI 0.372 ∼ 0.752 1.367 ∼ 2.181 2.339 ∼ 3.935 1.089 ∼ 2.447 1.076 ∼ 2.819
Odds 0.529 1.727 3.034 1.633 1.742

Proportional odds model CI 0.415 ∼ 0.796 1.073 ∼ 1.598 1.671 ∼ 2.545 1.214 ∼ 2.496 1.252 ∼ 2.759
Odds 0.574 1.309 2.062 1.741 1.858

Sliding dichotomy model P-value 0.615 0.803 0.697 0.594 0.37
CI 0.682 ∼ 1.905 0.712 ∼ 1.302 0.686 ∼ 1.286 0.489 ∼ 1.505 0.423 ∼ 1.378
Odds 1.141 0.962 0.939 0.858 0.763

The reference level for sex was ‘male’ and age groups was ‘old’
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Table 9 Interaction effects for CRASH data

CRASH data

Tests Male*Adult Male*Young Female*Old Female*Adult Female*Young

Binary logistic model P-value <0.001 <0.001 <0.001 <0.001 <0.001
CI 1.367 ∼ 2.181 2.339 ∼ 3.935 0.372 ∼ 0.752 1.126 ∼ 1.975 1.937 ∼ 4.031
Odds 1.727 3.034 0.529 1.490 2.794

Proportional odds model CI 1.073 ∼ 1.598 1.671 ∼ 2.545 0.415 ∼ 0.796 1.035 ∼ 1.656 1.668 ∼ 2.904
Odds 1.309 2.062 0.574 1.309 2.201

The reference level considered here was Male*Old

of brain injury will require greater patient specificity.
Inclusion of additional covariates measuring other patient
demographic features, as well as information about the
type of accident that has resulted in a patient’s TBI, may
improve understanding of why older females are suffer-
ing more than others. This paper highlights the necessity
of incorporating geographic patterns as well as demo-
graphic features of patients while developing treatments
and designing clinical trials.

Conclusions
This paper aimed to understand how demographic fea-
tures, particularly sex and age, affect treatments of TBI
and furthermore if location variation contributes to dif-
ferences in these effects All results consistently indicated
that there was no significant difference in GOS as a mea-
sure of TBI by either sex or age groups in the Bangladeshi
sample. Additionally, no interactions between sex or age
categories were found to be computationally significant.
A clear distinction was found between males and females
within the international CRASH data set, with females
generally having worse outcomes. Significant differences
were also found between some age groups within this
data, with elderly patients more likely to suffer nega-
tive outcomes than patients within the adult and young
age categories. Interaction effects identified for this data
indicated that old women appeared to show the worst
outcomes followed by old men.
From the analysis of these two data sets it appears that

while sex and age were not strong covariates based on
the Bangladeshi data, they were both significantly asso-
ciated with GOS outcomes in the CRASH data. This
suggests that head injury in Bangladesh and/or the impact
of demographic factors on outcomes in Bangladesh may
be different, or less important, than these factors in the
rest of the world. Country wise analysis of the CRASH
data is needed to determine if these results are com-
mon to all or most contributing countries in the CRASH
data set or whether these results are influenced by one
or a few countries only. This was not possible in the
current study as country of origin information was not
included in the available CRASH data. Furthermore, age

in a continuous scale might provide additional informa-
tion in future studies. The analysis of more health and
demographic variables such as previous disease history
particularly neurological or psychiatric problems, immu-
nity level, mental health status, marital status, and work-
place stress would help to clarify the recovery profile of
patients.
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3.3 Type I error analysis

We are currently compiling a paper on the third objective of the this study (section 1.6)

titled ‘Sliding Dichotomy compared with Fixed Dichotomization of Ordinal Outcome Scales:

Does it control Type I Error?’. This paper explores the weakness of the sliding dichotomy

model. The type I error rate of the binary logistics model, proportional odds model and sliding

dichotomy model were compared by devising eight different clinical trial scenarios (explained

below) and sample sizes ranging from 150 to 2500. Data set from CRASH, a multi-centre TBI

trial, was used to analyze the scenarios. The results of the paper are explained in this section.

However, the following results are obtained from 1000 simulations, which are not adequate for

an academic paper. We are currently running 10,000 simulations, which will be reported in the

paper. However, we do not think the following interpretation will vary due to the simulation

numbers.

Quantification and interpretation of type I error should be done carefully and delicately.

Both p−value and level of significance (α) are related to the type I error rate. A statistical test

with size α is expected (at least asymptotically) to have type I error rate equal to α. However,

p−value provides the level of false positives found in a specific sample when the test is applied.

That is why if the p − value is below the significance level (α), we consider null hypothesis

to be rejected and conclude that there is significant treatment effect. When null hypothesis is

true, that is no significant treatment effect, p − value allows the computation of type I error.

In this case, if the p− value is below then asymptotic level (α) then we suspect the existence

of type I error or false positive based on our prior knowledge on true treatment effect from the

population. We applied this property to quantify the error rate in this study. We simulated

different sample sizes multiple times to acquire the p − values from a known population and

compiled the number of samples that has p − values less the 5% threshold (α). From there,

the cumulative proportion of the type I error was calculated.

The sliding dichotomy approach was developed as an applied method, without assessment

of theoretical considerations. It is a natural expectation of medical researchers applying the

SDM that this method will maintain type I error rate in-line with the traditional statistical

methods, if not more. We wanted to investigate that expectation, and determine whether the

SDM maintains type I error rate when applied to a data set from CRASH under several sim-

ulated scenarios. Different scenarios were simulated to recreate various practical environments

of clinical trials, to evaluate the performance of each method in controlling the cumulative

proportion of the type I error.
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To design the study, twelve samples of size 150, 180, 300, 450, 600, 900, 1200, 1500, 1800,

2100, 2400 and 2700 were drawn from the 7,236 full cases in the CRASH data. Patients in each

sample were randomly assigned to one of the artificially generated ‘Treatment A’ or ‘Treatment

B’ in two different ways. Patients were first randomly assigned to one of the two treatments

in equal proportions and then reassigned with 30% in Treatment A and 70% in Treatment B.

The grouping of patients to form prognosis bands for the sliding dichotomy method was also

performed in two different ways. In the first instance, equal numbers of patients were allocated

to each prognosis band, based on the sorted fitted values (see section 2.4) (Figure 2.1). In the

second instance the proportion of patients allocated to the ‘Worst’, ‘Intermediate’ and ‘Best’

prognosis bands were 50%, 30% and 20% of the total sample size respectively. In both scenarios,

patient GOS was then classified as either favorable or unfavorable within each band (Figure

2.1).

Each sample was analyzed using two different sets of covariates in each model. In the first

approach, three covariates from CRASH (age, sex and Glasgow Coma Scale motor response)

plus the created treatment variable were included in each analysis. In the second approach,

only the treatment variable was used as a covariate.

These variations in treatment levels, GOS allocation and in covariates assessed, resulted in

eight (2×2×2 = 8) different scenarios for analysis across each of the initial 12 sample sizes: (1)

four covariates, equal treatment sizes and equal band sizes; (2) four covariates, equal treatment

sizes and unequal band sizes; (3) four covariates, unequal treatment sizes and equal band sizes;

(4) four covariates, unequal treatment sizes and unequal band sizes; (5) one covariate, equal

treatment sizes and equal band sizes; (6) one covariate, equal treatment sizes and unequal band

sizes; (7) one covariate, unequal treatment sizes and equal band sizes; (8) one covariate, unequal

treatment sizes and unequal band sizes.

Each sample was fitted with the binary logistic model, the proportional odds model and the

sliding dichotomy model. The process was simulated 1000 times for each sample and scenario

combination, and the resulting p-values were proportioned based on greater or lower than 0.05

to calculate the threshold of 5% for the type I error rate. Statistical power was also quantified

in each case and it was averaged for every model in each scenario. We simulated treatments in

a way so that the null (H0) hypothesis is not rejected, that there is no significant effect of the

treatment. The results from the whole data set (n = 7236) showed the simulation was correct

(Table 3.4).
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Table 3.4: Assessment of the null hypothesis for the whole CRASH data set

Model scenario Statistical Model P-value

Model 1: Four covariates, equal treatment sizes and equal band sizes

Binary logistic 0.5352

Proportional odds 0.2244

Sliding dichotomy 0.9565

Model 2: Four covariates, equal treatment sizes and unequal band sizes

Binary logistic 0.5352

Proportional odds 0.2244

Sliding dichotomy 0.7470

Model 3: Four covariates, unequal treatment sizes and equal band sizes

Binary logistic 0.7962

Proportional odds 0.4475

Sliding dichotomy 0.1887

Model 4: Four covariates, unequal treatment sizes and unequal band sizes

Binary logistic 0.7962

Proportional odds 0.4475

Sliding dichotomy 0.4736

Model 5: One covariate, equal treatment sizes and equal band sizes

Binary logistic 0.842

Proportional odds 0.5541

Sliding dichotomy 0.8930

Model 6: One covariate, equal treatment sizes and unequal band sizes

Binary logistic 0.8420

Proportional odds 0.5541

Sliding dichotomy 0.6830

Model 7: One covariate, unequal treatment sizes and equal band sizes

Binary logistic 0.9210

Proportional odds 0.6395

Sliding dichotomy 0.1850

Model 8: One covariate, unequal treatment sizes and unequal band sizes

Binary logistic 0.9210

Proportional odds 0.6395

Sliding dichotomy 0.4780

It is a general expectation that the results generated from samples will be close to the

population if the sample size is high (Hernandez et al., 2006; Maas and Hox, 2005). With

higher sample sizes, the distance between fitted values and observed values should be low

(less error). Results from Table 3.4 shows the rejection of null hypothesis in our population

with P-values more than 0.15; it is a natural expectation that higher sample sizes will provide

homogeneous results, where higher bias might appear in smaller sample sizes. That is, the

cumulative proportion of false results (P − value < 0.05) or type I error will decrease with

higher sample sizes or at least a particular pattern will appear in repeated simulations.

The comparison of the type I error rates (in %) among the three models and eight differ-

ent scenarios was done graphically by plotting the type I error rates against sample sizes in
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ascending order, from 150 to 2700. A plot comparing the performance of the three statistical

methods was produced for each of the eight scenarios (Figure 3.10 to Figure 3.17) to visualize

the change of error rate by sample size for each experimental scenario. In each Figure, the

red, green and blue lines represent the binary logistic, proportional odds and sliding dichotomy

model respectively.
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Figure 3.10: Type I error in scenario 1:

Four covariates, equal treatment sizes and

equal band sizes
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Figure 3.11: Type I error in scenario 2:

Four covariates, equal treatment sizes and

unequal band sizes

500 1000 1500 2000 2500

0
2

4
6

8
1

0
1

2

Sample Size

Ty
p

e
 I 

e
rr

o
r 

(%
)

Binary Dichotomy

Proportional Odds

Sliding Dichotomy

Figure 3.12: Type I error in scenario 3:

Four covariates, unequal treatment sizes

and equal band sizes
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Figure 3.13: Type I error in scenario 4:

Four covariates, unequal treatment sizes

and unequal band sizes
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Figure 3.14: Type I error in scenario 5:

One covariate, equal treatment sizes and

equal band sizes

500 1000 1500 2000 2500

0
2

4
6

8
1

0
1

2

Sample Size

Ty
p

e
 I 

e
rr

o
r 

(%
)

Binary Dichotomy

Proportional Odds

Sliding Dichotomy

Figure 3.15: Type I error in scenario 6:

One covariate, equal treatment sizes and

unequal band sizes
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Figure 3.16: Type I error in scenario 7:

One covariate, unequal treatment sizes and

equal band sizes
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Figure 3.17: Type I error in scenario 8:

One covariate, unequal treatment sizes and

unequal band sizes

In the first two scenarios (Figures 3.10 and 3.11), the binary logistic model showed the

expected gradual (although not always consistent) decline of cumulative proportion of the type I

error as sample size increased, maintaining a rate convincingly below the 5% threshold for larger

sample sizes. The two scenarios differ only in band sizes, which was expected to have limited

effect on the coarse dichotomization required of the binary logistic model. Unfortunately, both

the proportional odds model and the sliding dichotomy model did not demonstrate the expected

tendency for the error rate to decline as sample size increased. Moreover, the proportional odds

model seemed to have higher cumulative error rates over the sliding dichotomy model. Unequal

band size (Figure 3.11) may have produced similar results for the sliding dichotomy model,

however the proportional odds model showed a high type I error rate thought the sample size

variation.
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The unusual behavior of the proportional odds model was not seen in the subsequent sce-

narios. From Figure 3.12 to Figure 3.17, both the binary logistic model and the proportional

odds models displayed expected behavior of decreasing type I error rate with increased sample

size, and greater fluctuations and uncertainty in behavior for smaller sample sizes. However, for

these same scenarios, the sliding dichotomy model failed to display either a consistent pattern

of declining cumulative proportion of type I error with increasing sample size, or the ability to

reliably achieve a type I error rate close to other two model for any of the sample sizes above

1500.

The first two scenarios (Figures 3.10 and 3.11) represent models with four covariates and

equal treatment sizes. The GOS band size difference included in the models shown in Figure 3.11

do not affect the proportional odds model, which means the covariates or the treatment sizes

are responsible for the proportional odds model failing to control the type I error rate in these

two scenarios. The model may be over-fitted with four covariates, particularly for the smaller

sample sizes, or the equal treatment sizes may have forced a violation of the proportional

odds assumption. As each sample size was simulated 1000 times, it was not feasible to test

the assumption in every case. Furthermore, the aim of this analysis was not to evaluate the

proportional odds model or its assumptions in detail.

We assumed, based on the clinical effectiveness of the sliding dichotomy model, that it

would control type I error rate in-line with the model it is based on, the binary logistic model.

Unfortunately, the sliding dichotomy model failed to do so, showing fluctuating yet generally

poor behavior across all eight scenarios. This indicates the risk of producing a higher proportion

of false-positive results by the sliding dichotomy model, when it is applied to clinical data

analyses that the method was specifically developed to analyze.

3.4 Power Analysis

The papers exhibited earlier fulfilled the first three objectives. The fourth objective, identifying

the relationship between power, sample size and type I error rate in ordinal outcomes of phase

III trials of TBI, is addressed in this section. In the previous papers, the CRM did not perform

up to the mark compared to other models. It is not highly regarded as a robust model in

clinical trials. Moreover, the CRM is best suited for cases when the individual categories of

the response variable are of intrinsic interest, and are not merely an arbitrary grouping of an

underlying continuous variable (Ananth and Kleinbaum, 1997). Additionally, the outcome of

the POM is unchanged even if the ordering of the categories is reversed which is not the same
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case for the CRM (ARMSTRONG and Sloan, 1989; Dos Santos and Berridge, 2000). However,

this reversibility was praised in certain cases, particularly in longitudinal studies. Then again,

it makes this model data dependent (Lindsey et al., 1997; Dos Santos and Berridge, 2000).

Going forward, we only considered the binary logistic model, the POM, and the SDM.
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(a) Type I error in scenario 1: Four covariates, equal

treatment sizes and equal band sizes
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(b) Type I error in scenario 2: Four covariates, equal

treatment sizes and unequal band sizes
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(c) Type I error in scenario 3: Four covariates, unequal

treatment sizes and equal band sizes
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(d) Type I error in scenario 4: Four covariates, unequal

treatment sizes and unequal band sizes

Figure 3.18: The comparison among power, sample size and type I error rate for CRASH data

As mentioned in Chapter 3.3, variations in the treatment level, GOS allocation, and number

of covariates resulted in eight different scenarios. Each scenario was assessed by a sample size

range of 150 to 2700. Statistical power and type I error rate was quantified and compared

graphically (Figure 3.4 and 3.4). The dotted lines and the smooth lines represent statistical

power and type I error rate respectively.

In the first two scenarios (Figure 3.4(a) and (b)), where four covariates (age, sex, GCS

motor response and treatment) were applied alongside equal treatment sizes (50% ‘treatment

A’ and 50% ‘treatment B’), binary dichotomy showed the highest power followed by the POM

and SDM. The gap between the SDM and POM was not every high. In the following scenarios,

similar statistical powers were demonstrated by the three models. As discussed before the

cumulative proportion of type I error of the SDM were mostly unsatisfactory (apart from the
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first two scenarios) with the blue line hovering along 5% line. Compared to that the power

displayed by the SDM was not satisfactory.
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(a) Type I error in scenario 5: One covariate, equal

treatment sizes and equal band sizes
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(b) Type I error in scenario 6: One covariate, equal

treatment sizes and unequal band sizes
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(c) Type I error in scenario 7: One covariate, unequal

treatment sizes and equal band sizes
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(d) Type I error in scenario 8: One covariate, unequal

treatment sizes and unequal band sizes

Figure 3.19: The comparison among power, sample size and type I error rate for CRASH data

It is important to note that the binary logistic model might have shown the highest power;

however, their power lies in detecting how many patients shifted from ‘unfavorable’ to ‘favor-

able’ state without counting the underlying transitions. Furthermore, the null hypothesis was

rejected in all eight cases, which is no treatment effect was found. It should be considered while

interpreting the statistical powers. Particularly, as the SDM performs better when probability

of a favorable outcome is high, which is not the case here (Price et al., 2013).

The weakness of the SDM is the lack of theoretical design and the uncontrolled type I

error rate. The other model has their weaknesses as well, discussed in previous literatures.

Comparing the power, sample size and type I error rate shows the success of the SDM, high

power, lies with its uncontrolled type I error, which supports the primary statistical concept

(section 1.1).
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Table 3.5: Summarizing the three models for ordinal analysis of TBI

Model Type I error rate Statistical power Inadequacy

Binary logistic Strong Weak* Information loss

Proportionals odds Strong Moderate Restrictive assumption

Sliding dichotomy Weak Strong False positive results

* underlying shifts are not considered

3.5 New model outline

An optimum model should be able to fit the data with the power of the SDM, error control of the

binary logistic model and without any strict assumptions like the proportional odds assumption.

The final objective is to theorize possible strategies to develop the SDM to articulate a robust

model with greater control over the type I error rate. Three problems are required to be

addressed to rectify the weakness of the SDM:

1. The subjectivity in covariate selection for bands formulation

2. The dichotomization technique that ignores the negative effects of the treatment effect

3. The control over type I error rate

The first and best possible step should be to formulate a theoretical framework for the

SDM. A mathematical expression like the binary logistic or the POM will allow theoretical

development addressing the issues stated above. However, at this point we attempted to look

for temporary solutions of these issues.

To tackle the first issue, the POM can be applied prior to the SDM and predetermine the

‘important’ covariates. These covariates can be used to formulate the bands, which will reduce

the subjectivity to some extent. Here the odds assumption should not be an issue, as the odds

ratios will not be interpreted.

Instead of binary logistic regression, multivariate generalized linear regression can be applied

in the final model fitting of the SDM. This could improve the process, where the outcomes will

not necessary have to be binary. According to Fahrmeir and Tutz (2001), multivariate GLM is

special cases of multinomial response models defined by equation 3.1.

Pr(Yi = r) =
e(βr0+ziβr)

1 +
∑q
s=1 e

βs0+ziβs
(3.1)
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where zi is a (q × p) design matrix composed of covariates x and β is a (p × 1)-vector of un-

known parameters. This is based on a distributional assumptions and a structural assumption.

However, his model can become computationally infeasible if the cluster size gets large (Carey

et al., 1993). Applying it in the bands might improve the SDM.

A potential way to develop the POM is to articulate the outcome variable to satisfy the

proportional odds assumption. Simulations can be applied in a practical data set to create equal

proportion of ranked scales in the outcome variable. It will allow a better scope of fulfilling the

assumption without altering the primary results.
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Chapter 4

Discussion and Conclusions

The results in previous sections display the limitations of the contemporary models applied

for analyzing ordinal outcomes. The same data set with the same variables reached different

conclusions when different models were used. These results show the sensitiveness of ordinal

outcomes as well as the failure of current models in fitting them. Moreover, the goodness of fit

statistics did not support one specific model. Our results were not limited to only clinical trials

data. We used other public health data sets to reassess the models, and found these limitations.

The first section of the results (section 3.1) shows the applications of contemporary ordinal

models in a primary data on regional health. The results agreed with previous research that

the SDM is the best-fitted model according to the goodness of fitness statistics (Murray et al.,

2005). The additional part in section 3.1 showed the application of the models in another health

survey, which had a higher sample size. However, the goodness of fit statistics did not agree on

a unanimously best-fitted model. The POM and SDM both showed adequacy. Furthermore,

the POM satisfied the proportional odds assumption as the outcome variable was scaled equally

in five parts. This section showed the subjectivity involved in selecting an ordinal model in

public health data sets. This is an extension of works of Price et al. (2013), Hardin et al.

(2007) and O’Connell and Liu (2011), who showed the problems of each of the models but

did not apply all the models together to compare goodness of fits, particularly with the SDM.

Moreover, we discussed the importance of considering multiple models for analyzing ordinal

outcome variables.

The second section of the results (section 3.2) was a demonstration of using five different

models and a consistent interpretation from the outcomes. Two different data sets were com-

pared and a novel conclusion was drawn regarding the geographical difference in TBI experience

for patients. Moreover, the models that showed significant covariate effects were extended (in-
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tegration effects) to explore the effect of age and sex on TBI. The results were consistent with

the recent literature of TBI (Hurn et al., 2005; Bazarian et al., 2010; Coronado et al., 2011;

Chan et al., 2017; Sandel et al., 2017). We contributed to this area of research by applying

different ordinal methods that ensured the validity of results and its interpretation.

The results section 3.3 is an important addition to this area of research, where we displayed

the drawback of the SDM, and why it is necessary to apply multiple models instead of relying on

only one. The SDM failed to control the cumulative proportion type I error for eight different

simulated scenarios compared to the binary logistic model or the POM. It is particularly impor-

tant for clinical trial outcomes to maintain false positives in phase III trial, as the results from

this stage are considered applicable (as medicines or treatments) for treating diseases/injuries.

We extended the literature by scrutinizing the SDM, which was generally praised in previous

studies (Young et al., 2005; Murray et al., 2005).

The fourth and fifth sections of results are works in progress and future implications of this

project. We showed how statistical power compares across ordinal models and the importance

of considering the type I error rate as well as power while formulating a new model. Several

plans are suggested in section 3.5 to improve the SDM. The most important one among them

would be to devise a theoretical model for the SDM and then attempt to control the error rate.

Discussion regarding each result are detailed in each paper or at the end of each section in

Chapter 3. Various factors are associated with the traditional models’ fitness, as they varied

over data sets. The weaknesses of the models can be summarized as following.

• Binary logistic model, designed for two scale outcome variables, suffers from much infor-

mation loss when applied to any multiple ranked order outcome analysis (Lovric, 2011)

• Proportional odds model regularly fails to meet the proportional odds assumption, partic-

ularly in RCTs, where the researchers have no control over the outcome scale proportions

(Meter et al., 2011; Jäckle et al., 2010)

• Continuation ratio model and partial proportional odds model lacks fitness compared to

the POM and their application is restricted to particular scenarios; and applied mostly

when parallel assumption of POM is violated (Bender and Grouven, 1998; Das and Rah-

man, 2011)

• Sliding dichotomy model works better only in data sets where true effects of treatment

exists (Young et al., 2005; Bath et al., 2012). Furthermore, selection of the covariates for
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initial band formulation induces subjectivity. False conclusions are likely due to the lack

of type I error rate control.

To address these limitations, formulation of a robust model is required that can consistently

fit ordinal outcomes under most scenarios, especially without any strict assumptions that are

easily violated (O’Connell, 2006). We suggest some steps that would improve the current

analysis process,

• Test of assumptions before applying the POM, or any statistical model

• Apply multiple models before reporting the results from a single model

• Report goodness of fit statistics along with the results, which will allow future studies

with same data sets to compare their models’ fitness

• Evaluate the type I error rate when a model is formulated or assess the literature before

the application

Time constraint has limited this study to explore and test a few more options of developing

a new model. A theoretical framework for the SDM would contribute to develop a robust

model. In Chapter 3.3, 1000 simulations were conducted; perhaps the results would have been

more comprehensive with 100,000 simulations. The statistical power comparison needs to be

assessed with a data set where true treatment effect exists (null hypothesis rejected), unlike

Chapter 3.4. Although the focus of this study was on public health, a data outside this area

could have generalized the conclusions.

Despite these limitations, this study came to a reproducible conclusion. The available

models are inadequate to fit ordinal outcome variables and lack proper assessment on the

fitted covariates. Future works can include developing either the POM or SDM. Both model

should be revised to improve their application. An error control mechanism in the SDM could

make it more robust. Moreover, the subjectivity involved in selecting the bands should also be

minimized. On the other hand, a revised POM could be developed that would allow the strict

parallel assumption to be breached, but still provide robust fitness.

The objective of this study was to evaluate the performances of the available statistical

methods and determine their performance reliability by comparing the inference drawn across

models when applied consistently to the same data sets. Furthermore, we explicitly assessed

the incapability of the SDM in controlling the type I error rate. The results showed a lack

of fitness for all the models, sometimes even at the most basic level of analysis based on the
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binary logistic model. Moreover, the problem stands for most types of public health studies

including the clinical trials. A patient’s status in traumatic brain injury is sensitive and the

slightest of improvement (or decline) should be specifially analyzed. Unfortunately, none of the

present statistical models is capable of reliably doing that in their current form.

Two statistical methods when applied to the same data sets should not demonstrate two

different conclusions due to lack of a robust statistical model (Huber, 2011). Most ordinal

methods are data dependent and often require data manipulation to reach a comprehensive

result. Consequently, meta-analysis is becoming more popular and opportunistic results are

interpreted in the papers, where only the models with favorable conclusions are reported.

Ordinal outcome analyses still require researchers to apply models with known limitations

and a history of unsatisfying results. This study analyzed clinical trial rank outcomes for TBI

as well as some public health data sets to comprehensively assess the contemporary models.

None of these models showed encouraging results in their present form. Thus, we fulfilled the

final objective of this research by providing a comprehensive exploration of current literature

gap, analyzing the performance of the models in various scenarios, discussing each model’s

specifi weaknesses, and indicating pathways to new development of ordinal outcome models.

More empirical studies with theoretical development are required to formulate a more ro-

bust, generalized model. Until this occurs, we suggest application of multiple models (and the

appropriate tests of assumptions for each), comparison of results and the use of goodness of

fit statistics to help determine the best-fitted model for final reporting and interpretation of

results from ordinal outcome variable.
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Appendix

List of Abbreviations

1. BDHS = Bangladesh Demographic and Health Surveys

2. CRASH = Corticosteroid Randomisation after Significant Head Injury

3. CRM = Continuation Ratio Model

4. D = Death

5. DHS = Demographic and Health Surveys

6. GCS = Glasgow Comma Scale

7. GOS = Glasgow Outcome Scale

8. GR = Good Recovery

9. MD = Moderate Disability

10. OLS = Ordinary Least Square

11. POM = Proportional Odds Model

12. PPOM = Partial Proportional Odds Model

13. SD = Severe Disability

14. SDM = Sliding Dichotomy Model

15. TBI = Traumatic Brain Injury

16. VS = Vegetative State
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López, M. F., Dupuy, J.-F., Gonzalez, C. V., 2012. Effectiveness of adaptive designs for phase ii cancer trials.

Contemporary clinical trials 33 (1), 223–227.

Lovric, M., 2011. International Encyclopedia of Statistical Science. Springer.

Maas, A. I., Marmarou, A., Murray, G. D., Teasdale, S. G. M., Steyerberg, E. W., 2007. Prognosis and clinical

trial design in traumatic brain injury: the impact study. Journal of neurotrauma 24 (2), 232–238.

Maas, A. I., Menon, D. K., Lingsma, H. F., Pineda, J. A., Sandel, M. E., Manley, G. T., 2012. Re-orientation of

clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness

research. Journal of neurotrauma 29 (1), 32–46.

Maas, C. J., Hox, J. J., 2005. Sufficient sample sizes for multilevel modeling. Methodology 1 (3), 86–92.

Mann, H., Wald, A., 1942. On the choice of the number of class intervals in the application of the chi square

test. The Annals of Mathematical Statistics 13 (3), 306–317.

McCullagh, P., 1980. Regression models for ordinal data. Journal of the royal statistical society. Series B

(Methodological), 109–142.

McCullagh, P., 2005. Proportional-odds model. Encyclopedia of Biostatistics.

McHugh, G. S., Butcher, I., Steyerberg, E. W., Marmarou, A., Lu, J., Lingsma, H. F., Weir, J., Maas, A. I.,

Murray, G. D., 2010. A simulation study evaluating approaches to the analysis of ordinal outcome data in

randomized controlled trials in traumatic brain injury: results from the impact project. Clinical Trials 7 (1),

44–57.

Mendelow, A. D., Gregson, B. A., Fernandes, H. M., Murray, G. D., Teasdale, G. M., Hope, D. T., Karimi,

A., Shaw, M. D. M., Barer, D. H., investigators, S., et al., 2005. Early surgery versus initial conservative

treatment in patients with spontaneous supratentorial intracerebral haematomas in the international surgical

trial in intracerebral haemorrhage (stich): a randomised trial. The Lancet 365 (9457), 387–397.

Menon, D. K., Schwab, K., Wright, D. W., Maas, A. I., et al., 2010. Position statement: definition of traumatic

brain injury. Archives of physical medicine and rehabilitation 91 (11), 1637–1640.

Meter, E. M. V., Garrett-Mayer, E., Bandyopadhyay, D., 2011. Proportional odds model for dose-finding clinical

trial designs with ordinal toxicity grading. Statistics in medicine 30 (17), 2070–2080.

Mocullagh, P., 1977. A logistic model for paired comparisons with ordered categorical data. Biometrika 64 (3),

449–453.

Mondol, M. A., Rahman, N., Akhter, S., Ahmed, B., Rahman, A., Momen, M. A., Rahman, M., Talukder,

D. C., 2013. Sociodemographical and clinical presentation of traumatic brain injury patients. Journal of

Dhaka Medical College 22 (1), 45–50.

Mooradian, J., Ivan, J. N., Ravishanker, N., Hu, S., 2013. Analysis of driver and passenger crash injury severity

using partial proportional odds models. Accident Analysis & Prevention 58, 53–58.

69



Moore, D. S., McCabe, G. P., Craig, B. A., 2012. Introduction to the practice of statistics. WH Freeman New

York.

Morgan, A., Ziglio, E., 2007. Revitalising the evidence base for public health: an assets model. Promotion &

Education 14 (2 suppl), 17–22.

Murray, G. D., Barer, D., Choi, S., Fernandes, H., Gregson, B., Lees, K. R., Maas, A. I., Marmarou, A.,

Mendelow, A. D., Steyerberg, E. W., et al., 2005. Design and analysis of phase iii trials with ordered outcome

scales: the concept of the sliding dichotomy. Journal of neurotrauma 22 (5), 511–517.

Myburgh, J. A., Cooper, D. J., Finfer, S. R., Venkatesh, B., Jones, D., Higgins, A., Bishop, N., Higlett, T.,

for the Australian, A. T. B. I. S. A. I., et al., 2008. Epidemiology and 12-month outcomes from traumatic

brain injury in australia and new zealand. Journal of Trauma and Acute Care Surgery 64 (4), 854–862.

National Center for Injury Prevention and Control (US), 2003. Report to Congress on mild traumatic brain

injury in the United States: Steps to prevent a serious public health problem. Centers for Disease Control

and Prevention.

O’Connell, A. A., 2006. Logistic regression models for ordinal response variables. No. 146. Sage.

O’Connell, A. A., Liu, X., 2011. Model diagnostics for proportional and partial proportional odds models.

Journal of Modern Applied Statistical Methods 10 (1), 15.

Peterson, B., Harrell Jr, F. E., 1990. Partial proportional odds models for ordinal response variables. Applied

Statistics, 205–217.

Price, M., Hertzberg, V., Wright, D. W., 2013. Does the sliding dichotomy result in higher powered clinical

trials for stroke and traumatic brain injury research? Clinical Trials 10 (6), 924–934.

Reeves, R. H., Beltzman, D., Killu, K., 2000. Implications of traumatic brain injury for survivors of sexual

abuse: A preliminary report of findings. Rehabilitation Psychology 45 (2), 205.

Rogers, M. A., 2009. What are the phases of intervention research. American Speech-Language-Hearing Asso-

ciation, Rockville.

Roozenbeek, B., Lingsma, H. F., Perel, P., Edwards, P., Roberts, I., Murray, G. D., Maas, A., Steyerberg,

E. W., et al., 2011. The added value of ordinal analysis in clinical trials: an example in traumatic brain

injury. Crit Care 15 (3), R127.

Roozenbeek, B., Maas, A. I., Lingsma, H. F., Butcher, I., Lu, J., Marmarou, A., McHugh, G. S., Weir, J.,

Murray, G. D., Steyerberg, E. W., et al., 2009a. Baseline characteristics and statistical power in randomized

controlled trials: Selection, prognostic targeting, or covariate adjustment?*. Critical care medicine 37 (10),

2683–2690.

Roozenbeek, B., Maas, A. I., Marmarou, A., Butcher, I., Lingsma, H. F., Lu, J., McHugh, G. S., Murray, G. D.,

Steyerberg, E. W., 2009b. The influence of enrollment criteria on recruitment and outcome distribution in

traumatic brain injury studies: results from the impact study. Journal of neurotrauma 26 (7), 1069–1075.

70



Rutland-Brown, W., Langlois, J. A., Thomas, K. E., Xi, Y. L., et al., 2006. Incidence of traumatic brain injury

in the united states, 2003. Journal of Head Trauma Rehabilitation 21 (6), 544.

Sandel, N. K., Schatz, P., Goldberg, K. B., Lazar, M., 2017. Sex-based differences in cognitive deficits and

symptom reporting among acutely concussed adolescent lacrosse and soccer players. The American journal

of sports medicine 45 (4), 937–944.

Schneier, A. J., Shields, B. J., Hostetler, S. G., Xiang, H., Smith, G. A., 2006. Incidence of pediatric traumatic

brain injury and associated hospital resource utilization in the united states. Pediatrics 118 (2), 483–492.

Scott, S. C., Goldberg, M. S., Mayo, N. E., 1997. Statistical assessment of ordinal outcomes in comparative

studies. Journal of clinical epidemiology 50 (1), 45–55.

Senn, S., Julious, S., 2009. Measurement in clinical trials: a neglected issue for statisticians? Statistics in

medicine 28 (26), 3189–3209.

Shen, Y., Liao, K. P., Cai, T., 2015. Sparse kernel machine regression for ordinal outcomes. Biometrics 71 (1),

63–70.

Singh, R., 2011. A review: Clinical trial and data management. trials 2, 3.

Stern, J. M., Simes, R. J., 1997. Publication bias: evidence of delayed publication in a cohort study of clinical

research projects. Bmj 315 (7109), 640–645.

Sterne, J. A., Egger, M., Smith, G. D., 2001. Systematic reviews in health care: Investigating and dealing with

publication and other biases in meta-analysis. BMJ: British Medical Journal 323 (7304), 101.

Teasdale, G. M., Pettigrw, L. E., Wilson, J. L., Murry, G., Jennet, B., 1998. Analyzing outcome of treatment

of severe head injury: a review and update on advancing the use of the glasgow outcome scale. Journal of

neurotrauma 15 (8), 587–597.

Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., Sniezek, J. E., 1999. Traumatic brain injury in the

united states: a public health perspective. The Journal of head trauma rehabilitation 14 (6), 602–615.

Tiesman, H. M., Konda, S., Bell, J. L., 2011. The epidemiology of fatal occupational traumatic brain injury in

the us. American journal of preventive medicine 41 (1), 61–67.

Upton, G. J., 1992. Fisher’s exact test. Journal of the Royal Statistical Society. Series A (Statistics in Society),

395–402.

Washington, S. P., Karlaftis, M. G., Mannering, F. L., 2010. Statistical and econometric methods for trans-

portation data analysis. CRC press.

Weir, J., Steyerberg, E. W., Butcher, I., Lu, J., Lingsma, H. F., McHugh, G. S., Roozenbeek, B., Maas, A. I.,

Murray, G. D., 2012. Does the extended glasgow outcome scale add value to the conventional glasgow outcome

scale? Journal of neurotrauma 29 (1), 53–58.

71



Wells, R., Dywan, J., Dumas, J., 2005. Life satisfaction and distress in family caregivers as related to specific

behavioural changes after traumatic brain injury. Brain Injury 19 (13), 1105–1115.

Wright, J., 2011. Glasgow outcome scale. In: Encyclopedia of Clinical Neuropsychology. Springer, pp. 1150–1152.

Young, F. B., Lees, K. R., Weir, C. J., et al., 2005. Improving trial power through use of prognosis-adjusted

end points. Stroke 36 (3), 597–601.

72


	Introduction
	Power and Type I error
	Traumatic brain injury (TBI)
	Phase III trials
	Problems associated with Common Statistical Methods Used for Ordinal Outcomes 
	Applications of models in practice
	Objectives

	Methodology
	Data Description
	Statistical models for ordinal outcomes
	Binary Logistic Model
	Proportional Odds Model
	Partial Proportional Odds Model
	Continuation Ratio Model
	Sliding Dichotomy Model


	Results
	Statistical Analysis of Ordinal Outcomes: Comparison of the existing methods
	Effect of Sex and Age on Traumatic Brain Injury
	Type I error analysis
	Power Analysis
	New model outline

	Discussion and Conclusions

