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A novel automatic framework is proposed for global sexually transmissible infections 
(STIs) and HIV risk prediction. Four machine learning methods, namely, Gradient 
Boosting Machine (GBM), Random Forest (RF), XG Boost, and Ensemble learning 
GBM-RF-XG Boost are applied and evaluated on the Demographic and Health 
Surveys Program (DHSP), with thirteen features ultimately selected as the most 
predictive features. Classification and generalization experiments are conducted to 
test the accuracy, F1-score, precision, and area under the curve (AUC) performance 
of these four algorithms. Two imbalanced data solutions are also applied to reduce 
bias for classification performance improvement. The experimental results of these 
models demonstrate that the Random Forest algorithm yields the best results 
on HIV prediction, whereby the highest accuracy, and AUC are 0.99 and 0.99, 
respectively. The performance of the STI prediction achieves the best when the 
Synthetic Minority Oversampling Technique (SMOTE) is applied (Accuracy = 0.99, 
AUC = 0.99), which outperforms the state-of-the-art baselines. Two possible 
factors that may affect the classification and generalization performance are further 
analyzed. This automatic classification model helps to improve convenience and 
reduce the cost of HIV testing.
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1 Introduction

The ongoing challenge of human immunodeficiency virus (HIV) and sexually 
transmissible infections (STIs) continue to pose substantial global public health concerns. 
According to the World Health Organization (WHO), there are approximately 374 million 
new STI cases annually worldwide, while between 1.1 and 2 million individuals were estimated 
to have been infected with HIV in 2021 (1). STIs/HIV represents a significant burden on the 
healthcare system of every nation, supporting the need for innovative strategies to be readily 
implemented if the global target of ending STIs and the HIV epidemic is to be achieved by 
2030 (2).
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STIs/HIV risk prediction can significantly enhance behavior 
change and testing rates, which are both critically important for 
prevention and clinical service delivery. Economical and effective 
automatic STIs/HIV forecasting has been touted as a potential means 
for providing urgently needed solutions to improve clinical service 
delivery and health service optimization (3–8). Machine learning 
(ML) has been widely applied to healthcare settings and systems, 
including an increasing application in STIs/HIV risk prediction. 
Compared with conventional multivariable logistic regression model-
based approaches, ML methods can significantly boost the 
classification prediction of a person at risk of acquiring HIV (9, 10). 
ML algorithms can also help to determine optimal participants for 
pre-exposure prophylaxis (PrEP) (11), a form of biomedical 
prevention, to reduce the likelihood of acquiring HIV if exposed to 
behaviors that place people at increased HIV risk (e.g., condomless 
anal intercourse, sharing injecting drug equipment).

Conventionally, HIV infection risks can be  assessed through 
statistical tools. The Cox regression model was introduced by Handan 
Wand et al. (12) to predict the HIV risk on a dataset collected in 
KwaZulu Natal, South Africa, over a ten-year period (2002–2012). 
Seven factors were identified as significant features of determining an 
HIV risk score. The internal and external experiments based on this 
model demonstrated its generalizability and robustness. The 
prediction model produced an area under the curve (AUC) of 79%. 
This result suggested a screening strategy for HIV prediction/
prevention trials by models built from a simple list of questionnaires. 
However, an inevitable drawback of this statistical model is that its 
performance is neither adequate nor appropriate for practical clinical 
applications. Machine-learning-based methods are reliable and 
effective tools to explore the HIV prediction challenges.

Krakower et al. (13) developed 42 candidate prediction models 
using machine learning and logistic regression models for the 
identification of people who would benefit from PrEP. To build an 
effective model for an incident HIV infection prediction, experiments 
were conducted on 180 key features from a dataset, which were 
collected over eight years (2007–2015) by Atrius Health Center (13). 
Among all tested models, the Least Absolute Shrinkage and Selection 
Operator (LASSO) algorithm achieved the highest performance with 
an AUC of 86%, which also indicated the fact that machine learning 
models helped detect the HIV infection risk for an individual 
effectively. Bao et al. (10) also compared the effectiveness of machine 
learning methods and multivariable logistic regression models in 
predicting STIs/HIV risks among men who have sex with men 
(MSM), a priority, high-risk group, within Australia from 2011 to 
2017. The best AUC values for STIs and HIVs were achieved at 85.8 
and 76.3%, respectively, when the GBM model was applied. Xu, X., 
et al. established a series of machine learning algorithms and statistical 
analyses to predict STIs/HIV infection over a subsequent 12-month 
period for both males and females (14). Based on the data provided 
by the public sexual health center in Melbourne, Australia, from 
March 2, 2015, to December 31, 2019, individuals who re-tested in the 
clinic for STIs/HIV were considered, while people who identified as 
transgender/non-binary and MSM were excluded. Their machine 
learning-based prediction tool achieved acceptable results in 
predicting the HIV risk for the next 12 months, with an AUC of 72 
and 75% for STIs.

Although many recent studies (4, 15–17) have applied a ML 
model to predict the risks of having an STI/HIV, only a few studies 

(18, 19) have paid specific attention to feature extraction techniques 
for selecting a compelling predictor set (i.e., choosing relevant 
variables and removing the noise data) to estimate the risks of 
STIs/HIV. Moreover, most studies only focused on the AUC 
performance, while other important metrics that lead to a 
noncomprehensive evaluation (e.g., accuracy, precision) are 
ignored. Noncomprehensive evaluation might miss critical 
weaknesses in a model, such as poor performance on certain types 
of data or in specific contexts. This can lead to overestimating the 
model’s capabilities. In addition, ML models in previous studies are 
often trained and tested on the same datasets that were collected 
from one single clinic/country/region, which would cause 
problems in usability. Despite unequivocal results from several 
studies that used AI techniques to determine the risks of STIs/HIV 
accurately (10, 14, 20), these results are limited in their feasible 
applications to individuals from other different demographic or 
ethnic groups, for instance, different countries, and/or from 
priority/high-risk groups. To resolve the above-identified 
challenges and critical gaps, in this paper, a novel and high-
performance framework was proposed to better select effective 
features for STIs/HIV predictions, and comprehensive evaluation 
experiments were carried out to test its classification performance 
and generalization.

The main contributions of this paper are summarized below:

 • A classification framework is proposed for the STIs/HIV risk 
prediction. Compared with the conventional approaches and the 
state-of-the-art performance, the proposed framework achieves 
the best results, when Random Forest algorithm is selected as the 
classifier. We report the outcomes of this study according to the 
guidelines of the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD) reporting (21). The reporting guideline was adapted 
for AI models as recommended by Collins and Moon (22).

 • Analyzing tools to select effective features for STIs/HIV risk 
prediction are designed for an enhanced culturally (from 
different ethnic backgrounds) unbiased model.

 • More evaluation metrics, including precision, F1-score, etc. are 
tested in this study to comprehensively evaluate the performance 
of the proposed framework.

 • Classification experiments were conducted based on the subset 
of the Demographic and Health Surveys Program (DHSP).1 
Participants being involved in the experiments came from eight 
countries. Generalization of the proposed methodology was also 
tested on datasets specific to these eight separated countries. Two 
factors which can affect the performance are further analyzed.

 • The synthetic minority oversampling technique (SMOTE) and a 
combination of over-sampling the minor class and under-
sampling the primary class methods were applied to further 
improve the classification performance. The best accuracy and 
AUC of the proposed model are 0.99 and 0.99, respectively, 
which outperform the existing state-of-the-art. This result 
demonstrates the probability of self-testing with high reliability, 
which also may reduce the testing cost.

1 https://dhsprogram.com/
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2 Materials and methods

Figure  1 shows the diagram of the proposed method, which 
consists of four processes in total, namely, extracting valid country 
data from the whole Demographic and Health Surveys Program 
(DHSP) dataset, selecting HIV and STI-related variables, data analysis, 
and model building and testing.

2.1 Source of data for the current study

The DHSP (see Footnote 1) is pioneered by the U.S. Agency for 
International Development (USAID), aiming to enhance policy-
making, planning, and management by making these data available 
on requests for research and/or secondary analysis. This program 
publishes population, health, HIV, STIs, and nutrition data from 
approximately 90 countries from six regions (Africa, Asia, Europe, 
Oceania, Latin America, and the Caribbean). Following the necessary 
DHS approvals, our project aims to use the DHS data to build an AI 
framework to predict the infection risks of STIs/HIV among 
adult men.

2.2 Participants

Due to the fact that the DHSP dataset is collected from different 
regions in different years, the standards followed are different as well. 
Considering the consistency of data collection standards and STIs/
HIV data availability, only countries marked with the HIV data 
availability are considered initially. Only 37 countries remain after this 
step, which are further filtered by the feature availability. Even though 
all 37 countries are related to HIV disease, too many key features for 

training and prediction are still missing in the collection process for 
some countries. As a result, participants from eight countries are 
finally selected for model building and testing, including 9,717 records 
from the Dominican (2013), 2,028 records from the 
Dominican Republic (2013), 107,297 records from India (2015), 9,572 
records from Haiti (2016), 9,202 records from Haiti (2012), 3,831 
records from Guinea (2018), 3,688 records from Guinea (2012), 
11,327 records from Ethiopia (2016), 6,648 records from Cameroon 
(2018), and 5,150 records from Angola (2015). After conducting an 
extensive literature review (20, 23) and in consultation with experts in 
public and sexual health, behavior and clinical testing for HIV and 
STIs and demographic data for men are extracted. A list of detailed 
variables related to STIs/HIV risk is presented in Table 1.

2.3 Data analysis

The data quality has significant effects on prediction performance 
directly (24). Therefore, the following five steps are applied to help 
obtain better-quality data.

Step  1: Remove invalid variables: In the Dominican  Republic 
(2013) and Dominica (2013) data sets, three variables, “Current 
working” (No10-mv714), “Occupation group” (No12 mv717) and 
‘Work in last 12 months’ (No14 mv731), are not available. Therefore, 
those variables are excluded from our input variables for the 
prediction model.

Step 2: Variable filtering: Some variables are removed since there 
are not enough samples for model determinations. For example, 
94.74% of the data from the question “Sought advice or treatment for 
STI infection” (No19-mv770) is ‘Nan (Not available or missing data)’. 
Consequently, this variable is removed from the variable list. 
Considering variables “Ever heard of STIs” (No13-mv750) and 

FIGURE 1

The diagram of the proposed classification framework.
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“Whether the respondent has ever heard of AIDS” (No14-mv751), 
91% of participants responded “Yes.” However, these variables 
contribute little to a prediction model since most of the samples have 
the same value. Thus, we also remove these two variables from our 
variable list.

Step  3: The data cleaning step removes the rows of data that 
consisted of Nan (Not available or missing data) values. Each row of 
these data corresponds with data from a person/subject. Missing data 
can occur due to the reluctance of people to answer some questions in 
their surveys, or simply not answering some of the survey questions. 
Since the reason behind the missing data is unknown, the data for 
each country is again checked, and rows that consist of Nan values are 
removed. The original samples are 168,459, which are filtered to 
98,449 in this step.

Step 4: Feature selection. Model performance is normally decided 
by several factors, like feature quality, number of samples, the algorithm 
itself, etc. A larger number of features does not always contribute to 
classifier performance improvement, but it definitely leads to an 
increase in computational resources. As a result, selecting effective 
features is a crucial step for model training and resource decrease. In 
this step, two feature selection methods are applied to exclude the 
“overlap” or “unimportant” variables, which means linear correlation 
among features and little contribution to the classification performance, 
respectively. The overlapped features/variables are determined by 
calculating the Pearson correlation between variables. From Pearson 
correlation values, pairs of high correlation features could be found to 
drop. The Pearson correlation matrix between variables is reported in 
Figure 2. From this figure, two pairs/couples of high direct correlations 
(i.e., the similarity is larger than 90%) are found. The first variable pair 
is “Recent sexual activity” (No9-mv536) and “Time since last 
intercourse in days” (No21-mv528), and the second variable pair is: 
“Educational attainment” (No 3-mv149) and “Education level” (No 
2-mv106). Due to the high similarity between the two variables in each 
pair, one variable is removed from each pair. Considering the lower 
feature importance of the variable No 2 (mv106) and No 9 (mv536), 
they are removed from our feature list as well.

The features (variables/features) importance assigns scores to 
input features based on their significance in predicting the output and 

variables with low importance scores are removed in this process. 
These impurity-based feature importance scores, or Gini importance 
of a Random Forest (RF) algorithm, to be more specific, are obtained 
by the total (normalized) reduction in the criterion they contribute. 
As a result, two variables, mv793 (“Paid for sex in the last 12 months”) 
and mv785 (“Heard about other STIs”), are excluded as their total 
importance score was minimal. The importance scores are displayed 
in Figure 3. The red color legend represents the STI risk prediction, 
and the green color legend signifies the HIV risk prediction. The 
variable code (mean features) is listed on the x-axis. From this figure, 
it is evident that “Age” (variable code: mv012) and “Age at first sexual 
intercourse” (variable code: mv525) emerge as the most critical factors 
contributing to the risk of both HIV and STIs.

After analyzing data to identify important variables to predict 
STIs/HIV risks, ten variables are removed, and 13 remaining features 
to build the model. The final 13 features presented are age (mv012), 
educational attainment (mv149), wealth index (mv190), regionality 
(mv025), condom use during last sex with a most recent partner 
(mv761), current marital status (mv501), age at first sexual intercourse 
(mv525), Time since last intercourse in days (mv528), always use 
condoms during sex (mv754cp), having one sexual partner (mv754dp), 
number of lifetime sexual partner (mv766b), giving gifts or other goods 
in exchange for sex (mv793), and the wife is justified in asking for 
condom use if the husband has an STI (mv822).

Step 5: Imbalance data issue solving: Due to the fact that samples 
with STIs/HIV account for a tiny percentage in the dataset (less than 
3%) this leads to a data imbalance problem, which can present some 
difficult challenges in training the machine learning model. Therefore, 
two preprocessing solutions are applied to solve the imbalanced data 
problem, including the synthetic minority oversampling technique 
(SMOTE) and a combination of over-sampling the minor class and 
under-sampling the primary class (25).

2.4 Model building

Random forest (RF) is a classic machine-learning algorithm, 
which aims to solve both classification problems and regression 

TABLE 1 Data characteristics considered essential for predicting STI/HIV.

No Variables Description No Variables Description

1 mv012 Age 13 mv750 Whether the respondent has ever heard of STIs

2 mv106 Education level 14 mv751 Whether the respondent has ever heard of HIV/AIDS.

3 mv149 Educational attainment 15 mv754cp Always use condoms during sex

4 mv190 Wealth index 16 mv754dp Has one sexual partner

5 mv025 Regionality 17 mv766b Number of lifetime sexual partners

6 mv761 Condom use during last sex with most recent partner 18 mv785 I have heard about other STIs

7 mv501 Current relationship status 19 mv770 I have sought advice or treatment for STI infection

8 mv525 Age at first sexual intercourse 20 mv528 Time since the last sexual intercourse recently (in days)

9 mv536 Most recent sexual activity 21 mv791 Ever provided gifts or other goods in exchange for sex

10 mv714 Current employment 22 mv793 Paid for sex in the last 12 months

11 mv731 Work in last 12 months 23 mv822
(In married heterosexual relationship) The wife feels justified 

in asking for condom use if the husband has an STI

12 mv717 Occupation group - - -
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problems (26). Random forests are constructed by randomly 
generating several decision trees (DT), and the output of a random 
forest is determined by voting outputs from all decision trees. 
Random forests have been widely used in the HIV prediction task 
(24, 27). Therefore, a standard random forest model is selected for 
STIs/HIV prediction in this study.

A Gradient Boosting Machine (GBM) model is an ensemble 
model, whose weak learners will be trained serially, and each weak 
learner aims to decrease the cumulative model loss from the 
training process of the previous weak learner (28). Due to its high 
performance in HIV identification, a GBM model is tested in 
this study.

Extreme Gradient Boosting (XGBoost) is developed from the 
boosting algorithm with higher effectiveness and more flexibility (29). 
Therefore, it has more advantages than other methods to be deployed 
in edge devices, like smartphones. As a result, it is necessary to 
evaluate its performance for future employment.

An ensemble model consisting of a standard RF, a GBM, and an 
XGBoost is designed to develop a classifier, which is expected to 
outperform all three base learners.

All mentioned models are developed using the built-in machine 
learning algorithms of the scikit-learn library2 through Python 
programming language.

2.5 Experiments setting

For a comprehensive evaluation of all mentioned models, two 
types of classification experiments (four in total) are conducted based 
on the data from eight countries, two experiments are conducted to test 

2 http://scikit-learn.org/stable/

FIGURE 2

Heatmap of the correlation between all variables.
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the classification performance and the generalization. For the first type, 
data from all eight countries are mixed and randomly divided into a 
training set and a testing set with 75% data and 25% data, respectively. 
The ratio between training and testing set normally will have little effect 
on the classification performance, if both of them have adequate 
samples for each class. This data-splitting method is also applied for 
each country to test the performance of a specific country. For the 
second one, two 8-fold cross-validation experiments are further carried 
out. The first 8-fold cross-validation experiment is country-based, 
meaning seven countries are used as training data, and the remaining 
one is used as testing data in each fold, which is also known as Leave-
One-Out Cross-Validation (LOOCV). For a deep discussion of the 
influence from the distribution of the dataset, the second 8-fold cross-
validation is distribution-based, which means that all data are mixed 
and divided into eight folds and each fold contains data from all eight 
countries according to the ratio they have in all samples.

Overall accuracy (ACC) and the area under the receiver operating 
characteristic curve (AUC) are used to validate the overall 
performance, while precision (PR), recall (RE), and F1-score (F1) are 
used to evaluate the performance for each class. Python is the primary 
language for conducting experiments on the Alienware R13, equipped 
with an Intel i9 processor, 64GB of RAM, dual 2 TB SSDs, and an RTX 
3090 graphics card. Code and processed data can be accessed through 
GitHub,3 once our paper is published.

3 Results

3.1 Experiment 1

Table 2 shows the classification performance compared among 
four models on HIV and STI identification tasks and each experimental 
result is from the setting that all data is mixed and divided into a 

3 https://github.com/xiaopengusq/STI-HIV-Risk-Prediction-Model

training set and a testing set with 75% data and 25% data, respectively. 
For both HIV and STI classification tasks without resampling methods, 
performances are quite low for the positive samples, who have HIV or 
STI. However, the classification performances are improved when 
resampling methods, especially the SMOTE algorithm, are applied. 
One reason to explain this phenomenon is that the ratio of positive 
samples is too low to be  identified, which also leads to the ‘high’ 
performance of negative samples. This invalid classification 
effectiveness can be  easily found from the low AUC and positive 
results without the resampling method in Table 2.

Due to the fact that the positive ratio is extremely low, there is 
a very high probability that the new data generated through 
resampling methods, especially the SMOTE method, will 
be clustered in an extremely small area, which means that there is 
a very high probability that there is a high overlap of the positive 
samples between the training set and the testing set. An obvious 
factor to be evaluated is the resampling strategy, i.e., the ratio of 
the number of samples in the minority class to the number of 
samples in the majority class after resampling. Based on the 
experiment above, an expanded experiment is conducted, whose 
resampling strategy is changed from 0.2 to 1. Table 3 shows the 
comparison among four models on HIV and STI tasks with 
different resampling strategies. It can be easily summarized that the 
resampling strategy has some positive contribution to the 
classification performance improvement, but not so much as 
expected, especially for the RF and GBM-RF-Xgboost model, 
which also means that the improvement is not from the possible 
overlap between the training set and testing set, which is created 
by resampling.

Table  2 and Figure  4 also demonstrate another interesting 
phenomenon, namely, all classification performances of the RF and 
the GBM-RF-Xgboost model are the same, except for the AUC. One 
explanation is that this ensemble model determines the prediction 
results from all three base learners, which means that it has more 
potential to output the prediction results, which is close to the model 
with the highest performance. This phenomenon is also observed in 
other following experiments.

FIGURE 3

Important feature scores.
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3.2 Experiment 2

To further evaluate the classification performance on a single 
country data, experiments are also conducted based on each 
selected country as well. For each country, data is randomly split 
into a training set and a testing set according to 75 and 25%, 
respectively. Considering the effectiveness of the SMOTE method 
proved above, all results presented are those with the SMOTE 
resampling method. Table 4 demonstrates the classification results 
on HIV and STI, respectively. It can be easily observed that the 
different models can predict positive patients with similar 
performance levels. In terms of accuracy, we  achieve a level of 
0.9713 for HIV prediction and 0.8924 for STI prediction, 
respectively, when averaging across all the models and all the 
countries. The performance of these single-country-based 
experiments is close to but higher than the all-country-based 
experiments, whose average accuracy is 0.9390 for HIV 
classification and 0.8130 for STI classification, respectively. A 
possible explanation for this difference in performance is that the 
distribution of data, or culture, education, economy, etc., to be more 
specific, are quite far away from each other. As a result, classification 

abilities are enhanced when data from the same distribution but 
decreased when data from a different distribution. To evaluate the 
effects of the distribution factor, two 8-fold cross-validation 
experiments are conducted on these selected eight countries.

3.3 Experiment 3

The first k-fold cross-validation is country-based LOOCV (Leave-
one-out cross-validation). For each fold, data is resampled using the 
SMOTE method first, and then seven countries are selected to 
construct a training set, while the remaining one is used as a validation 
set. The process will repeat until all eight countries are tested. Table 5 
shows the country-based LOOCV evaluation results for HIV samples. 
The performance of all models decreases, with the lowest accuracy 
being 0.5356. This unacceptable result is closer to randomly selecting 
one of two labels, rather than predicting results by learning features. 
The reason for the performance reduction is that the distribution of 
the validation set is totally different from the training set for each fold. 
This phenomenon is also observed in the country-based LOOCV for 
STI classification.

TABLE 2 Classification performance comparison among four models on HIV and STI task.

Task Resample 
method

Model ACC AUC PR RE F1

Negative Positive Negative Positive Negative Positive

HIV

No resample

RF 0.9904 0.6939 0.9909 0 0.9995 0 0.9952 0

GBM 0.9904 0.6396 0.9909 0 0.9995 0 0.9952 0

XGBoost 0.9907 0.6779 0.9909 0 0.9998 0 0.9953 0

GBM-RF-Xgboost 0.9904 0.4995 0.9909 0 0.9995 0 0.9952 0

SMOTE

RF 0.9849 0.9971 0.9946 0.9757 0.9751 0.9947 0.9848 0.9851

GBM 0.8755 0.9429 0.9059 0.8495 0.8375 0.9134 0.8704 0.8803

XGBoost 0.9105 0.9670 0.9435 0.8823 0.8729 0.9479 0.9068 0.9139

GBM-RF-Xgboost 0.9849 0.9872 0.9946 0.9757 0.9751 0.9947 0.9848 0.9851

Over-sampling 

+ under-

sampling

RF 0.9359 0.9855 0.9572 0.9138 0.9204 0.9535 0.9384 0.9332

GBM 0.8619 0.9352 0.8938 0.8302 0.8394 0.8873 0.8657 0.8578

XGBoost 0.8912 0.9569 0.9270 0.8564 0.8630 0.9232 0.8938 0.8885

GBM-RF-Xgboost 0.9359 0.9507 0.9572 0.9138 0.9204 0.9535 0.9384 0.9332

STI

No resample

RF 0.9256 0.5693 0.9308 0.1190 0.9939 0.0110 0.9613 0.0201

GBM 0.9301 0.6005 0.9307 0.2778 0.9993 0.0037 0.9638 0.0072

XGBoost 0.9298 0.5897 0.9307 0.2308 0.9989 0.0044 0.9636 0.0086

GBM-RF-Xgboost 0.9256 0.5043 0.9308 0.1190 0.9939 0.0110 0.9613 0.0201

SMOTE

RF 0.8964 0.9557 0.9196 0.8757 0.8685 0.9242 0.8933 0.8993

GBM 0.7189 0.7975 0.7230 0.7150 0.7088 0.7290 0.7159 0.7219

XGBoost 0.7404 0.8232 0.7480 0.7333 0.7243 0.7565 0.7360 0.7447

GBM-RF-Xgboost 0.8964 0.9058 0.9196 0.8757 0.8685 0.9242 0.8933 0.8993

Over-sampling 

+ under-

sampling

RF 0.7380 0.8133 0.7558 0.7192 0.7413 0.7345 0.7484 0.7267

GBM 0.6614 0.7229 0.6645 0.6573 0.7189 0.5976 0.6906 0.6260

XGBoost 0.6717 0.7296 0.6795 0.6622 0.7108 0.6284 0.6948 0.6448

GBM-RF-Xgboost 0.7380 0.7628 0.7558 0.7192 0.7413 0.7345 0.7484 0.7267

*ACC, accuracy; PR, Precision; RE, recall; F1, F1-score.

https://doi.org/10.3389/fpubh.2024.1511689
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ji et al. 10.3389/fpubh.2024.1511689

Frontiers in Public Health 08 frontiersin.org

3.4 Experiment 4

To further evaluate the generalization of all four models and 
demonstrate the effect of distribution, another data-ratio-based 8-fold 
cross-validation is carried out on these selected eight countries. In this 
experiment, data is resampled with the SMOTE method first to solve 
the data imbalanced issue, after which, the dataset of each country is 
divided into 8 segments averagely, and coded with 1, 2, …, 8. For the 
i-th cross-validation, segments coded with i from all countries are 
selected and stacked together to construct a validation set, while the 
remaining segments are stacked to form a training set. This process 
will be repeated until all 8 segments of each country are tested. This 

data split method ensures that the distribution of the training set and 
the testing set are close or even the same and the ratio of data from a 
country keeps the same in the training set and the validation set. 
Table  6 shows the ratio-based classification performance, where 
we can find that the average accuracy of all eight folds achieves 0.9382, 
which is the same level as the result of experiment 1.

4 Discussion

From experiment 1, experiment 2, experiment 3 and experiment 
4, we can draw some simple but important conclusions:

TABLE 3 Classification performance comparison among four models on HIV and STI task with different resampling strategy.

Task Resampling 
strategy

Model ACC AUC PR RE F1

Negative Positive Negative Positive Negative Positive

HIV

0.2

RF 0.9744 0.9910 0.9861 0.9148 0.9834 0.9277 0.9847 0.9212

GBM 0.9045 0.9363 0.9201 0.7847 0.9704 0.5612 0.9446 0.6544

XGBoost 0.9269 0.9620 0.9438 0.8208 0.9707 0.6993 0.9571 0.7552

GBM-RF-Xgboost 0.9744 0.9672 0.9861 0.9148 0.9834 0.9277 0.9847 0.9212

0.5

RF 0.9799 0.9962 0.9918 0.9570 0.9780 0.9837 0.9849 0.9702

GBM 0.8745 0.9426 0.9035 0.8150 0.9092 0.8047 0.9064 0.8098

XGBoost 0.9080 0.9667 0.9372 0.8516 0.9242 0.8754 0.9306 0.8633

GBM-RF-Xgboost 0.9799 0.9851 0.9918 0.9570 0.9780 0.9837 0.9849 0.9702

0.7

RF 0.9806 0.9967 0.9912 0.9663 0.9752 0.9880 0.9832 0.9770

GBM 0.8714 0.9431 0.8996 0.8344 0.8767 0.8640 0.8880 0.8490

XGBoost 0.9076 0.9670 0.9364 0.8709 0.9025 0.9148 0.9191 0.8923

GBM-RF-Xgboost 0.9806 0.9849 0.9912 0.9663 0.9752 0.9880 0.9832 0.9770

1.0

RF 0.9849 0.9971 0.9946 0.9757 0.9751 0.9947 0.9848 0.9851

GBM 0.8755 0.9429 0.9059 0.8495 0.8375 0.9134 0.8704 0.8803

XGBoost 0.9105 0.9670 0.9435 0.8823 0.8729 0.9479 0.9068 0.9139

GBM-RF-Xgboost 0.9849 0.9872 0.9946 0.9757 0.9751 0.9947 0.9848 0.9851

STI

0.2

RF 0.8783 0.8220 0.8966 0.7110 0.9660 0.4291 0.9300 0.5352

GBM 0.8424 0.7226 0.8464 0.6416 0.9915 0.0783 0.9132 0.1396

XGBoost 0.8450 0.7453 0.8511 0.6422 0.9875 0.1145 0.9142 0.1944

GBM-RF-Xgboost 0.8783 0.7099 0.8966 0.7110 0.9660 0.4291 0.9300 0.5352

0.5

RF 0.8775 0.9225 0.9032 0.8235 0.9149 0.8019 0.9090 0.8126

GBM 0.7454 0.7863 0.7609 0.6856 0.9031 0.4269 0.8259 0.5262

XGBoost 0.7607 0.8108 0.7773 0.7037 0.9001 0.4790 0.8342 0.5700

GBM-RF-Xgboost 0.8775 0.8728 0.9032 0.8235 0.9149 0.8019 0.9090 0.8126

0.7

RF 0.8833 0.9407 0.9091 0.8488 0.8892 0.8749 0.8991 0.8616

GBM 0.7234 0.7919 0.7354 0.7008 0.8231 0.5833 0.7768 0.6367

XGBoost 0.7416 0.8168 0.7567 0.7151 0.8222 0.6280 0.7881 0.6688

GBM-RF-Xgboost 0.8833 0.8958 0.9091 0.8488 0.8892 0.8749 0.8991 0.8616

1.0 RF 0.8964 0.9557 0.9196 0.8757 0.8685 0.9242 0.8933 0.8993

GBM 0.7189 0.7975 0.7230 0.7150 0.7088 0.7290 0.7159 0.7219

XGBoost 0.7404 0.8232 0.7480 0.7333 0.7243 0.7565 0.7360 0.7447

GBM-RF-Xgboost 0.8964 0.9058 0.9196 0.8757 0.8685 0.9242 0.8933 0.8993

*ACC, accuracy; PR, Precision; RE, recall; F1, F1-score.

https://doi.org/10.3389/fpubh.2024.1511689
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ji et al. 10.3389/fpubh.2024.1511689

Frontiers in Public Health 09 frontiersin.org

 1 Data imbalance problem is a very crucial factor in STIs/HIV 
identification tasks, while data resampling techniques may help 
to improve the classification performance of all models. 
However, compared with the combination of over-sampling the 
minor class and under-sampling the primary class, the SMOTE 
method has more advantages in enhancing performance. The 
increased ratio of positive data points enables classifiers to have 
more chances to learn the features of positive samples and 
classify them correctly, which leads to the improvement of the 
classification performance. An inevitable factor contributing to 
machine learning algorithms is the size of the dataset. 
Therefore, even though the combined resampling method 
increases the positive ratio, its reduction of dataset size by 
under-sampling the negative samples limit its application in the 
STIs/HIV identification task. This also explains why the 
SMOTE outperforms the combined method.

 2 The resampling technique generates new data points by 
calculating the relationships among existing data points. 
Therefore, there is little space to generate new data if the minor 
class accounts for an extremely small percentage, which means 
that there is a higher probability that the coordinates of two 
data points generated in different steps may be too close or 
even the same, which leads to a higher overlap between 
training sets and testing sets, and finally limits the 
generalization of models and performance. However, Table 3 
demonstrates that the performance improves sharply when 
SMOTE is applied, though only a little data is generated. The 
performance improvement speed rate decreases with more 
generated data, which is evidence that a higher overlap rate has 
little effect on performance enhancement.

 3 RF and the ensemble GBM-RF-Xgboost model outperform all 
other algorithms in most experiments, except the country-
based k-fold cross-validation, which indicates that both the RF 
and the ensemble model can be  easily influenced by the 
distribution of data.

 4 The distribution of data plays an important role in the STIs/
HIV classification task, which represents the different cultures, 
education levels, economy, attitude of sex, etc. These factors 
may vary from country to country. The comparison between 

experiment 1, experiment 3, and experiment 4 demonstrates 
the simple truth that all models perform much better if data is 
from the same distribution, while totally different distributions 
between training sets and testing sets may heavily decrease the 
classification performance and the reduction of identification 
abilities cannot be enhanced by changing the dataset size or 
ratio among all categories.

Figure  5 shows the comparison of max AUC among recent 
studies on STIs/HIV prediction. Our results, with an AUC reaching 
up to 0.99 for both HIV (Angola, RF) and STI (Ethiopia, RF), are 
considered excellent outcomes in the assessment of diagnostic tests 
in medical applications, as reported by Mandrekar (30). Our 
prediction results also outperform recently reported works (9, 10, 14, 
20, 23, 24) for STI/HIV risk predictions. This may be due to our 
proposed five-step system for analyzing the data to remove missing, 
overlapped, and unimportant features. A five-step data analysis 
process is conducted for data preparation before feeding them to 
machine learning models (GBM, RF, XG Boost, Ensemble learning) 
to reduce the computation time for the model training. The five-step 
system also consists of the imbalanced data-solving part. When 
we applied SMOTE to the experimental data, the highest prediction 
performance was considered outstanding, with an AUC above 0.99 
and an accuracy of 99%. The over-sampled method is applied to the 
minor class based on its distribution in the SMOTE technique. This 
means more data samples of the minor class were created and the 
majority class was kept as its original data. Before building the model, 
data imbalance was solved effectively to train models. Furthermore, 
our data analysis method can be applied to similar problems that use 
Electronic Health Records (EHR) data to predict the outcome of any 
health conditions.

The main intention of this study was to build a model from public 
data that can be used for any individual independent clinic or service. 
The results of our experiment demonstrate excellent potential for 
building a model from multi-country data. The model can be used for 
private stakeholders who are quite often vulnerable. The predictive 
model is not meant to be used to replace clinical judgment by clinical 
health experts in managing and treating STIs/HIV. Instead, it can 
be used as an automated, thereby more efficient, screening tool to 
identify those people at high risk for primary or secondary infection 
with STIs/HIV. It may also help to overcome biases impacting 
judgment among clinicians or overcoming elements of human error 
etc. It also has implications for efficiencies in health service delivery. 
The predictive results can work as a prompt in the decision-making 
process to consider further screening and testing for those in high-risk 
groups, as well as for initiating further actions related to health 
promotion, sexual health education, harm reduction, and linkage to 
supports and services. The STIs/HIV risk prediction model could also 
have relevance for underserved groups who may be less likely to access 
mainstream health services and who may be at greater risk for STIs/
HIV; and lend itself well to alternate modes of delivery of care to 
harder-to-reach groups (E.G., point of care testing, mobile outreach, 
via peer-workers, self-testing).

This research is a demonstration study of gathering a large 
amount of data from multiple countries to build a more 
generalized predictive model. Moreover, our five-step data 
pre-processing plan can make training the model for STIs/HIV 
prediction more efficient.

FIGURE 4

An example of ROC curve (resampling strategy = 1).
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TABLE 4 Detail HIV and STI risk prediction for each country.

Task Country Model ACC AUC PR RE F1

Negative Positive Negative Positive Negative Positive

HIV

Angola

RF 0.9784 0.9982 0.9895 0.9673 0.9679 0.9893 0.9786 0.9782

GBM 0.9659 0.9948 0.9932 0.9405 0.9396 0.9933 0.9657 0.9662

XGBoost 0.9764 0.9960 0.9960 0.9576 0.9576 0.9960 0.9764 0.9764

GBM-RF-Xgboost 0.9823 0.9867 0.9896 0.9750 0.9756 0.9893 0.9825 0.9821

Dominican Republic

RF 0.9645 0.9949 0.9808 0.9479 0.9503 0.9798 0.9653 0.9636

GBM 0.9661 0.9934 0.9839 0.9481 0.9503 0.9832 0.9668 0.9653

XGBoost 0.9661 0.9956 0.9808 0.9510 0.9534 0.9798 0.9669 0.9652

GBM-RF-Xgboost 0.9693 0.9816 0.9779 0.9603 0.9627 0.9764 0.9703 0.9683

Dominican

RF 0.9840 0.9981 0.9918 0.9765 0.9763 0.9918 0.9840 0.9841

GBM 0.9687 0.9945 0.9902 0.9488 0.9470 0.9906 0.9682 0.9692

XGBoost 0.9781 0.9967 0.9917 0.9651 0.9645 0.9918 0.9779 0.9783

GBM-RF-Xgboost 0.9840 0.9897 0.9918 0.9765 0.9763 0.9918 0.9840 0.9841

Ethiopia

RF 0.9841 0.9982 0.9950 0.9737 0.9734 0.9950 0.9840 0.9842

GBM 0.9725 0.9941 0.9898 0.9562 0.9551 0.9901 0.9722 0.9729

XGBoost 0.9810 0.9951 0.9964 0.9663 0.9656 0.9965 0.9808 0.9812

GBM-RF-Xgboost 0.9841 0.9882 0.9950 0.9737 0.9734 0.9950 0.9840 0.9842

Guinea

RF 0.9880 0.9994 0.9930 0.9828 0.9838 0.9925 0.9884 0.9876

GBM 0.9832 0.9964 0.9906 0.9755 0.9769 0.9900 0.9837 0.9827

XGBoost 0.9856 0.9974 0.9953 0.9756 0.9769 0.9950 0.9860 0.9852

GBM-RF-Xgboost 0.9856 0.9928 0.9930 0.9779 0.9792 0.9925 0.9860 0.9852

Haiti

RF 0.9671 0.9939 0.9838 0.9514 0.9501 0.9843 0.9667 0.9675

GBM 0.8996 0.9653 0.9271 0.8752 0.8683 0.9312 0.8967 0.9023

XGBoost 0.9397 0.9830 0.9692 0.9134 0.9087 0.9709 0.9380 0.9413

GBM-RF-Xgboost 0.9671 0.9740 0.9838 0.9514 0.9501 0.9843 0.9667 0.9675

India

RF 0.9919 0.9985 0.9970 0.9868 0.9869 0.9970 0.9920 0.9919

GBM 0.9501 0.9883 0.9711 0.9305 0.9287 0.9718 0.9494 0.9507

XGBoost 0.9753 0.9958 0.9915 0.9597 0.9592 0.9917 0.9751 0.9754

GBM-RF-Xgboost 0.9919 0.9936 0.9970 0.9868 0.9869 0.9970 0.9920 0.9919

Cameroon RF 0.9674 0.9951 0.9912 0.9453 0.9442 0.9913 0.9671 0.9678

GBM 0.9546 0.9868 0.9811 0.9303 0.9284 0.9816 0.9540 0.9552

XGBoost 0.9605 0.9917 0.9834 0.9390 0.9379 0.9838 0.9601 0.9609

GBM-RF-Xgboost 0.9674 0.9813 0.9912 0.9453 0.9442 0.9913 0.9671 0.9678

(Continued)
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Task Country Model ACC AUC PR RE F1

Negative Positive Negative Positive Negative Positive

STI Angola RF 0.9007 0.9657 0.9235 0.8797 0.8759 0.9260 0.8991 0.9023

GBM 0.8746 0.9446 0.9028 0.8495 0.8424 0.9075 0.8716 0.8776

XGBoost 0.8859 0.9554 0.9063 0.8670 0.8633 0.9090 0.8843 0.8875

GBM-RF-Xgboost 0.9007 0.9292 0.9235 0.8797 0.8759 0.9260 0.8991 0.9023

Dominican Republic RF 0.9643 0.9939 0.9843 0.9428 0.9486 0.9825 0.9662 0.9622

GBM 0.9513 0.9920 0.9839 0.9180 0.9245 0.9825 0.9533 0.9492

XGBoost 0.9594 0.9923 0.9811 0.9362 0.9426 0.9789 0.9615 0.9571

GBM-RF-Xgboost 0.9675 0.9801 0.9814 0.9522 0.9577 0.9789 0.9694 0.9654

Dominican RF 0.9673 0.9946 0.9809 0.9547 0.9526 0.9817 0.9665 0.9680

GBM 0.9194 0.9750 0.9504 0.8929 0.8835 0.9547 0.9157 0.9227

XGBoost 0.9448 0.9872 0.9677 0.9244 0.9193 0.9698 0.9429 0.9466

GBM-RF-Xgboost 0.9673 0.9772 0.9809 0.9547 0.9526 0.9817 0.9665 0.9680

Ethiopia RF 0.9675 0.9952 0.9838 0.9520 0.9510 0.9842 0.9671 0.9678

GBM 0.9318 0.9768 0.9579 0.9082 0.9041 0.9597 0.9302 0.9332

XGBoost 0.9536 0.9899 0.9733 0.9351 0.9332 0.9741 0.9529 0.9542

GBM-RF-Xgboost 0.9675 0.9813 0.9838 0.9520 0.9510 0.9842 0.9671 0.9678

Guinea RF 0.8758 0.9386 0.8854 0.8655 0.8763 0.8754 0.8808 0.8704

GBM 0.8502 0.9354 0.8616 0.8380 0.8505 0.8499 0.8560 0.8439

XGBoost 0.8610 0.9395 0.8800 0.8415 0.8505 0.8725 0.8650 0.8567

GBM-RF-Xgboost 0.8758 0.9122 0.8854 0.8655 0.8763 0.8754 0.8808 0.8704

Haiti RF 0.8900 0.9542 0.9070 0.8736 0.8743 0.9065 0.8903 0.8897

GBM 0.7733 0.8590 0.7835 0.7630 0.7680 0.7787 0.7757 0.7708

XGBoost 0.8146 0.8963 0.8333 0.7968 0.7961 0.8340 0.8143 0.8150

GBM-RF-Xgboost 0.8900 0.9069 0.9070 0.8736 0.8743 0.9065 0.8903 0.8897

India RF 0.8912 0.9529 0.9184 0.8669 0.8609 0.9221 0.8887 0.8936

GBM 0.7271 0.8013 0.7338 0.7205 0.7203 0.7340 0.7270 0.7272

XGBoost 0.7513 0.8327 0.7612 0.7419 0.7389 0.7640 0.7499 0.7528

GBM-RF-Xgboost 0.8912 0.9056 0.9184 0.8669 0.8609 0.9221 0.8887 0.8936

Cameroon RF 0.8714 0.9477 0.8774 0.8658 0.8598 0.8828 0.8685 0.8742

GBM 0.8371 0.9089 0.8407 0.8337 0.8269 0.8471 0.8337 0.8404

XGBoost 0.8610 0.9261 0.8640 0.8581 0.8528 0.8690 0.8583 0.8635

GBM-RF-Xgboost 0.8714 0.9028 0.8774 0.8658 0.8598 0.8828 0.8685 0.8685

*ACC, accuracy; PR, Precision; RE, recall; F1, F1-score.

TABLE 4 (Continued)
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There are some limitations in the proposed approach, which are 
mainly related to the datasets used to build the model. (1) Although 
the DHS data source is comprehensive and includes data from 90 
countries, the data used in this study was limited to the selected Asian 
and African countries because public data was not available from the 
other countries on STIs/HIV status or related behaviors. This may 
have implications of lower accuracy for STIs/HIV prediction in 
Western countries or higher-income countries. Future research can 
refine the model and may see further improvements to the global 
model if and when more data becomes available from all continents. 
(2) The data collection consistency in time also limits its application. 
In this study, only data collected in recent years is discussed. However, 
human behaviors may change heavily as time passes, which means 

that a current acceptable model in a specific place may 
be dysfunctional in the future or in a different place. A more flexible 
and robust model considering time factor is worth exploring. (3) 
Underreporting in self-assessments or self-reported surveys on 
sensitive and personal topics such as STIs/HIV status is common 
(31). A US study of 165,828 outpatient visits (32), found that people 
tended to conceal their interest in HIV testing when presenting to the 
clinic, despite that this may have been their primary reason for 
attending. Since most data features or attributes from the primary 
data sets are obtained from self-reported information provided by 
clients. (4) This study only considered variables which are classic and 
well-recognized in STI research, while some variables that are 
currently relevant, particularly those sensitive to specific policies 

TABLE 5 Country-based 8-fold leave-one-out cross-validation (HIV).

Fold Model ACC AUC PR RE F1

Negative Positive Negative Positive Negative Positive

#1

RF 0.6601 0.7797 0.6032 0.8568 0.9358 0.3844 0.7335 0.5307

GBM 0.7587 0.8506 0.7875 0.7350 0.7084 0.8089 0.7459 0.7702

XGBoost 0.7492 0.8338 0.7338 0.7668 0.7821 0.7163 0.7572 0.7407

GBM-RF-Xgboost 0.6601 0.7979 0.6032 0.8568 0.9358 0.3844 0.7335 0.5307

#2

RF 0.5356 0.6640 0.5186 0.8986 0.9909 0.0802 0.6809 0.1473

GBM 0.6426 0.7786 0.5882 0.8718 0.9508 0.3344 0.7268 0.4834

XGBoost 0.6488 0.7293 0.5927 0.8758 0.9508 0.3467 0.7303 0.4968

GBM-RF-Xgboost 0.5356 0.6631 0.5186 0.8986 0.9909 0.0802 0.6809 0.1473

#3

RF 0.5982 0.8212 0.5584 0.8105 0.9401 0.2564 0.7006 0.3896

GBM 0.7591 0.8468 0.7902 0.7340 0.7055 0.8126 0.7454 0.7713

XGBoost 0.7464 0.8173 0.7260 0.7709 0.7916 0.7013 0.7574 0.7344

GBM-RF-Xgboost 0.5982 0.7864 0.5584 0.8105 0.9401 0.2564 0.7006 0.3896

#4

RF 0.5342 0.7141 0.5179 0.8680 0.9877 0.0806 0.6795 0.1475

GBM 0.6529 0.7748 0.5995 0.8302 0.9214 0.3845 0.7264 0.5256

XGBoost 0.6157 0.7566 0.5700 0.8332 0.9421 0.2894 0.7103 0.4295

GBM-RF-Xgboost 0.5342 0.6601 0.5179 0.8680 0.9877 0.0806 0.6795 0.1475

#5

RF 0.6236 0.8241 0.5721 0.9313 0.9803 0.2668 0.7225 0.4148

GBM 0.8472 0.9026 0.8326 0.8630 0.8690 0.8253 0.8504 0.8438

XGBoost 0.8033 0.8924 0.7508 0.8835 0.9079 0.6987 0.8219 0.7803

GBM-RF-Xgboost 0.6236 0.8617 0.5721 0.9313 0.9803 0.2668 0.7225 0.4148

#6

RF 0.5468 0.7358 0.5251 0.8376 0.9775 0.1160 0.6832 0.2038

GBM 0.6884 0.7771 0.6370 0.8014 0.8758 0.5010 0.7376 0.6165

XGBoost 0.6415 0.7448 0.5935 0.7913 0.8986 0.3845 0.7148 0.5175

GBM-RF-Xgboost 0.5468 0.6916 0.5251 0.8376 0.9775 0.1160 0.6832 0.2038

#7

RF 0.5518 0.7518 0.5281 0.8301 0.9734 0.1302 0.6847 0.2250

GBM 0.6845 0.7926 0.6266 0.8394 0.9127 0.4562 0.7431 0.5911

XGBoost 0.6486 0.7497 0.5955 0.8349 0.8267 0.3706 0.7251 0.5133

GBM-RF-Xgboost 0.5518 0.6899 0.5281 0.8301 0.9734 0.1302 0.6847 0.2250

#8 RF 0.5603 0.7417 0.5331 0.8441 0.9727 0.1480 0.6887 0.2518

GBM 0.7154 0.8142 0.6724 0.7871 0.8403 0.5905 0.7470 0.6748

XGBoost 0.6890 0.7965 0.6363 0.8084 0.8826 0.4955 0.7395 0.6144

GBM-RF-Xgboost 0.5603 0.7290 0.5331 0.8441 0.9727 0.1480 0.6887 0.2518

*ACC, accuracy; PR, Precision; RE, recall; F1, F1-score.
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aimed at reducing STI infections in populations such as men who 
have sex with men, were not included in this study.

In the initial stages, concealing or under-reporting stigmatized, 
high-risk behaviors due to fear of stigma or discrimination regarding 
STIs/HIV testing, diagnosis, and treatment-seeking could introduce 
data uncertainty issues, resulting in lower accuracy of a model or less 
reliable analysis. Third, the datasets used in this study only consisted 
of data from men, as that was our target population. Therefore, the 
trained model reported in this paper may not work for other 
population groups, such as adolescents and women, in terms of STIs/
HIV risk prediction. Other more nuanced behaviors of subgroup 
populations, if not included in the model, may also have limited 

applicability, such as the impact of alcohol and other substance use or 
abuse on STIs/HIV risk or the role of social networks in STIs/
HIV transmission.

Despite the limitation of not considering specific risk factors and 
behaviors unique to the population of men who have sex with men, 
our framework for building a suitable predictive model for any 
population remains reliable and dependable. It allows for a systematic 
and step-by-step approach to develop and validate a universal model 
that can accurately predict STIs/HIV risk. Future studies could include 
data from other population groups, such as adolescents or women, to 
further improve the model’s accuracy and applicability to a wider 
range of individuals.

TABLE 6 Ratio-based 8-fold leave-one-out cross-validation (HIV).

Fold Model ACC AUC PR RE F1

Negative Positive Negative Positive Negative Positive

#1

RF 0.9786 0.9963 0.9889 0.9683 0.9688 0.9887 0.9787 0.9784

GBM 0.8812 0.9505 0.9029 0.8609 0.8592 0.9041 0.8805 0.8820

XGBoost 0.9149 0.9713 0.9420 0.8899 0.8874 0.9434 0.9139 0.9158

GBM-RF-Xgboost 0.9786 0.9836 0.9889 0.9683 0.9688 0.9887 0.9787 0.9784

#2

RF 0.9789 0.9961 0.9880 0.9702 0.9693 0.9883 0.9786 0.9792

GBM 0.8776 0.9499 0.8944 0.8623 0.8548 0.9001 0.8742 0.8808

XGBoost 0.9155 0.9712 0.9370 0.8962 0.8900 0.9408 0.9129 0.9180

GBM-RF-Xgboost 0.9789 0.9828 0.9880 0.9702 0.9693 0.9883 0.9786 0.9792

#3

RF 0.9773 0.9955 0.9874 0.9676 0.9670 0.9876 0.9771 0.9775

GBM 0.8789 0.9482 0.8965 0.8627 0.8570 0.9008 0.8763 0.8814

XGBoost 0.9140 0.9701 0.9363 0.8938 0.8887 0.9394 0.9119 0.9161

GBM-RF-Xgboost 0.9773 0.9816 0.9874 0.9676 0.9670 0.9876 0.9771 0.9775

#4

RF 0.9804 0.9965 0.9888 0.9723 0.9720 0.9889 0.9803 0.9805

GBM 0.8792 0.9485 0.8951 0.8644 0.8599 0.8986 0.8772 0.8811

XGBoost 0.9132 0.9719 0.9328 0.8951 0.8911 0.9354 0.9115 0.9148

GBM-RF-Xgboost 0.9804 0.9842 0.9888 0.9723 0.9720 0.9889 0.9803 0.9805

#5

RF 0.9800 0.9961 0.9875 0.9727 0.9721 0.9877 0.9797 0.9802

GBM 0.8763 0.9474 0.8913 0.8625 0.8560 0.8964 0.8733 0.8791

XGBoost 0.9144 0.9704 0.9359 0.8951 0.8891 0.9395 0.9119 0.9168

GBM-RF-Xgboost 0.9800 0.9829 0.9875 0.9727 0.9721 0.9877 0.9797 0.9802

#6

RF 0.9798 0.9962 0.9862 0.9736 0.9731 0.9864 0.9796 0.9800

GBM 0.8792 0.9510 0.8946 0.8650 0.8590 0.8992 0.8764 0.8818

XGBoost 0.9166 0.9730 0.9374 0.8979 0.8925 0.9407 0.9144 0.9188

GBM-RF-Xgboost 0.9798 0.9845 0.9862 0.9736 0.9731 0.9864 0.9796 0.9800

#7

RF 0.9800 0.9969 0.9879 0.9725 0.9715 0.9883 0.9796 0.9804

GBM 0.8811 0.9503 0.8993 0.8649 0.8555 0.9062 0.8769 0.8850

XGBoost 0.9150 0.9708 0.9396 0.8935 0.8852 0.9442 0.9116 0.9182

GBM-RF-Xgboost 0.9800 0.9839 0.9879 0.9725 0.9715 0.9883 0.9796 0.9804

#8 RF 0.9788 0.9956 0.9861 0.9719 0.9713 0.9863 0.9786 0.9790

GBM 0.8812 0.9506 0.9003 0.8639 0.8568 0.9055 0.8780 0.8842

XGBoost 0.9163 0.9707 0.9370 0.8975 0.8922 0.9402 0.9141 0.9184

GBM-RF-Xgboost 0.9788 0.9829 0.9861 0.9719 0.9713 0.9863 0.9786 0.9790

*ACC, accuracy; PR, Precision; RE, recall; F1, F1-score.
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5 Conclusion

HIV and STIs continue to pose significant global public 
health challenges. While emerging machine learning methods 
have shown effectiveness in predicting the risk of STIs/HIV 
compared to traditional multivariable logistic regression-based 
approaches, they also come with their own set of challenges. A 
universal prediction model can streamline individual client risk 
prediction in local clinics and health services by eliminating the 
need to collect and store large datasets at the local level. 
We propose a universal prediction model and demonstrate the 
development and validation of a highly accurate STIs/HIV 
prediction model using publicly available data. This proposed 
model cannot only be integrated as a useful and efficient tool for 
enhancing the performance of predicting the risk of having an 
STI/HIV for affected individuals but also provides an effective 
strategy to identify individuals at high risk for HIV in different 
environments. Observed performance also indicates the need for 
building digital platforms to identify STI/HIV patients, which 
leads to the effective reallocation of medical resources and cost 
savings from management in policy.
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