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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that primarily affects memory, thinking, 
and behavior, leading to dementia, a severe cognitive decline. While no cure currently exists, recent advancements 
in preventive drug trials and therapeutic management have increased interest in developing clinical algorithms 
for early detection and biomarker identification. Electroencephalography (EEG) is noninvasive, cost-effective, 
and has high temporal resolution, making it a promising tool for automated AD detection. However, conventional 
machine learning approaches often fall short in accurately detecting AD due to their limited architectures. We 
also need to investigate the impact of EEG signal segment length on classification accuracy. To address these issues, 
a deep learning-based framework is proposed to detect AD using EEG data, focusing on determining the optimal 
segment length for classification. This framework contains EEG data collection, pre-processing for noise removal, tem-
poral segmentation, convolutional neural network (CNN) model training and classification, and finally, evaluation. We 
have tested different segment lengths to test the impact on AD detection. We have used both 10-fold and leave-one-
out cross-validation techniques and obtained accuracy of 97.08% and 96.90%, respectively, on a publicly available 
dataset from AHEPA General University Hospital of Thessaloniki. We have also tested the generalizability of the pro-
posed model by testing it to detect frontotemporal dementia and obtained better results than existing studies. Fur-
thermore, we have validated our proposed CNN model using several ablation studies and layer-wise extracted feature 
visualization. This study will establish a pioneering direction for future researchers and technology experts in the field 
of neurodiseases.
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1 Introduction
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder that primarily affects cognitive func-
tions, memory, and behavior [1]. It is the most common 
cause of dementia among older adults [1, 2]. Early 
symptoms of AD often include difficulty remember-
ing recent events, names, or conversations, and in later 
stages, individuals may experience confusion, mood 
swings, language problems, and challenges in perform-
ing daily activities [3]. According to the World Health 
Organisation (WHO), more than 55 million people 
suffer from dementia worldwide, with 10 million new 
cases every year; AD is the most common cause of 
dementia and may contribute to 60?70% of cases. Pres-
ently, dementia ranks as the seventh most common 
cause of death and stands as a significant contributor to 
disability and dependence among the elderly worldwide 
[4]. In the year 2020, more than 50 million cases of 
dementia were reported [5, 6]. Projections suggest that 
the number of AD patients is expected to increase to 75 
million by the year 2030 and further to 131 million by 
2050 [5, 7]. As of now, AD lacks a cure, and the exist-
ing treatments offer only limited relief from symptoms 
[8]. Nevertheless, the early detection of the disease may 
contribute to slowing its progression and enhancing the 
quality of life for both patients and their caregivers [9].

Early diagnosis of neurodegenerative disorders such 
as AD or Frontotemporal dementia (FTD) is crucial for 
effective therapy selection and improving the quality of 
life for patients and their caregivers. The challenge lies in 
distinguishing AD symptoms from normal aging [10, 11]. 
Currently, examining brain tissue through biopsy remains 
the gold standard for precise diagnosis, while noninvasive 
techniques are still being explored. Tests like psychological 
assessments, brain imaging, and neuronal signal record-
ing aid in the diagnostic process [12, 13]. Despite recent 
proposals to combine tests, challenges such as unclear 
correlations and high costs persist [14, 15]. Electroenceph-
alography (EEG) stands out as a promising, affordable, 
non-invasive, and widely available technique [16–21]

EEG records the electrical potential resulting from 
neurons’ physiological activities [22–25]. Scalp elec-
trodes detect waves created by electric currents during 
cell depolarization, representing neuronal firing. EEG 
analysis is typically performed visually by a trained 
neurologist, but it’s challenging due to signal artifacts 
and also time-consuming, subjective, costly, and error-
prone [6, 26]. The complex, non-linear dynamics of 
neural activities demand sophisticated methods for 
accurate measurement and higher sensitivity than vis-
ual analysis provides.

In recent decades, several AD prediction methods 
leveraging EEG signals have been introduced. Broadly, 

those research works can be divided into two categories 
based on the applied approaches: (i) traditional machine 
learning (ML)-based classification approaches and (ii) 
state-of-the-art deep learning (DL)-based classification 
approaches. Conventional ML techniques have found 
extensive use in predicting neurological disorders using 
EEG signals, particularly for AD. Abásolo et al. [27] used 
spectral entropy (SpecEn) and sample entropy (SampEn) 
with statistical analysis to differentiate between AD and 
HC on a dataset of 22 subjects (11 AD patients and 11 
age-matched HCs) and obtained an accuracy of 77.27%. 
Escudero et al. used multiscale entropy (MSE) with sta-
tistical analysis on the same dataset and achieved an 
accuracy of 90.91% [28]. The authors of [29] used fuzzy 
entropy on the same AD dataset and obtained an accu-
racy of 86.36%.

Puri et  al. [30] used a tunable Q-wavelet transform 
(TQWT) to decompose the EEG signal into nine dif-
ferent sub-bands. Then they extracted four features 
from each sub-band named Katz?s fractal dimension, 
Tsallis entropy, Relyi?s entropy, and kurtosis and used 
those extracted features to train and test support vec-
tor machine (SVM), k-nearest neighbor (kNN), ensem-
ble bagged tree (EBT), decision tree, and neural network 
for detecting AD patients from HC subjects. Using 
10-fold CV on a dataset of 12 AD and 11 HC subjects, 
they obtained an accuracy of 96.20%. The same authors 
in their other study [31] used empirical mode analysis to 
generate nine intrinsic mode functions (IMF), and then 
ten different featurs were extracted from those IMFs. 
They selected three Hjorth parameters from those ten 
features using the Kruskal-Wallis test. Finally, a least-
square support vector machine (LS-SVM) is used with a 
10-fold CV to validate the proposed model, and a maxi-
mum of 92.90% accuracy was obtained. In their another 
study [32], Puri et al. extracted spectral entropy (SpecE) 
and Kolmogorov complexity (KC) feature sets from the 
same 23 subject dataset, and using an SVM classifier, 
they received an accuracy of 95.6% with a 10-fold CV. In 
the study [33], the authors have used several spectral fea-
tures to classify AD from healthy control (HC) subjects. 
They used regularized linear discriminant analysis to 
classify the extracted features. Using 10-fold cross valida-
tion (CV) on a dataset of 228 subjects (114 AD, 114 HC), 
they achieved an accuracy of 67%.

While ML methods have proven effective in identifying 
AD-onset signals from EEG data, it’s important to recog-
nize their dependence on labor-intensive pre-processing 
steps [19, 24]. These methods require explicit feature 
engineering, where human experts select and define the 
relevant features for the task. In traditional ML, feature 
engineering is a critical step where domain knowledge is 
applied to select and transform the most relevant features 
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for the problem. This step can be time-consuming and 
requires expertise [19, 24]. This poses a substantial hur-
dle for early clinical AD screening, where accuracy 
and adaptability to diverse environments are pivotal 
considerations.

On the other hand, deep learning is widely acknowl-
edged for its proficiency in extracting intricate insights 
from diverse datasets [20, 34–37]. In recent times, there 
has been a growing emphasis on harnessing DL meth-
odologies to handle and analyze EEG signals in the 
context of neurological disorders like AD and FTD due 
to its automated feature extraction and representation 
learning technique [20, 38, 39] Moreover, DL can cap-
ture complex patterns and features directly from raw 
data, reducing the need for manual feature engineering 
[19, 20]. Morabito et  al. [40] converted the EEG signal 
into 2D RGB images using a Mexican Hat-based Con-
tinuous Wavelet Transform (CWT). Then those images 
are used to train and classify using a custom CNN 
model on a dataset of 46 subjects (23 AD, 23 HC). Their 
proposed model achieved an accuracy of 85% in classi-
fying AD from HC subjects. Ferri et  al. [41] proposed 
artificial neural networks (ANNs) with stacked autoen-
coders to classify AD from HC using resting state EEG 
data. Using a dataset of 89 AD and 45 HC subjects, 
they achieved an accuracy of 80%. Ieracitano et al. [42] 
used power spectral density (PSD) to represent the EEG 
signal into 2D grayscale images. Then they used a cus-
tomized CNN to perform a classification task on those 
images. Using a dataset of 126 subjects (63 AD, 63 HC), 
they achieved an accuracy of 92.95%. Alessandrini et al. 
[43] used a recurrent neural network (RNN) to classify 
AD from HC. Using a dataset of 35 subjects (20 AD, 15 
HC), they achieved an accuracy of 79.3%. Miltiadous 
et  al. [5] proposed a Dual-Input Convolution Encoder 
Network (DICE-net) for AD EEG data classification. 
DICE-net consists of convolution, transformer encoder, 
and feed-forward layers, which are used to classify the 
band power and coherence features extracted from the 
denoised signal data. Using a dataset of 88 subjects (36 
AD, 23 FTD, and 29 HC), they achieved an accuracy 
of 83.28% for AD vs. HC classification for Leave-One-
Out-validation (LOOV) and 74.96% for FTD vs. HC 
classification. Chen et al. [38] introduced a two-branch 
network architecture, comprising CNN and visual 
transformers (ViTs), to classify EEG data for AD and 
FTD detection. Using the same dataset as the authors 
[5], they achieved an accuracy of 87.33% and 82.98% 
for the classification of AD vs. HC and FTD vs. HC, 
respectively.

Although some research has been done using DL-
based methods for AD classification, it is not enough 
and has scope to improve in terms of accuracy and 

performance. Moreover, most of the DL-based meth-
ods extracted handcrafted features to feed into the DL 
models, which is why those methods have not fully used 
the power of feature extraction by the DL models them-
selves. Moreover, we require more precise and effective 
diagnostic tools based on deep learning, which can har-
ness the wealth of information available in EEG record-
ings. Moreover, There is no consensus on the optimal 
epoch duration for segmenting EEG signals, lead-
ing to variability across research studies [5, 20, 27–29, 
38–40, 44]. Typically, the EEG window length is chosen 
between 5 to 12 s, either arbitrarily or based on previ-
ous literature [44]. The aim of this study is to fill these 
gaps by using DL-based models on the raw EEG data for 
AD classification and find an optimal segment length 
for classification.

In this study, we have developed a DL-based CNN 
model to perform the classification of AD in HC sub-
jects using EEG data. At first, EEG data is pre-processed 
for noise removal using different techniques and then 
the signals are segmented into small and different time 
frames to check the impact of the segment length. After 
that, a DL-based CNN is trained, and a classification 
process is carried out for AD vs. HC. We have used both 
10-fold and leave-one-out cross-validation (CV) tech-
niques to validate the proposed model. To check the gen-
eralizability of the proposed model, we have also used the 
proposed model to perform classification between FTD 
and HC subjects. Finally, the classification performance 
of the CNN model on different segment lengths is com-
pared to find out the impact of the segment length in the 
classification process.

The major contributions of this research are listed 
below: 

1. A novel framework is designed to identify the impact 
of segmentation on the identification of AD and FTD 
from HC subjects.

2. A novel DL-based CNN model is developed for the 
classification of both AD and FTD.

3. Explore the performance using different evaluation 
techniques.

4. Increase classification performance over existing 
approaches using the same dataset.

2  Methodology and materials
The proposed methods consists of four steps: EEG data 
collection, data pre-processing for noise removal, data 
segmentation, CNN model training and classification. 
Figure 1 gives an overview of the proposed framework. A 
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detailed discussion of the above mentioned four steps is 
given in the below subsections.

2.1  EEG data collection
Here, we have used the publicly available EEG data-
set of the research study [5]. It contains EEG record-
ings from 88 participants from the Department of 
Neurology of AHEPA General University Hospital of 
Thessaloniki. The participants were divided into three 
groups: Alzheimer’s disease (AD), Frontotemporal 
Dementia (FTD), and cognitively normal (CN). Cog-
nitive and neuropsychological states were assessed 
using the Mini-Mental State Examination (MMSE), 
where lower scores indicated greater cognitive decline. 
The AD group consisted of 36 participants (13 males, 
23 female; mean age 66.4±7.9) with an average MMSE 
score of 17.75. The FTD group included 23 participants 
(14 males, 9 female; mean age 63.6±8.2) with an aver-
age MMSE score of 22.17. The CN group comprised 29 
participants (11 males, 18 female; mean age 67.9±5.4) 
with a perfect MMSE score of 30. The median duration 
of the disease was 25 months.

EEG data was recorded from 19 electrode channels 
(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, 
Pz, P4, T6, O1, and O2) according to the 10–20 interna-
tional system with two reference electrodes (A1 and A2). 
Eye closed, resting state EEG data was recorded using a 
sampling frequency of 500 Hz. Recordings lasted about 

13.5 min for AD group (range: 5.1 to 21.3), 12 min for 
FTD group (range: 7.9 to 16.9), and 13.8 min for CN 
group (range: 12.5 to 16.5).

The dataset is publicly available online, and each partici-
pant freely consented to the publication of the data when 
it was gathered. Since the published data don’t contain any 
information that may be used to identify the respondents 
or jeopardise their confidentiality, no ethical approval was 
required for our study.

2.2  Data pre‑processing for noise removal
The EEG signal pre-processing consists of several steps. 
Initially, a Butterworth band-pass filter is used to allow sig-
nals within a specific frequency range (in this case, between 
0.5 Hz and 45 Hz) to pass through while attenuating signals 
outside this range. The Butterworth filter is known for its 
flat frequency response within the passband. The transfer 
function H(s) for a Butterworth filter is expressed as:

where N is the order of the filter, ωc is cut-off frequency 
and s is complex frequency (Laplace variable). For a 
band-pass filter, the design combines both low-pass 
and high-pass Butterworth filters. The band-pass filter’s 
response is derived using:

(1)H(s) =
1

1+

(

s
ωc

)2N

Fig. 1 Schematic illustration of the proposed framework and steps involved in the analysis
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where ωL = 2π fL is lower cut-off angular frequency 
(corresponding to 0.5 Hz), ωH = 2π fH is higher cut-off 
angular frequency (corresponding to 45 Hz). The filter 
coefficients depend on the filter order (N) and the design 
specifications. The signals are then re-referenced to 
A1-A2.

Subsequently, the artifact subspace reconstruction 
(ASR) [45] routine was employed, a method designed to 
eliminate transient or high-amplitude artefacts [46], by 
discarding data periods with a standard deviation greater 
than 17 within a 0.5-second window. It operates by iden-
tifying and reconstructing artifact components in the 
signal’s subspace. The mathematical foundation of ASR 
involves the following steps:

• Covariance Matrix Estimation: A robust covariance 
matrix (C) is computed from clean EEG data seg-
ments. This matrix represents the statistical proper-
ties of the clean data. 

 where xi is clean EEG data sample and N is number 
of samples.

• Artifact Detection: The algorithm identifies artifact 
components by comparing the variance of incoming 
EEG data against a threshold derived from the clean 
data covariance matrix. Principal Component Analy-
sis (PCA) is often used to decompose the signal into 
components. 

 where α is a scaling factor.
• Reconstruction: The artifact components are recon-

structed using the clean covariance matrix. The 
reconstruction ensures that the signal remains within 
the statistical boundaries of clean EEG data. 

 where x is original EEG data and xreconstructed is arti-
fact-corrected EEG data.

The Independent Component Analysis (ICA) method 
(using the RunICA algorithm) was then used to trans-
form the 19 EEG signals into 19 ICA components. ICA 
components identified as “eye artifacts” or “jaw artifacts” 
by the automated classification routine “ICLabel” in the 
EEGLAB platform [47] were automatically removed. 
Details of those steps are given below:

(2)H(s) =
ωH · s

(

s2 + ωL · s + ω2
L

)(

s2 + ωH · s + ω2
H

)

(3)C =
1

N

∑

i=1

T

(4)
Variance Threshold = α · Variance of Clean Data

(5)xreconstructed = C−1
· x

• Transforming EEG Signals into ICA Components: 
Given the EEG data matrix X, where each row rep-
resents an EEG channel and each column represents 
time samples, ICA decomposes X into: 

 where X ∈ R
n×T is the observed EEG signals (19 

channels in this case), A ∈ R
n×n is the mixing matrix, 

S ∈ R
n×T is the source matrix (independent compo-

nents), n is the number of channels (19 here), and T 
is the number of time samples. Using the RunICA 
algorithm, the unmixing matrix W is estimated such 
that: 

 where W is the inverse of A.
• Identifying Artifact Components: The ICLabel plugin 

in the EEGLAB platform is an automated classifica-
tion tool that labels the ICA components (S) based on 
their spatial and temporal characteristics. It assigns 
each component a probability of being: Brain activity, 
Eye artifacts (e.g., blinks or saccades), Jaw artifacts 
(e.g., muscle movements), Other noise sources. Com-
ponents classified as “eye artifacts” or “jaw artifacts” 
with a probability exceeding a predefined threshold 
are flagged for removal.

• Reconstructing Clean EEG Signals: Once the artifact 
components are identified, they are excluded from 
the reconstruction process. Let Sclean represent the 
source matrix after removing artifact components. 
The clean EEG signals Xclean are reconstructed as: 

 where Sclean only includes the components classified 
as brain activity or other non-artifact sources. This 
process effectively removes artifacts while preserving 
the integrity of the neural signals.

Finally, the signal is resampled to 256 Hz since it is com-
monly used sampling frequency for EEG data and is 
computationally less costly than high-frequency bands 
[48].

2.3  Segmentation of the EEG signals
EEG data segmentation is a fundamental step in EEG 
signal processing that enables researchers to analyze, 
interpret, and extract meaningful information from 
EEG recordings by breaking them into manageable, 
contextually relevant segments [15, 19, 49]. Further-
more, the lack of data is a significant issue for deep 
learning-based EEG signal processing systems. To 
address this issue, researchers frequently use the seg-
mentation technique.

(6)X = A · S

(7)S = W · X

(8)Xclean = A · Sclean
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This method increases the data sample size while 
maintaining an equal ratio by dividing the original EEG 
data into brief, useful pieces and giving them the same 
level as the original signal [14, 15, 19, 20, 23, 49, 50]. In 
this study, we have segmented the filtered signals into 
seven different time segments to check the effect of the 
segment length on the classification process. Here, we 
have tried six non-overlapping segment lengths: five 
seconds (5 s), ten seconds (10 s), fifteen seconds (15 s), 
twenty seconds (20 s), twenty-five seconds (25 s), thirty 
seconds (30 s), and one overlapping segment length: a 
thirty-second segment with a fifteen-second overlap (30 
s+ol). The overlapping segmentation is tested to com-
pare the performance of the proposed model with the 
study [5] that has published this dataset.

2.4  Proposed model for feature extraction 
and classification

In this study, we have designed a DL-based CNN model 
to perform classification of the signal segments. CNN, 
a widely recognized deep learning model, has proven to 
be highly effective in classification tasks. It achieves this 
by autonomously identifying relevant features and cat-
egorizing data into multiple classes [51]. Architectures 
based on CNN models consist of multiple convolution 
layers, allowing them to acquire both low-level features 
and high-level features, as well as semantic representa-
tions [51]. The acquisition of hierarchical representa-
tions aids CNNs in grasping intricate data patterns [52].

The convolutional layer is a key component in CNNs, 
pivotal for its ability to analyze and extract essential fea-
tures from input data. This layer plays a fundamental 
role in tasks such as image recognition, object detec-
tion, and various other classification applications [24, 
52].

In the context of a CNN, the convolutional layer per-
forms a convolution operation, where a set of learnable 
filters, also known as kernels, scan across the input data. 
These filters systematically slide over the input, captur-
ing local patterns and relationships. The result of this 
convolution is a set of feature maps that represent dif-
ferent aspects of the input data [51]. Each filter in the 
convolutional layer has learnable parameters that are 
adjusted during the training process through back-
propagation. This enables the network to adapt and 
recognize hierarchical features in the data, ultimately 
contributing to its ability to understand and classify com-
plex patterns [51, 52].

The intrinsic functioning of the convolutional layer, char-
acterized by a spatial filter dimension denoted as M × N  
and encompassing C channels, can be articulated as follows 
(equation 9):

In this context, Yi,j,k represents the value situated at the 
ith row, jth column, and kth channel of the output feature 
map. Similarly, Xi+m−1,j+n−1,c denotes the value located 
at the (i +m− 1)th row, (j + n− 1)th column, and cth 
channel of the input feature map. The weight Wm,n,c,k 
pertains to the specific weight associated with the mth 
row, nth column, cth channel of the filter pertaining to 
the kth channel of the output feature map. The term bk 
signifies the bias term corresponding to the kth channel 
of the output feature map. The activation function f(.) is 
subsequently applied to the element-wise sum of these 
components.

The equation  9 calculates the dot product between 
the filter weights W and the corresponding region of 
the input feature map X. This result is then aggregated 
with the bias term b, and the activation function f(.) is 
introduced to instill non-linearity in the computation.

To do the classification task on the generated signal 
segments, we have developed a CNN model. The model 
contains six convolution (Conv) layers, three max pool-
ing layers, four dropout layers, two dense layers, and a 
classification layer. The model can be broken down into 
four blocks, among which the first three have two Conv 
layers, followed by a max pooling layer and a dropout 
layer. The last block has two dense layers and a classifi-
cation layer. In the first block, two Conv layers have 16 
filters with a 3× 3 kernel size, followed by a max pool-
ing layer with a 1× 3 kernel and a 20% dropout layer. 
The second block’s Conv layers have 32 filters each, and 
the dropout layer has 25% dropout rate. The third block 
is a copy of the first block, except that the dropout layer 
has a dropout of 25%. The first and second dense layers 
have 256 and 128 filters, respectively, followed by a 50% 
dropout layer. The final classification layer is activated 
by a softmax activation function to perform classifi-
cation between HC vs. AD or HC vs. FTD. The Adam 
optimizer and the categorical cross-entropy loss func-
tion are used to build the proposed model. Table 1 lists 
the detailed configuration of those layers.

2.5  Performance evaluation processes and parameters
We have evaluated the performance of the proposed 
model using a publicly available dataset to perform two 
different categorization tasks: AD vs. HC and FTD vs. 
HC. We have used both 10-fold cross validation (CV) 
and leave-one-out-validation (LOOV) techniques to 
validate the proposed model. These are the well-known 

(9)

Yi,j,k = f

(

M
∑

m=1

N
∑

n=1

C
∑

c=1

Wm,n,c,k Xi+m−1,j+n−1,c + bk

)
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techniques in machine learning to validate the perfor-
mance of a model [19].

Five well-known evaluation parameters are used to 
evaluate the performance of the proposed framework, 
namely: sensitivity (Sen), specificity (Spec), precision 
(Prec), F1 score (F1), and accuracy (Acc). Equation 
((10)) - ((14)) is used to calculate those parameters:

(10)Sensitivity(Sen) =
TP

TP + FN
∗ 100

(11)Specificity(Spec) =
TN

TN + FP
∗ 100

(12)Precision(Prec) =
TP

TP + FP
∗ 100

(13)alignedF1score(F1) =
2 TP

2 TP + FP + FN

Here,

• TP implies the number of correctly identified 
patients.

• TN implies the number of correctly identified HC.
• FP implies the number of falsely identified HC sub-

jects as patient.
• FN implies the number of falsely identified patients 

as HC.

We have also used the receiver operating characteris-
tic (ROC) graph, a highly useful tool for visualizing the 
classifier’s reliability, created by graphing sensitivity on 
the Y-axis and 1-specificity on the X-axis. These criteria 
allow us to grasp an idea about the classifier’s behavior on 
the test data [6, 14, 20, 23, 50, 53, 54].

3  Results and discussion
In this section, we begin by delving into the specifics of 
the experimental setup, followed by an in-depth explora-
tion of the results obtained. Ultimately, this section con-
cludes with a thorough discussion of the outcomes.

3.1  Experimental setup
In this study, we have used various segmentation length 
to check the impact of the segment length in AD and 
FTD detection from HC subjects. We have checked seven 
different segment lengths (5 s, 10 s, 15 s, 20 s, 25 s, 30 s 
and 30 s+ol). For these segment lengths, total number of 
produced subjects of each category are given in Table 2.

After the segmentation process, the resulting dataset 
is divided into 10 sub-parts, as we have used the 10-fold 
CV. On the other hand, for LOOV, all the segments from 
a particular subject are left out of the training process, 
and the remaining subjects’ segments are used to train 
the model, while the left-out subjects’ segments are used 
to test the trained model. The experiments are carried 
out on a computer with an AMD Threadripper Pro pro-
cessor, 256 GB of RAM, and 48GB of graphics memory. 
We have used 50 epochs for training the model, as the 
model starts overfitting after those epochs, and we have 
used a batch size of 32 to train the model.

(14)Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
∗ 100

Table 1 Architecture of the used CNN model

Layers # Filter Kernel size Option

Conv2D 16 3×3 activation=relu

Conv2D 16 3×3 activation=relu

MaxPooling2D 1×3 strides=(2,2)

Dropout 20%

Conv2D 32 3×3 activation=relu

Conv2D 32 3×3 activation=relu

MaxPooling2D 1×3 strides=(2,2)

Dropout 25%

Conv2D 16 3×3 activation=relu

Conv2D 16 3×3 activation=relu

MaxPooling2D 1×3 strides=(2,2)

Dropout 25%

Flatten

Dense 256 activation=relu

Dense 128 activation=relu

Dropout 50%

Dense (classifier) 2

Total params: 1,209,058

Trainable params: 1,209,058

Non-trainable params: 0

Table 2 Total number of segments generated after segmentation process of the signals

5 s 10 s 15 s 20 s 25 s 30 s 30 s+ol

HC 4808 2397 1592 1192 651 542 1070

AD 5807 2895 1924 1439 1146 953 1888

FTD 3304 1646 1093 815 952 790 1563
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3.2  Results
In this research work, we have developed a framework to 
perform two classification tasks: AD vs. HC and FTD vs. 
HC, with different segment lengths to check the impact 
of the segment duration on the identification process. We 
have used seven different segment lengths with two cross 
validation techniques: 10-fold CV and LOOV. Details of 
those two CV results are given in below two subsections.

3.2.1  Results for ten‑fold cross validation
In this CV technique, we have divided the generated 
dataset into ten equal or nearly equal sub-parts and then 
nine of them are used to train the proposed model and 
the left over part is used to test the trained model. This 
process is repeated ten times (10-fold) so that each sig-
nal segment belong to the test set exactly once. The final 
result is calculated by averaging the results over the ten 
folds. Tables  3 shows the average evaluation parameter 
values with standard deviation over the 10-fold CV.

From Table  3, we can see that, for both AD vs. HC 
and FTD vs. HC, the proposed model has produced the 
best result with a segment size of 5 s. For AD vs. HC, it 
is 97.08% and for FTD vs. HC, it is 98.14%. On the other 
hand, 30 s segment produced the lowest accuracy for 
both classifications which are 86.80% and 89.86% for AD 
vs. HC and FTD vs. HC, respectively. 30 s+ol has pro-
duced the second best accuracy of 95.54% and 96.39%, 
accordingly. Other evaluation parameters also displayed 
the same behavior as of accuracy. To further illustrate 

those behavior, we have plotted those parameters (sensi-
tivity, specificity, precision and accuracy) against the seg-
ment length and given in Figs. 2 and  3 for AD vs. HC and 
FTD vs. HC, respectively.

From the Fig.  2 and Table  3, we can see that in non-
overlapping segments, increase of segment size decreases 
the accuracy from 97.08% to 86.80%. For 30 s segment 
with overlap increases the accuracy to 95.54% which 
is due to the overlapping segmentation process. This 
decreasing pattern is also observed in F1 and precision 
values.

In case of sensitivity, the values decreased with the 
increase of segment length except for 30 s, where the 
sensitivity increased a little bit (0.84) from 25 s. In case 
of specificity, 20 s segment length has a increase in the 
specificity value compared to the 15 s. Other than that, 
all other segment length have followed the decreasing 
pattern similar to the other parameters.

On the other hand, for FTD vs. HC, from Fig.  3 and 
Table 3 we can see that, for all the evaluated parameters, 
increases of the segment length has a negative effect on 
the performance of the proposed model except for the 
overlapping 30 s segmentation. Similar to the AD vs. HC, 
30 s with overlap produces the accuracy closer to the 
accuracy of 5 s.

3.2.2  Results for leave one out cross validation
In this CV process, we have left out all the segments 
from a subject from the training process and the model 

Table 3 Average evaluation parameter values with standard deviation for 10-fold CV for the two classification tasks with different 
segment lengths

Segment Length AD vs HC

Sensitivity Specificity Precision F1 Accuracy

5 s 97.61 96.40 97.07 0.97 97.08

10 s 95.49 94.10 95.16 0.95 94.88

15 s 94.59 91.92 93.59 0.94 93.43

20 s 91.53 93.30 94.29 0.93 92.32

25 s 90.15 84.45 87.49 0.89 87.56

30 s 90.99 81.47 86.07 0.88 86.80

30 s + overlap 95.94 94.96 95.88 0.96 95.54

Segment Length FTD vs HC

Sensitivity Specificity Precision F1 Accuracy

5 s 98.04 98.21 97.41 0.98 98.14

10 s 96.83 97.29 96.09 0.96 97.10

15 s 93.94 95.85 93.94 0.94 95.05

20 s 92.51 94.87 92.53 0.92 93.87

25 s 92.16 93.94 91.45 0.92 93.27

30 s 86.04 92.54 89.01 0.87 89.86

30 s + overlap 96.01 96.70 95.37 0.96 96.39
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is trained using the segments of the remaining subjects 
from the dataset. After that, the left out subject’s seg-
ments are used to test the trained model. This process is 

repeated for all the subjects in the dataset. Final results 
are calculated using the average of the all subjects accu-
racy and given in Table 4.

Fig. 2 Comparison of the evaluation parameters against the different segment lengths for AD vs. HC classification

Fig. 3 Comparison of the evaluation parameters against the different segment lengths for FTD vs. HC classification
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From Table  4, we can see that for both the classifica-
tion tasks, 15 s segment has produced the best result. For 
AD vs. HC, it is 96.90% and for FTD vs. HC, it is 94.50%. 
To further check the details of the LOOV result, we have 
plotted the subject-wise accuracy for both the classifica-
tion tasks and provided in Fig. 4 where Fig. 4a shows the 
subject vs. accuracy for AD vs. HC and Fig. 4b shows the 
subject vs. accuracy for FTD vs. HC.

For AD vs. HC classification, there were 65 subjects in 
the dataset among them 48 subjects have the accuracy of 
100% with the segment length of 15 s. 20 subjects have 
the accuracy between 90% to less than 100% and the 
remaining 5 subjects have accuracy greater than 60% as 
shown in Fig. 4a.

On the other hand, for FTD vs. HC, 40 out of 52 sub-
jects have a 100% accuracy with 15 s segment length. 
Seven subjects have accuracy between 90% to less than 
100%, three subjects have between 60% to less than 90% 

and the remaining two subjects have accuracy below 50% 
as depicted in Fig. 4b.

Here, we have systematically evaluated segment lengths 
ranging from 5 s to 30 s, including a 30 s segment with 
overlap, across both classification tasks: AD vs HC and 
FTD vs HC. Our findings show that although shorter seg-
ments like 5 s have achieved slightly higher peak perfor-
mance in 10-fold CV (e.g., 97.08% accuracy for AD vs HC 
and 98.14% for FTD vs HC), the performance using 30 s 
segments with overlap remains comparably high (95.54% 
and 96.90%, respectively), with only a marginal reduction 
in accuracy. Similar results have obtained for LOOV, 15 s 
segment has achieved high accuracy while 30 s with over-
lap has achieved close to it.

Importantly, the use of 30 s segments with overlap 
offers a practical advantage. It provides a larger context 
window, which is beneficial for capturing subtle patterns 
in EEG data relevant to neurodegenerative disorders. 

Fig. 4 Comparison of accuracy for the tested different segment lengths in LOOV. Figure 4a and b shows the curves for AD vs. HC and FTD vs. HC, 
respectively

Table 4 Average accuracy values for the leave-one-out-validation for different segment lengths for the two classification tasks

Accuracy %

5 s 10 s 15 s 20 s 25 s 30 s 30 s+ol

AD vs HC 92.98 ± 12.43 93.90 ± 14.87 96.90 ± 7.20 95.51 ± 11.27 94.31 ± 12.41 95.96 ± 8.77 95.29 ± 14.09

FTD vs HC 88.78 ± 21.15 89.93 ± 24.29 94.50 ± 18.73 92.76 ± 22.21 91.66 ± 24.69 91.52 ± 23.04 93.36 ± 19.49
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Additionally, the overlap strategy increases the effective 
number of training samples without requiring additional 
EEG recordings, thereby enhancing generalizability and 
model robustness while keeping training costs relatively 
low. This setup strikes a balance between performance 
and computational efficiency, making it especially suit-
able for clinical applications where both accuracy and 
scalability are important.

3.3  Discussion
In this study, we have developed a CNN model to clas-
sify AD and FTD from HC subjects. We have also tested 
the effect of different segmentation length on the classi-
fication performance of the proposed model. Below sub-
sections discuss about the performance of the proposed 
model from different aspects.

3.3.1  Layer‑wise extracted feature visualization
Here, we have developed a small scale CNN model with 
only six Conv layers with only 1,209,058 parameters. 
The proposed model is simple, and less memory and 
time consuming but performs very well on both AD vs. 
HC and FTD vs. HC classification. Moreover, its perfor-
mance is verified using both 10-fold and LOOV CV. To 
further illustrate the classification process of the pro-
posed model, we have used the T-distributed stochastic 
neighbor embedding (t-SNE) to visualize the layer-wise 
classification process and given in Fig. 5.

t-SNE is a machine learning algorithm used for dimen-
sionality reduction and visualization of high-dimensional 
data on a 2D or 3D space. It was introduced by Laurens 
van der Maaten and Geoffrey Hinton in 2008 [55] and is 
particularly effective at revealing the underlying structure 

and patterns in complex datasets. We employed t-SNE 
visualization to create two-dimensional (2D) represen-
tations of the features extracted from each layer of the 
proposed model. This approach facilitates the visualiza-
tion of the model’s layer-wise extracted features during 
the classification process. In the Fig. 5, we have visualized 
the features extracted by the proposed model for AD vs. 
HC classification using 5  s segment length for 800 test 
segments for a single fold. The figure display a 2D map 
of multidimensional feature vectors, where each symbol 
represents an individual sample from the test set (red 
symbol is for AD and blue is for HC).

3.3.2  Ablation study of the proposed model
Generally, ablation study is a type of experiment con-
ducted to analyze the contribution of individual compo-
nents or modules in a system, such as a neural network 
model. In the context of CNN, an ablation study helps 
to understand the impact of different architectural ele-
ments, layers, or features on the overall performance 
of the model. To validate the structure of the proposed 
model, we have conducted several ablation studies on 
both AD vs. HC and FTD vs. HC classification tasks and 
reported in Table 5.

Here we have used the 5  s segment’s result as the 
base for both AD vs. HC and FTD vs. HC as this seg-
ment length have produced the best classification result. 
From the Table 5, we have used ablation techniques like, 
removing a block, adding a block and changing the num-
ber of filters, but none of the techniques have produced 
better result than the proposed model. All the tested 
ablation methods prove that the proposed model gives a 
better result than the other tested models.

Fig. 5 Visualizing the layer-wise classification process of the proposed CNN model using t-SNE images involved plotting features from 800 test 
segments across the input layer to the output layer for the AD vs. HC classification using 5 s segment length for a single fold. Initially, at the input 
layer, no distinct cluster between the two classes (AD vs. HC) was evident. However, as the data advanced through the hidden layers to the output 
layer, distinct and separable clusters for the two classes emerged
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3.3.3  Comparison with the existing studies
Finally, we have compared the performance of the pro-
posed framework with the existing works that have used 
the same dataset as ours and reported in Table 6.

From Table  6, we can see that this dataset was only 
used in two studies to perform the classification tasks 
(AD vs. HC and FTD vs. HC) [5, 38]. The authors of [5] 
have used 30 s segment with 15 s overlap to prepare the 
data, which is why we have also used the same segmen-
tation along with other segmentation lengths to compare 
the performance with them. Our proposed framework 

has performed better than both the studies [5, 38] in all 
the classification tasks as shown in Table 6.

Although our proposed framework has shown prom-
ising results in enhancing classification accuracy for 
both AD and FTD through EEG signals. However, as 
with any study, there are some hurdles to acknowledge. 
One prominent challenge is the limitation posed by our 
dataset. The population size and the duration of record-
ing in the datasets used are somewhat restrictive. Ide-
ally, a more extensive and diverse dataset could provide 
a broader perspective on the effectiveness of our frame-
work. Another noteworthy point is the absence of alter-
native datasets that include both AD and FTD data for 
cross-validation purposes. Addressing these limitations 
in future research could open new avenues for refining 
and expanding our framework.

4  Conclusion
In this research work, we have developed a DL-based 
CNN model to perform classification of AD and FTD 
from HC subjects using EEG signal data. We have tested 
different segment lengths to check the impact of the 
frame length on the classification process. We have eval-
uated the framework using both 10-fold CV and LOOV.

For both AD vs. HC and FTD vs. HC classifications, 
we have achieved the best accuracy in 10-fold CV using 
the 5  s segment length, which are 97.08% and 98.14%, 
respectively. In case of LOOV, 15 s segment length has 
produced the best accuracy of 96.90% and 94.50%, 
accordingly. In both classification tasks, the proposed 
method has outperformed the existing studies in terms of 
classification performance.

In summation, the results of our research paint a com-
pelling picture. This innovative approach is not only 
adept at classifying AD and FTD but holds promise for a 
broader spectrum of neurological disorders. Beyond clas-
sification, our method’s adaptability suggests its poten-
tial application in diverse signal processing assignments, 
marking a significant stride forward in the intersection of 
neurology and artificial intelligence.

This study, while demonstrating promising results 
in Alzheimer’s disease (AD) detection using a deep 
learning-based EEG classification framework, has some 
limitations. The use of a single publicly available dataset 
from AHEPA General University Hospital may limit the 
generalizability of the findings across diverse popula-
tions and clinical environments. To address these limita-
tions and advance the field, future research should focus 
on expanding the dataset to include more diverse and 
real-world data and exploring alternative deep learning 
architectures beyond CNNs. Also, we can explore inte-
grating data-driven heuristics or optimization strategies 
to automatically select segment lengths that maximize 

Table 5 Ablation study results (accuracy %) of the proposed 
model for both AD vs. HC and FTD vs. HC using 5 s segment 
length

AD vs. HC FTD vs. HC

Base (proposed model) 97.08 98.14

Removed the 2nd block 92.79 95.34

Removed the 3rd block 93.44 95.65

Doubled the filters of the conv Iayer in 1 st 
block

93.50 96.33

Doubled the filters of the conv Iayer in 3rd 
block

93.02 96.40

Halved the filters of the conv Iayer in 2nd block 95.59 97.86

Added a duplicate of 2nd block after the 2nd 
block

76.56 94.97

Table 6 Comparison with the existing studies of MCI 
classification

Classification Study Segmentation Validation Accuracy 
(%)

[5] 30 s + ol LOOV 83.28

[38] 4 s 10-fold 87.33

Proposed 
work

30 s + ol LOOV 95.29

AD vs HC Proposed 
work

15 s LOOV 96.90

Proposed 
work

30 s + ol 10-fold 95.54

Proposed 
work

5 s 10-fold 97.08

[5] 30 s + ol LOOV 74.96

[38] 4 s 10-fold 82.98

Proposed 
work

30 s + ol LOOV 93.36

FTD vs HC Proposed 
work

15 s LOOV 94.50

Proposed 
work

30 s + ol 10-fold 96.39

Proposed 
work

5 s 10-fold 98.14
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classification performance while minimizing training 
cost.
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