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Rapid global urbanisation and industrialisation have led to the widespread production
of emerging anthropogenic contaminants such as xenobiotic dyes and pharmaceutical
pollutants discharged into our natural waters. These pollutants are recalcitrant to
environmental degradation and often escape into water from industrial effluent systems. In
this work, a novel graphite intercalation compound (GIC) particle electrode was used to
investigate the adsorption of synthetic dye pollutant, Reactive Black 5 (RB5), using a three-
dimensional electrochemical reactor to decompose the anthropogenic dye pollutant. Various
adsorption kinetics and isotherm models were used to characterise the adsorption phenomena
of GIC and determine the viability of the sorption process. When coupled with
electrochemical oxidation technology, remarkably high dye removal efficiency can be
achieved, and GIC can be electrochemically regenerated. Optimisation studies were
conducted using response surface methodology and ANOVA analysis to provide insight into
the significance of selectivity reversal from the salting effect of xenobiotic textile dye on GIC
adsorbent. Non-linear models were simulated using the kinetic data in the order: Elovich >
Bangham > Pseudo-second order > Pseudo-first order. The Redlich-Peterson isotherm was
calculated to have a dye-loading capacity of 0.7316 mg/g by non-linear regression analysis. A
range of error function analyses were used to evaluate the accuracy and precision of
regression models. The best dye removal efficiency achieved using three-dimensional
electrochemical treatment was approximately 93% using a current density of 45.14 mA/cm?,
whereas the highest total organic carbon (TOC) removal efficiency was 67%. Various
advanced artificial intelligence (Al) and machine learning (ML) optimisation techniques were
used to enhance the prediction efficiency of dye and total organic carbon (TOC) removal
efficiencies. The Al/ML optimised decolourisation efficiencies were 99.30%, 96.63% and
99.14% using central composite design-novel progressive response surface methodology
(CCD-NPRSM), hybrid artificial neural network-eXtreme boosting gradient (ANN-
XGBoost) ensemble, and classification and regression trees (CART), respectively. The
prediction efficiency of optimised models ranked in the descending order of hybrid ANN-
XGBoost, CCD-NPRSM and CART. The ANOVA results revealed that hybrid ANN-
XGBoost ensemble yielded a mean square error (MSE) and coefficient of determination (R?)
of 0.014 and 0.998, outperforming CCD-NPRSM and with MSE and R? of 0.518 and 0.998.
The overall result showed that the hybrid ANN-XGBoost approach is the most feasible

technique for improving the prediction efficiency of RB5 dye wastewater decolourisation.
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Water grows the plant, undeterred by the coldness of water, turning the discomfort

into opportunities.
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1.1 Background

Global industrialization and rapid population growth increase the large-scale
production of goods and services. Unprecedented levels of xenobiotics and anthropogenic
pollutants are discharged or escaped into the aquatic environment. Due to chemically stable
organic compounds, textile and pharmaceutical residue wastewater is notoriously challenging
to degrade in industrial effluents (Liu et al., 2021). Contaminants of emerging concern
(CECs), such as non-regulated xenobiotic dyes and pharmaceutical contaminants, are
released daily into surface water (Saravanan et al., 2022). Xenobiotic dyes are often produced
by textile, paper and pulp, leather, tannery and paint and dye manufacturing industries (Bilal
et al., 2022). Non-regulated pharmaceutical substances and personal care products are
endocrine-disrupting compounds (EDCs), pesticides and disinfection byproducts that can
cause adverse impacts on human health and ecology (Samal et al., 2022). Some CECs are
partially metabolized by organisms, rapidly bioaccumulating toxic metabolites released into
the environment (Bosio et al., 2021). CECs are highly recalcitrant to environmental
degradation. However, the toxicity levels related to the xenobiotic dyes have not been
adequately investigated. Industries' frequent use of these dyes may have severe public health
consequences if not adequately regulated. Dye pollutants produce intense water colouration
and cause carcinogenic, teratogenic and mutagenic effects in humans and animals (Tang et
al., 2020).

Moreover, the transformation of the synthetic dyes after decomposition may lead to
the formation of toxic intermediate byproducts due to their reactivities with substances
present in the environment (Xu et al., 2023). Dye-contaminated wastewater causes intense
colouration, which indicates that toxic pollution needs to be eliminated (Obayomi et al.,
2023). Otherwise, it can affect the aesthetic quality of the environment. Dyes in industrial
effluents can cause considerable ecotoxicity and pose a significant risk to human health
(Alrobei et al., 2021). Synthetic dyes often have complex chemical structures, such as
substituted aromatic and heterocyclic groups, making them highly recalcitrant to
environmental degradation (Nidheesh et al., 2018). The incomplete breakdown of these dyes
may produce aromatic amines, a common intermediate byproduct derivative that is both
highly toxic and recalcitrant to environmental biodegradation (McYotto et al., 2021).

Moreover, these synthetic dyes are also highly resistant to removal by conventional
WWTPs. Common biological treatments, such as anaerobic-aerobic, may not effectively

eliminate toxic dyes due to inadequate removal efficiency (Feng et al., 2022). Some dyes are



highly toxic to microorganisms. For this reason, the conventional biological treatment
method is not recommended for dye treatment. Therefore, there is an urgent need to find a
more suitable wastewater treatment method, such as three-dimensional electrochemical
oxidation technology, which involves combined adsorption and electrochemical oxidation
technology, to remove dye pollutants more effectively than conventional WWTPs. In
addition, the developing world is under pressure to utilise this integrated three-dimensional
electrochemical technology due to its high pollutant removal efficiency, cost-effectiveness,
and ease of operability. (Liu et al., 2022). A synergistic effect of effective carbon adsorption
and electrochemical oxidation can enhance the treatment efficiency (Liu et al., 2022). More
interestingly, low-cost, green adsorption technology synthesized from renewable sources with
strong electrocatalytic performance can help regenerate the carbon particle electrode (Liu et
al., 2022).

Most importantly, additional chemical reagents are not required to help reduce the
severity of secondary pollution (Yuan et al., 2022). When used appropriately with a novel
adsorbent material such as GIC, the adsorbent can remove pollutants effectively and
regenerate to its total adsorptive capacity when subjected to electrochemical regeneration
(Sun et al., 2013). Compared to conventional activated carbon (AC), which has low electrical
conductivity but a greater surface area, the activated carbon-containing adsorbed toxic
contaminants may have to be incinerated or disposed of in a landfill, resulting in secondary
pollution (Ye et al., 2022). Hence, AC adsorbent is less desirable than GIC unless its usage
satisfies a particular adsorption regime without electrochemical treatment.

Furthermore, the influence of operating conditions on the performance of
electrochemical oxidation technology is highly complex. Advanced optimisation techniques
must be developed to control the operational conditions of three-dimensional electrochemical
technology and other wastewater treatment technologies (Gadekar & Ahammed, 2019).
Response surface methodology, artificial neural network (ANN), support vector machine
(SVM), eXtreme gradient boosting (XGBoost), random forest (RF), classification and
regression trees (CART) and Bayesian inference network are some of the artificial
intelligence, machine learning and statistical optimization techniques used to enhance the
prediction efficiency of pollutant removal efficiency by optimising for a range of operational
variables and to determine the causal relationships among the random variables. Ensemble
forecasting is a modelling approach combining data sources and different models to reduce
uncertainties and enhance prediction efficiency, accuracy, and reliability of Al and ML

optimization technologies (Wu & Levinson, 2021). The Al and ML ensembles can be used to



predict water quality to achieve safety of the drinking water supply system (Park et al., 2022).
To ease the complexity of wastewater treatment systems, various artificial intelligence and
machine learning ensembles were used to improve the intelligent systems and manage
complex dynamics of mathematical models to optimise the operational conditions of the
wastewater treatment systems effectively. The advanced Al and ML algorithms can be
applied to existing operational management systems of wastewater treatment systems,
forming critical components of advanced computing and software technology for enhancing
dye and pharmaceutical wastewater treatment systems. With ever-growing issues of
antimicrobial resistance genes, viral diseases and toxic, xenobiotic textile wastewater, future
trends are forecasted to rely on developing more advanced Al and ML optimisation
techniques to improve the process conditions. Since the overall research was centred around
the three-dimensional electrochemical treatment, specific emphasis was given to extending
current electrochemical treatment techniques towards integration of advanced Al ensembles
to optimise the process conditions. In addition, Figure 1 shows that the textile processing
industry in Bangladesh is one of the major polluters due to its widespread use of natural
resources. Reactive dyes are commonly used for dyeing purposes. The dye combination is
highly chemical intensive and requires large water consumption. Figure 1 shows the
estimated amount of water consumed, wastewater generation, and chemical consumption in
the textile wet processing units. High water consumption leads to depletion and

contamination of groundwater.
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Figure 1. Water and chemical consumption of textile processing industry in Bangladesh
(Uddin et al., 2023).

1.2 Significance of study

Xenobiotic dyes and pharmaceutical contaminants present in aquatic environment can
pose a significant public health risk. These anthropogenic pollutants are increasingly present
in the environment due to rapid urbanisation and industrialisation. Water pollution caused by
textile and fashion industries often flies under the radar and is largely overlooked by
environmental authorities. There are many treatment methods used to remove xenobiotic dyes
and pharmaceutical pollutants from water and wastewater, such as conventional biological
treatment (aerobic-anoxic-anaerobic), adsorption, advanced oxidation processes, Fenton’s
reagents, photocatalysis, membrane filtration, coagulation-flocculation, electrochemical
treatment etc. Conventional activated sludge in biological treatment is not suitable due to
excessive production of sludge, increasing costs associated with sludge management and
transportation. In the context of advanced oxidation processes (AOPs), Fenton oxidation is an
effective technology to degrade recalcitrant organic pollutants due to simplicity of process
but conventional Fenton oxidation processes have some drawbacks, such as acidic pH
condition, generation of iron sludge and high operational costs associated with high chemical
input, low resource recovery process and energetically intensive (Bello et al., 2019).

On the other hand, coagulation-flocculation technique has exceptional performance in

removing particles from wastewater effectively, causing small particles to clump together to



form flocs (Abujazar et al., 2022). The process requires the addition of chemical reagents to
remove the pollutants by settlement. Using coagulants or flocculants is very costly; it also
contributes to secondary pollution, and the process is energetically intensive due to limited
energy recovery. Membrane filtration process, such as forward osmosis, membrane
distillation and electrodialysis can advance nutrient recovery but often leads to membrane
fouling, resulting in pressure drop across the membrane, and the process becomes more
energetically intensive (Xie et al., 2016). The drawbacks of these conventional treatment
techniquescan be addressed by using electrochemical oxidation technology, which is a more
attractive alternative method for wastewater treatment to replace conventional processes
owning to a substantial quantity of toxic organic pollutants removed from the industrial
effluent systems, particularly xenobiotic dye wastewater. In addition, adsorption technology
is a practical approach to remove contaminants from wastewater, particularly when the
adsorbent is relatively inexpensive and easy to procure or manufacture. The adsorption
process has minimal sludge generation, is less energetically intensive and does not require
additional pre-treatment processes. The significance of a hybrid combination of wastewater
treatment technologies is that they offer a significantly better performance in removing
pollutants more effectively than using a single treatment method. Xenobiotic dyes and
pharmaceutical contaminants are highly recalcitrant to environmental degradation and UV
photolysis, leading to rapid accumulation in the aquatic environment. Hybrid wastewater
treatment systems are more efficient at eliminating the toxic organic pollutants and its
intermediate transformation byproducts from the breakdown of xenobiotic dyes and
pharmaceutical contaminants more effectively than a single treatment method. When
combining advanced Al and ML optimisation techniques to manage complex process
parameters. Advanced computing and software technologies bolster the treatment efficiency
of hybrid systems, facilitating data-driven analysis to minimise uncertainties and reducing
fluctuations in effluent quality, costs and environmental risks (Zhang et al., 2023).

1.3 Research gaps

Our literature review identified the following research gaps:

1) The previous methods of optimisation techniques in past research are unreliable due
to inherent uncertainties and error deviations in the estimated values, especially for
pollutant removal efficiencies. Statistical optimisation techniques are not adequately
accounted for due to the absence of a range of error function analyses applicable to

adsorption kinetics and isotherms.



2)

3)

4)

5)

Advanced Al and ML ensembles have not been adequately covered in past research to
enhance models' prediction efficiency, accuracy, and precision, especially for three-
dimensional electrochemical technology. Most Al optimisation techniques, including
RSM are applied to a simple adsorption or electrochemical oxidation process without
a specific emphasis on using an ensemble to model a three-dimensional
electrochemical oxidation technology.

Most RSM and Al/ML optimisation techniques were applied to a simple,
conventional carbon-based adsorbent fabricated from an energetically intensive
process. On the other hand, bone char adsorbent can be obtained from renewable and
widely abundant agricultural sources. More interestingly, the pollutant removal
efficiency of bone char can be subjected to Al and ML optimisations to improve the
prediction efficiency, accuracy and precision of models.

The operational parameters used in the experiments were highly complex, requiring
more novel RSM and/or Al and ML optimisation techniques. Past research has not
accounted for any causal relationships between operational variables, including
sensitivity analysis and Bayesian inference networks to account for the impact on the
target variables.

Past research has not adequately accounted for the selectivity reversal, pH levels and
salting effect of simulated, highly alkaline xenobiotic dye wastewater on the
adsorptive capacity of GIC. In addition, the electrochemically regenerative
performance of GIC was rarely emphasized in a three-dimensional electrochemical

oxidation technology.

1.4 Research questions

There are seven main research questions in this study:

1)

2)

3)

4)

How can models' prediction efficiency, accuracy, and precision be enhanced to reduce
uncertainties in the operational variables?

How to optimise the three-dimensional electrochemical oxidation technology and
individual adsorption technology to enhance the pollutant removal rate?

How to electrochemically regenerate GIC adsorbent and improve the regeneration
efficiency to recover its adsorptive capacity?

What are the optimal conditions to achieve the best pollutant removal efficiency using

a three-dimensional electrochemical oxidation technology?



5)

6)

7)

How to develop Al and ML ensembles, sensitivity analysis and other advanced
statistical optimisation techniques to enhance the prediction efficiency, accuracy and
precision of forecasting models?

How to optimise a number of experimental runs while accurately accounting for a
range of process conditions to determine the most significant interactive effects of
operational variables on targeted responses?

How can the thermodynamic conditions of xenobiotic dye wastewater be managed to

improve the pollutant removal performance of bone char?

1.5 Research aims and objectives

The overall aim of this research project is to develop the best optimisation techniques

to enhance the pollutant removal efficiency of a three-dimensional electrochemical reactor to

achieve the most cost-effective manner to address the techno-economic aspects and energy

efficiency of the wastewater treatment process for superior decomposition of xenobiotic dyes

in aqueous solutions. The specific objectives are outlined below:

1)

2)

3)

4)

5)

6)

7)

To optimise the electrical energy consumption of a three-dimensional electrochemical
reactor using advanced Al and ML ensembles.

To optimise a range of operational variables to enhance targeted responses such as
dye and TOC removal efficiencies to improve the mineralisation of toxic, xenobiotic
dyes in wastewater.

To enhance the prediction efficiency, accuracy and precision of forecasting models
using advanced RSM, Al and ML ensembles for a three-dimensional electrochemical
oxidation technology and individual adsorption process.

To investigate the uncertainties and causal relationships between the operational
parameters and conduct sensitivity analysis and Bayesian inference network analysis
of the impact of interactive variables on the targeted responses.

To model the interactive effects of a range of operational variables on the targeted
responses to enhance the electrochemical oxidation and adsorption efficiencies of a
three-dimensional electrochemical reactor, GIC and bone char adsorbents.

To investigate the selectivity reversal, pH and salting effects of simulated, highly
alkaline xenobiotic dye wastewater on adsorption.

To evaluate the adsorption kinetics and isotherm models using a range of error

function analyses and/or statistical optimisation techniques.



8) To investigate the thermodynamic characteristics of xenobiotic dye wastewater on the
pollutant removal efficiency of bone char adsorbent.

9) To investigate the regeneration efficiency of GIC adsorbent using a range of current
densities, initial dye concentrations and electrolysis durations.

1.6 Organisation of the thesis

This PhD thesis consists of five chapters, and the organisation of the thesis is
stipulated in Figure 1.

Chapter 1 provides the background information, purposes, and significance of the
study, establishing a cohesive research narrative to guide the readers smoothly through the
transition between ideas. It helps to resolve research gaps at the outset, minimise repetitions
or tensions between the thesis components/chapters, and set a foundation to develop
publication ideas that emerge from a comprehensive review of the whole thesis.

Chapter 2 represents the literature review for the study based on the contaminants of
emerging concerns: Paper 1 (Removal of pharmaceutically active compounds from
wastewater using adsorption coupled with electrochemical oxidation technology: A critical
review) presents the current three-dimensional electrochemical oxidation technology and its
benefits in the mineralisation of xenobiotic pollutants in contaminated wastewater.

Chapter 3 represents Paper 2 (Artificial intelligence and machine learning for the
optimization of pharmaceutical wastewater treatment systems: a review) emphasized the
benefits of artificial intelligence and machine learning optimisation of wastewater treatment
plants to enhance the removal of specific anthropogenic pollutants such as pharmaceutically
active compounds in wastewater. This review article sets a theme to justify using Al and ML
optimisation techniques in wastewater treatment systems for various contaminants. These
articles highlighted new insights and research gaps, setting a foundation for further
development of this research project.

Chapter 4 represents Paper 3 (Removal of reactive black 5 in water using adsorption
and electrochemical oxidation technology: kinetics, isotherms and mechanisms), foundational
experimentation with specific emphasis on using a combined adsorption and electrochemical
oxidation technology, which is also known as a three-dimensional electrochemical oxidation
technology, to remove xenobiotic dye contaminants from simulated textile wastewater
synergistically. This research involved a critical investigation of the physicochemical
properties of GIC adsorbent, using a range of adsorption kinetics and isotherms to evaluate

the adsorption phenomena of the adsorbent. A range of error function analyses were



conducted to examine the uncertainty in the estimated values of adsorption kinetics and
isotherms to achieve the accuracy and precision of calculations. The regeneration efficiency
of GIC adsorbent was studied extensively. The impacts of selectivity reversal, salting effect
and pH levels on GIC adsorption efficiency in a binary mixture of highly alkaline, simulated
textile wastewater were investigated thoroughly. Electrochemical oxidation efficiency was
evaluated using a range of current densities to enhance the mineralisation efficiency of
xenobiotic dye pollutants.

Chapter 5 represents Paper 4 (Superior decomposition of xenobiotic RB5 dye using
three-dimensional electrochemical treatment: Response surface methodology modelling,
artificial intelligence, and machine learning-based optimisation approaches), which strongly
emphasized the significance of Al and ML algorithms or the roles of advanced software
computing in the removal of xenobiotic dye pollutants from wastewater. Hybrid Al and ML
optimisation techniques were applied to a three-dimensional electrochemical oxidation
technology to manage a range of complex operational variables and achieve optimal
conditions for enhancing pollutant removal efficiency. The benefits of using AI/ML
ensembles include maximising the prediction efficiency of targeted variables, resulting in
significant accuracy and precision of estimated variables.

Chapter 6 represents Paper 5 (Monte Carlo Simulation, Artificial Intelligence
and Machine Learning-based Modelling and Optimization of Three-dimensional
Electrochemical Treatment of Xenobiotic Dye Wastewater), which investigated more
advanced combination of Al and ML ensembles, such as integration of Monte Carlo
simulations with artificial neural networks (ANN), support vector machine (SVM) and
random forest (RF) algorithms generate various models for optimisation of three-dimensional
electrochemical treatment of xenobiotic dye wastewater. Hybrid Al and ML optimisation
techniques help to manage a range of complex operational variables by identifying the
inherent system perturbations and estimation of uncertainties in predictive model platforms to
achieve optimal conditions for enhancing the prediction efficiency of targeted variables. This
resulted in better accuracy and precision of estimated variables to achieve optimal conditions
for improving pollutant removal efficiency.

Chapter 7 presents Paper 6 (Computational modelling of Indigo Carmine adsorption
onto bone char: Application of Monte Carlo simulation, Bayesian networks, artificial
intelligence and machine learning-based optimisation approaches), which involved using a
green, renewable adsorbent material to remove xenobiotic dye from wastewater. The

uniquely developed Al and ML ensembles, Monte Carlo simulations and Bayesian inference



network analysis were used to improve the predictive models of pollutant removal efficiency.
This research used the unique optimisation techniques and computational fluid dynamics
modelling to manage a range of operational variables by identifying the influential variables
and its causal relationships, using sensitivity analysis to improve the adsorption technology.
The levels of system perturbation and uncertainty were examined in detail to achieve optimal
conditions of adsorption process.

Chapter 8 provides conclusions, future directions and final recommendations for this

PhD research project.
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Chapter 1: Introduction

o  General aims — Contribution of the research to current scientific field

o Specific objectives — Investigation of the aspects of water and wastewater treatment
o Develop rationale for pursuing this research

e Motivation and justification of the research project

A 4

Chapter 2: Literature review

¢ Setting a foundational overview of xenobiotic pollutants

e Identifies the rescarch gaps and challenges in current research

¢ Formulates new strategies to address the current research gaps

¢ Extend the application and scope of current research to other anthropogenic pollutants
¢ Develop methodology applicable to new research project with extended scope
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Chapter 8: Discussion and Conclusion

o Asummary of the main findings of research
o Emphasis of research aims/objectives
¢ Limitations/drawbacks of the research and final recommendations for further research

Figure 2. Organisation of the thesis.

This chapter is subdivided into two main sections corresponding to two review

articles published during research. The first subsection provides a foundational overview of a
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three-dimensional electrochemical oxidation technology to remove pharmaceutically active
compounds from contaminated wastewater. The central emphasis is on using combined
adsorption and electrochemical oxidation technology to remove a range of pharmaceutical
contaminants by critically analysing a range of operating parameters to achieve optimal
conditions for wastewater treatment. Understanding the effects of operating parameters on
overall wastewater treatment efficiency helps to extend the scope of experimental studies
towards more effective treatment of ubiquitous, xenobiotic dye pollutants. The second
subsection emphasises the significance of using Al and ML ensemble optimisation
techniques to enhance pollutant removal efficiency in existing wastewater treatment systems.
This research helps to direct the focus on using a unique range of Al/ML ensembles to be
included in future technical experimentation, albeit reactive dye pollutants will be the central
focus of wastewater treatment. Overall, this chapter provides a comprehensive discussion,
emphasizing the optimisation effects of operating parameters on targeted responses. More
importantly, it sets a foundation for developing technical research, leading to final

recommendations and future research directions.

CHAPTER 2: PAPER 1: REMOVAL OF
PHARMACEUTICALLY ACTIVE COMPOUNDS FROM
WASTEWATER USING ADSORPTION COUPLED WITH
ELECTROCHEMICAL OXIDATION TECHNOLOGY: A
CRITICAL REVIEW?2.1 Introduction
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This review encompasses a thorough discussion and critical analysis of a specific wastewater
treatment technology, i.e., a hybrid combination of adsorption and electrochemical oxidation
technology. The inherent novelty of this hybrid wastewater treatment technology is the
central theme that is largely emphasized throughout the research. This review was carefully
crafted to explicitly analyse a range of suitable operating parameters to be adjusted to achieve
the optimal conditions for electrochemical wastewater treatment. Pharmaceutical
contaminants were considered as model pollutants rather than specific interest by the
researchers. The potential application of this hybrid wastewater treatment technology was
largely emphasized throughout the research, setting a foundation for future technical research
to be conducted. Notwithstanding the chemical stability of pharmaceutical contaminants, a
three-dimensional electrochemical oxidation technology involved a synergistic treatment of a
range of pharmaceutical pollutants given that its mineralisation capability. A near complete
decomposition of recalcitrant pharmaceutical contaminants in wastewater justified the
technological capability of this hybrid wastewater treatment technology. Therefore, it is
evidential that a three-dimensional electrochemical oxidation technology can be extended
beyond its limits to treat other more ubiquitous contaminants such as xenobiotic dyes, albeit
with strong certainty that the toxic dye pollutants can be degraded much more effectively
than pharmaceutical contaminants. The effectiveness of using synergistic wastewater
treatment techniques to eliminate pharmaceutical contaminants were largely emphasized
throughout this review article. One of the main benefits include cost-effectiveness of
adsorption technology used in the research. Others include the technoeconomic feasibility,
practicality and environmental viability of the adsorption technology involving GIC
adsorbent or a range of other adsorbent materials which can be obtained from agricultural or
renewable sources. More significantly, electrochemical regeneration efficiency of
nanocomposite adsorbent was critical to help recover the adsorptive capacity of adsorbent
material, making it reusable for many cycles of adsorption and regeneration. On the other
hand, the electrochemical oxidation technology is a more established electrochemical method
for mineralising the pollutants but its electrooxidation efficiency can be enhanced using
optimisation techniques to adjust operational variables such as current density, electrolysis
time, pH level, adsorbent dosage, initial pharmaceutical concentration etc. The
electrooxidation efficiency can also be enhanced using strong electrocatalytic anodic
materials to improve mineralisation of pollutants. The electrocatalytic efficiency of anodes
can be maximised using advanced electrode doping techniques and surface morphology

tuning to help improve the advanced oxidation processes, resulting in rapid electro-generation

13



of powerful oxidants, such as hydroxyl and sulphate radicals, persulfate ions and active
chlorine species to degrade pollutants effectively. More interestingly, the adsorption and
electrochemical oxidation mechanisms for anodes were largely emphasized throughout the
review article, highlighting the significance of improving electrocatalysis of electrochemical
conversion or combustion of organic pollutants rather than just pharmaceutical contaminants.
The differences between oxygen evolution reaction of non-active and active anodes and its
effects on electrocatalytic activity were explained in great detail. The future directions and
recommendations were provided at the end of the review article that emphasized the
significance of renewable energy-driven electrochemical process. This renewable energy-
driven electrochemical treatment technology can be applied to existing industrial wastewater
treatment system where the adsorptive capacity of nanocomposite adsorbents can be
continuously regenerated and electrooxidation efficiency of anodes can be enhanced to
achieve cost-effectiveness of wastewater treatment process with robust pollutant degradation

performance.
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2.2 Links and implications

The central theme of this research is three-dimensional electrochemical oxidation
technology. Although the research was initially conceived to apply a range of pollutants
treated by three-dimensional electrochemical oxidation technology, the central focus was on
the critical analysis of operating parameters applicable to a novel combination of adsorption
and electrochemical oxidation processes. The technoeconomic feasibility, practicality and
environmental viability of the three-dimensional electrochemical oxidation technology were
largely emphasized throughout the review article rather than confining to a narrow focus on
the realm of pharmaceutical wastewater treatment systems. There is currently a range of
wastewater treatment technologies under consideration for treating pharmaceutical
contaminants, but the current researchers have overlooked the potential benefits and broad
application of three-dimensional electrochemical oxidation technology. There are numerous
drawbacks associated with the current adsorption technology, such as poor reusability and
recyclability of adsorbent materials.

Furthermore, the three-dimensional electrochemical oxidation technology offers an
enhanced improvement in the mineralisation efficiency of organic pollutants. It allows the
electrically conductive particle electrode to be regenerated, thereby recovering its adsorptive
capacity to uptake pollutants continuously. The challenges associated with fabricating
nanocomposite adsorbent material lie in finding electrically regenerative materials. The
materials must be obtained from electrically conductive renewable sources to enhance the
regeneration efficiency of adsorbents. The current thermal or chemical regeneration methods,
such as incineration, solvent extraction, and landfill disposal of exhausted adsorbents,
generate significant secondary pollution. The adsorbent fabrication technique leads to high
energy consumption. Limited adsorptive capacity and regenerative properties of particle
electrodes could downgrade its usage. Fine-tuning of nanoengineered novel metal-organic
framework (MOF)-based adsorbent materials with defective structure can improve the
adsorptive capacity and regeneration efficiency. The synergistic effects of adsorption and
electrochemical oxidation technology can enhance pollutant removal and mineralisation
efficiencies. When combined with renewable energy-driven electrochemical processes,
energy efficiency can be achieved. However, there are challenges in adapting the existing
electricity grid to power renewable energy-driven electrochemical advanced oxidation

technologies.
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CHAPTER 3: PAPER 2: ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING FOR THE OPTIMIZATION OF
PHARMACEUTICAL WASTEWATER TREATMENT
SYSTEMS: A REVIEW

3.1 Introduction

This review article focuses explicitly on optimising pharmaceutical wastewater
treatment systems, emphasising artificial intelligence and machine learning technologies. A
conventional wastewater treatment system is highly complex due to numerous operational
parameters that require effective control to improve water quality characteristics. This review
article intends to bridge the gaps between Al/ML technologies and other critical advanced
computing and information technology (IT) infrastructures such as blockchain technology,
renewable energy, Big Data mining, cyber-physical systems, Internet of Things and
automated smart grid power distribution networks. The combined advanced Al and IT
computing techniques help to monitor fluctuations in contaminants in wastewater treatment
plants, facilitating data analysis, diagnosing water quality and predicting process parameters.
The AI/ML applications in pharmaceutical wastewater treatment systems are strongly
highlighted throughout the review article, providing background information on numerous
potential applications of Al technologies that can be extended beyond the realm of
pharmaceutical wastewater treatment towards other treatment systems. Compared to
pharmaceutical wastewater treatment, Al/ML technologies are equally applicable to textile
dye wastewater treatment. This review article emphasises the usefulness of Al and advanced
computing systems rather than just focusing on the process units of pharmaceutical
wastewater systems.

Furthermore, the advancement of Al technologies leads to a remarkable
transformation of conventional wastewater treatment plants towards zero waste generation,
which is one of the most ideal pathways to achieve a circular economy, where value
engineering and management processes can be added to the existing wastewater treatment
systems to improve the outcomes. Similar to the toxicity of xenobiotic dyes, emerging
pharmaceutical contaminants are equally culpable in causing adverse impacts on human
health and environment. When pharmaceutically active compounds are discharged into the
environment, the uptake of these compounds into human body can produce toxic metabolites,
which have a wide range of side effects on non-target aquatic organisms, even at small

concentrations. More critically, toxic drug metabolites can lead to multiple resistant strains or
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antimicrobial-resistant genes and endocrine-disrupting intermediate compounds from the
breakdown of parental compounds, causing significant carcinogenicity, teratogenicity and
mutagenicity in humans and aquatic organisms.

Industrial effluent systems do not just contain pharmaceutically active compounds
released into the natural waters; xenobiotic dyes, disinfection byproducts, personal care
products, per- and poly-fluoroalkyl substances are among the toxic contaminants within the
wastewater. Notwithstanding the narrow scope of pharmaceutical wastewater treatment
systems, Al and ML optimisation technologies can be applied to other wastewater treatment
contexts. For the readers' interest, the review article mainly focuses on using Al/ML
optimisation techniques in pharmaceutical wastewater treatment systems to highlight its
applicability. Numerous AlI/ML algorithms can be applied to other process units within the
pharmaceutical wastewater treatment systems to empower sustainable circularity, digital twin
and intelligent data-driven operations, process control systems, and to support predictive
platforms to achieve energy efficiency and minimise the spread of infectious diseases. Al/ML
technologies can be used to predict and monitor wastewater quality characteristics such as
chemical oxygen demand, biochemical oxygen demand, total suspended solids, total
dissolved oxygen, total dissolved solids and many more. However, the cost of setting up
complex computation infrastructure to facilitate Al systems is a financial impediment. Al
systems require compatible hardware and software integrated into the wastewater
management systems and other computational systems for proper functioning of Al.
Deploying hardware and software systems into existing wastewater management systems
results in large energy consumption due to the high demand for computational processing
power. However, the complexity of Al infrastructure can be managed through optimisation
and automation, but the debugging and troubleshooting of the process control systems can be
a significant issue. Effective monitoring of process dynamic conditions requires advanced IT-
powered technologies to facilitate data management of process control systems. Applying
blockchain-related technologies helps facilitate sustainable wastewater and energy
management systems. IT security vulnerabilities can be adverted when combined with the
technological capabilities of the Internet of Things and advanced cyber-physical
infrastructure. Al-powered process control systems help to minimise carbon footprint and
remove barriers to resource recovery and energy management processes. Most interestingly,
Al predictive platform improves models for measuring pharmaceutical wastewater quality
and its constituents in complex process dynamic environment, minimising the operational

cost and significantly improving the energy efficiency of wastewater treatment plants.
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Abstract

The access to clean and drinkable water is becoming one of the major health issues because most natural waters are now
polluted in the context of rapid industrialization and urbanization. Moreover, most pollutants such as antibiotics escape
conventional wastewater treatments and are thus discharged in ecosystems, requiring advanced techniques for wastewater
treatment. Here we review the use of artificial intelligence and machine learning to optimize pharmaceutical wastewater
treatment systems, with focus on water quality, disinfection, renewable energy, biological treatment, blockchain technology,
machine learning algorithms, big data, cyber-physical systems, and automated smart grid power distribution networks. Arti-
ficial intelligence allows for monitoring contaminants, facilitating data analysis, diagnosing water quality, easing autonomous
decision-making, and predicting process parameters. We discuss advances in technical reliability, energy resources and
wastewater management, cyber-resilience, security functionalities, and robust multidimensional performance of automated

platform and distributed consortium, and stabilization of abnormal fluctnations in water quality parameters.

Keywords Algorithm - Cyber-security - Big data - Automation - Internet of things - Blockchain technology

Introduction

Rapid urbanization and population growth across the world
have led to the widespread production of emerging con-
taminants, which puts significant pressure on wastewater
treatment systems. Water scarcity drives our focus towards
achieving maximum resource recovery. Zero waste genera-
tion is one of the ideal pathways towards achieving a cir-
cular economy, which brings remarkable transformation of
wastewater treatment systems through commercialization by
adding value management processes (Matheri et al. 2022), If
left untreated and discharged from conventional wastewater
systems, emerging pharmaceutical contaminants in aquatic
or marine ecosystems can adversely impact human health
and the environment (Osman et al. 2023; Priya et al. 2022).

When pharmaceutically active compounds are released
into the environment through human metabolites, it can
cause a wide range of side effects on non-target aquatic
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organisms even at minute concentrations (ng/L or pg/L).
This leads to the development of multi-resistant strains
and the formation of endocrine-disrupting chemicals from
breakdown of intermediate by-products from parental com-
pounds, causing significant carcinogenicity, mutagenicity,
and teratogenicity in humans and aquatic organisms (Zhan
et al. 2019). Among these pollutants, the types of contami-
nants that have become increasingly challenging to treat are
pharmaceuticals and personal care products, disinfection
by-products, and per- and poly-fluoroalkyl substances. In
addition, wastewater treatment systems are highly complex
and dependent on different environmental factors. Process
parameters are optimized to tailor the control systems to
improve the efficiency of wastewater treatment processes.
Although industrial and anthropogenic activities have
introduced significant amounts of impurities and hazard-
ous pollutants into our environment, several methods have
been developed to minimize the effects of water pollution.
These methods have its own merits in terms of the levels
of water treatment quality and its varying effects on the
environment. The treatment methods proposed by other
researchers include coagulation—flocculation (Kooijman
et al. 2020), membrane filtration (Ganiyu et al. 2015), ion
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exchange (Swanckaert et al. 2022), desalination (Shah et al.
2022), and biological treatment (Singh et al. 2023).

For biological treatment, the parameters used to charac-
terize the levels of water treatment quality include biological
oxygen demand and chemical oxygen demand. However, the
conventional wastewater treatment used to purify or disinfect
the wastewater is time-consuming and requires lengthy or
arduous procedures (Safeer et al. 2022). To ease the com-
plexity of wastewater treatment systems, artificial intelli-
gence and machine learning algorithms are used to improve
the intelligent systems and manage complex dynamics of
mathematical models to effectively optimize the operational
conditions of the wastewater treatment systems (Oruganti
et al. 2023).

Currently, artificial intelligence and machine learning
algorithms have been widely integrated into the existing
operational management system of wastewater treatment
plants, improving the water quality monitoring system
(Chawishborwornworng et al. 2023), accuracy, and preci-
sion of model prediction (Serrano-Lujin et al. 2022) and
maximizing optimization efficiency of the process param-
eters (Zhang et al. 2023a). On the other hand, the theoretical
or computational models developed for conventional waste-
water treatment systems are overtly simplified based on the
ideal assumptions rather than the real-world applicability of
process models to make it practical for industrial purposes
(Safeer et al. 2022).

Although empirical and statistical regression analyses
are developed to predict the behaviour of process control
systems, the complexity of real-world process dynamics and
deviation in the non-linearity of regression models affect
the accuracy of prediction (Ozdogan-Sartkog et al. 2023).
Artificial intelligence can be incorporated into pharmaceu-
tical wastewater treatment plants integrated with renewable

Fig. 1 Advanced comput-

ing and software technology
allow to enhance technical
reliability, cyber-resilience,
erergy resoutces management,
and water quality in pharmaceu-
tical wastewater treatment sys-

energy technologies to forecast energy efficiency and offer
advanced analytics for optimal energy management of phar-
maceutical wastewater treatment systems.

Figure 1 depicts the critical components of advanced
computing and software technology for improving phar-
maceutical wastewater treatment systems. With the ever-
growing issues of antimicrobial-resistant genes and viral
diseases, future trends are forecasted to rely on developing
more advanced artificial intelligence and machine learning
algorithms to optimize the process conditions. This review
is divided into five main topics encompassing the artificial
intelligence applications in managing big data, strengthening
cyber-physical systems, blockchain technology, and internet
of things to improve the disinfection performance of phar-
maceutical wastewater treatment systems.

Assessment of water quality

In the era of digital health and artificial intelligence, the
challenges and perspectives for the future of electrochemical
technologies, epidemiology, and interdisciplinary research
can be bridged, unleashing the power of artificial intelli-
gence and machine learning algorithms in diagnosing and
treating infectious diseases (Tang and Cao 2023) and other
antimicrobial-resistant genes developed from issues asso-
ciated with water sanitation and environmental pollution,
advancing both health informatics, precision medicine, and
toxicogenomics related to improvement in water quality
assessment of pharmaceutical wastewater effluent.

More interestingly, artificial intelligence and machine
learning algorithms empower sustainable circularity, digi-
tal twin, and intelligent data-driven operations and pro-
cess control systems, improving data mining, analysis, and

tems Cyber-Physical
Systems
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prediction to support policymaking to achieve a circular
economy and enhance energy efficiency, life cycle environ-
mental and cost management technologies (Matheri et al.
2022; Osman et al. 2024). Artificial intelligence/machine
learning algorithms can also be used to optimize com-
plex process dynamics and non-linearity, using artificial
neural network and adaptive neuro-fuzzy inference system
and support vector machine software interfaces and other
intelligent systems to assess water quality by predicting
chemical oxygen demand, biochemical oxygen demand,
total suspended solids, total dissolved solids concentra-
tions in pharmaceutical wastewater (Safeer et al. 2022).

The artificial neural network was among the first machine
learning algorithms developed based on perceptron (Park
et al. 2022). An artificial neural network's model structure
comprises three layers: input, hidden, and output. The hid-
den layer is a critical structure of an algorithm made up of
nodes. Each node calculates the output variable for a series
of steps using a nonlinear function called the activation func-
tion (Park et al. 2022). An increase in the number of hid-
den layers results in more complicated calculations due to
additional predictions from input parameters. However, the
problems associated with hidden layers are due to overfit-
ting the training data and diminishing gradients during the
optimization of the models (Jariwala et al. 2023).

To address this deficiency, a deep learning algorithm is
used as an alternative function involving a rectified linear
unit instead of a conventional sigmoidal function to mini-
mize the problems associated with the vanishing effect of
gradient. However, before the development of neuronal
networks such as autocoders, feed-forward neural network,
convolutional neural networks (Muniappan et al. 2023),
recurrent neural network, and so on, there were various set-
backs in artificial neural network architecture that needed
to be explored.

The first significant issue associated with artificial neural
network architecture is the non-existence of rules for defin-
ing neuronal network structures (Jariwala et al. 2023). The
appropriate artificial neural network architecture design can
be obtained through trial-and-error experience. This makes
the process of developing artificial neural network architec-
ture increasingly tedious.

Secondly, the artificial neural network architecture is
hardware-dependent, which means the parallel processing
power in computation becomes problematic because it is
limited by the hardware properties (Jariwala et al. 2023).
Hence, translating mathematical problems into numerical
information leads to more issues related to artificial neu-
ral network architecture. This phenomenon involves unex-
plained network behaviour, constituting a probing solution
and eventually leading to a fourth issue. The underlying
issue associated with probing solutions is due to artificial

neural network's justification and reliability, which may
breach users’ trust within the network.

When dealing financially with pharmaceutical companies,
artificial intelligence and machine learning play a significant
role in all aspects of drug discovery, wastewater treatment,
and technological development processes. During wastewa-
ter treatment, the application of artificial intelligence can
minimize the utilization of manpower and considerably
reduce the expenditure on capital investment and mainte-
nance costs related to treatment methods used.

On the other hand, the setbacks of wastewater treatment
infrastructures can be attributed to the setting up of artifi-
cial intelligence infrastructures and computation technolo-
gies involving complex process control systems to improve
the water quality at the output processes. There are several
setbacks involved (Jariwala et al. 2023);

¢ The cost of setting up complex computation infrastruc-
ture to facilitate artificial intelligence systems becomes
a financial impediment to small wastewater treatment
industries and pharmaceutical firms. The requirement to
install compatible hardware and software into the exist-
ing computational systems for proper functioning of arti-
ficial intelligence incurs significant financial expenditure.

e The speed of artificial intelligence algorithms affects
the data processing power when it comes to accessing
the data in real time to perform analysis and facilitate
decision-making processes. Slow processing power and
prolonged latency lead to undesirable consequences,
resulting in delayed project timeline.

¢ Minimization of energy consumption is an important
agenda when integrating compatible hardware with exist-
ing systems to deploy artificial intelligence technology.
New integration systems with optimization modes to
reduce power consumption would ease the financial bur-
den on the business and wastewater treatment industry.

¢ The complexity of the artificial intelligence infrastructure
can be managed through optimization and automation.
Artificial intelligence technology can debug and trouble-
shoot any issues that arise rather than increasing compu-
tational complexity.

¢ Artificial intelligence systems require enormous com-
putational energy to process and analyse data. Com-
putational power grows immensely as the data grows,
requiring algorithms to manage the voluminous data and
minimize power consumption.

e Regular auditing and testing of machine learning mod-
els to improve the integrity of algorithms would help to
streamline the deployment of artificial intelligence tech-
nology. This requires a diverse team of technical experts
and personnel.
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The optimization of analytical process conditions is sig-
nificant. The characteristics and trace origins of water pollut-
ants can be identified using unique artificial intelligence sys-
tems called the integrated long short-term memory network
involving cross-correlation and association rules (Apriori)
(Wang et al. 2019b).

Firstly, internet monitoring systems can acquire critical
information about the pollutant sources entering the pharma-
ceutical wastewater treatment systems. The complex infor-
mation on pollution incidents involving flow simulations,
number of point sources at influent and effluent systems,
and pollutant release processes can be interpreted using long
short-term memory (Wang et al. 2019b). This method is
computationally efficient because it deals with an artificial
intelligence algorithm using a time-recursive neural network
to predict critical events such as long intervals and delays of
water pollutants on influent and effluent systems.

In addition, a convolutional long short-term memory pro-
vides a framework for sequencing learning problems using
training data temporally to evaluate or predict the water
quality pollutants in effluent systems (Wang et al. 2019b).
However, there is currently a lack of robust mathematical
expressions to correlate the measured parameters such as
biochemical oxygen demand and chemical oxygen demand,
total suspended solids, ammonia, organic nitrogen, and
organic phosphorus content of wastewater, in which the
data can only be obtained using online sensors. There are
also uncertainties or perturbations in predicting biochemical
oxygen demand and chemical oxygen demand values.

For this reason, integrating other artificial intelligence
methods, such as gene expression programming and Monte
Carlo simulation technique, can provide insights into esti-
mating the levels of uncertainty or perturbations in wastewa-
ter process conditions. These techniques assess the sensitiv-
ity of target parameters and its influences on the variations
in input parameters and scrutinize the interactions between
the process parameters to evaluate the wastewater quality
parameters (Aghdam et al. 2023). However, the online-based
optimization technique has not been adequately applied to
the bio-processing system due to the complexity of the bio-
logical behaviour.

Furthermore, the lack of data visualization techniques,
low-quality industrial measurement systems, and under-
standing of underlying phenomena in wastewater treatment
plants are ongoing issues. The data modelling approaches
can be strengthened using artificial neural network, Gaussian
process regression (Yao et al.), and polynomial chaos expan-
sion to analyse the meta-models of wastewater treatment
plants efficiently.

In addition, other artificial intelligence application
tools such as expert systems (Wu et al. 2021), fuzzy logic
(Mazhar et al. 2019), artificial neuro-fuzzy inference sys-
tems (Nam et al. 2023), support vector machine (Zhang

& Springer

et al. 2023b), knowledge-based systems (Liu et al. 2023),
ruled-based systems (Victor et al. 2005), fuzzy logic con-
trol (Santin et al. 2018), pattern recognition (Gao et al.
2023), swarm intelligence (Negi et al. 2023), genetic
algorithm (Aparna and Swarnalatha 2023), reinforcement
learning (Wang et al. 2023a), hybrid systems (Tariq et al.
2021), and so on have gained its purposes in process con-
trol systems and prediction of water quality characteristics.

[n addition, poor wastewater quality often leads to
membrane fouling of filtration technologies used in the
pharmaceutical wastewater treatment industry. Membrane
fouling is a major obstacle hindering the widespread appli-
cation of anaerobic membrane bioreactors to treat pharma-
ceutical wastewater (Niu et al. 2023).

Artificial intelligence algorithms and its modelling
framework can predict membrane fouling phenomena in
membrane filtration technologies using hyper-parameter
optimization of artificial neural network and random forest
to improve predictive capabilities (Niu et al. 2023; Yuan
et al. 2023). In addition, artificial neural network and
Bootstrap methods enhance the accuracy, robustness, and
reliability of prediction tools to estimate the water quality
indexes (Chawishborwornworng et al. 2023).

However, bootstrap programming adds a significant
number of codes into the network, limiting the perfor-
mance and processing speed of the software management
system. On the other hand, the combination of artificial
neural network and bootstrap algorithms improves the esti-
mation of prediction error distributions, making it easier
to analyse any faults or anomalies within the wastewater
treatment systems (Mo et al. 2024).

In contrast, the main disadvantages of hybrid artificial
intelligence models are complicated design constraints and
uncertainties in predicted data arising from data cluster-
ing, making it challenging to discern exact data patterns
to achieve optimal forecasting (Tikhamarine et al. 2020).
For example, seasonal variation influences the wastewater
streamflow and effluent quality; it is rather challenging
to forecast the hydrological streamflow due to uncertain-
ties in prediction (Ibrahim et al. 2022). In addition, Fig. 2
shows the artificial intelligence optimization framework
applicable to various caleulation tools for evaluating and
predicting pharmaceutical wastewater treatment quality.

Overall, we observed that artificial intelligence appli-
cations in complex biological wastewater treatment sys-
tems are still developing, which could trigger severe and
undesirable problems. Integrating artificial intelligence
technologies may lead to system-wide compromise due
to incompatibility with existing operational systems,
a cascade of design errors, malfunctions, and possible
cyber-attacks leading to other critical infrastructure fail-
ures, causing havoc in ecological systems and service
availability to local communities. Hence, software and
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hardware functions of artificial intelligence technologies
must account for the systemic risk and benefits of inte-
grating advanced cyber-physical systems, data security
infrastructure, blockchain technology, and the internet of
things to achieve a robust system.

Disinfection

The concentration of disinfection by-products and severe
acute respiratory syndrome coronavirus 2-related pharma-
ceuticals in wastewater effluents and surface water in aquatic
environment impact the orchestration of coronavirus dis-
ease-19 pandemic. For example, a significant increase in
concentrations of disinfection by-products such as trih-
alomethanes and haloacetic acids in hospital and pharma-
ceutical wastewater effiuents and surface water ranging from
5.9t0 21.7 pg/L from wastewater discharge points increased
ecotoxicities in aquatic environment (Zhang et al. 2022),

Wastewater-based epidemiology is one of the most effec-
tive surveillance tools for examining the sources of transmis-
sion of bacteria, microorganisms, and coronaviruses such as
severe acute respiratory syndrome coronavirus 2 in waste-
water. However, significant research gaps exist in address-
ing the difficulties and challenges in detecting, monitoring
strategies, remediation, and disinfection methods of viruses
in pharmaceutical and general wastewater (Bhattacharya
et al. 2023).

Carlo simulation

More critically, there is a lack of regulatory framework
and compliance related to the integration of artificial intelli-
gence and machine learning technologies into existing phar-
maceutical wastewater treatment systems, the uncertainties
in technology efficiency for disinfection performance of
wastewater treatment systems, and the economic viability
of the wastewater treatment infrastructure, public or socio-
economical resistance which may hinder practical imple-
mentation of artificial intelligence and blockchain-related
technologies in wastewater treatment systems.

Moreover, these barriers can be minimized through col-
laborative efforts and systematic approaches from regulators,
policymakers, engineers, and social scientists to translate
innovative information technology into solutions to improve
water sustainability in wastewater treatment domains (Rob-
bins et al. 2022). However, method development and valida-
tion are the most significant challenges of implementing arti-
ficial intelligence and machine learning in complex process
dynamics in pharmaceutical wastewater treatment systems.

Method validation is extremely critical to obtaining high-
quality data (Corominas et al. 2018). A simple installation
of sensors and cohesive maintenance efforts for optimizing
process control systems do not guarantee adequate data qual-
ity, regardless of high computational processing power of
information technology infrastructure. Dynamic wastewa-
ter processes are often characterized by constant changes at
many different real-time scales, spanning from seconds to
years in terms of dynamic pH changes, plant configuration,
layout arrangement, and construction periods, which are also
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critical conditions to how the processes change over time
(Corominas et al. 2018).

Moreover, it is not practical to obtain voluminous, com-
putationally expensive, and complex datasets, including
real-time process dynamics over a meaningful period
that requires uncompromised high-quality data (Ye et al.
2020). A large dataset of repositories requires continuous
validation and comparison with predictive models for opti-
mization, monitoring diagnostic purposes and updating
control algorithms, which may require intensive labour
and maintenance. There is a lack of standardized informa-
tion technology protocols for selecting and implementing
specific data analytic techniques equivalent to industry
standards.

More advanced data management techniques are required
to combine existing process systems with artificial intel-
ligence, blockchain-related technologies, the internet of
things, and cyber-physical systems. A plethora of methods
have been developed or assessed. Still, challenges related to
objective comparison between different industry artificial
intelligence technologies, regulatory guidelines, validation
limitations at full-scale systems, limited active and real-time
data optimization, information sharing content, and quality
affect the implementation of knowledge generation and arti-
ficial intelligence applications (Zhao et al. 2020).

The complexity of operational management systems
increases with transmission routes of influent connecting
to the pharmaceutical wastewater treatment plants, which
involve several point sources discharged from hospitals,
isolation centres, quarantine centres, and public places. The
metropolitan and municipal wastewater plumbing systems
are a significant pathway for spreading severe acute res-
piratory syndrome coronavirus 2. Severe acute respiratory
syndrome coronavirus 2 is 2 member of a large family of
viruses called coronaviruses that can infect people and some
animals, causing mild to moderate respiratory illness.

The influent wastewater contains substantial viral loads of
severe acute respiratory syndrome coronavirus 2 ribonucleic
acid, a molecule present in most infected living organisms.
Different treatment phases involving primary, secondary,
and tertiary treatment methods are required to disinfect the
pharmaceutical wastewater thoroughly. In primary physical
treatment, the large, suspended solids in wastewater act as
a physical barrier in removing viral particles (Bhattacharya
et al. 2023).

Moreover, in the secondary treatment of wastewater treat-
ment plants, diverse biological methods, including activated
sludge process, membrane bioreactor, moving bed biofilm
reactor, sequencing batch reactor, treatment ponds, and so
on, are used to remove organic matter and large suspended
solids from pharmaceutical wastewater. However, applying
conventional activated sludge in large-scale hospitals and
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pharmaceutical wastewater treatments poses high energy
consumption required for aeration, capital, and operational
costs.

Although membrane bioreactors are progressively replac-
ing the conventional activated sludge treatment systems and
may achieve better treatment potential, the major drawback
is due to membrane fouling, energy cost associated with
aeration, and gradual reduction in membrane permeability
resulting in the pressure fluctuation and greater energy con-
sumption which lead to reduced performance at sizeable
industrial-scale operations (Werkneh and Islam 2023).

In the tertiary treatment phase, various organics, turbidity,
phosphorus, nitrogen, and other pathogenic microorganisms
are removed using coagulation, advanced oxidation pro-
cesses, filtration technologies, ultraviolet treatment, ozona-
tion, chlorination, adsorbent materials such as titanium diox-
ide, carbon nanotubes, and other nanomaterials to inactivate
viruses in the conventional wastewater treatment plants. It
was reported that free residual chlorine species at a concen-
tration of 0.5 mg/L required a contact time of 30 min at pH
lower than 8, and 2.19 mg/L of chlorine dioxide is recom-
mended for complete inactivation of severe acute respira-
tory syndrome coronavirus 2 in pharmaceutical wastewater
(Bhattacharya et al. 2023).

More interestingly, artificial neural network can be
applied to forecast the chlorination behaviour in the second-
ary pharmaceutical wastewater effluent containing ammonia,
nitrate, and other pharmaceutical constituents. Disinfection
of hospital wastewater results in changes in microbiome,
resistome, and mobilome of wastewater and other bacterial
communities and reduction in specific antibiotic resistance
genes (Akhil et al. 2021; Rolbiecki et al. 2023).

An advanced control scheme can be developed to opti-
mize the chlorination disinfection quality by integrating an
artificial neural network model with fuzzy logic control to
improve the chlorination process and minimize the cost of
disinfection as well as maximizing disinfection efficiency
while keeping the plant’s budget within reach (Khawaga
et al. 2019). However, the degrees of disinfection provided
by direct chlorination were comparable to those attained by
combining the conventional activated sludge process and
chlorine treatment at conventional wastewater treatment
plants (Azuma and Hayashi 2021).

In addition, the integrated photocatalytic-biological
wastewater treatment systems are effective alternative pro-
cesses for the removal of emerging pharmaceutical contami-
nants and pathogens, capable of achieving greater than 99%
removal of chemical oxygen demand and nitrogen from the
system with total disinfection of 10° colony-forming units/
ml F.coli using hydroxyl radicals generated from photoca-
talysis (Ghosh et al. 2023). Moreover, colony-forming units
estimate the number of active and viable microorganisms
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in a sample. Artificial neural network and adaptive neuro-
fuzzy inference system can be used to model the photocata-
lytic degradation process and mineralization efficiency of
pharmaceutical and other organic pollutants while optimiz-
ing energy consumption and catalyst dosage for practical
pharmacentical wastewater treatment (Tabatabai-Yazdi et al.
2021).

Overall, we observed that artificial intelligence tech-
niques can monitor complex variations in process condi-
tions and accurately predict the performance of wastewater
disinfection characteristics. However, extreme fluctuations
in wastewater quality parameters during complex, full-scale
disinfection processes, conventional biological wastewater
treatment system, and predictive disinfection models may
not handle intricate non-linearity issues, and immediate
responses to remediate the disinfection level may not be
effective. However, hybrid artificial intelligence technolo-
gies integrated with robust cyber-security infrastructures,
blockchain technology, and distributed network design with
the internet of things can facilitate autonomous wastewater
treatment processes, reducing undesirable risks caused by
incomplete disinfection processes.

Renewable energy

Current researchers rarely consider using renewable energy
technologies for pharmaceutical wastewater treatment.
Although conventional wastewater treatment plants are
designed primarily to remove undissolved and dissolved
wastewater, they are crucial in controlling water pollution
and offering sanitary engineering. The additional energy
generation potential of conventional wastewater treatment
plants involves the utilization of digested sewage sludge for
incineration, and electricity generation can provide a signifi-
cant amount of energy and resource recovery (Zahmatkesh
et al. 2022).

In addition, the settling properties of activated sludge
having a sludge volume index greater than 150 mg/L could
be susceptible to sludge bulking, which hinders the opera-
tion of the activated sludge process. This process may result
in a mass proliferation of filamentous bacteria, impacting the
techno-economic feasibility of the pharmaceutical waste-
water treatment systems. For this reason, artificial neural
network is very effective at simulating the nonlinear pro-
cesses of sludge bulking, especially in various fluctuating
environmental conditions (Deepnarain et al. 2020).

On the contrary, full industrial-scale pharmaceutical
wastewater treatment systems comprise different physical,
chemical, and biological processes that are highly complex
and challenging to model using a linear method. Artificial
neural network and multivariate statistics involving principal

component analysis can model and extract valuable informa-
tion by being adaptive and developing self-learning ability
to discern the influence of process parameters (Guo et al.
2018; Verma and Suthar 2018). However, traditional princi-
pal component analysis is still limited by linear dimensional-
ity reduction (Wang et al. 2019a).

On the other hand, nonlinear projection of principal com-
ponent analysis can be determined using Gaussian process
mapping, but the model lacks robustness and is susceptible
to process noise (Wang et al. 2019a). When combined with
another artificial intelligence technology, the artificial neural
network model can optimize the process parameters for more
accurate and robust results than regression-based mathemati-
cal models (Deepnarain et al. 2020).

The onsite nutrient recovery process of pharmaceutical
wastewater treatment plants in which waste materials can
be reused for other industrial purposes is crucial. The con-
trol components, such as energy distribution systems and
metallurgical phosphorus recycling, can utilize activated
sludge from wastewater treatment systems and transform it
into energy and mineral products (Zahmatkesh et al. 2022).
Artificial intelligence-powered renewable technologies can
increase the sustainability of energy use at pharmaceutical
wastewater treatment systems and reduce electricity costs or
financial expenditure for energy supply.

Onsite renewable energy sources, such as solar, water,
wind, and so on, can help minimize energy wastage
and greenhouse gas emissions, saving economic costs
immensely. Optimization via artificial intelligence can help
to reduce the environmental impact of the combined energy
systems using genetic algorithm to lessen the effect of car-
bon dioxide emission on the environment (Hai et al. 2022),
However, integrating microgrids with renewable energy
technologies and sharing with external grid networks are
very challenging due to maintaining optimum power flows
in the industry (Fan and Li 2023).

Overall, we observed that direct solar energy-assisted
wastewater treatment with energy storage systems makes it
convenient during day and night. Still, the installation and
maintenance costs to achieve robust system efficiency affect
effective renewable energy utilization. The complexity of
adapting the existing electricity grid to a distributed energy
network to utilize renewable energy resources in pharma-
ceutical wastewater treatment systems is still in its infancy.

Biological treatment

Artificial intelligence is one of the popular machine learn-
ing-based approaches in biological wastewater treatment
simulations due to its high level of adaptability and learn-
ing strategies. Artificial neural network can be used to model
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or predict biochemical oxygen demand and total suspended
solids in removing activated sludge (Li et al. 2023b). It can
also simulate total nitrogen, total phosphorus, and chemical
oxygen demand for real-time dynamics of process conditions
in wastewater treatment plants (Zaghloul and Achari 2022).
However, the training datasets require high computational
power and may not apply to small-scale industrial plants.

Unlike artificial neural network, support vector machine
provides a unique solution to multiple regression systems
to minimize errors while generating extensive computa-
tional data to improve model accuracy and predictability.
On the other hand, adaptive neuro-fuzzy inference system is
a hybrid algorithm that integrates the adaptability and com-
putational power of artificial intelligence with fuzzy logic’s
learning ability to manage uncertainty or perturbations in
process dynamics (Zaghloul and Achari 2022).

More interestingly, the complexity of data generated from
biological processes can be interpreted using the multidi-
mensional non-linearity of adaptive neuro-fuzzy inference
system, where the number of fuzzy rules increased expo-
nentially in both functions and number of input parameters.
However, the high sensitivity of biomass combined with an
array of parameters and frequent changes in infiuent char-
acteristics can affect the stability of the operation of aerobic
granular sludge reactors.

Furthermore, the combination of adaptive neuro-fuzzy
inference system and support vector regression to form a
two-stage prediction process as separate algorithms can be
trained for individual output parameters to provide greater
flexibility in tuning the discrepancies in model prediction
to minimize errors. Combining machine learning-based
models such as feed-forward neural network, support vector

Fig. 3 Feed-forward neural Inputs
network architecture involves

a number of artificial neural Input pharmaceutical
network connections in which wa,swwa‘er.qlllalﬂy
characteristics

the flow of information is
between nodes orits layers. The
flow is usually in one direction
or forward from the input nodes,
passing through the hidden
nodes to output nodes without
any loops or cycles. Feed-for-
ward neural network is trained

operational parameters

Input 1

using Marquardt’s backpropaga- Input2
tion method

Input3 ¢
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machine, and adaptive neuro-fuzzy inference system for
benchmarking pharmaceutical wastewater treatment systems
has yielded efficient performance.

The additional combination of feed-forward neural
network increases the effectiveness of identifying com-
plex problems or patterns using multilayer non-linearity
of machine learning tools to examine the input and output
parameters (Jana et al. 2022). Moreover, the three layers
of feed-forward neural network are trained with the Leven-
berg-Marquardt algorithm (Jana et al. 2022). The first layer
consists of a flattened input vector containing various input
parameters.

When combined with the auto-regressive characteristics
of predictive modelling, lagged data are integrated into the
input vector (Negi et al. 2023). The second layer consists of
hidden neurons with nonlinear activation functions (Jariwala
et al. 2023). The third layer represents the output vector,
which compares the predicted values with input parameters
to produce targeted responses (Nourani et al. 2023). Overall,
we observed that artificial neural network is prone to com-
putational overload when handling massive datasets, which
can be a challenge for wastewater treatment industries to
adopt due to limited computational processing power and is
primarily hardware dependent.

In addition, Fig. 3 shows the standard feed-forward neu-
ral network architecture, which consists of three layers of
a computational network. Furthermore, Table 1 shows 1
shows the equations used by researchers who applied various
models including the process parameters and criticize each
model based on their advantages and disadvantages. Table 2
lists recent work in which error functions were used to cal-
culate and validate the performance of models describing

Hidden layer Quiputs

Prediction  rapyated
interval

quallty)
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Table 1 (continued)

Hu et al. (2023), Saleem
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resolution with linearly

(total suspended solids);
600-1300 mg/L (total

={x,x20,x<0}

Fx)

proportional frequency. The
accuracy of the digital sys-

dissolved solids); 1300—

tem depends on the linearity

and stability of the ramp

function

gen demand); 90-180 mg/I.  Disadvantages: Accuracy

1800 mg/L (biochemical
(alkalinity); 2.2-3.0 Neph-

oxygen demand); 2,500

3,200 mg/L (chemical oxy-

Heaviside step function:
F (x) = Hx)forx 0

of the digital system often

drifts and offset. Heavier

elometric turbidity unit;
95-125 mg/L (phenol)

Convolution of the Heaviside
step function:

F(x)

penalty between two support

hyperplanes

Hx) x H(x)

The complex water quality characteristics require mathematical functions to design models for real-time dynamic simulations and process control systems to accurately predict and optimize a

range of process parameters

pharmaceutical wastewater treatment systems. These error
functions measure the deviation in a digital communication
system that uses statistical computations.

Blockchain technology

The convergence of blockchain technologies and artificial
intelligence in the internet of things network revolutionized
intelligent network design to create sustainable processes
(Mao et al. 2023). This means smart grids that use digital
technologies can be connected to the network to detect and
respond to local change to improve the industry’s energy
usage in electricity grids (Chen et al. 2021). When the elec-
tricity supply networks are equipped with internet protocol
addresses, intelligent meters and energy sensors will relay
the data to utility providers with information about energy
usage, offering greater control over their energy consump-
tion (Chen et al. 2021).

The emergence of blockchain technologies offers one of
the most feasible solutions for decentralizing autonomous
energy management in distributed energy systems using
a simplified model inversion process of blockchain SM?2
encryption by sending verification data of nodes with high
energy distribution to improve the computational ability of
the distributed energy systems (Wang et al. 2023b).

Conventional decentralized management modes have sev-
eral drawbacks with respect to the high cost of communica-
tion from central controller to individual equipment, leading
to single-point failures (Wang et al. 2023b). However, with
the advent of new digital technology, the distributed infor-
mation of blockchain provides a new vitality to the energy
management of distributed energy systems. Distributed
energy systems improve the permeability and utilization
efficiency of renewable energy technologies, leading to high
energy efficiency of pharmaceutical wastewater treatment
systems.

Overall, we observed that blockchain technology has sev-
eral limitations due to the scalability of software and hard-
ware infrastructures, data security vulnerabilities, integra-
tion complexity, and high energy consumption. Innovative
solutions should focus on improving energy efficiency and
interoperability with existing systems.

Artificial intelligence-integrated blockchain distributed
ledger technology has the potential to become one of the
most critical research and development areas in the domain
of renewable energy technologies and power automation
(Gawusu et al, 2022). Artificial intelligence-integrated
blockchain distributed ledger technology can address smart
grid-based control management systems, decentralized
energy management systems, power distribution, and related
mechanical automation to pharmaceutical wastewater treat-
ment plants (Junaidi et al. 2023; Khan et al. 2023).
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Most critically, the purpose of combined technologies is
to optimize power flow and process conditions to minimize
energy consumption, perturbations, noise disturbances and
prevent unstable working conditions (Zhu et al. 2023); pro-
mote stability, production efficiency; and reduce pollution
of an industrial process using a local outlier factor-based
abnormality detection logic to measure prediction statistical
error (Feng et al. 2022).

The purpose of involving network reconfiguration of
distributed systems is to facilitate the real-time operation
of process dynamic conditions (Mishra et al. 2023), inte-
gration of cyber-physical security into software and hard-
ware infrastructures to protect privacy and prevent exter-
nal network infiltration and improve auto-generation of
process control systems (Li et al. 2023a; Liu et al. 2022).
Artificial intelligence-based data analysis and evolutionary
learning mechanisms can diagnose water quality, facilitat-
ing autonomous decision-making and process optimization
with a strong potential to establish predictive model analy-
sis and universal process control (Li et al. 2021).

More interestingly, dynamic monitoring and controlling
of smart grid technology can optimize the renewable energy
used to power automation in pharmaceutical wastewater
treatment plants, enabling machine learning developments
and customizing executions of operational parameters to
produce desired responses by screening and adjusting pro-
cess parameters (Johnson et al. 2022). Integrating artificial
intelligence with a power distribution network can create a
real-time generation of process conditions, logistical dis-
tribution of pharmaceutical wastes by transportation, and
monitoring electric power supply to facilitate wastewater
treatment processes.

In remote regions, the field programmable gate array-
based embedded internet of things system is one of the
most preferred systems beneficial for optimizing wastewater
treatment plants and leveraging logistics flow to improve the
sludge management process in the future (Ding et al. 2021,
Henriques et al. 2020). In addition, artificial intelligence
technology in electrical automation provides fault diagno-
sis and troubleshooting of the process conditions, electrical
control system, and electrical equipment and facilitates daily
operation (Yang 2020).

In electrical process diagnosis, expert system, artificial
neural network, and adaptive neuro-fuzzy inference system
are three common methods of fault diagnosis, producing
accurate detection results (Yang 2020). However, the main
disadvantages of using artificial neural network optimiza-
tion are a greater computational burden, susceptibility to
overfitting, and empirical nature of the model development
with minimalistic approach (Swietlicka and Kolanowski

& Springer

2023). However, the existing ledger management of power
distribution systems for wastewater treatment plants utilizes
smart grid technology to deliver cloud scalability, optimize
management, and minimize redundancy.

Integrating artificial intelligence and machine learning
technologies improves data distribution efficiency and trans-
mission across different networks, operational management,
and privacy security (Khan et al. 2023). However, the most
significant challenges of integrating the internet of things
and blockchain technology into artificial intelligence and
machine learning are related to financial, technical, envi-
ronmental, organizational, and legal issues. These identi-
fied challenges are cyber-security, privacy, smart contract,
trusted oracles, scalability, interoperability, lack of stand-
ardized structure, regulatory constraints, governance, fog
computing, and so on (Tanha et al. 2022).

The convergence of blockchain technology, internet of
things, artificial intelligence, and machine learning algo-
rithms into cyber-security systems synergistically enhances
trust, transparency, privacy, and cyber-security of overall
operational systems in pharmaceutical wastewater treatment
systems by providing a shared and decentralized distributed
ledger (Xia et al. 2022). A blockchain technology, generally
known as a distributed ledger, can store all information or
data related to industry assets like a register (Thakur 2022).
These data are primarily related to money and identities.

Integrating artificial intelligence and machine learning
algorithms with the internet of things automates process
dynamics within pharmaceutical wastewater treatment sys-
tems and related industrial networks, improving user-friend-
liness of business processes, which are essential for waste-
water and water treatment industries (Sandner et al. 2020).

By the integration of artificial intelligence and machine
learning into cyber-physical systems or its related informa-
tion security infrastructure, the overall systems enhance pat-
tern recognition, online transaction networks, supply chain
management, troubleshoot information security vulnerabil-
ities, and optimize outcomes of the wastewater treatment
processes (Clark and Burstall 2018; Ferndndez-Caramés and
Fraga-Lamas 2022; Sandner et al. 2020). In addition, Fig. 4
represents an artificial intelligence-enabled smart grid dis-
tribution network that integrates renewable energy technol-
ogy, such as solar power to achieve energy efficiency and
sustainability.

Overall, we observed that integrating artificial intelli-
gence technologies in automation may help improve data
analyties. Still, implementation costs are expensive and
require specialized knowledge, system interoperability, and
complex computational resources.
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Fig. 4 Artificial intelligence-enabled smart grid distribution network
for integrating renewable energy technology in pharmaceutical waste-
water treatment plants to achieve process sustainability and decentral-
ize energy management systems. This smart grid integrates energy
distribution and digital communication technology to exchange two-
way flow of electricity and energy usage data, offering personalized
information related to the optimization of distributed energy systems
and power outages or process equipment failures that impact the over-

Big data

‘Water quality in pharmaceutical wastewater treatment plants
can be optimized before discharging the effluents into the
environment. The involvement of simulation models for
examination of wastewater quality can be performed using
databases, harmonic function, phenomenological methods,
and benchmark simulation models, traditionally used to
predict the behaviour and fate of wastewater constituents
(Ly et al. 2022). Comprehensive knowledge and sophisti-
cated control systems are required to facilitate model cali-
bration and validation, making the control process a major
disadvantage.

Machine learning can predict various water-related
variables and wastewater constituents, unlike traditional
approaches. It does not require expert knowledge to oper-
ate. It can handle and analyse large datasets and requires
less processing power. In addition, complex, nonlinear
variables of wastewater quality parameters can be modelled
using computed autoregressive integrated moving average to
forecast the levels of nitrogen, biochemical oxygen demand,
chemical oxygen demand, phosphorus, ammonia, total sus-
pended solids with relatively high accuracy ranging between
71 and 97% for the training data and low prediction errors
less than 9% for the testing data (Ly et al. 2022).
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all reliability of pharmaceutical wastewater treatment systems. Vari-
ous electronic devices such as data concentrators, gateways, feeder
meters, and aggregation meters can process data from parts of the
smart grids such as consumption points, secondary substations, and
so on. It helps to streamline the energy forecast across the grids to
connect renewable energy technologies to large-scale pharmaceutical
wastewater treatment plants

Other machine learning algorithms such as random for-
est, support vector machine, long short-term memory, gra-
dient tree boosting, adaptive neuro-fuzzy inference system,
and so on all forming parts of deep learning architectures
can be used to forecast and perform extensive data analysis
of wastewater quality and its constituents. Artificial neural
network and genetic algorithms can model pharmaceutical
wastewater treatment systems for advanced oxidation pro-
cesses to predict the operational parameters involving three-
step processes such as acidification, adsorption, and photo-
catalysis to solve wastewater composition (Yang et al. 2021).

Data mining techniques such as artificial neural net-
work and M5 tree model can be used to analyse a range
of datasets due to its reliability, robustness, and high gen-
eralization ability to achieve a coefficient of determina-
tion greater than 0.90 for forecasting biochemical oxygen
demand, chemical oxygen demand, and total suspended
solids (Asami et al. 2021). However, using photocatalytic
approaches has numerous limitations, such as lengthy pro-
cedures and impractically large amounts of wastewater
treatment catalysts with limited resource recovery process.

The integration of sonolysis with photocatalysis could
benefit the environmental remediation, maximizing the
catalyst surface area and rapidly improving the produc-
tion of free radicals to degrade toxic organic pollutants in

@ Springer
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pharmaceutical wastewater (Theerthagiri et al. 2021). On
the other hand, the electrocatalytic reduction of nitrog-
enous compounds, such as nitrate waste into ammonia,
facilitates rapid removal of toxic nitrate contaminants and
forming an alternative production of ammonia with sec-
ondary benefit compared to conventional Haber-Bosch
process (Theerthagiri et al. 2022b).

For the advancement of photo- and electrocatalytic
technologies, a fabricated electrochemical sensor based
on novel zinc sulphate/gold/multi-walled carbon nanotube
nanocomposites can be integrated into the process control
system using big data mining technique in pharmaceutical
wastewater treatment systems to improve the sensitivity of
detection on toxic organic nitrogenous pollutant, which is
part of human metabolites produced from the breakdown
of pharmaceutical ingredients and strengthening process
analytics of wastewater quality (Naik et al. 2021).

The future design and fabrication of innovative pulsed
laser-assisted technologies can improve structural optimi-
zation of electrochemical sensors with electrocatalytic per-
formance in various renewable energy and environmental
remediation processes (Theerthagiri et al. 2022a). In addi-
tion, pulsed laser irradiation technologies can dechlorinate
persistent organic pollutants containing chlorine-based com-
pounds, which are by-products widely generated in industrial
production (Yu et al. 2021).

Overall, we observed that data analytics processes can
revolutionize wastewater treatment technologies, but opera-
tion and maintenance costs are high. Compliance concerns
are also associated with reporting errors in the systems, sta-
bility of operational systems, data security vulnerabilities,
data acquisition, and interoperability of existing systems.

Cyber-physical systems

The increasing interconnections and interdependencies
between cyber-security systems, physical assets, humans,
and environment resulted in rapid evolution of pharmaceu-
tical wastewater treatment systems (Mohebbi et al. 2020).
Technological innovation and advancement in pharmaceuti-
cal technology, environmental sustainability, economic and
regulatory factors all influence wastewater treatment systems
(Cui 2021).

In addition, cyber-physical framework provides an inte-
grated approach to facilitate efficient management of tech-
nologies, improving precision in detecting wastewater con-
stituents and optimizing output variables. Adaptable digital
solutions can help various stakeholders understand the effect
of pharmaceutical wastewater quality on public health and
improve water governance by promoting social awareness
and collaboration between wastewater treatment industries
and citizens (Alexandra et al. 2023; Radini et al. 2021).

& Springer

On the other hand, maintenance of cyber-physical sys-
tems in modern pharmaceutical wastewater treatment plants
requires improving the cyber-resilience of information
security infrastructure to complement a traditional physi-
cal resilience assessment (Colabianchi et al. 2021; Patriarca
et al. 2022). To address the level of resilience, stochastic
cyber-resilience metrics must be proposed and computed to
assess the impact of cyber-attacks on information technology
infrastructure to uncover the vulnerability of the industrial
control systems and its distributed networks (Avraam et al.
2023; Chaves et al. 2017; Liet al. 2023c; Yang et al. 2022).

More critically, challenges arise from ageing informa-
tion technology infrastructure, environmental impact, and
sustainability of pharmacentical wastewater treatment sys-
tems require improvement in data management, analytics
and cyber-security systems, requiring knowledge and skills
of experts to satisfy regulatory compliance and governmen-
tal requirements as well as supporting the decision-making
process of various stakeholders (Bhandari et al. 2023).

Understanding the evolutionary process and its influences
on pharmaceutical wastewater infrastructure and character-
istics affects the quality of water and sanitation services,
which drive socio-economic changes in industrial wastewa-
ter treatment systems. New strategies must be developed to
solve health-related problems arising from pharmaceutical
water pollution (Foglia et al. 2021).

Physical assets in wastewater treatment industries that
involve various water infrastructures, such as hydraulic
pumps, network analysis of processes, optimization of water
distribution, and output variables, can influence the progres-
sion of wastewater infrastructure development.

Various stakeholders must be involved in the planning
and decision-making process when configuring the cyber-
physical systems of industrial wastewater treatment pro-
cesses, with responsibilities assigned to federal and local
governments to manage water resources and deliver sanitary
drinking water and clean wastewater for public and agricul-
tural uses (Hasan et al. 2023).

The rapid transformation of digital technology used in
cyber-physical systems improves the techno-economy of
wastewater treatment services, enabling the decision-mak-
ing process using internet of things and assisting industry
professionals to achieve a new paradigm of water resources
management (Song et al. 2023).

Figure 5 outlines the evaluation criteria for appraising
the artificial intelligence and machine learning-based opti-
mization technologies recommended for pharmaceutical
wastewater treatment systems. It shows a specific framework
related to evolutionary artificial intelligence technologies
that can be implemented into pharmaceutical wastewater
treatment systems to satisfy industry standards.

In addition, Fig. 6 shows a structured analysis of various
artificial intelligence and machine learning approaches and
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Fig.5 Evaluation criteria for critical appraisal of artificial intel-
ligence and machine learning technologies recommended for use
in wastewater treatment systems. These evaluation criteria form the
rubric for artificial intelligence tool evaluation to provide a frame-
work for assessing the artificial intellipence tools based on a set of
criteria, including interoperability, functionality, compatibility, and so
on. Critical process involves the rigorous assessment of data quality

Compliance with legal, ¥
frameworks and industry standards

and model performance, including predictive accuracy and process
control capabilities. The top hierarchy represents the most critical
component of artificial intelligence tool: autonomous operation, pro-
cess efficiency, and technical efficiency. Last but not least, the bot-
tommost layer in the pyramid is also important for any artificial intel-
ligence integration into the wastewater treatment industries, but the
regulatory frameworks and industry standards may differ worldwide
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Fig.6 A structured analysis of various artificial intelligence and
machine learning approaches and their suitability for specific chal-
lenges within pharmaceutical wastewater treatment systems to facili-
tate autonomous process control systems and global optimization of
wastewater quality characteristics and other operational conditions.
The top pedigree represents the main category of algorithm in which
supervised learning involves a formula generation based on input

their suitability for addressing specific challenges encoun-
tered in pharmaceutical wastewater treatment systems.
Additionally, Table 3 critically evaluates the evolutionary

and output values. It uses labelled training datasets, whereas unsu-
pervised learning does not. Reinforcement learning trains software
to make decisions and generate the most optimal solutions. Under all
subcategory of learning algorithms, clustering is the most common
one. Clustering is used to detect anomalies and outliers in the dataset.
Classification algorithms determine the category of an entity, object,
or eventin a given dataset

characteristics of the pharmaceutical wastewater treatment
systems from multidimensional perspectives. Furthermore,
Table 4 critically evaluates the findings of different artificial
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Table3 (continued)

References

Multidimensional improvement

Benefits or vulnerabilities

Description

Evolutionary characteristics of

pharmaceutical wastewater treatment

systems

Bahramian et al. (2023), Binnar

Provide comprehensive analysis of Systematic governance requires a

Improving human-software interface

Enhancing interdependencies and

digital forensics incident response digital transformation in corpora- etal. (2024), Zhao et al. (2020)

as integral part of the security

systems through interactions with

interconnectedness

tions and organizations to improve

cyber-physical systems. Establish
governmental regulatory systems,

information technology infrastruc-

of industrial internet of things.

ture, integrate real-time monitoring
wastewater quality and advanced

Security challenges involve secure
internet of things offloading,

develop environmental technology
and promote deep learning using

data analytics to minimize waste,

access control, data availability

artificial intelligence technologies

and greenhouse gas emissions,

and heterogeneity. Possible risks
include phishing, jamming, intru-

to deliver wastewater sanitation
services to local communities

achieve cost reduction, maximize

energy efficiency and conservation,

sion and malware, cansing leak of

facilitate value engineering, water
reusability and water resources

private data, affecting authentica-

tion, device integrity and industrial
control systems. Industrial control

management. Maintain normality
and stability in the information

systems include distributed control
systems, programmable logic

systems. Collaboration between

industry and research to deploy

controllers, supervisory control and

data acquisition

data-driven models in the wastewa-

ter sector

intelligence and machine learning optimization techniques,
supporting the empirical evidence with an interpretation to
address the research deficiencies and outcomes.

Overall, we observed that data security vulnerabili-
ties are significant issues due to difficulty authenticating
the information data in automated systems. Coordinated
cyber-attacks on critical infrastructures and industrial
control systems can affect community service availability.
More efficient and robust solutions are required to form a
new ecosystem that involves cyber-physical systems com-
bined with the internet of things to operate a massive and
complex wastewater treatment system.

Conclusion

Sustainability of pharmaceutical wastewater treatment
systems is increasingly critical in the modern world. Inte-
grating artificial intelligence and machine learning-based
models can potentially revolutionize the wastewater sec-
tors, including public health and environment. In particu-
lar, managing wastewater quality and optimizing process
parameters using artificial intelligence technologies help
achieve the best removal rate of pharmaceutical pollutants
to minimize the likelihood of pathogen transmission and
spread of viral vectors and antimicrobial resistance genes
in complex pharmaceutical wastewater environments.

Effective monitoring process dynamic conditions
demand advanced process control systems to manage
water resources. The application of blockchain-related
technologies towards sustainable wastewater and energy
management should be extended to both metropolitan and
rural areas, but further technological investigation, cost,
and carbon footprint assessment should be conducted to
evaluate the techno-economic and financial viability of
such technologies.

The technological capabilities of internet of things and
cutting-edge cyber-physical systems in the digital econ-
omy to integrate decision-making processes should be
incorporated into wastewater treatment industries to pro-
mote intelligent waste transportation systems, minimize
carbon footprint, and remove barriers to resource recovery
and energy management processes. Several points of sum-
mary for future directions are outlined as follows:

(1) Artificial intelligence and machine learning approaches
are applied to develop predictive models for monitoring
pharmaceutical wastewater quality and its constituents
in complex wastewater matrices.

(2) Minimization of operational cost and improvement in
energy efficiency of pharmaceutical wastewater treat-
ment systems require the integration of artificial intel-
ligence technologies.
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(3) Predictive control of various contaminants, including
viral vectors, antimicrobial resistance genes, severe
acute respiratory syndrome coronavirus 2, water qual-
ity parameters, chemical oxygen demand, biochemi-
cal oxygen demand, phosphorus and other organics or
nutrient removal, is crucial for future research.

(4) Sanitation and disinfection services are critical for
pharmaceutical wastewater treatment systems, and
emerging artificial intelligence technologies should
be used to optimize renewable energy, process control
systems, and wastewater treatment processes.

(9) Comprehensive models involving socio-economic,
governmental, environmental, techno-economic, tech-
nological innovation, and so on require thorough inves-
tigation when designing pharmaceutical wastewater
treatment systems.

(6) Advancements in cyber-physical systems can increase
sensitivity for fault detection, troubleshoot technical
issues, improve diagnosis and prognosis of vulnerabil-
ity in information technology infrastructure, and help
maintain distributed networks of pharmaceutical waste-
water treatment systems.

(7) Different approaches should be implemented to iden-
tify and analyse vulnerabilities and risks in information
technology infrastructure, but identification of complex
dynamic behaviours, uncertainties, or perturbations in
complex process control systems and data management
processes in pharmaceutical wastewater treatment sys-
tems requires artificial intelligence technologies. Stand-
ardization of frameworks and assessment metrics will
assist in computing efficiency, improving the reliability
and performance of pharmaceutical wastewater treat-
ment technologies.
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3.2 Links and implications

The convergence between blockchain technology, Internet of Things, Al, and ML in
cyber-physical systems synergistically enhances trust, transparency, privacy, and cyber-
security in overall operational systems in pharmaceutical wastewater treatment systems. This
benefit can be extended to other types of wastewater treatment systems, such as textile dye
wastewater, biological treatment or physicochemical treatment systems. For renewable
energy-driven processes, the Al-enabled smart grid distribution network improves the
adaptability of solar energy into existing wastewater treatment systems to achieve energy
efficiency and sustainability. Al-integrated systems can also help identify and analyse
security vulnerabilities or risks in IT infrastructure, monitor complex dynamic behaviours,
uncertainties, or system perturbations, and manage data in the process control systems of
wastewater treatment plants.

Furthermore, distributed energy systems improve the utilisation efficiency of
renewable energy technologies with the support of blockchain technology. However, the
main disadvantage of hybrid AI/ML ensembles generated models involves complicated
design constraints and uncertainties in predicted data arising from data clustering, making it
challenging to determine exact data patterns. The scalability of blockchain technology can
pose a significant issue due to the incompatibility of software and hardware systems, data
security vulnerabilities and interoperability of existing IT systems. System-wide compromise
arising from incompatible Al software with existing operational systems can lead to a
cascade of design errors, malfunctions and vulnerability to cyber-attacks on critical IT
infrastructure. Nonetheless, the assistance of Al-powered technologies can help improve the
reliability, computing efficiency, and overall performance of wastewater treatment systems

through the standardisation of frameworks and compliance with assessment metrics.
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4.1 Introduction

Among all aquatic pollutants, xenobiotic dyes and pigments are the most ubiquitous
organic contaminants. These organic contaminants are highly resistant to environmental
degradation due to the chemical stability of dye compounds. Xenobiotic dyes are
anthropogenic contaminants often discharged into water from industrial effluents, especially
from textile manufacturing, food processing, dye and paint industries. Xenobiotic dyes are
carcinogenic and ecologically toxic if it finds its way into food chain. Similar to
pharmaceutically active compounds, the breakdown byproducts of xenobiotic dyes can be
even more toxic due to incomplete oxidation or mineralisation of intermediate transformation
byproducts from its parental compounds.

Furthermore, there are several ways to treat xenobiotic dyes in contaminated water,
such as adsorption, membrane filtration, chemical coagulation-flocculation, photocatalytic
degradation, Fenton process, biological treatment, electrochemical treatment and many more.
However, there are some drawbacks associated with different treatment methods. Membrane
filtration method often leads to membrane fouling due to the buildup of contaminants on
membrane surfaces. Coagulation-flocculation techniques can require chemical additives and
contribute to secondary pollution if improperly managed. Biological treatment can generate
excessive sludge production, resulting in high transportation and sludge management costs.
Among these treatment methods, the simplest and most practical method is adsorption. It is
highly effective at removing pollutants non-selectively with minimal sludge generation and
does not require any pre-treatment process. There have been several attempts to regenerate
the adsorptive capacity of carbon-based adsorbents using electrochemical techniques.
However, activated carbon adsorbents have high porosity and low electrical conductivity,
limiting its ability to regenerate its adsorptive capacity electrochemically. Thermal
regeneration of activated carbon adsorbent was investigated, but the disposal of exhausted
activated carbon adsorbents into landfill can pose a significant environmental issue.
Incineration of activated carbon also contributes to secondary pollution. Therefore, this
technical experiment used graphite intercalation compound (GIC) as a suitable alternative to
activated carbon adsorbents due to its ability to electrochemically regenerate. GIC has high
electrical conductivity compared to conventional activated carbon and little to no porosity. It
can be electrochemically regenerated in situ by an electrochemical oxidation process. When
used in a sequential batch electrochemical reactor, GIC can be electrochemically regenerated.

On the other hand, organic pollutants can be further degraded with the additional support of
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anodic oxidation technology in the reactor. The combined hybrid treatment method of GIC
adsorbents and direct electrochemical oxidation of the reactor gives rise to a three-
dimensional electrochemical reactor.

Furthermore, a three-dimensional electrochemical reactor contains GIC particle
electrodes and anodic oxidation technology to synergistically enhance the electrochemical
degradation of xenobiotic dye contaminants more effectively than a conventional, single
wastewater treatment method. A three-dimensional electrochemical oxidation can effectively
generate hydroxyl radicals and active chlorinated species to mineralise the xenobiotic dyes
into inert carbon dioxide and water provided that the complete oxidation process can be
achieved. There are a range of operational parameters to consider, such as adjusting current
density, electrolysis time, adsorbent dosage and initial dye concentration to improve pollutant
removal efficiency.

This research article comprehensively studies adsorption kinetics, isotherms and
electrochemical oxidation mechanisms of a three-dimensional electrochemical oxidation
technology. A range of error functions, linear and non-linear regression analyses are used to
determine the accuracy and precision of process variables. Response surface methodology
(Kanneganti et al.) optimisation technique was applied to GIC adsorbents to optimise the
adsorption process. The salting and thermal effects of simulated, alkaline dye-contaminated
wastewater on selectivity reversal of GIC adsorbents were critically evaluated using RSM

optimisation technique.
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Abstract

In this work, a novel graphite intercalation compound (GIC) particle electrode was used to investigate the adsorption of
Reactive Black 5 (RBS) and the electrochemical regeneration in a three-dimensional (3D) electrochemical reactor to recover
its adsorptive capacity. Various adsorption kinetics and isotherm models were used to characterise the adsorption behaviour
of GIC. Several adsorption kinetics were modelled using linearised and non-linearised rate laws to evaluate the viability of
the sorption process. Studies on the selective removal of RB5 dyes from binary mixture in solution were evaluated. RSM
optimisation studies were integrated with ANOVA analysis to provide insight into the significance of selectivity reversal
from the salting effect of textile dye solution on GIC adsorbent. A unique range of adsorption kinetics and isotherms were
used to evaluate the adsorption process. Non-linear models best simulated the kinetic data in the order: Elovich> Bang-
ham > Pseudo-second-order > Pseudo-first-order. The Redlich—Peterson isotherm was calculated to have a dye loading capac-
ity of 0.7316 mg/g by non-linear regression analysis. An error function analysis with ERRSQ/SSE of 0.1390 confirmed the
accuracy of dye loading capacity predicted by Redlich—Peterson isotherm using non-linear regression analysis. The results
showed that Redlich—Peterson and SIPS isotherm models yielded better fitness to experimental data than the Langmuir type.
The best dye removal efficiency achieved was~93% using a current density of 45.14 mA/cm®, whereas the highest TOC
removal efficiency achieved was 67%.

Keywords Dye - Adsorption - Electrochemical oxidation - Graphite intercalation compound - Kinetics - Isotherms

Introduction

Organic contaminants such as dyes and pigments are recal-
citrant pollutants highly resistant to environmental biodeg-
radation. These pollutants are often discharged into water
from industrial effluents such as dye and paint manufactur-
ing, food processing, textile, etc. Most of these dyes are
synthetic, which means they can be highly toxic and car-
cinogenic if it finds its way into the food chain. Therefore,
there is an urgent need to remove the dyes from liquid waste
until they fall below a specific concentration acceptable to

Editorial responsibility: Samareh Mirkia.

V. Ganthavee
Voravich.Ganthavee @usq.edu.au

School of Agriculture and Environmental Science,

University of Southern Queensland, 487-535 West St,
Darling Heights, Toowoomba, QLD 4350, Australia

Published online: 21 May 2024

environmental regulatory authorities. There are several ways
to remove dyes from water, such as adsorption (El-Kammah
et al. 2022; Noorimotlagh et al. 2019), membrane filtration
(Ma et al. 2022; Mansor et al. 2020), chemical coagulation
and flocculation (Lau et al. 2014; Szyguta et al. 2009), pho-
tocatalytic degradation (Fernandes et al. 2019; Tekin 2014),
electrocoagulation/electrofiotation (Balla et al. 2010), Fen-
ton process (Suhan et al. 2021), electrochemical oxidation
(Kumar and Gupta 2022, Song et al. 2010) etc. Adsorption
is an attractive and effective approach to removing con-
taminants from water, particularly when the adsorbent is
cheap, has minimal sludge generation and does not require
an additional pre-treatment process (Sultana et al. 2022).
The adsorption methed is simple and cost-effective, and high
dye removal efficiency can be achieved (Chaiwichian and
Lunphut 2021). Several attempts have been made to elec-
trochemically regenerate activated carbon adsorbents (Nar-
baitz and McEwen 2012; Xing et al. 2023). However, low
electrical conductivity of liquid media limited the energy
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required to regenerate activated carbon adsorbents (Karimi-
Jashni and Narbaitz 2005). Activated carbon adsorbents have
a high degree of porosity, which affects its ability to regen-
erate successfully. Offsite thermal regeneration is required
for activated carbon. However, exhausted activated carbon
is often disposed into a landfill or incinerated, which may
contribute to secondary pollution. Hence, graphite intercala-
tion compound (GIC) can be used as an alternative to remov-
ing dissolved organic contaminants from water. GIC can be
electrochemically regenerated in situ by an electrochemical
oxidation process. It is electrically conductive and requires
a short adsorption time to reach equilibrium (Mohammed
et al. 2012), However, the specific surface area of GIC is
significantly smaller than activated carbon.

Previous studies have shown that the combined adsorp-
tion and electrochemical regeneration of GIC can maximise
dye removal efficiency (Hussain et al. 2015b; Mohammed
et al. 2012). Optimising operating conditions allows the for-
mation of chlorinated breakdown products to be minimised
during electrochemical regeneration to prevent side reactions
(Hussain et al. 2015a). However, there is a lack of studies
focusing on the adsorption models used to model GIC using
statistical analysis and comparison of linear and non-linear
regression models to describe the adsorption mechanisms
of GIC. In this paper, we report the kinetics and isotherm
studies used to examine the adsorption behaviour of GIC.
In addition, the effect of current density in the subsequent
electrochemical oxidation process was also investigated to
optimise the dye and TOC removal efficiencies.

Materials and methods
Adsorbate

Reactive Black 5 (RB5) dye, with an empirical formula
of Cy¢H,;N:sNa,0,,S, was purchased from Sigma-Aldrich
with the product number 306452. The chemical structure of
the Reactive Black 5 dye is shown below. A stock solution
of 100 mg/LL was prepared from the dissolution of RB5 in
water,

Adsorbent preparation

The adsorbent used in this study is an expandable graph-
ite intercalation compound (GIC) purchased from
Sigma—Aldrich (P/N: 808121). At least 75% of the flakes
were larger than 300 microns (See Supplementary Mate-
rial $1). GIC has no porous structure and a relatively low
electroactive surface area of approximately 1 m%/g (Hussain
et al. 2016). It is highly conductive, with 0.8 S/cm (Asghar
et al. 2014).
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Determination of pH point of zero charge (pH,,, )

The point of zero charge (pzc) of the GIC adsorbent was
determined using a pH meter (Eutech instruments, PC 2700).
A mixture of 50 mg GIC in 40 mL of distilled water con-
taining 0.1 M HCl and 0.1 M NaOH to adjust the pH levels
ranging between 3 and 12. The pH was measured after 24 h
of equilibration at an ambient temperature of 22.5 °C. The
pH,;. is defined as the pH at which the surface charge of the
GIC adsorbent is neutral.

Adsorption studies

The adsorption kinetic studies were performed to determine
the adsorption system's reaction order and identify the rate-
limiting process. The adsorption studies were performed for
Reactive Black 5 dye at various initial concentrations using
a GIC adsorbent dosage of 23 g/L, which was within the
ratios of adsorbent concentration estimated across different
works of literature such as Hussain et al. (2015b), Liu et al.
(2016) and Purkait et al. (2007). The mechanical agitation
speed was adjusted to 300400 rpm at 22 °C. The adsorption
time was between 0 and 120 min until the adsorption equi-
librium for various initial dye concentrations was reached.
In order to investigate the effect of salt on the selectivity of
GIC, adsorption experiments were carried out using sodium
chloride (NaCl, > 99%, Sigma-Aldrich, Australia) at con-
centration ranging from 1 to 10 g/L.. The adsorbent load-
ing, ¢, (mg/g), is to be determined from the initial and final
concentrations at specific time intervals as given in Eq. (1):

4= -9, )
m

where C; and C; are the initial and final concentrations
(mg/L) of Reactive Black 5 solution, V is the volume (L)
of a solution, and m is the mass (g) of the adsorbent used.
Microsoft Excel Solver Add-In (2022) was used to perform
graphical plots, curve fitting and mathematical models for
adsorption kinetics and isotherms by comparing the experi-
mental and theoretical data. The chi-square test is a criti-
cally important error function in determining the best fit of
isotherm model applicable to the tested adsorption system.
It estimates the difference in squares between the theoreti-
cal data based on the predicted model and the experimental
data collected and then divides each difference by the cor-
responding experimental value.

The influence of the variables was examined at three dif-
ferent levels, and the values of the variables at each level are
shown in Table 1. The total number of experimental runs
was designed using the CCD method by Eq. (2):
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Table 1 Range and codification

Ind: dent variabl Symbol - -1 0 +1 +

of theindependentvariable(x,) ndependent vanabies ymoo “ *
:iver_e used in the experimental Temperature, (°C) X, 30 36.0809 45 53.9191 60
esign pH X, 3 46216 7 9.3784 11
Salt concentration (g/L) X, 1 2.8243 55 8.1757 10

n=2+2+n, @ adsorption-electrochemical treatment process consists of

where n is the total number of experimental runs, i is the
number of independent variables, and n, is the number of
centre points. A total of 20 experiments were designed. A
quadratic polynomial equation can be used to mathemati-
cally express the relationship between the independent vari-
ables and the responses, as shown in Eq. (3):

k K =l ok
Y=0+ E Pix; + Z Pix; + E Z Pyxx; + 3)
i1 i1

=1 =i+l

where Y is the predicted response, P is the constant term, {3,
P and py; are the linear, second-order and interaction coef-
ficients, respectively, x; and x;are the independent variables,
and x;x; represents the first-order interaction between x; and
X k is the number of independent variables, and y is a ran-
dom error.

Adsorption and electrochemical regeneration

Electrochemical regeneration of GIC adsorbent was carried
out in a batch electrochemical cell, as shown in Fig. 1.
Direct anodic oxidation of dye pollutants occurs via
graphite anode, whereas indirect oxidation occurs via
electrogenerated highly reactive oxidising species such
as hydroxyl radicals and active chlorine species. The

Fig. 1 RB35 textile dye waste-
waterin the sequential batch
electrochemical reactor

Reactive Black 5

®
- -
4 e
.- o4
o —Jv.-‘
e =
L =l

three essential steps: initial adsorption-regeneration and
re-adsorption via electrochemical treatment (Hussain et al.
2015b). In this experiment, 2,000 mL of the 100 mg/L of
RB3 stock solution was subjected to electrochemical treat-
ment. The dye solution was poured into a sequential batch
reactor, and adsorption occurred when the air compressor
was switched on. The air was sparged into the bottom of the
chamber to facilitate mixing between GIC and dye solution.
The active area of each electrode used in the reactor was
70 em?. The interelectrode distance between the anode and
cathode was 6.3 cm, and about 200 g of GIC was added to
fill the regeneration zone (12 cm deep and 5 cm thick) before
pouring the dye solution. The volume of the reactor chamber
was about 67 L. A 30 V DC power supply unit was con-
nected to the graphite anode and 316-grade stainless steel
cathode to facilitate an electrochemical redox reaction. The
cathodic compartment was filled with 0.3% (w/v) acidified
brine solution pH of 1-2 separated from the dye solution
by a Daramic membrane (Daramic, USA). The current sup-
ply ranged from 0.21 to 3.16 A, corresponding to a current
density of 3 to 45.14 mA/cm®.

Analytical methods

Surface characterisation of GIC can be performed using
TRAAffinity-1S, GladiaATR 10 Shimadzu Fourier Transform

Sequential batch
electrochemical reactor

p
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Infrared Spectroscopy (FTIR) by examining its surface
functional group or surface chemistry. Scanning Flectron
Microscopy (SEM) is used to investigate the surface mor-
phology or textural properties of the GIC. A detailed analy-
sis of GIC characteristics using FTIR and SEM is shown in
Supplementary Material.

UV/Visible spectrophotometer (DR6000, Hach) deter-
mined the RBS dye concentrations in solution at differ-
ent time intervals. The maximum absorption occurred at
a wavelength . =596 nm as specified by previous authors
Feng et al. (2022), Saroyan et al. (2019) and Droguett et al.
(2020). TOC-V CSH Shimadzu TOC analyser is used to
determine the degree of mineralisation of the Reactive Black
3 dye before and after the electrochemical treatment. A Hach
DR6000 UV/Visible Spectrophotometer was used to deter-
mine the RBS concentrations in the samples. The Coefficient
of Variation (de Fouchécour et al. 2022) for UV-absorbance
analysis of RB5 is approximately 0.31%, whereas for TOC
analysis is approximately 1.69%.

Results and discussion
Adsorption studies

The adsorption kinetics pertain to the uptake rate of RBS
adsorbates by GIC. Figure 2a shows the dye removal effi-
ciency for various initial dye concentrations ranging from
33.81 to 136.67 mg/L. The dye removal efficiencies for dif-
ferent initial dye concentrations fluctuated throughout the
adsorption period. This adsorption phenomenon indicated
that the dye molecules adsorbed onto the GIC adsorbent and
desorbed from the adsorbent surface back and forth due to
weak intermolecular interaction. Dye sorption usually occurs
when the dye molecules are diffused from the bulk liquid
onto the adsorbent surface through the solid-liquid interface
between the adsorbent surface and the bulk solution. The
dye molecules interact with the active sites on the surface
of the adsorbent through intermolecular interactions, which
are held by either van der Waals' forces, electrostatic interac-
tions, hydrophobic interactions, z— electron donor—acceptor
interactions, hydrogen bonding etc. The binding process is
reversible if the solute-substrate interaction is held by weak
intermolecular forces such as van der Waals’ forces. The
binding process is irreversible if there is a strong electro-
static attraction between the solute and substrate. In addi-
tion, Fig. 2a shows the dye removal efficiencies for various
initial dye concentrations. It was found that the higher the
initial dye concentration, the lower the overall dye removal
efficiency due to the limited availability of active sites and
rapid uptake of adsorbates onto active sites.
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Figure 2b indicates that adsorbent loading increased
within the first 0-8 min for initial RBS dye concentrations
ranging from 33.81 to 136.67 mg/L, eventually reaching
an adsorption equilibrium. However, continuous adsorp-
tion—desorption occurred throughout the experimental con-
ditions even after 100 min of adsorption time. The rise and
fall of adsorbent loadings strongly indicated that the dye
molecules continuously adsorbed and desorbed from the
surface of the GIC adsorbent due to weak intermolecular
interactions. This indicated the reversibility of the solute-
substrate binding process.

On the other hand, pseudo-second-order kinetic models
showed an excellent curve fitting between experimental and
theoretical data (Fig. 3a), indicating that it is suitable to
describe the adsorption—desorption kinetics in experimen-
tal studies. Non-linearised pseudo-first-order kinetic models
vield better fitness than the linearised pseudo-second-order
kinetic model (Table 1). The desorption process increased
dye concentration in the bulk liquid, creating a greater
concentration gradient and a greater diffusion flux of dye
adsorbates re-adsorbing onto the GIC adsorbent surface.
Although the adsorption kinetics of RBS exhibited a slow
rate-1imiting step, the high concentration gradient improved
the surface diftusivity or diffusion flux of the dye adsorbates
onto the GIC adsorbent surface, reaching a rapid equilibrium
point within 3 min of adsorption time.

The Bangham model is derived from the generalisation
of the Weber and Morris model (Largitte and Pasquier 2016;
Sumanjit et al. 2016). The kinetic data obtained from this
model can be used to determine the slow limiting step in
the adsorption system, as shown in Table 1. The equation
indicates that q denotes the dye loading per mass of adsor-
bent (mg/g), 6 and k represent kinetic constants. This kinetic
model can be used to verify whether the rate-limiting step
influences the pore or surface diffusion.

Furthermore, a novel three-stage kinetic model was used
to describe the adsorption of RB5 onto GIC adsorbent. The
model is based on the concept of mass conservation for RBS
combined with three distinct stages of adsorption onto GIC
(Choi et al. 2007): 1) the first portion of the plot represents
an instantaneous stage or external surface adsorption; 2) the
second portion of the gradual stage in the plot represents the
rate-limiting intraparticle diffusion; and 3) the third portion
for a constant stage represents the aqueous phase which no
longer interacts with GIC. The analytical three-stage kinetic
model can be validated with the kinetic data from the batch
experimental study involving RB5 adsorption onto the GIC.

The significance of developing a three-stage kinetic model
for each initial dye concentration through modelling studies
stems from strong evidence that different stages of adsorp-
tion exist in the kinetic models. The first stage involves a
sharper portion of the adsorption curvature, representing
the rapid decrease in the aqueous phase concentration. Dye
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Fig.2 a The changes in dye removal efficiencies over a period of time for various initial dye concentrations; b the adsorbent loading of Reactive

Black 5 dye onto GIC over adsorption time from 0 to 120 min

molecules diffuse into the bulk solution, moving across the
solid-liquid interface and binding to the active sites on the
external surface of the adsorbent by instantaneous adsorp-
tion. The second gradual decline portion represents the slow
rate-limiting adsorption influenced by intraparticle or sur-
face diffusion. In contrast, the third constant line portion rep-
resents a minimal change in aqueous phase concentration or

indicates equilibrium has been reached. Compared to stand-
ard kinetic expressions, pseudo-second-order equation, and
Elovich kinetic equation, these three-stage kinetic models
are purely empirical. They do not discriminate between the
different adsorption stages, such as instantaneous versus
rate-limiting adsorption (Choi et al. 2007).
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e—113.07 mg/L {Bangham Theoretical Model)

Fig.3 a The linearised form of the pseudo-second-order kinetic
model for Reactive Black 5 dye adsorption onto GIC adsorbent. The
orange and blue lines represent linear regression analysis; b Bang-
ham’s kinetic model by non-linear regression method represents
the slow rate-limiting step of surface diffusion and intraparticle dif-
fusion of RB35 dye onto GIC adsorbent; ¢ The pseudo-first-order
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55.45 mg/L {Experimental)

113.07 mg/L {Experimental)

33.81 mg/L {Bangham Theoretical Model)
w7206 mg/L {Bangham Theoretical Model)
e 136.67 mg/L {Bangham Theoretical Model)

kinetic model by non-linear regression analysis for Reactive Black 5
dye adsorption onto the GIC adsorbent; d The pseudo-second-order
kinetic model by non-linear regression analysis for Reactive Black 5
dye adsorption onto the GIC adsorbent; e The Elovich kinetic model
for Reactive Black 5 dye adsorption onto GIC adsorbent; f The three-
stage kinetic model for RB5 dye adsorption onto GIC adsorbent
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Fig. 3 {continued)

In a kinetic batch system, the adsorbate in the aqueous
phase binds to the active sites on the adsorbent surface in a
finite system, resulting in the decline of the aqueous phase
concentration. In the first two stages of adsorption, the
instantaneous adsorption in the first stage involves instanta-
neous adsorption followed by slow rate-limiting adsorption
in the remaining stage as it moves towards the equilibrium

point. The rate-limiting adsorption, which involves the entire
mass transfers of adsorbate in the aqueous phase, moves
towards the solid phase of the adsorbent through surface
diffusion until it fills the active sites of the adsorbent with
adsorbate, thereby reaching adsorption equilibrium. The
second stage of the adsorption process primarily accounts
for time-dependent adsorption, followed by the third stage,
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Fig.3 {(continued)

where the aqueous phase concentration remains constant  that some portion of the Reactive Black 3 adsorbate was
throughout batch adsorption. Furthermore, it can be deduced  adsorbed onto the external site of the GIC adsorbent within
that the existence of instantaneous adsorption (£,) implies  a transient period of time. The higher the initial adsorbate
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concentration, especially when the initial dye concentration
increased from 33.81 to 136.67 mg/L, resulted in a lower
&, value for both two and three-stage kinetic models. The
lower &, values compared to £, values, as the initial adsorb-
ate concentration increased, indicated higher intraparticle
diffusion. The continuous decrease of the aqueous phase of
adsorbate concentration within 2-3 min indicated that the
surface diffusion was still ongoing due to the availability
of surface area or active sites on the particle size of GIC
adsorbent. Due to the continuous decrease in the aqueous
phase of adsorbent concentration, the final stage of kinet-
ics had not reached the equilibrium point. Nonetheless, all
three stages of kinetic models fitted well with the experi-
mental data, with slight differences between the « and &,
values for initial adsorbate concentrations ranging between
33.81 and 72.06 mg/L of RBS dye. Moreover, the higher
the initial adsorbate concentration, the more pronounced the
three stages, with an especially more distinctive appearance
of the second stage due to higher g,(co) value. This result
demonstrated that different adsorption stages largely depend
on the initial adsorbate concentration and the adsorbent’s
physicochemical properties or surface characteristics. The
instantaneous adsorption (£,) of GIC adsorbent decreased
from 0.1064 to 0.0209 as the initial adsorbate concentration
increased from 33.81 to 136.67 mg/L. As the initial adsorb-
ate concentration increased, the fast decline in instantaneous
adsorption became more pronounced. A high concentration
gradient between the bulk liquid solution and the external
site of the adsorbent would result in greater surface dif-
fusivity. As the initial adsorbate concentration increased,
high competition between adsorbate molecules reduced the
number of active sites available for adsorption, resulting
in a decrease in P values and, consequently, a reduction in
adsorption rate followed by reduced « values. As the ini-
tial adsorbate concentration increased, the instantaneous
adsorption portion of the parameter, £, value decreased
while the two-stage parameter, £, value increased, leading
to a longer equilibrium time. Conversely, the higher £, value,
the lower the second-stage adsorption, which may result
in a relatively long reaction time until the active sites are
filled. However, integrating the third stage model improved
the system's flexibility with greater p vields, resulting in a
relatively short duration of the second stage. On the other
hand, the three-stage kinetic model improved the flexibil-
ity of second-stage adsorption by increasing the f yields,
thereby compensating the instantaneous portion of &, and
shortening the equilibrium time for the complete reaction.
However, a higher g value, especially at initial adsorbate
concentration ranging between 33.81 and 136.67 mg/L, indi-
cated limited aqueous mass transfer due to relatively high
aqueous phase concentration. For a system with high initial
adsorbate concentration and small particle sizes, the three-
stage model is more suitable for determining the correct «

value. The instantaneous portion, £, increased significantly
for both high and low initial adsorbate concentrations, pos-
sibly due to particle attrition. The increase in the instan-
taneous portion, 515 resulted in a smaller £, value, which
indicated that a higher instantaneous portion inadvertently
reduced the second-stage reaction duration. Moreover, the
increase in the instantaneous portion, £, strongly indicated
RB3 adsorbed onto GIC. On the other hand, using a high
mechanical stirring rate, significantly greater than 700 rpm,
can result in particle attrition, leading to small particle sizes.
Small particles have a high surface area, resulting in high
instantaneous adsorption. The continuous adsorption—des-
orption cycles can affect the {3 value. In contrast, changes in
v values indicated prolonging or shortening reaction times,
especially for the third stage. The balance between « and (3
values can be discerned through the presumption that the
system may experience mass losses from the solution due
to the mineralisation process.

Furthermore, the Elovich equation was initially used to
examine the adsorption processes and is suitable for sys-
tems involving heterogeneous adsorbing surfaces (Wu et al.
2009). The characteristic curve of the Elovich equation
resembles those of Lagergren's first-order equation and intra-
particle diffusion model (Wu et al. 2009). The data obtained
from Table 2 shows that Elovich kinetic model is the best fit
for the experimental data. Moreover, Elovich kinetic model
is the most appropriate model to describe the adsorption
kinetics of RBS with R? values greater than 0.9999. In addi-
tion, Fig. 3e shows the rapid rising to instant approaching
equilibrium of the low-lying characteristic curve, which
indicates rapid adsorption kinetics. The increasing sur-
face diffusion flux driven by a large concentration gradient
between solid-liquid interphase facilitated the rapid diffu-
sion of RBS adsorbate onto the surface of GIC, resulting in
fast-approaching equilibrium. In addition, Fig. 4 shows the
point of zero charge, pH,,, relative to solution pH on the
ionisation of GIC adsorbent.

Adsorption isotherms

Various isotherm models concerning Fig. 5 are stipulated in
this subsection. The Langmuir adsorption isotherm assumes
that a homogenous monolayer exists on the surface of the
adsorbent, with no interaction between the adsorbed mol-
ecules and its neighbouring adsorption sites (Elemile et al.
2022). Moreover, Langmuir adsorption isotherm was ini-
tially developed to describe gas—solid interphase adsorption
on both carbon and graphite-based adsorbent. This isotherm
model is usually based on two common assumptions: 1)
the forces of interaction between adsorbed molecules are
negligible, and once an adsorbate occupies an active site
on the surface of the adsorbent, no further sorption takes
place. In addition, Langmuir isotherm refers to homogenous
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Table2 Summary of linear and non-linear kinetic parameters for adsorption of RB5 dye onto GIC adsorbent

Adsorption Kinetics parameters for Reactive Black 5 dye onto GIC adsorbent by using the pseudo-first-order non-linear equations

Co (mgfL) Gy (/) k; (min™") 9 (mgfg) R?
33.81 04210 0.8014 04210 0.9984
5545 0.3796 1.1009 0.3796 0.9899
72.06 0.4509 0.5417 0.4509 1.0000
113.07 0.4509 0.4012 04509 0.9968
136.67 0.9777 0.0248 0.7089 0.9925
Pseudo-first-order equation Non-Linear Form Plot
Kt
_ Ry g g, versust
NI
Adsorption kinetics parameters for Reactive Black 5 dye onto GIC adsorbent using the pseudo-second-order linear equations
Co (mg/L) Qe exp (ME/E) k; (g/mg min) Qe cal (ME/E) R
33.81 04210 2.0166 0.2712 0.9869
5545 03796 0.6807 0.2521 0.9781
72.06 0.4509 0.4158 0.2532 0.9754
113.07 0.4509 0.6631 0.24%8 0.9500
136.67 09777 0.0493 0.2476 0.7603
Pseudo-second-order equations Linear Form Plot
1 1 t
é =iz + Et aversust
Bangham kinetic parameters by non-linear regression method for Reactive Black 5 dye adsorption onto GIC adsorbent
Co (mg/L) Ge.crp (MELR) k (min~%) 6 4. cu (mglg) R
33.81 0.4210 0.2574 0.1358 0.4932 0.9999
55.45 0.3796 0.1744 0.2032 0.4615 0.9710
72.06 0.4500 0.2352 0.1638 0.5154 0.9999
113.07 0.4509 0.1987 0.2167 0.5607 0.9999
136.67 0.9777 0.1651 0.2467 0.5379 0.9999
Bangham Equation Non-Linear Form Plot
q= kt* log, (Q)versuslog,(t)
Adsorption kinetics parameters for Reactive Black 5 dye onto GIC adsorbent by using the pseudo-second-order non-linear equations
Cq (mg/L) e exp (M) k, (min™) Ge ca (ME/E) e
33.81 0.4210 1.8148 0.4164 0.9945
5545 0.3796 0.9969 0.3714 0.9968
72.06 0.4509 1.0761 0.4433 0.9996
113.07 0.4509 0.7819 0.4405 0.9873
136.67 0.9777 0.0224 0.7079 0.9957
Pseudo-second-order equation Non-Linear Plot
_ gk g, versust
&= T
Kinetics parameters for adsorption of Reactive Black 5 dye on GIC by using the Three-stage kinetic model
Co (mg/L) 4, (t) (mgfg) 9 () (mg/g) o p ¥ & ) R’
33.81 0.1564 0.4210 01711 0.1461 3.4830 0.1064 0.2864 0.9550
5545 0.0414 0.3796 0.2254 0.1839 7.4240 0.0172 0.1574 0.9547
72.06 0.0598 0.4509 04132 0.2924 9.2199 0.0191 0.1439 0.9547
113.07 0.098% 0.4509 0.1266 0.1124 11.9101 0.0201 0.0917 0.9546
136.67 0.1242 0.9777 0.1457 01272 6.6720 0.0209 0.1645 0.9546
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Table2 (continued)

Kineties parameters for adsorption of Reactive Black 5 dye on GIC by using the Three-stage kinetic model

Co (mg/L) q; (1) (mg/g) 4, (t) (mg/g) o p ¥ & & R?
Three-Stage Kinetic Equation — — c _ LA Plot
0102 4,000 = g ()L = ~a[1 - 22
b b e @l 40 = @)+ @0 o
ac 0
£ —aC[l - ﬁ;{z—&)] VO() + M|g; +4,] = VG, (tyversust
oy _ (E0(-4-0%)
€, (-&-fhepl-n)
£ = Mol £, = Mol _ (ot
1 VCs 2 VG, 2
Elovich kinetic parameters for adsorption of Reactive Black 5 dye onto GIC adsorbent
Co (mg/L) e exp (I0272) o p Gecal (Mg/g) R?
33.81 0.4210 3.6758 18.3320 0.4908 0.9999
5545 0.3796 0.3652 13.9796 0.4592 0.999%
72.06 0.4509 1.2161 15.0065 0.5126 0.999%
113.07 0.4509 0.3677 11.2163 0.5533 0.9999
136.67 0.9777 0.35422 12,3529 0.5072 0.999%
Elovich Kinetic Equation g, = %lr(aﬁt +1) Plot
qyversust

adsorption with a second assumption that there is no trans-
migration of the adsorbate molecules in the plane perpen-
dicular to the surface of the adsorbent (Shahbeig et al. 2013).
This isotherm model has the following hypotheses (Shahbeig
et al. 2013):

(1) The monolayer adsorption is approximately one mol-
ecule in thickness.

(2) Adsorption usually takes at specific homogenous active
sites within the surface of the adsorbent.

(3) Once an adsorbate occupies an active site, no further
sorption takes place at that particular site.

(4) The free energy at the adsorption site is relatively con-
stant and independent of the degree of adsorbate occu-
pation on the active site of the adsorbent.

25

15

0.5

ApH

8 10 12
0.5

pH._=6.0440.03

1
1
1
1 pzc
1

-1.5
pH

initial

Fig. 4 Point of zero charge of GIC particle electrode

(5) The strength of attractive intermolecular forces depends
on the distance between the adsorbate molecule and the
active site of the adsorbent, indicating that the further
away the adsorbate is from the adsorbent surface, the
lower the attraction.

(6) The physicochemical structure of the adsorbent is con-
sidered to be homogeneous.

However, the Langmuir isotherm model's main limitation
is its validity in low-pressure constraints. Another drawback
of Langmuir isotherm is that it assumes uniform monolayer
adsorption of adsorbate or solute at a specific homogenous
active site. In reality, this rarely occurs in the presence of
high adsorbate concentration, which results in rapid satu-
ration of active sites caused by competition adsorption
phenomena or interaction between adsorbates on different
active sites. The ongoing adsorption and desorption pro-
cesses affect the accuracy of the assumption for a mecha-
nistic model.

Two significant assumptions are related to the derivation
of Temkin isotherm (Chu 2021): (1) There is a uniform dis-
tribution of heterogeneous binding sites on the solid sur-
face; (2) The binding energy varies linearly over different
binding sites. Temkin isotherm is often used to characterise
the environmental adsorption of contaminants, but it suffers
from dimensional inconsistency (Chu 2021). The dimen-
sionally inconsistent formulation, as shown in Table 3, may
affect the accuracy of the representation of fitted theoretical
data against the experimental data. Two undesirable features
relate to the fitted curve: (1) any initial dye concentration
beyond 100 mg/L does not accurately predict the saturation
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Fig. 5 a Langmuir adsorption isotherm for RB3 onto GIC adsorbent
by linear regression method; b Langmuir adsorption isotherm for
RBS5 onto GIC adsorbent by non-linear regression method; ¢ Fre-
undlich adsorption isotherm for RB5 onto GIC adsorbent by linear
regression method; d Freundlich adsorption isotherm for RB3 onto
GIC adsorbent by non-linear regression method; e Temkin adsorption
isotherm for RB5 onto GIC adsorbent by linear regression method;
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f Temkin adsorption isotherm for RB5 onto GIC adsorbent by non-
linear regression method; g SIPS adsorption isotherm for RB5 onto
GIC adsorbent by linear regression method; h SIPS adsorption iso-
therm for RB5 onto GIC adsorbent by non-linear regression method;
i Redlich-Peterson isotherm modelling by linear regression method;
j Redlich—Peterson adsorption isotherm for RB5 onto GIC adsorbent
by non-linear regression method
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limit, especially at high concentrations, resulting in more
significant disparities between theoretical and experimental
data; (2) The second undesirable feature is present in both
low and high regions. This indicates that the experimental
values are less than the accepted values, giving the average
relative errors negative values. Nonetheless, the inherent
deficiencies in Temkin formulation do not entirely restrict
its ability to correlate the equilibrium data to a significant
degree of precision. In other words, the fitting of the Temkin
equation to an equilibrium data and experimental profile is
still within a validity range despite some minor deviations
at both high and low concentrations. Some minor deviations
could be attributed to the ongoing desorption process within
the adsorption system.

Furthermore, SIPS isotherm combines Langmuir and
Freundlich models and is appropriate for characterising
heterogeneous adsorption systems at various pressures and
temperatures (Tzabar and ter Brake 2016). The SIPS model
has been found to fit liquid adsorption data remarkably well,
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0.8 SIPS (Non-Linear Modsl) T
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=
0.4 I I
0.2 +
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Redlich-Peterson (Non-
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- T
Zos ; 1
Rl
= T
0.4 T I
02 +
0.0
o} 50 00 150
C,mg)

especially for liquid—solid adsorption systems. Although the
results showed that the adsorption systems are suitable for
RB35 contaminant, the apparent SIPS formulation may con-
ceal problematic application issues. The application issues
are expounded as follows (de Vargas Brido et al. 2023): (1)
the dubious practice of using linear versions of the SIPS
equation to fit the experimental profile; (2) the inherent
mismatches between the SIPS and Langmuir-Freundlich
equations; and (3) the trivial practice of correlating the
SIPS equation to experimental data. To overcome the inher-
ent deficiencies, SIPS combined the characteristics of the
Freundlich model to assume that the amount of adsorbate
increases indefinitely with pressure, resulting in a distribu-
tion function correlated with an increase in the infinite num-
ber of active sites available for adsorption.

On the other hand, SIPS derived another distribution
function to predict a finite number of active sites available
on the adsorbent surface. To make this derivation method
workable, STPS incorporated exponent n, ranging between 0
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Table3 Summary of linear and non-linear parameters for isotherm models for the adsorption of RB5 dye onto GIC adsorbent

Linear and non-linear parameters of isothermal models for the sorption of Reactive Black 5 (RB3) dye onto GIC adsorbent

Two-parameter isotherms

Isotherm models Linear method

Non-linear method

Langmuir qp (mg/g)
B
R?
[N [ T I NI
% (%,)Ce t
Freundlich Kg (Lfmg)
n
RZ
log, (4.) = log, (E7) + 2 log, (C.)
Temkin A
B
RZ
RT RT
g, = =~ log, (4) + - log, ()
RT
=

0.6166 q (meglg) 1.4369
0.0671 b 0.0091
1.0000 R? 0.9992
_ G,
9e = Toc,
0.2263 Kg (L/mg) 0.0464
0.7133 n 1.7179
1.0000 R? 0.9999
1
q, =KpC;
0.1568 A 0.1568
0.2381 B 0.2381
1.0000 R? 1.0000
g, = Blog, (AC,)
RT
=%

Three-parameter isotherms

Isotherm models Linear method

Non-linear method

SIPS '

K, (Lig)

n

R?

pilog, (C.) = —log, (%) +10g, ()
Redlich—Peterson A

P (L/mg)

R?

log, (£} = plog, (C.) - log, (4)

0.0176 U 84,9456
0.0019 K, (Lfg) 25727 %107
0.3751 n 0.5840
1.0000 R? 0.9999

7. = 4, (K.C.)" /(1 + K,C.)")
0.1076 A 5.2680
0.6249 B (L/mg) 113.5293
0.9999 p 0.4176

R? 0.9999

— _AC
9= Ted

and 1, to make the adsorption systems more manageable at
an extensive range of pressures. Since Freundlich isotherm
only approximates the adsorption behaviour of the system,
the value of 1/n can only range between 0 and 1; therefore,
the equation only accounts for a limited range of pressure.
Given the status of adsorption systems, the Langmuir—Fre-
undlich equation is interconvertible with the SIPS formula-
tion (de Vargas Brido et al. 2023). No meaningful insights
can be gained by fitting the Langmuir—Freundlich and SIPS
equations separately to similar experimental data sets and
comparing their degrees of precision. Hence, the SIPS equa-
tion may lack mechanistic relevance.

More interestingly, a three-parameter Redlich—Peterson
isotherm equation is introduced to amend the inaccura-
cies and inherent deficiencies of two-parameter Langmuir
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and Freundlich isotherm equations. The Redlich—Peterson
isotherm equation is more accurate than Langmuir and
Freundlich equations in describing the adsorption sys-
tems using GIC adsorbent, which is consistent with Wu
et al. (2010). Unlike Langmuir and Freundlich isotherms,
the Redlich—Peterson isotherm equation incorporates
additional parameters such as A, B and p to increase the
accuracy and precision of curve fitting between analytical
and experimental data. Moreover, the Redlich—Peterson
isotherm balances the Langmuir and Freundlich systems
and incorporates the benefits of both models rather than
conflicts between the two systems. In addition, the degree
of curve fitting for linearity and non-linearity of isotherm
equations depends on the types of experimental adsorption
systems. Occasionally, a linearised form of an isotherm
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equation may yield a better fit for experimental data than
anon-linearised form of equation, depending on the type
of adsorption system.

According to Table 3, the sum of the squares error (ERRSQ/
SSE) values for Redlich—Peterson and SIPS isotherms were the
lowest compared to other values of isotherm models, result-
ing in a better fit between theoretical and experimental data.
Although ERRSQ/SSE is the most widely reported error func-
tion in isotherm modelling, the major disadvantage is its poor
error prediction at high-pressure conditions, which may reflect
the true nature of adsorption complexity (Serafin and Dziejar-
ski2023). The hybrid fractional error function (HYBRID) was
initially developed to improve the curve fitting of the sum of
squares error (ERRSQ/SSE) to account for low relative pres-
sure condition by dividing it by the measured experimental
values at equilibrium condition (Serafin and Dziejarski 2023).
The hybrid fractional error function (HYBRID) was selected
as the optimal error function to ascertain and analyse the iso-
therm models to characterise the finest fit between theoretical
and experimental data. In addition, the sum of absolute errors
(SAE) is a similar error function to ERRSQ/SSE, confirming
that non-linear, three-parameter Redlich—Peterson and SIPS
isotherm models provided the finest fit between theoretical
and experimental data. In Table 3, it was observed that the
hybrid fractional error function for Redlich—Peterson and
SIPS isotherms, in conjunction with the chi-square test (x 2),
yielded the overall best-fitting performance compared to other
isotherm models. It can be deduced that HYBRID and ¢ 2
error function analyses are significant tools in evaluating the
isotherm modelling because they are statistically robust and
well-established measurement tools for accurate curve-fitting
models. The benefits of having both HYBRID and 2 error
function analyses are due to balances between the influence of
both large and small error values in HYBRID measurement,
whereas comparative evaluation of model deviation between
predicted and experimental values by taking into account the
uncertainty in experimental modelling in x 2 error function
analysis. Based on this reasoning, HYBRID and 2 error
functions provided the best principal method for determining
and analysing the accuracy and precision of isotherm mod-
els to yield the finest curve fitting between theoretical and
experimental data. Among other error functions, Marquardt’s
percent standard deviation (MPSD) measures the geometric
mean of the error distribution modified in accordance with
the degrees of freedom in the isotherm models (Serafin and
Dziejarski 2023). On the other hand, Marquardt created the
average relative error (ARE) to minimise the fractional error in
statistical distribution over a range of relative pressure condi-
tions (Serafin and Dziejarski 2023). The chi-square values of
Redlich—Peterson and SIPS were approximately $.9925 com-
pared to chi-square values of 0.2769 and 0.1472 for Langmuir
and Freundlich isotherm models, respectively. Hence, the

larger the chi-square values, the greater the probability that
the isotherm models were statistically significant, indicating
that Redlich—Peterson and SIPS isotherm models were a bet-
ter fit for the experimental data compared to Langmuir and
Freundlich isotherm models. The coefficient of determination
was calculated using Excel Solver Add-In (2022). In terms
of mechanistic phenomena, the predicted amount of adsorbed
adsorbate reached an equilibrium state closely resembling
the observed amount of adsorbed adsorbate at the equilib-
rium state, thereby validating the predictability of isotherm
models to describe the experimental data. On the other hand,
the G-statistic values for Redlich—Peterson and SIPS iso-
therm models were 04682 and 0.4683, respectively. Hence,
it indicated that the deviance for the isotherm models from
the experimental data was statistically significant compared
to Langmuir and Freundlich isotherm models with G-statistic
values of —6.5832 and —7.5650, respectively. Hence, this indi-
cated that the Redlich—Peterson and SIPS isotherm models had
better goodness-of-fit.

In contrast, Langmuir and Freundlich’s deviance for the pre-
dicted models and experimental data was significantly smaller
than expected, indicating that the comparative models were
statistically insignificant. Unlike the actual goodness-of-fit test,
the G-statistic test does not calculate the probability of obtain-
ing the experimental results from something more extreme.
Instead, it utilizes the experimental data to calculate a test sta-
tistic to determine how far the experimental data deviates from
the theoretical results based on null expectation. To support
this mathematical relationship, the chi-square calculation is
then used to estimate the probability of obtaining that value
of the G-test statistics. This indicated that the G-test statis-
tic is more efficient than the chi-square test in measuring the
goodness-of-fit, provided that the values between the experi-
mental and theoretical data must be statistically significant or
contingent upon the overall significance of the models (Osorio
et al. 2024). In Table 4, MPSD errors for Redlich—Peterson and
SIPS isotherms were the lowest compared to other isotherm
models, verifying the statistical significance of HYBRID
and x 2 error function tools, indicating the best curve fitting
characteristics of the isotherm models. Hence, the following
is the categorisation of error functions based on the findings
obtained from the RBS adsorption system, starting from the
left with the error function that provides the best curve fitting
between the experimental and theoretical isotherm models:

x2> HYBRID > ERRSQ/SSQ > ARE

> EABS > MPSD > ¢ > R?

[n contrast to two-parameter isotherm models, the three-
parameter isotherm models were characterised by relatively
low HYBRID and ERRSQ/SSE values. In accordance with

HYERID, 2 and ERRSQ/SSE, the degrees of curve fitting
of all isotherm models are ranked in the following order:
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Redlich — Peterson > SIPS > Temkin
> Freundlich > Langmuir

By interpreting the above sequential order, it is evident
that Redlich-Peterson and SIPS isotherms are the most
appropriate models for verifying research associated with
RB3 adsorption systems involving GIC.

Electrochemical oxidation of reactive black 5

The experimental studies demonstrated that 12 mA/cm?® was
the minimum current density required to reduce RB3 con-
centration in water significantly. Both dye and TOC removal
percentages increased continuously beyond 12 mA/cm?.
This indicated that more intermediate oxidation products
were subsequently mineralised into CO, and H,0O. A higher
current density of 45 mA/cm® could eventually eliminate
residual RBS in water, resulting in a 93% mineralisation
efficiency and 67% TOC removal rate (Fig. 6). In addi-
tion, electrolysis can effectively remove RBS from water
by destroying its molecular structure through the cleavage
of azo bonds. However, some RBS molecules may not be
wholly mineralised into inert CO, and H,O. In addition,
Fig. 6 represents the effect of current density on the min-
eralisation and RB5 removal efficiencies. The greater the
current density, the greater the removal efficiencies of RBS
and TOC. On the other hand, Fig. 6 shows the effect of cur-
rent density on the annual electricity cost for TOC, which
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Removal Efficiency (%)

20

10
O - o —_
3ImAfem2 6 mA/cm?2

TOC Removal Efficiency (%)

12 mAfem2

varied due to the buildup of side reactions at a current den-
sity greater than 20 mA/cm?®. The mineralisation of RBS
molecules into CO, at higher current density also contrib-
uted to the loss of intermediate transformation species in
water, impacting the ionic conductivity of aqueous media.
In terms of technoeconomic analysis, the electricity cost
per hour of electrolysis using 34 mA/cm? of current density
was amounted to 49.59 AUD/kg of RB3 and 334.52 AUD/
kg of TOC, Furthermore, Fig. 7 shows the effect of cur-
rent density on the electrochemical regeneration efficiency
of GIC particle electrodes in the presence of RB3-polluted
wastewater. High current density led to surface roughening
of the GIC, causing changes in the surface physicochemical
properties of GIC. Fresh GICs initially have acidic quinone
and carboxyl groups on its surface. Upon electrochemical
regeneration, these functional groups increase in quantity.
A sustained regeneration leads to the formation of basic
lactones, which offsets the relative amounts of acidic func-
tional groups. The increase in adsorption can be attributed to
strong surface acidic functionalities. Subsequent adsorption
and regeneration cycles lead to a greater formation of basic
functional groups, which outnumbers the amount of surface
acidic functional groups, reducing adsorption (Nkrumah-
Amoako et al. 2014). The presence of anions in the solution
may increase the electrostatic repulsive forces between GIC
and RBS molecules at the solid-liquid interface, reducing
the ability of GIC to adsorb RB3 effectively.

24 mA/em?2 45.14 mA/em?2

RBS5 Removal Efficiency (%)

Fig. 6 Effect of current density on dye and TOC removal efficiencies. Each experiment comprises 20 min of adsorption and 10 min of regenera-
tion at a range of current densities from 3 to 45.14 mA/em? and 30 V. The error bars represent the coefficient of variation of 2.32%
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Fig. 7 Electrochemical regeneration efficiency of GIC particle electrodes in the presence of RB5-polluted wastewater

Optimisation study using three-dimensional
response surface plots

This experimental study investigated the effect of operat-
ing parameters such as temperature, pH and salt concen-
tration on the RBS and TOC removal efficiencies using
surface response methodology (Kanneganti et al. 2022)
integrated with central composite design (Medeiros et al.
2022). Other constant variables included an initial RB5
concentration of 50 mg/L, an adsorption time of 10 min
and an adsorbent dosage of 20 g/L. The batch experi-
mental runs were conducted in accordance with the CCD
Design of Experiment to visualize the effects of interac-
tive variables on targeted responses using RSM optimiza-
tion techniques. A general result demonstrated that when
the temperature and pH or salt concentration increased,
the RB5 and TOC removal efficiencies also increased as
shown in RSM and contour plots of Figs. 8a—j.

The experimental results were evaluated and approxi-
mated using the mathematical expressions or functions of
various targeted responses, such as dye and TOC removal
efficiencies presented in regression equations in coded
units:

Y, =327 - 0.46x, — 2.56%, — 1.35x,
— 0.0015x,x; +0.116x,%, — 0.004x,x; )
+0.0493x,x, + 0.0549x,x; — 0.077%,%,
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Y, =126 — 0.177x, — 1.06x, — 0.71x, — 0.00064xx,
+ 0.0484x,x, — 0.0006x,%, + 0.0181x;x, 5)
+ 0.0233x;x; — 0.0190x,x,

Furthermore, Table 5 shows the ANOVA analysis of
RB5 removal efficiency. The F-value of pH variable was
5.60, which was significantly greater than the P-value
of 0.039. On the other hand, Table 6 shows the ANOVA
analysis for TOC removal efficiency with the F-value of
pH variable at 5.90, which was significantly greater than
the P-value of 0.036, whereas the F-value of temperature
was 0.31 and the P-value was 0.589, indicating that the
temperature variable had no significant interactive effect
on the overall GIC adsorption efficiency. The following
represents the Pareto chart that visualises the interactive
effects of various operating variables on the RB5 and TOC
removal efficiencies. The Pareto chart in Fig. 9a shows the
bars representing one of the independent variables, pH,
crosses the reference line with an absolute value of 2.228.
This indicates that only pH value produced a statistically
significant effect on the dye removal efficiency with less
than the a-value of 0.05. Similarly, the synergistic effect
of combined temperature and pH, temperature and salt
concentration and pH and salt concentration (AB, AC, BC)
etc., did not produce a statistically significant effect on
the dye removal efficiency. A similar trend was observed
for Fig. 9b, indicating that pH significantly impacted the
TOC removal efficiency. Overall results showed that salt
concentration had no significant effect on the selectivity
reversal of GIC adsorption of RBS compared to the pH
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Fig.8 (continued)

Table 5 ANOVA analysis of

k . 7 Source DF  AdjSS AdjMS  I-Value P-Value
interactive variables on the RBS
removal efficiency Model 9 119.095 132328 130 0.344
Linear 3 87.817 29.2724 2.87 0.090
Temperature 1 2.577 2.5769 025 0.626
pH 1 57.194  57.1940  5.60 0.039
Salt Concentration (g/L) 1 28.046  28.0463 2.75 0.128
Square 3 6.818 22725 022 0.879
Temperature*Temperature 1 0.213 02125  0.02 0.888
pH*pH 1 6.227 6.2272  0.61 0.453
Salt Concentration (g/I.)*Salt Concentration (g/L.) 1 0.010 0.0103  0.00 0.975
2-Way Interaction 3 24.460 8.1534  0.80 0.522
Temperature*pH 1 8.761 8.7614  0.86 0.376
Temperature*Salt Concentration (g/1.) 1 13.755 13.7548 1.35 0.273
pH*Salt Concentration (g/1.) 1 1.944 1.9440  0.19 0.672
Lirror 10 102.105  10.2105
Lack-of-Fit 5 74.423  14.8847  2.69 0.151
Pure Error 5 27.682 5.5364
Total 19 221.200
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Table6 ANOVA analysis

o Source DF  Adj S§ AdGMS  F-value P-value
for determination of the .
significance of interactive Model 9 17.6369 195966 1.39 0.308
;’;22{'}“;““ the TOC removal Linear 3126960 423201 3.00 0.082
C
Temperature 1 0.4407 044071 0.31 (1.589
pH 1 83332 833320 590 0.036
Sall Concentration (g/L) 1 39221 392210 278 0.127
Sqquare 3 11761 039205 0.28 0.840
Temperature* Temperature 1 0.0376 003764 0.03 0.874
pH*pH 1 1.0783 107831 0.76 0.403
Salt Concentration (g/L.)y*Salt Concentration (g/1.) 1 0.0003 000026  0.00 (L9389
2-Way Interaction 3 37648  1.25493  0.89 0.480
Temperature*pH 1 11836 1.18359 0.84 0.382
Temperature*Salt Concentration (g/L) 1 24637 246371 174 0.216
PH*Salt Concentration (g/L) 1 0.1175 0.11749 0.08 0.779
Error 10 141232 141232
Lack-ol-Fit 5 101346 202693 2.54 0.165
Pure Error 5 39886  0.79772
Total 19 31.7602
a) Pareto Chart of the Standardized Effects b Pareto Chart of the Standardized Effects
(response is Dye Removal Efficiency (%), a = 0.05) ) (response is TOC Removal Efficiency (%), a = 0.05)
228 e 2228
Factor  Name . Factor  Name
A Temperature ] A Temperature
B H B
[ Salt Concentration (g/L) c c Salt Concentration (g/L)

00 o5 10 15 20 25
Standardized Effect

00 05 10 15 20 25
Standardized Effect

Fig.9 a Pareto chart represents the significant effect of three different factors, including the interactive effects on the dye removal efficiency, and
b Pareto chart represents the significant effect of three different factors, including the interactive effects on the TOC remaoval efficiency

effect. The combined effect of temperature and salt con-
centration selectively induced RBS adsorption by GIC
in the presence of pH changes relative to pH,,,.. Initially,
RBS5 dye solution had a pH of 5. When the solution pH
was grealer than pH,,, ., GIC adsorbent became negatively
charged, increasing its ability to adsorb more RBS dye
molecules due to GIC surface ionisation. On the GIC sur-
faces, m—z clectron donor—acceptor interactions played a
significantrole in the selectivity of the adsorption process.
The adsorption ol RB5 anionic dye on GIC surlace, where
an anion-z repulsive interaction was strong due to solu-
tion pH greater than pH,,.. However, the presence of Na*
ions from salt solution negated the GIC surface charges,

increasing its attraction towards anionic dye via attrac-
tive cation-n and multivalent interactions. In addition, the
adsorption process on GIC adsorbent was mainly domi-
nated by z—x and electrostatic interactions. The follow-
ing represents the ANQOVA analysis [or the significance
of interactive variables on the RBS removal efficiency:
In addition, Table 5 represents the difference between
the CCD-RSM optimised and validated results. At a typi-
cal temperature of dye wastewater at 30 °C, pH 7, and
NaCl concentration of 5.50 g/I., the RB5 and TOC removal
efficiencies were 14.19% and 4.71%, respectively, using
CCD-RSM optimisation. These targeted responses were
validated with the experimental results, which showed that

* €) Springer
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Table7 Comparison between optimised and non-optimised experimental results

CCD-RSM optimisation result

Temperature (°C) pH Salt concentration (g/L)

TOC removal efficiency (%) RBS5 removal efficiency (%)

30 7 55

471 14.19

Experimental result for validation

Temperature (°C) pH Salt concentration (g/L)

TOC removal efficiency (%) RB3 removal efficiency (%)

30 7 55

4.64 13.99

RB3 and TOC removal efficiencies closely resembled the
optimised values, verifying the validity of RSM optimisa-
tion (Table 7).

Conclusion

RB3 can be removed successfully using combined adsorp-
tion and electrochemical oxidation processes. However,
the optimum removal rates needed to be evaluated using
CCD-RSM optimization. The results showed that pH had
the most significant effect on the GIC adsorption of RB5
compared to temperature and salt concentration. Although
salt concentration had a limited impact on the selectivity
of GIC towards RB35, it prevented the selectivity reversal
by regulating or reinforcing the balance of surface icniza-
tion of GIC, making it more conducive to RBS adsorption.
The changes in surface physicochemical properties of GIC
after several cycles of electrochemical regeneration can be
compensated by regulating the surface icnization of GIC,
albeit additional batches of adsorption must be performed
separately. In addition, the salting effect functions as a
regulatory mechanism to balance or induce the surface
ionisation potential of GIC adsorbent instead of directly
influencing the adsorption process, whereas pH relative to
the point of zero charge had a more stabilising effect on
the adsorption process. On the other hand, the electrostatic
interaction from the physical process helped to strengthen
the adsorption process. Although GIC adsorbents were
non-porous, indicating that the adsorptive capacity can be
exhausted rapidly, high electrically conductive GIC adsor-
bents can be electrochemically regenerated to recover its
active sites. The adsorption kinetics were found to follow
the Elovich kinetic model, which yielded the best fitness.
On the other hand, the adsorption isotherms were found
to follow both SIPS and Redlich-Peterson isotherm mod-
els with significantly fewer errors than other models in
accordance with error function analyses. Almost complete
removal of RBS can be achieved within 30 min at a cur-
rent density of approximately 45 mA/cm®. Although the
adsorptive capacity of GIC can be regenerated, further
work is needed to evaluate the intermediate breakdown

4
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products formed during the oxidation of RBS. In addi-
tion, more characterisation tests are required to examine
the changes in the surface chemistry of GIC after the
prolonged period of electrochemical regeneration. More
methods should be explored to minimise the likelihood
of particle attrition or corrosion during electrochemical
treatment.
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4.2 Links and implications

Reactive Black 5 (RB5) xenobiotic dye contaminants were successfully mineralised using a
three-dimensional electrochemical reactor. The advanced oxidation processes effectively
degraded the xenobiotic dye pollutant to inert carbon dioxide and water. The GIC adsorption
process was optimised using a central composite design-response surface methodology
(CCD-RSM), which was shown to improve the accuracy and precision of estimated targeted
variables to model optimum removal rates. Although salt concentration in simulated, alkaline
dye-contaminated wastewater had demonstrated to have a limited impact on the selectivity
reversal of GIC adsorption process, pH had a more stabilising effect on the adsorption
process. The strength of adsorption was primarily governed by electrostatic interaction
between GIC adsorbents and dye adsorbates. The regeneration efficiency of GIC adsorbents
was improved using optimal current density, and the mineralisation efficiency of pollutants
was enhanced when a three-dimensional electrochemical oxidation process was used.

The best adsorption kinetic model to characterise the adsorption phenomena was the
Elovich kinetic model, which yielded the best fitness. A near complete oxidation or
mineralisation efficiency was achieved within 30 mins of electrolysis time and 45 mA/cm? of
current density. Although the adsorptive capacity of GIC adsorbents can be improved further,
the adsorption or pollutant removal efficiency was suppressed by the presence of intermediate
transformation oxidation byproducts when high current density was applied. The changes in
surface physicochemical properties of GIC adsorbents caused by extremely high current
density resulted in reduced regeneration efficiency and increased likelihood of particle
attrition or corrosion. Future research should focus on maximising the regeneration efficiency

and improving the physicochemical stability of adsorbents.

86



5.1 Introduction

This research article focuses explicitly on using a three-dimensional electrochemical
reactor to treat dye-polluted wastewater, emphasising artificial intelligence and machine
learning optimisations. Graphite intercalation compound was used as a particle electrode to
adsorb xenobiotic dye contaminants from simulated wastewater. A more advanced, novel
progressive central composite design-response surface methodology (CCD-NPRSM), hybrid
artificial neural network-extreme gradient boosting (ANN-XGBoost) ensemble, and
classification and regression trees (CART) were used to optimise the operational parameters
of the three-dimensional electrochemical treatment of reactive black 5 (RB5) polluted
wastewater.

The chemical stability of RB5 is a desirable dyeing property for textile manufacturers,
making it suitable for staining cotton and other cellulose fibres. The black intensity of
colouration is ideal for dyeing materials manufactured by the textile, printing, and leather
industries. However, RB5 is highly recalcitrant to environmental degradation. It contributes
to significant ecological toxicity when industrial effluents are discharged into marine
environment without proper control measures.

Three-dimensional electrochemical oxidation technology offers an attractive method
for wastewater treatment, especially when a hybrid treatment method is used to maximise
pollutant removal and mineralisation efficiencies. In the electrochemical oxidation
mechanism, this research article shows that there are two mechanisms to characterise the
pollutant removal process: 1) direct oxidation involves the electron transfer from the organic
pollutants to the electrode surface; 2) indirect oxidation involves electrogenerated oxidizing
species to degrade and oxidise organic pollutants. In addition, electrically regenerative GIC
particle electrodes were used to recover the adsorptive capacity when the particles were
placed in the regeneration zone of the three-dimensional electrochemical reactor. Organic
pollutants were adsorbed and oxidised on the surface of particle electrodes simultaneously.
Highly oxidising species with strong oxygen evolution reaction potential mediated the
combined oxidation process from anodic reaction and particle surface. In addition, GIC
particle electrodes exhibited superior electrocatalytic potential and regeneration efficiency,
restoring full adsorptive capacity after several adsorption and regeneration cycles, resulting in
sustained catalytic oxidation performance.

Complex process variables warrant using Al and ML optimisation techniques to

manage the combined effects of electrochemical systems. The efficacy of three-dimensional
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electrochemical oxidation technology relies on the accuracy and precision of Al and ML
predictive models to determine the best, optimal conditions for the electrochemical
decomposition of RB5-polluted wastewater. Several novelties were associated with using
different CCD-NPRSM, Al and ML ensembles to improve the prediction efficiency of
targeted variables. A conventional RSM was originally used to predict targeted responses
using an empirical second-order polynomial equation. More interestingly, this RSM
technique was adapted to a uniquely designed transfer function to establish multilevel nested
models. The optimisation procedure involved measuring maximum dye and TOC removal
efficiencies, optimal current density, and electrical energy consumption for RB5 and total
organic carbon (TOC) removal rates. TOC strongly indicates mineralisation efficiency
associated with a particular electrical energy consumption.

On the other hand, hybrid ANN-XGBoost ensemble was an algorithm used to
optimise the three-dimensional electrochemical treatment of RB5-polluted wastewater.
Although XGBoost generated a relatively weaker model than ANN, combining these two
hybrid ensembles significantly enhanced the prediction efficiency of targeted responses. A
second-order Taylor expansion of the loss function was used to integrate a regular term to
generate an optimal solution to balance the decline in the loss function. This resulted in better
management of model complexity and effectively mitigating overfitting issues. In addition,
the predictive analytics by CART machine learning optimisation was another significant
approach used to optimise the three-dimensional electrochemical reactor. It possessed the
ability to manage large datasets, messy or missing data, or any extreme outliers and other
nonlinear relationships. CART-generated models effectively visualise predicted values and
the interactive effects of variables to achieve optimal prediction accuracy. The predictive
accuracy and precision of three different CCD-NPRSM were critically evaluated using
ANOVA analysis to justify the validity of the models.
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Abstract

The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater
treatment. This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound (GIC)
adsorption, direct anodic oxidation, and -OH oxidation for decolourising Reactive Black 5 (RB5) from aqueous solutions. The electrochemical
process was optimised using the novel progressive central composite design—response surface methodology (CCD—NPRSM), hybrid artificial
neural network—extreme gradient boosting (hybrid ANN—XGBoost), and classification and regression trees (CART). CCD—NPRSM and hybrid
ANN—XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational pa-
rameters: current density, electrolysis (treatment) time, and initial dye concentration. The optimised decolourisation efficiencies were 99.30%,
96.63%, and 99.14% for CCD—NPRSM, hybrid ANN—XGBoost, and CART., respectively, compared to the 98 46% RBS removal rate observed
experimentally under optimum conditions: approximately 20 mA/em? of current density, 20 min of electrolysis time, and 65 mg/L of RB5. The
optimised mineralisation efficiencies ranged between 89% and 92% for different models based on total organic carbon (TOC). Experimental
studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN—XGBoost, CCD—NPRSM,
and CART. Model validation using anmalysis of variance (ANOVA) revealed that hybrid ANN—XGBoost had a mean squared error (MSE) and a
coefficient of determination (R”) of approximately 0.014 and 0.998, respectively, for the RBS removal efficiency, outperforming CCD—NPRSM
with MSE and R” of 0.518 and 0.998, respectively. Overall, the hybrid ANN—XGBoost approach is the most feasible technique for assessing the
electrochemical treatment efficiency in RB5S dye wastewater decolourisation.
© 2024 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Three-dimensional electrochemical treatment; Dye-polluted wastewater; Artificial intelligence; Machine learning; Optimisation; Analysis of variance;
Error funcfion analysis

1. Introduction

Dye-contaminated water can prevent the penetration of
sunlight into water and limit photosynthetic activity in the
marine environment, thereby polluting the aquatic environ-
ment and threatening the lives of both organisms and humans.
Notably, Reactive Black 5 (RB5) has been widely utilised by
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textile, printing, and leather industries due to its intense black
colouration, remarkable solubility, and adhesive properties,
making it one of the most suitable options for dyeing cotton
and other cellulose fibres (Droguett et al., 2020; Feng et al.,
2022). Its favourable dyeing properties meet most re-
quirements of textile manufacturers. However, RB3's chemical
stability contributes to significant ecological toxicity when
industrial effluents containing it are discharged into the marine
environment without proper control measures.
Electrochemical oxidation is emerging as an attractive
alternative method for wastewater treatment to replace
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conventional processes owing to substantial quantities of toxic
pollutants generated by various industrial processes, particu-
larly in dye wastewater. In the cleetrochemical oxidation pro-
cess, organic pollutants undergo removal via two mechanisms:
(1) direct oxidation, wherein electron transfer occurs directly
from organics to the electrode surface, or (2) indirect oxidation,
wherein electron transfer from adsorbed organic species results
in the generation of oxidising species that further oxidise pol-
Iutants (Ganiyu et al., 2021). Powerful oxidising agents such as
hydroxyl radical (-OH), active chlorine species, and sulphate
radical (SO, ) generated during the electrochemical oxidation
process can degrade organic pollutants or even mineralise them
completely into CO; and H,O (Fu et al., 2023).

The three-dimensional (3D) electrooxidation technology
has recently emerged as a powerful method for wastewater
treatment. It involves using a 3D clectrode reactor, whercin a
third electrode, namely graphite intercalation compound
(GIC), is incorporated into the reactor and positioned between
the anode and cathode. In contrast, conventional two-
dimensional (2D) electrochemical reactors lack a particle
electrode apart from the anode and cathode. The advantages of
the 3D electrochemical oxidation process stem from the
electroactive surface area of the particle electrode, which en-
hances the reaction process, space—time yield. and current
cfficiency (Li ct al., 2021). GIC cxhibits superior clcctro-
catalytic efficiency and regenerative capabilities, capable of
restoring  adsorptive  capacity even  after  several
adsorption—regeneration cycles, thereby leading to sustained
catalytic oxidation performance (Trzcinski and Harada, 2023).
However, thorough evaluation of the influence of operational
variables on the clectrochemical oxidation process is seldom
undertaken. Variations in operational variables can influence
process conditions in various ways, necessitating a compre-
hensive examination of their combined effects on the elec-
trochemical system's overall responses. Moreover, the
response surface methodology (RSM) serves as an optimisa-
tion tool offering substantial benefits in terms of cost reduc-
tion, including reduced encrgy consumption, cnhanced valuc
management, and conservation of valuable resources such as
energy and materials (Dong et al., 2023).
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This study investigated the efficacy of 3D electrochemical
treatment for removing RB5 xenobiotic dye from water, using
an clectrically conductive GIC. An RSM with a facc-centred
central composite design (CCD) was developed to construct
a mathematical model for predicting dye and total organic
carbon (TOC) removal efficiencies, current efficiency, elec-
trical energy consumption for RB5 and TOC removal, and
annual electricity cost. In addition, the correlation of these
dependent variables with input parameters (including current
density, clectrolysis time, and initial dye concentration) was
quantified. Various artificial intelligence and machine learning
techniques were utilised to assess the predictive efficiency of
response variables.

2. Materials and methods
2.1. Materials and electrochemical reactor

All chemicals, including RBS dye powder (empirical for-
mula: CreH»NsNay0198) with a molecular weight of
991.82 g/mol, were purchased from Sigma-Aldrich, Australia.
HC1 (32%; RCI Labscan) and NaCl (99.7%: Chem-Supply}
were used as received. Three stock solutions with various
initial dye concentrations (Cp) of 30 mg/L, 65 mg/L, and
100 mg/L. were prepared by dissolving RB5 in distilled water.
A schematic diagram illustrating the experimental setup for
continuous adsorption and electrochemical regeneration is
shown in Fig. 1.

The adsorbent employed in this study is an expandable GIC
purchased from Sigma-Aldrich (P/N: 808121). At least 75% of
the flakes possess sizes greater than 300 pum. GIC has no
porous structure and exhibits a relatively low electroactive
surface area of approximately 1 mglg (Hussain et al., 2016),
with high conductivity (0.8 Sfem) (Asghar et al., 2014). The
3D electrochemical reactor used in this experiment was
designed to remove RB35 from an aqueous solution (Fig. 1).
The design of the 3D electrochemical reactor adhered to the
standards cmployed in Trzeinski and Harada (2023). RB5
concentrations were measured using an ultraviolet—visible
spectrophotometer (DR6000, HACH Co.) at the maximum

(b) Image of sequential batch electrochemical reactor

Fig. 1. Chemical structure of RB5 and image of sequential batch electrochemical reactor.
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absorbance wavelength of 596 nm. To quantify the minerali-
sation efficiency of RB5-contaminated water, TOC measure-
ment was conducted using a TOC analyzer (Shimadzu VCHS/
CSN, Japan).

2.2, Experimental design, modelling, and optimisation

2.2.1. CCD—RSM procedure

An RSM-based face-centred CCD was conducted using
Minitab software to configure, model, and optimise the oper-
ational parameters affecting a response with minimal experi-
mental runs (Asgari et al., 2020). CCD stands out as one of the
most well-established techniques within RSM for determining
the correlation between operational parameters and experi-
mental responses, in terms of linear, interactive, and partial or
full quadratic cffects (Pavlovic ¢t al., 2014). The selection of
operational parameters was meticulous, aiming to maximise
the performance of the clectrochemical system within a
reasonable experimental domain to facilitate optimisation and
yield meaningful outcomes. For instance, dye concentrations
in actual textile wastewater typically fall between 10 mg/L and
200 mg/L (Gahr et al., 1994; Laing, 1991). Conversely, rec-
ommended applied current densities and electrolysis times
typically range from 10 mA/em® to 30 mA/cm” and from
10 min to 30 min, respectively (Chen ct al., 2018). Extremely
high current density can induce undesirable side reactions due
to the rapid formation of intermediate breakdown products
from organic pollutants, potentially compromising overall
treatment efficiency. Therefore, this study investigated the
influence of three key operational parameters (current density,
cleetrolysis (treatment) time, and initial dye concentration) on
the performance of the 3D electrochemical system.

2.2.2. ANN procedure

In addition to the novel progressive central composite
design—response surface methodology (CCD—NPRSM), the
artificial neural network (ANN) method was also employed for
modelling and predicting responses affected by operational
parameters (Fig. 2). The number of neurons within the hidden
layer was investigated within a range of 1—20 to determine the
optimum number of neurons with minimum mean squared
error {MSE) while striving for a high coefficient of determi-
nation (Rg) for each response variable. Further analyses
incorporated experimental data stipulated in the data matrix in
Table Al in Appendix A into the ANN model, with 70% of
the data allocated for training and 30% for validation,
randomly classified in three catcgorics containing input pa-
rameters. The curve fitting of the ANN model relies on
operational parameter values, and variations in input variables
significantly affect the degree of fitness. To mitigate compu-
tational issues, all input variable values and experimental cf-
ficiencies were normalised into a Gaussian distribution within
the range of 0.1—0.9 using Eq. (1) (Asgari et al., 2020):
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Fig. 2. ANN network with topology.

where x; is the ith input variable; y; is the normalized value of
x5 and Xpnay and X, are the maximum and minimum values of
x;, respectively. The ANN analysis and modelling were per-
formed using MATLAB R2023a. The performance of ANN
models in curving fitting was evaluated using statistical error
function analyses such as MSE, 1’{2, adjusted coctficient of
determination (R%dj), root mean squared error (RMSE), and
mean absolute percentage error (MAPE).

2.2.3. Optimisation procedure

2.2.3.1. CCD—NPRSM optimisation. To predict responses,
CCD—NPRSM optimisation was performed using an empir-
ical second-order polynomial equation nested within a higher-
order polynomial equation as a transfer function to establish
multilevel nested models. The optimisation procedure was
based on maximum dye and TOC removal cfficiencies,
maximum current efficiency, minimum electrical energy
consumption for RBS and TOC removal, and minimum annual
electricity cost. In the CCD—NPRSM approach, optimisation
follows the desired function derived from statistical software.
To evaluate fitness and prediction accuracy, composite desir-
ability was used to define the objective function based on the
weighted geometric mean of individual desirabilities for
respense variables to determine the optimal conditions (Askari
et al., 2017). The weighted geometric mean of individual de-
sirabilities (D) is expressed as

1w

p— (T @
i—1

where 4; is the individual desirability for the ith response, w; is
the importance of the ith response, w is the element weight,
and # is the number of responses. If cach rcsponse holds
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critical importance or significance, the composite desirability
(D.) can be expressed as

D= []a" (3)
=1

2.2.3.2.  XGBoost-based optimisation. Extreme  gradient
boosting (XGBoost) is an ensemble method with weaker
models instead of more robust models such as ANN. None-
theless, XGBoost can be used to reinforce ANN optimisation.
Similar to classification and regression trees (CART) models,
XGBoost comprises regression trees. It employs a second-
order Taylor expansion of the loss function, integrating a
regular term to find the optimal solution to balance the decline
in the loss function, manage model complexity, and mitigate
overfitting issues (Wang et al., 2022). The estimated output of
the model for any given sample is obtained by summing leaves
assigned to each sample corresponding to each regression tree
(Ching et al., 2022):

Ky
> fikx) (4)
k=1

where ¥ is the predicted value, f is the kth boosted function,
and Kj, is the number of boosted functions. Regression trees
are added to the ensemble, such as f; (the boosted function of
variables for f iterations), yielding a new regression tree to
minimise learning objectives. Unlike a single model with a
pre-defined structure, which can be optimised in Euclidean
space (Ching et al., 2022), XGBoost can be integrated with
ANN to create a hybrid model, thereby reducing errors and
enhancing prediction efficiency.

2.2.3.3. CCD—NPRSM. The second-order CCD—NPRSM
may offer satisfactory curve fitting but can produce signifi-
cantly lower MSE and RMSE when using highly non-linear and
complex mathematical functions. Through model trans-
formation, a higher order (6th order) polynomial mathematical
function is used as a nested transfer function to modulate curve
fitting, reduce MSE and RMSE, and improve the correlation
coefficient (Zheng et al.. 2022). Therefore, CCD—NPRSM
emerges as another research focus to generate multilevel nes-
ted models. When integrated with a feedback control loop,
improvements in RB5 and TOC removal efficiencies can be
achieved (Fig. 3). The proposed CCD—NPRSM entails a step-
by-step procedure for a non-linear regression algorithm:

¥ (xe) = [K (%:,%;) G (1,2} € [10,30], )
€ [10,30],x, € [30, 100] :
K (%, 5)G (%, %) = ¥i(xi,%,) = By + Z (Bix;)+
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Fig. 3. Derivation of transfer function from block diagram (with Ry
denoting sum of input functions and ¥* representing output function).
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where ¥; is the ith output function, fis the composite function,
K the transfer function of the first system, G is the transfer
function of the second system, ¥; is ith the predicted response
in the form of a polynomial function, 8, is the intercept or
regression coefficient, §; is the linear coefficient, §; is the
quadratic coefficient, 8 is the interaction coefficient, 7 is the
experimental or residual error, R; is the Laplace transform of
the ith input function, and [ is the closed-loop transfer
function.

2.2.3.4. Predictive analytics by CART machine learning opti-
misation. CART machine learning optimisation stands out as
one of the best-in-class approaches, not only fitting more ac-
curate models when combined with experimental data but also
for handling larger datasets with more variables, messy or
missing data, outliers, and non-linear relationships. With the
power of the original CART, it offers visualisations of pre-
dicted values and interactive effects to achieve optimal pre-
diction accuracy (Okagbue et al., 2021). Initially employed in
the bootstrap aggregation method to tackle complex non-linear
problems, it delivers the most accurate model obtained from
the proprietary predictive analytics of CART.

3. Results and discussion
3.1. Optimisation study using 3D response surface plots

In the experimental study, the effects of operational pa-
rameters, such as current density, electrolysis time, and initial
dye concentration, electrical energy consumption for RBS and
TOC removal, current efficiency, and annual electricity cost
were investigated using RSM optimisation via CCD. The
primary aim was to determine the optimal current density,
electrolysis time, and initial dye concentration to achieve
maximum dye and TOC removal efficiencies, minimize elec-
trical energy consumption, enhance current efficiency, and
manage annual electricity cost. Batch experimental runs were
conducted according to the CCD design of experiments to
three-dimensionally visualise the effects of independent vari-
ables on targeted responses by optimising results within the
experimental conditions. A general finding revealed that an
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Fig. 4. 3D RSM optimisation plots of interaction effects of current density, electrolysis (treatment) time, and initial dye concentration.
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increase in current density led to increases in dye and TOC
removal efficiencies in the batch runs.

Fig. 4(a) shows the 3D response surface for dye removal
efficiency as a function of current density and treatment time.
To achieve over 95% decolourisation efficiency, Fig. 4(b) in-
dicates a necessity for a current density exceeding 18 mA/cm?”
and an electrolysis time exceeding 10 min (dark-shaded green
regions). Among the examined operational parameters, current
density proved the most critical variable. Its effect on targeted
responses, such as dye and TOC removal efficiencies, was
predominant, particularly with the presence of electro-
generated oxidising species like hydroxyl radicals and active
chlorine species due to high current density employed for
oxidising dve contaminants in water. Moreover, Fig. 4(d}
shows that the TOC removal efficiency surpassed 90% when
current density exceeded 18 mA/cm?® and initial dye concen-
tration was approximately 36 mg/L. (dark-shaded green re-
gions). However, beyond 18 mA/cmz, an increase in current
density for a similar initial dye concentration resulted in the
TOC removal efficiency exceeding 90% (Fig. 4(c)). As shown
in Fig. 4(i), an increase in current density from 20 mA/cm? to
30 mA/em” led to a decrease in current efficiency below 10%.
This result indicated that higher current density induced side
reactions. In addition, the effect of operational parameters on
electrochemical redox reactions is depicted in Section A.2 in
Appendix A. The reaction mechanisms of RB5 and its in-
termediates in the electrochemical system are detailed in
Fig. A.1 (Feng et al.,, 2016) and Section A.3 in Appendix A.

Fig. 4(h) shows that when current density exceeded
25 mA/cm? with an electrolysis time greater than 25 min, the
current efficiency of the electrochemical reactor decreased
below 10%. This result indicated that a higher current den-
sity led to side reactions due to the accumulation of inter-
mediate transformation byproducts, offsetting the current
efficiency of the electrochemical system. Consequently, the
degradation efficiency of RB5 pollutants in water might be
adversely affected as some of the current generated from the
anodic oxidation process was lost through side reactions.
Fig. 4(h) also demonstrates that at a low current density of
10 mA/cm? and an electrolysis time shorter than 15 min,
current efficiency increased beyond 40%, indicating a more
efficient untilisation of current to generate radical species.
Despite this, dye and TOC removal efficiencies remained
lower than 80%), highlighting an inverse relationship between
current efficiency and dye and TOC removal efficiencies.
Fuarthermore, although increasing the initial dye concentra-
tion from 50 mg/L to 100 mg/L at a low current density of
10 mA/em? boosted current efficiency beyond 40%, it might
compromise dye and TOC removal efficiencies. This indi-
cated that current density exerted the most substantial impact
on dye and TOC removal efficiencies. A prolonged elec-
trolysis duration significantly enhanced electrolytic effi-
ciency, thereby maximising dye and TOC removal
efficiencies. As shown in Fig. 4(b), the interactive effect of
current density and electrolysis time on dye removal effi-
ciency was evident from the elliptical or saddle pattern of the
contour plot. Similarly, Fig. 4(d) highlights the interactive

effect of current density and electrolysis time on TOC
removal efficiency, with the contour plot exhibiting a similar
elliptical or saddle pattern, signifying its mnotable impact.
Notably, the TOC removal efficiency was lower than the dye
removal efficiency due to the presence of the residual frag-
ments of dye molecules in the aqueous solution.

As shown in Fig. 4(f}, the elliptical or saddle pattern of the
contour plot indicated a significant interactive effect of current
density and initial dye concentration on dye removal effi-
ciency. Similarly, Fig. 4(k) and (1) indicates a significant
interactive effect of current density and electrolysis time on
electrical energy consumption for RBS removal. Furthermore,
Fig. 4(m) shows that the interactive effect of current density
and treatment time on electrical energy consumption for TOC
removal was more pronounced, as indicated by the degree of
curvature. The elliptical or saddle pattern of the contour plot
(Fig. 4(n)) indicates the greater significance of this interactive
effect on electrical emergy consumption for TOC removal
compared to the interactive effect on electrical energy con-
sumption for RB5 removal, implying a higher electrical en-
ergy requirement to oxidise or electrolyse TOC to transform
all RB5 dye molecules into inert and non-toxic end products
such as CO; and H;0. However, Fig. 4(0) shows that the
interaction between current density and treatment time
significantly affected annual electricity cost if current density
surpassed 20 mA/cm? No significant curvature is present in
the response surface plot at a lower current density less than
20 mA/cm?® The mild circular pattern in the contour plot
(Fig. 4(p)), particularly below a current density of 20 mA/cm?,
indicated that the interactive effect of current denmsity and
treatment time may not significantly affect annual electricity
cost, implying that the electrochemical treatment process for
RB5 removal might not contribute to significant electrical
energy consumption when current density and treatment time
were below 20 mA/em?® and 15 min, respectively. This finding
underscored the cost-effectiveness of the 3D electrochemical
treatment process. Detailed mathematical expressions or
functions of various targeted responses are provided in
Appendix A.

3.2. ANOVA analysis

The significance and validity of the generated
CCD—NPRSM miodels were assessed through amnalysis of
variance (ANOVA), as presented in Table A.2 (Zhang et al.,
2013) and Fig. A2 in Appendix A. The quadratic model
yielded F-values of 4.42 and 4.57, with corresponding p-
values of 0.015 and 0.013, indicating statistical significance of
the models for dye and TOC removal efficiencies. Moreover,
the F-values of current density (5.88 and 6.01) and their
associated p-values (0.036 and 0.034) indicated that current
density significantly affected dye and TOC removal effi-
ciencies. The magnitude of the responses and the absolute
values of standardised effects delineate the most significant to
the least significant effects, providing a reference line to gauge
statistical significance. According to the ANOVA results, high
F-values and low P-values for dye removal efficiency (1)
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Fig. 5. Pareto charts representing significant effect of three different factors on dye and TOC removal efficiencies.

(p < 0.05 and FF — 442) and TOC removal efficiency (¥>)
(p < 0.05 and F = 4.57) indicated the considerable signifi-
cance of the hybrid CCD—NPRSM models. The experimental
results demonstrated the accurate fit of the models with the
theoretical models governing the relationship between inde-
pendent variables and responses.

In the Pareto chart shown in FFig. 5(a), the bars representing
current density (factor A) and treatment time (factor B) sur-
passed the reference line with an absolute value of 2.228. This
signified a statistically significant effect of current density and
electrolysis time on dye removal efficiency, with a significance
level below 0.05. Moreover. synergistic effects like combined
current density and treatment time (AB), combined current
density and initial dye concentration (AC, with factor C
denoting the initial dye concentration), and combined treat-
ment time and initial dye concentration (BC) also demon-
strated  statistically significant effects on dye removal
efficiency. Although ANOVA analysis indicated a slight dif-
ference with a p-value of 0.015 for initial dye concentration,
the Pareto chart reveals that the bar did not cross the reference
line of 2.228 (IMig. 5(b)), less than the absolute value of
standardised effects. This indicated that the magnitude of the
effect of initial dye concentration on TOC removal efficiency
might not be substantially significant.

The one-way ANOVA revealed F-values of 5.88 and 5.77
for current density and treatment time, respectively, in contrast
to an F-value of 5.72 for initial dye concentration in ¥;. This

suggested that the variances of current density and treatment
time were significantly different from the mean of initial dye
concentration. In addition, current density and treatment time
also exerted a more significant effect on dye removal effi-
ciency than initial dye concentration. As shown in Table A.2 in
Appendix A, the lack-of-fit F-values surpassed the p-values
for all parameters, underscoring the statistical significance of
the models for both dye and TOC removal efficiencies.

3.3. Predictive accuracy of developed models

The TOC removal efficiency provides a comprehensive
insight into the overall mineralisation efficiency of dye pol-
lutants, It serves as a key indicator of the extent to which the
toxicity of dye pollutants can be converted into inert and non-
toxic CO; and water, thus facilitating the complete abatement
of RBS from contaminated water. To assess the optimisation
and predictive capabilities of CCD—NPRSM and hybrid
ANN—XGBoost models in terms of TOC removal efficiency,
20 experimental runs were conducted at specified levels of
operational variables (Table 1). The comparison between
experimental and predicted TOC removal efficiencies revealed
that all three models could accurately predict values close to
the experimental data.

The statistical significance of the three models was evalu-
ated using error function analysis, including MSE and R, to
gauge the fitness of the models with experimental data. As

Table 1

Comparison between optimised and non-optimised experimental results.

Madel or experimental result 1 Te Cy Egye Eroc Ec Caye Croc Cg D,
(mAfem®)  (min) (mg/L) (%) (%) (%) (kW-h/kg) (kW-h/kg) (AUD per annum)

CCD—NPRSM optimisation 20 20 65 99.303 7 89.7593 225422 254074 715.38 14.020 8 0.805 0

Hybrid ANN—XGBoost optimisation 20 20 65 99.626 2 904711 230754 293430 73426 145306 0.794 9

CART optimisation 20 20 65 99.137 0 89.6800 26.0558 4 996.63 1043.92 182370 0.774 3

Experimental result for validation 20 20 65 984622 89.1783 233449 233655 61148 120533

Note: [is the current density, Ty is the electrolysis time, Cy is the initial dye concentration, £y, is the dye removal efficiency, Eroc is the TOC removal efficiency,
E¢ is the current efficiency, Cy,. is the electrical energy consumption for RBS removal. Croc is the electrical energy consumption for TOC removal, Cg is the

electricity cost, and D, is the composite desirability.
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Table 2
Performance of developed models.
Model Response R? Rﬁdj MSE RMSE MAPE
CCD—NPRSM Egye 0.998 0.998 0518 0.720 0.495
Eroc 0.997 0.997 1.010 1.005 0.925
E. 0.995 0.995 0.858 0.926 3.605
Cuge (ANN-NPRSM) 0.945 0.042 5.536 x 10° kWeh/kg 2.353 x 10° kWelvkg 0.001
Croc (ANN—NPRSM) 0.981 0.980 7.625 x 10° KWel/kg 87321 kWeh/kg 9210 x 107°
g 0.982 0.981 3.818 AUD per annum 1.954 AUD per annum 18.529
Hybrid ANN—XGBoost Euge 0.998 0.997 0.014 0120 6.340 x 107>
Eroc 0.998 0.997 0.007 0.081 7120 x 107°
E, 0.998 0.997 6.630 x 107° 0.008 2.390 x 107*
Caye (ANN—NPRSM) 0.998 0.997 1.035 kWeh/kg 1.018 kWeh/kg 1.400 x 107°
Croc (ANN—NPRSM) 0.998 0.997 1.158 kKWeh/kg 1.076 kWeh/kg 6.530 x 107°
Cr 0.998 0.997 0.010 AUD per annum (.099 AUD per annum 3.720 x 107*
CART Euye 0.991 0.990 2.004 1416 1.011
Eroc 0.987 0.986 4290 2.071 2.013
E. 0.132 0.083 155407 12466 60.936
Cyye (ANN-NPRSM) 0.116 0.067 2797 x 107 kWel/kg 5.288 x 107 kWelvkg 110.290¢
Croc (ANN—-NPRSM) 0.253 0212 5.580 % 10° kWel/kg 746.997 kWehikg 74.044
Cg 0.268 0.228 159419 AUD per annum 12.626 AUD per annum 99.800

Note: Egy, is the dye removal efficiency, Etoc is the TOC removal efficiency, Ec is the current efficiency, Cyy. is the electrical energy consumption for RB5
removal, Croc is the electrical energy consumption for TOC removal, and Cr is the electricity cost.

shown in Table 2, CCD—NPRSM and hybrid ANN—XGBoost
models achieved R? values of 0.998 and 0.998 for dye removal
efficiency, respectively. In contrast, the CART model obtained
an R* value of 0.991 with an MSE value significantly greater
than those of CCD—NPRSM and hybrid ANN—XGBoost
models. The hybrid ANN—XGBoost model outperformed
CCD—NPRSM and CART models in terms of overall pre-
diction efficiency (Table 2). In contrast, the CART algorithm
yielded significantly higher MSE, RMSE, and MAPE values
than CCD—NPRSM for all response variables, highlighting its
susceptibility to high variances across samples and instability
in managing noise and data changes. With disadvantages of
overfitting, high variances, and great biases, the CART model
tends to make the decision tree structure increasingly unstable
when predicting certain response variables or anomalies with
high fluctnations. To address these issues, hybrid
ANN—-XGBoost performs parallel tree boosting and offers
unequal accuracy in predictions using advanced multiple
hyperparameter tuning techniques to optimise loss functions.
These features make the hybrid ANN—XGBoost model suit-
able for managing large datasets with high residual or bias
errors, with advantages of capturing complex patterns in
combined datasets containing multiple response variables.
The CCD—NPRSM model performed much better than
expectations, achieving R* and MSE values of 0.997 and 1.010
for TOC removal efficiency. Error function analysis revealed
that regarding electrical energy consumption for TOC
removal, hybrid ANN-XGBoost yielded R* and MSE values of
0.998 and 1.158 kWeh/kg, respectively, significantly out-
performing the CART model with R” and MSE values of 0.253
and 5.580 x 10° kWeh/kg. Furthermore, CCD—NPRSM
demonstrated superior management of high residual errors or
variances compared to the CART algorithm. Notably, hybrid

ANN—XGBoost outperformed both CCD—NPRSM and
CART in terms of R and MSE for majority of response var-
iables. The hybrid intelligence of combined ANN and
XGBoost minimises training time and avoids undesirable
convergence to local optimal solutions, efficiently handling
complex operational parameters for more accurate predictions
through global optimisation. Therefore, the observed accuracy
of predicted responses confirmed the feasibility of hybrid
ANN—XGBoost optimisation in modelling RB5 aqueous
systems. Except for certain response variables such as elec-
trical energy consumption for TOC removal, the combination
of ANN and CCD—NPRSM optimisation significantly
reduced MSE and RMSE to 1.158 kWeh/kg and 1.076 kWeh/
kg, respectively. CART exhibited limited prediction and opti-
misation capabilities, due to certain nature of datasets and its
susceptibility to noises and overfitting.

In conclusion, each modelling method offers distinct ad-
vantages tailored to specific wastewater treatment processes.
Although the CCD—NPRSM approach can reveal the inter-
active effects of operational variables and their impact on re-
sponses via higher-order polynomial mathematical functions,
hybrid ANN—XGBoost exhibits superior optimisation capa-
bilities compared to both CCD—NPRSM and CART.
Furthermore, hybrid ANN—XGBoost operates as a black-box
model, relying primarily on data availability for accurate
analysis, thus bypassing the need for intricate experimental
designs. Conversely, CART serves as a robust analytical tool
to mitigate some of RSM's limitations in predictive modelling,
accommodating categorical and continuous data, and man-
aging missing values or data clustering through non-
parametric methods without inherent assumptions. However,
CART proves less suitable for handling large datasets with
extreme variances.
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Moreover, Table 2 shows that both CCD—NPRSM and
hybrid ANN—XGBoost models exhibited significantly superior
overall optimisation and predictive capabilities compared to
CART. The current efficiency and electrical energy consump-
tion for RB5 and TOC removal, optimised by hybrid
ANN—XGBoost and CCD—NPRSM, were significantly lower
than those predicted by the CART model, aligning more closely
with experimental data. Ultimately, the hybrid ANN—XGBoost
and CCD—NPRSM algorithms can aid water authorities, envi-
ronmental regulatory bodies, and water resources engineers in
achieving exceptional results through hybrid modelling pro-
cesses. Furthermore, they can be utilised to predict relationships
among variables and optimise responses in scaled-up processes
within real wastewater treatment systems.

3.4. Optimisation efficiency of electrochemical process

The primary purpose of this experimental study was to
enhance the electrochemical process by optimising the opera-
tional parameters to boost dye and TOC removal efficiencies
while minimising electrical energy consumption and reducing
annual electricity cost, all without compromising the treatment
efficiency. The optimised results, with a composite desirability
of 0.805 0 (Table 1), underscored the precision of the results.
Specifically, optimised data in Table 1 reveal that achieving a
dye removal efficiency of 99% or higher for CCD—NPRSM
necessitated a minimum current density of approximately
20 mA/cm? and an electrolysis time of 20 min for treating 65-
mg/l. RB5. Under optimised conditions using the hybrid
ANN—XGBoost algorithm, merely 2 934.30 kW-h/kg of RB5
sufficed to attain a dye removal efficiency exceeding 99%
within a 20-min electrolysis timeframe, indicating the remark-
able energy efficiency of the electrochemical process. In
contrast, employing the CART algorithm consumed 1
043.92 kW-h/kg of electrical energy for TOC removal to achieve
over 99% and 89% removal efficiencies for dye and TOC.
Comparative research has demonstrated similar results,
achieving a 91.6% RB5 removal rate using 0.4 A of applied
current over 50 min of electrolysis (Feng et al., 2022). In

addition, their research showed that treating 0.5 L of the RB5
solution at an initial dye concentration of 4 mg/L required a
maximum electrical energy consumption of 4.89 kWh/m’.
Table 3 compares electrical enmergy consumption between
experimental results and the literature. In addition, Table 1
shows that the TOC removal efficiency significantly surpassed
non-optimised experimental results, highlighting the advan-
tages of employing hybrid ANN—XGBoost and CCD—NPRSM
optimisation techniques. Experimental results indicated that
employing a current density of approximately 20 mA/cm? for
dye solution treatment yielded notably higher current efficiency
than the optimised result, suggesting mitigation of side re-
actions and intermediate oxidation byproduct formation, which
enhanced potential current utilisation efficiency. However, un-
desirably high electrical energy consumiption due to voltage
fluctuations was observed under non-optimised conditions,
leading to additional energy wastage, albeit with lower elec-
tricity costs attributed to moderately high current efficiency.

4. Conclusions

This study extensively investigated the electrochemical
degradation of RB3 xenobiotic dye in a simulated dye solution
using a 3D electrochemical process with GIC particle electrodes
and a graphite anode. The effects of operational parameters on
dye and TOC removal efficiencies, current efficiency, electrical
energy consuniption for RB5 and TOC removal, and electricity
cost were optimised using CCD—NPRSM, hybrid
ANN—XGBoost, CART algorithms, along with approximating
functions, until satisfactory convergence of solutions was ach-
ieved to maximise fitness in the modelling. Key optimisation
results showed that TOC mineralisation efficiencies of 89.76%,
90.47% and 89.68% were achieved using CCD—NPRSM,
hybrid ANN—XGBoost, and CART optimisation techniques,
respectively, compared to the non-optimised experimental
result of 89.18%. Although CART optimisation accurately
predicted observed RBS and TOC removal efficiencies, errors
for other response variables were significantly higher than those
of CCD—NPRSM and hybrid ANN—XGBoost. In contrast, the

Table 3
Comparison of electrical energy consumption between experimental results and secondary sources from literature.
Adsorbent Anode Cathode Co Reactor Crr Reference
Granular activated Ti/SnO,-Sb/B-PbO,  Ti subsfrate 50 mg/L (2.4- Fluidised 3D 810 kW-h/kg for TOC Samarghandi et al.
carbon (3DER- dichlorophenol) electrochemical using 3DER-GAC); 1 (2021)
GAC) particle reactor 570 kW-h/kg for TOC
electrodes using electrochemical
oxidation (EO)
Polymer-based Titanium coated with Stainless steel 10 mg/L (diclofenac 3D biofilm electrode  38.5 kW-/kg for Soares et al. (2022)
spherical activated RuO,-IrO,-TiO, (DCF) or reactor (3D-BERs) DCF; 20 k€W-vkg for
carbon (AC) sulfamethoxazole SMX
(SMX))

Mn-Co/GAC particle
electrode

Granular activated
carbon particle
electrode

Ti/RuO, electrodes Ti/RuO; electrodes 150 mg/L

TYRuO,-IrQy Titanium plate 1 000 mg/L

(amoxicillin (AMX))

(Rhodamine B)

3D electrochemical
reactor
3D electrochemical
Teactor

73 kW-h'kg for AMX Ma et al. (2022)

6.22 kWlvkg for
chemical oxygen
demand (COD)

Ji et al. (2018)

Note: Cp is the initial dye concentration, and Cgg is the electrical energy consumption.
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predictive efficiency of hybrid ANN—XGBoost exceeded
expectation to other optimisation methods. The overall findings
confirmed the techno—economic viability, engineering feasi-
Dbility, and environmental suitability of the 3D electrochemical
process when optimised by either hybrid ANN—XGBoost or
hybrid CCD—INPRSM.
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5.2 Links and implications

The prediction efficacy of targeted responses was critically evaluated using uniquely
designed CCD-NPRSM, Al and ML ensemble algorithms to optimise the three-dimensional
electrochemical treatment of RB5-contaminated wastewater. The effects of operational
parameters on targeted responses, such as dye and TOC removal efficiencies, current
efficiency, electrical energy consumption of RB5 and TOC removals, and electricity cost
were effectively optimised to achieve optimal conditions. The optimisation results showed
that CCD-NPRSM, hybrid ANN-XGBoost ensemble and CART algorithms, along with its
approximating functions, successfully led to satisfactory convergence of solutions, resulting
in the best fitness of modelling. The key optimisation results showed that hybrid ANN-
XGBoost ensemble generated the best optimal solution with TOC mineralisation efficiency
of 90.47% compared to 89.76% and 89.68% by CCD-NPRSM and CART optimisations.
Although CART optimisation was effective, the prediction errors of response variables were
significantly higher than other optimisation techniques. Overall, the predictive efficiency of
hybrid ANN-XGBoost ensemble exceeded expectations compared to other optimisation

methods.
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6.1 Introduction

This article is an extension of Paper 4 research, specifically emphasising the advanced
combination of Al and ML ensembles to optimise the process conditions of three-
dimensional electrochemical treatment of xenobiotic dye wastewater. The synergistic
performance of three-dimensional electrochemical process of sequential batch reactor
allowed a rapid degradation of methyl orange (MO) dye pollutant in xenobiotic dye
wastewater. In the absence of Al and ML-optimised models, the targeted variables, such as
MO and TOC removal efficiencies, electrical energy consumption and current efficiency
could not be accurately predicted, optimised and estimated. One of the most remarkable
findings from this research was that the mineralisation efficiency of 50 mg/L MO was rapidly
degraded using a current density of 15 mA/cm?. The electrochemical degradation
mechanisms were mediated by direct and indirect oxidation processes involving highly
oxidizing species, such as hydroxyl radicals and active chlorine species. Novel electro-
regenerative and electro-degradative GIC particle electrodes were incorporated into the three-
dimensional electrochemical reactor to facilitate the electrochemical degradation and
adsorption of MO dye pollutant.

Furthermore, unique combination of Al and ML ensembles was formulated involving
artificial neural networks, support vector machine and random forest and finally combining it
with Monte Carlo simulations, to conduct sensitivity analysis and manage the system
perturbations, process variabilities and estimation uncertainties in the process conditions of
three-dimensional electrochemical reactor. In addition, the prediction efficiency of each
AI/ML technique was compared with multiple regression analyses and ranked in terms of
superiority of the predictive models. More importantly, Al and ML ensembles were used to
balance the current efficiency and electrical energy consumptions of three-dimensional

electrochemical reactor, while maintaining its mineralisation and energy efficiencies.
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Abstract

The present study investigates the synergistic performance of the three-dimensional electro-
chemical process to decolourise methyl orange (MO) dye pollutant from xenobiotic textile
wastewater. The textile dye was treated using electrochemical technique with strong exidizing
potential, and additional adsorption technology was employed to effectively remove dye pol-
lutants from wastewater. Approximately 98% of MO removal efficiency was achieved using
15 mA/cm® of current density, 3.62 kWh/kg of energy consumption and 79.53% of current effi-
ciency. The 50 mg/L. MO pollutant was rapidly mineralized with a half-life of 4.66 min at a
current density of 15 mA/cm®. Additionally, graphite itercalation compound (GIC) was elec-
trically polarized in the three-dimensional electrochemical reactor to enhance the direct elec-
trooxidation and OH generation, thereby improving synergistic treatment efficiency. Decolouri-
sation of MO-polluted wastewater was optimized by artificial intelligence (AT} and machine
learning (ML) techniques such as Artificial Neural Networks (ANN), Support Vector Machine
(SVM), and random forest (RF) algorithms. Statistical metrics indicated the superiority of the
model followed this order: ANN>RF> 5VM > Multiple regression. The optimization results of
the process parameters by artificial neural network (ANN) and random forest (RF) approaches
showed that a current density of 15 mA/cm?, electrolysis time of 30 min and initial MO concen-
tration of 50 mg/L. were the best operating parameters to maintain current and energy efficien-
cies of the electrochemical reactor. Finally, Monte Carlo simulations and sensitivity analysis
showed that ANN yielded the best prediction efficiency with the lowest uncertainty and vari-
ability level, whereas the predictive outcome of random forest was slightly better.

Highlights

¢ In-depth analysis of various artificial intelligence optimization techniques.

& Prediction efficiency of artificial intelligence and machine learning algorithms.
¢ 98% dye removal and 100% regeneration of graphite intercalation compound.
¢ Advanced statistical analysis of targeted responses and data fitting techniques.
& Analysis of uncertainties and variability using Monte Carlo simulation.

Keywords Dye removal - Adsorption and electrochemical treatment - Artificial neural
network - Support vector machine - Random forest - Monte Carlo simulation
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1 Introduction

The textile, printing and dyeing industries are some of the largest producers of dye waste-
water, contributing up to about 0.7 million metric tons of chemical dyes produced annually,
accounting for 17 to 20% of water pollution worldwide (Pavlovi¢ et al. 2014). In Bang-
ladesh, the textile sector currently exports nearly 28 billion USD annually, up to 82% of
the country’s total export earnings (Hossain et al. 2018). In 2021, the textile industries in
Bangladesh produced approximately 2.91 million metric tons of fabrics and around 349
million metric tons of wastewater generated from conventional dyeing practices (Hossain
et al. 2018). Figure 1 represents the water and chemical consumption of the textile process-
ing industry in Bangladesh.

1.1 Types of Textile Wastewater Treatment

Globally, about 60% of the annual output of synthetic dyes consists of azo compounds (Liu
et al. 2022). These azo dyes possess stable azo function groups (N=N) and aromatic rings,
which make it very chemically stable and highly resistant to environmental biodegradation
and UV photolysis (Cui et al. 2021). These azo dyes have strong chromaticity, ecotoxicity
and carcinogenicity, which pose a significant health risk and environmental hazard (Kumar
and Gupta 2022). Residual dyestuffs are characterized by intense colour, high organic con-
tent, and highly stable chemical structure, with strong potential to cause serious environ-
mental pollution (El-Kammah et al. 2022).

Various treatment methods are commonly employed to remove textile dyes from waste-
water using biological degradation (Singh et al. 2022), coagulation-flocculation (Lau et al.
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Fig.1 Water and chemical consumption of textile processing industry in Bangladesh with a production capacity
of 1,812 tons to 18,000 tons annually, amounting to 24-h shifts and 25 working days (Uddin et al. 2023)

@ Springer

102



Maonte Carlo Simulation, Artificial Intelligence and Machine. .. Page3of31 41

2014), membrane filtration (Wu et al. 2022a), Fenton reagent (Badmus et al. 2020) and
photocatalytic degradation (Chairungsri et al. 2022). Still, they are ineffective due to exces-
sive sludge production, secondary pollution and membrane fouling (Nidheesh et al. 2018).
Excessive sludge production from biological treatment process requires additional post-treat-
ment and waste management processes, resulting in large energy consumption and financial
expenditure (Shoukat et al. 2019). On the other hand, membrane fouling is a significant issue
in filtration process, which hampers filtration effectiveness (Wu et al. 2022a). Coagulation-
flocculation process will contribute to secondary pollution due to chemical reagents used to
remove the pollutants (Janudrio et al. 2021; Tahraoui et al. 2023). The recovery of chemical
reagents is challenging, resulting in a loss of energy and resources (Thaddaden et al. 2022).
Catalyst poisoning and electron-hole recombination are significant issues in advanced oxida-
tion processes, leading to reduced oxidation potential (Fu et al. 2023; Kanjal et al. 2023). The
catalysts used in advanced oxidation processes are costly (Saravanan et al. 2022). Fenton's
reagent leads to a significant issue with iron sludge generation due to combined floccula-
tion with the reagent and organic compounds (Mechati et al. 2023; Suhan et al. 2021). Addi-
tional pH adjustment is needed for Fenton’s reagent to facilitate oxidation, increasing opera-
tional costs (Can-Giiven 2021; Kebir et al. 2023). Furthermore, a fluidized three-dimensional
electrochemical oxidation process was used to treat MO wastewater and achieved a removal
efficiency of 99.9% in 30 min, whereas the original adsorption capacity of activated carbon
was maintained at 64.5% after 8 cycles of adsorption-electrochemical regeneration (Liu et al.
2022). Therefore, the literature recommended using electrochemical process as an advanced
wastewater treatment technique to remove dyes from industrial effluent.

The electrochemical treatment is commonly used to eliminate pollutants on the anodic
surface, via generation of OH oxidants and active chlorine species (Hamida et al. 2022).
However, few studies have been conducted on Al and machine learning-based optimiza-
tion of three-dimensional electrochemical treatment of textile wastewater involving graph-
ite intercalation compound (GIC) particle electrodes. The current disadvantages of using
anodic oxidation technology such as boron-doped diamond and mixed metal oxide elec-
trodes are due to poisoning of electrodes and buildup of biofilm or thin-oxide layer, which
can decrease its electrocatalytic efficiency and service life by 10-90% (El Aggadi et al.
2021). These electrodes could not overcome the issues associated with mass transfer resist-
ance and short half-life of oxidizing species with approximately 10°~107 s in wastewater
media (Chen et al. 2023; Xie et al. 2022). The current disadvantages of adsorbent materi-
als made from agricultural sources and carbon-based substituents are non-regenerative and
susceptible to heat stress or other physicochemical degradation (Vinayagam et al. 2022). On
the other hand, granular activated carbon (GAC) has 10-20% lower regeneration efficiency
than GIC, making it unsuitable for use in electrochemical reactor (Narbaitz and McEwen
2012; Narbaitz and Karimi-Jashni 2012). Hence, we aimed to improve the electrocatalytic
efficiency of three-dimensional electrochemical reactor using an electrically regenerative
particle electrode to achieve high mineralization efficiency of dye pollutants in wastewater.

More critically, there is a potential gap in comparing the prediction efficiency of various
artificial intelligence and machine learning-based optimization approaches specific to three-
dimensional electrochemical treatment process. Intelligent control of electrochemical nitrate
removal was based on artificial neural network whereas electrochemical sensors were applied
to monitor and remove azo dyes and food colorant substances. None of the past research
explored the artificial intelligence and machine learning-based optimization techniques
on three-dimensional electrochemical treatment of xenobiotic dye removal (Meng et al.
2022; Wu et al. 2022b). On the other hand, past research focused on using electrochemical
conversion of ammonia into harmless nitrogen gas by utilizing granular activated carbon
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as three-dimensional particle electrode which was poorly regenerative or of low electrical
conductivity compared to graphite intercalation compound (Zhang et al. 2024). Moreover,
system perturbations, uncertainties and variability of operating parameters and their impact
on targeted responses specific to three-dimensional electrochemical treatment process are
never accounted for in the current literature. This involved exploring the uncertainties in
Al optimization effect of operating parameters such as applied current density, electrolysis
time and initial dye concentration, to improve the electrooxidation efficiency of the three-
dimensional electrochemical reactor. Most significantly, the novelty of this research lies in
finding the best artificial intelligence-based models to improve the prediction efficiency of
complex phenomena by applying them to large physical, chemical and biological processes.
Secondly, the research aims to develop accurate artificial intelligence-based models which can
be integrated into the upscaled conventional wastewater treatment systems to enhance value
engineering, water resources management, energy efficiency, real-time process dynamics,
data controllability and streamlining distributed network of process control systems.
Unlike other past research, this research also aims to scrutinize the prediction efficiency of
different artificial intelligence and machine learning-based models by analysing the level
of uncertainties or the effect of various operating parameters on system perturbations and
variability to enhance the accuracy and precision of predictive model platforms.

2 Materials and Methods
2.1 Experimental Equipment and Materials

Methyl orange (C,,H;,N;Na0,5) was a chemical reagent grade obtained from Chem-
Supply, Australia. Commercial GIC was purchased from Sigma-Aldrich, Australia. The
particle size of GIC was greater than 300 pm (50 mesh). GIC has an electrical conduc-
tivity of approximately 0.8 S/cm. The MO solution was prepared using high purity dis-
tilled water. UV/Visible spectrophotometer (DR6000, Hach) was used to determine the
MO dye concentrations in solution at different time intervals. The maximum absorp-
tion occurred at a wavelength A =463 nm. The coefficient of variation (COV) for the
UV-absorbance analysis of MO was approximately 3.08%, whereas for the TOC analy-
sis (TOC-V CSH, Shimadzu), it was approximately 0.55%.

The experiment was performed in a 6-7 L electrochemical reactor equipped with
anode and cathode. A more detailed description can be found in Trzeinski and Harada
(2023). Graphite plate anode with approximately 70 cm? of electroactive surface area
and stainless steel 316 cathode were connected with a 60 V DC power supply unit
(Model GPR-6030D, GW INSTEK, Taiwan) to form a closed-looped electrical circuit.
Compressed air at 2 bar was sparged into the anodic compartment of the reactor to mix
GIC and contaminated water. A solution of 0.3% (w/v) of NaCl adjusted to pH 2 using
HCI was used as the supporting electrolyte.

2.2 MO Adsorption and Electrochemical Oxidation Process
In 3D electrochemical process, 1-L of MO-contaminated water was first added into the

reactor, and air pressure was set at 2 bar to start the adsorption process. After the adsorp-
tion process was over at 20 min, GIC particle electrodes were allowed to settle down in
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the regeneration zone between the cathode and the anode. The regeneration zone is located
within the anodic compartment where the GIC particle electrodes are electrochemically
regenerated when subjected to electrolysis. The current supply ranged from 1.05 to 3.16 A,
corresponding to a current density of 15 to 35 mA/em® applied for 10 min. Mathematical
equations used for characterising three-dimensional process are outlined in subsection 2.2.1.

2.2.1 Mathematical Equations for the Electrochemical Process

In the study of 3D electrochemical process, a pseudo-first-order kinetic medel (Eq. 1) was
used to describe the change of concentration over time, and the pseudo-first-order reac-
tion rate constant represents the electrooxidation kinetics of MO removal by 3D process.
Alternatively, t;,, represents the half-life of mineralization rate for 50% of MO pollutants
to degrade in an aqueous solution. The combined adsorption and electrochemical oxidation
process synergistically maximise the dye and TOC removal efficiencies of MO in aque-
ous solutions. The pseudo-first-order kinetic rate constant representing the electrooxidation
kinetics can be determined from the following equation (Liu et al. 2022):

-lo & =kt
elo)= (1)

where k represents the kinetic rate constant in min™'; C; represents the initial dye con-
centration from 50 mg/L to 125 mg/L; C, represents the final dye concentration changes
according to time after a period of adsorption and electrochemical oxidation; and t is the
time in min.

The regeneration efficiency, RE, can be calculated from the following equation:

RE = 2 x 100% )

1

where ¢; represents the initial loading of MO (mg/g) onto fresh GIC adsorbent; and g, rep-
resents the final loading (mg/g) on the regenerated GIC adsorbent under identical adsorp-
tion conditions:

Cy—-C IV

ql=¥ (3)
C,-C)V

Qr=% (4

where C;, denotes the initial dye concentration (mg/L), C, represents the dye concentration
(mg/L) after adsorption but before electrochemical regeneration, C, represents the dye con-
centration (mg/L) after electrochemical regeneration, and t is the regeneration time.
The charge passed per gram of GIC adsorbent is given by the following relationship:
It

Q= m (5
where 1 is the applied current (A); t is the electrolysis time (min); and m is the mass of GIC
adsorbent (g).
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To calculate the applied current density, Jgq, the following equation is used:

I
Too = —
W= 5 (©

where 1 denotes the current applied (A); and SA denotes the surface area of the anode,
which was 70 cm?.

To caleulate the electrical energy consumption per kg of adsorbed MO, the equation is
shown below:

kWh IxVxt
EC =
() - e

where I is the applied current (A); U, is the cell potential at time t (V); and V is the MO
solution volume, which was 1.0 L.

To calculate the electrical energy consumption per kg TOC of adsorbed MO, the follow-
ing equation is used:

k'Wh IXVxt
kg TOC (TOC, - TOC, )V

where 1 is the applied current (A); U, is cell potential at time t (V); V is MO solution vol-
ume (1.0 L); t is the time (min); and TOC,, TOC, are TOC concentrations initial and final
total organic carbon concentrations in mg/L., respectively at time t (min).

Based on the actual charge passed per gram for the equation above, the theoretical equa-
tion is as follows:

n(Cy - C;)VF

Qu= M,

9
where C; and C; are the initial and final MO concentrations in solution taken before and
after the adsorption-electrochemical regeneration for 3 cycles; V is the solution volume
(L); I is Faraday’s constant (96,487 C mol™); M,, is the molecular weight of MO is
327.33 g mol™!; and n represents the number of electrons, which is 90 for complete oxida-
tion and 36 for incomplete oxidation (see Sect. 3.1).

The current efficiency equation is as follows:

Theoretical Charge
Actual Charge Passed

Currentefficiency(%) = ( ) % 100% (10)

After the graphs were generated using the experimental data, various Al and machine
learning optimisation techniques were applied to compare any deviation between the
experimental and optimised values. Subsection 2.3. briefly summarises the data analysis
methods used for Al and machine learning optimisation techniques.

2.3 Data Analysis Methods

Before performing the optimization of experimental data using Artificial Neural Net-
works (ANN), Support Vector Machine (SVM) and random forest (RF), an approximate
model must be developed in preparation for training and testing. To configure the dataset,
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designing the network architecture of any Al model is critical to incorporating activation
functions, transfer functions, nodes or layers, etc. Once the model architecture is created,
model training and testing procedures must be performed to train and test the network
architecture to evaluate the model performance. The training and testing procedures are
critical to improve the generalization of predictive performance. In these procedures, the
input operating parameters from the experimental data were transferred into the activa-
tion functions of the modelled network architecture to generate output response variables.
The tested experimental results were compared with the AT or machine learning optimised
results to derive any error deviation using statistical analysis for data fitting purposes
involving the use of either ANN, SVM classifier model or random forest decision trees to
enhance the predictive outcomes.

2.4 Electrochemical Regeneration of GIC
This electrochemical regeneration experiment was subdivided into three phases:

1) Initial adsorption: Alr was sparged into the reactor containing 200 g of GIC particle
electrodes for 20 min. The air pressure was 2 bar to facilitate the mass transfer of dye
molecules onto the particle electrodes. After 20 min, the air supply was turned off to
allow the GIC particle electrodes to settle onto the bottom of the anodic compartment.

2) Adsorption-electrochemical regeneration phase: A DC power source supplied a fixed
current through the cell during electrochemical regeneration. The electric field was
turned on for 10 min to facilitate the electrochemical regeneration of GIC.

3) Next cycles of adsorption-electrochemical regeneration: The air was turned off, allowing
the particle electrodes to settle onto the regeneration zone of the electrochemical cell.
The remaining electrochemically treated solution was drained off. A fresh dye solution
was added for the next round of adsorption-electrochemical regeneration.

2.5 Analytical Methods

In the following experiment, 1,000 mL of the 50-250 mg/L. of MO stock solution was sub-
jected to electrochemical treatment. Experiments were carried out at a temperature of 22
C, and the dye solutions were filtered using a 5 pm filter funnel. A 5,000 pL. "Eppendorf"
syringe was used to take the liquid samples from the dye solutions at intervals ranging
from 0 to 30 min. These liquid samples were analysed using a UV/Visible Spectrophotom-
eter (A, =463 nm, Hach DR6000) and a TOC analyser (Shimadzu TOC-V CSH) to deter-
mine the dye and TOC concentrations throughout the electrochemical treatment. The coef-
ficient of variation (COV) for the UV-absorbance analysis of MO is approximately 3.08%,
whereas for the TOC analysis, it is approximately 0.55%.

2.6 Al Modelling and Optimization

2.6.1 ANN Procedure

ANN is widely used to solve complex, multivariate and non-linear problems via classifica-
tion and regression modelling (Khan et al. 2022). ANN optimization method was applied
to model and predict responses influenced by operational variables. ANN is a subset of
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machine learning algorithms (Oruganti et al. 2023). It mimics the behaviour of human
brain and nervous system with outstanding learning ability. ANN is a black-box model that
employs a gradient descent propagation technique to predict a target output variable (Picos-
Benitez et al. 2020). It is structured into three layers, each node connected by inputs and out-
puts, as shown in Fig. 2. The ANN processes involve one or more hidden layers connected
by input parameters consisting of current density, electrolysis time and initial MO concen-
tration, and output layers consisting of MO removal efficiency, current efficiency, electrical
energy consumption of MO and TOC, which is known as the multilayer perceptron (MLP)
structure (Asgari et al. 2020). The number of neurons in each input and output layer can be
as many as the number of input and response variables. In this study, a three-layer ANN
model with a hidden layver was designed, in which the tangential sigmoid function was used
at the hidden layer, whereas a linear transfer function was used at the output layer. The Lev-
enberg—Marquardt backpropagation algorithm with 1000 epochs was employed for training
the network. The number of neurons located in the hidden layer was a range of 1-20 to give
the best optimum values based on minimum mean squared error (MSE). The ANN analysis
was performed using MATLAB R2023a. The performance of ANN modelling can be sta-
tistically evaluated using the MSE and the correlation coefficient, in accordance with the
following Bgs. (11) and (12), respectively (Khan et al. 2022; Gzdogan-Sarikog et al. 2023):

1

2
N
MSE = ﬁzlzl ( |Ypred,1 - YE,XP,I |) (1 1)

N (Yi,cal - Yi,exp)2

RP=1-Y —— -
(YSXP - Y1,exp)

(12)

Yored,; and Yo ; denote predicted and experimental i values in scalar unit such as dye or
TOC removal efficiency, respectively. ¥, represents an average experimental value of
either dye or TOC removal efficiency. MSE and R? are mean square error and coefficient of
determination, respectively.

2.6.2 SVM Procedure

The SVM method is built upon the fundamental concept that involves applying either a
linear or non-linear mapping function to map the experimental or actual data into a higher
dimensional feature space and search for an optimum hyperplane in the new space to
achieve classification of samples (Ding et al. 2023). The SVM algorithm and its regres-
sion models have faster training time and are more advantageous than the ANN models in
finding the universal optimal solutions for a given experimental dataset (Ozdogan-Sarikog
et al. 2023). The support vector regression (SVR) algorithm can be extracted from the
SVM algorithm to predict response variables. However, given the limited predictability
of the ANN algorithm, the radial basis of ANN function was still dominant compared to
the SVM algorithm (Safeer et al. 2022). Moreover, SVM helps to identify patterns and/or
classify the specific dataset. It compares the differences between the predicted and experi-
mental values, providing information on the degree of fitness. The primary goal of SVM
algorithm is to identify the hyperplane in an N-dimensional space that classifies distinct
datasets (Singh et al. 2023). There are a number of features that define the hyperplane.
However, as the number of features increases, the complexity of model also increases,
making it more challenging to comprehend. When combined with ANN model, the
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Fig.2 ANN network with topology. ANN operates like a human brain and nervous system. It possesses one
or more hidden layers, input and output layers, which are known as multilayer perceptron (MLP) structures.
The neurons in the input are feedforwarded through the hidden layers to the output layers, representing the
response variables. The Levenberg—Marquardt backpropagation algorithm is adopted to train the network

interpretation of complex model becomes more manageable. The predictive performance
indicator of SVM model is used in Al optimization as follows (Khan et al. 2022):

1 g
MSE = HZ?=1 (yi,cal - yi,exp) (13)

(14)

Yical a0d Yeyp; denote calculated and experimental i"™ values in scalar unit, such as dye or
TOC removal efficiency, respectively. Z; and Y; denote predicted and experimental i val-
ues, such as dye or TOC removal efficiency.

SVM is a regression model that requires a decision boundary involving a maximum-
margin hyperplane to solve a learning sample (Wang et al. 2022). To perform curve fitting,
the conceptual relationship of SVM and Lagrange multiplier method involves regression
analysis of the data. This relationship can be described using a functional equation of the
regression as follows (Wang et al. 2022):

fx)=w-px)+b (15)

where x represents the input vector; @, b: the parameter vector; ¢(x): the characteristic
function. In addition, ¢ : X — ¢p(X) € RM is any non-linear function that maps the input
experimental data into a high-dimensional feature space (Rodriguez-Galiano et al. 2015).
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The model optimisation was subjected to the soft-margin constraint involving hyper-
plane, distinguishing the training data with the maximum margin. The optimization prob-
lem can be solved using the Lagrange multipliers method, which is the Kernel function
defined as the inner product of the transformed input feature vectors {Rodriguez-Galiano
et al. 2015):

K(x, %) = (@ {x)le(x )} (16)

2.6.3 Random Forest

Random forest is essentially a Classification and Regression Trees (CART) algorithm,
which is part of a machine learning-based approach with the potential to capture complex
non-linear relationships between selected models (Wang et al. 2022). Random forest uti-
lizes multiple trees with nodes to train and predict samples, with representation by deci-
sion trees. The chosen training data are randomly returned, and newly learned data is con-
tinuously constructed, resulting in newly established decision trees to increase the overall
effect of accuracy and stability of predictions. For solving regression problems, the random
forest generates a final prediction result for each decision tree based on the mean of the
predicted data.

2.7 Statistical Analysis and Data Fitting Using Al Models
2.7.1 Development of ANN Architecture

All operational parameters used in ANN approach were adopted from the experimental
data. In addition, the desired output responses were MO removal efficiency, electrical
energy consumption of MO and TOC, and current efficiency of the electrochemical reac-
tor. Firstly, it was assumed that artificial neurons are arranged in sequential layers. Sec-
ondly, the neurons within the same layers do not interact with one another. Thirdly, all
input operating parameters entering the network architecture must pass from the input layer
through the hidden layer to the output layer. All hidden layers must have a similar activa-
tion or transfer function. Once the output variables are generated, they are compared with
the input variables using statistical analyses involving MSE, RMSE, R?, etc.

The proposed mathematical equation representing the ANN model can be written as fol-
lows (Asgari et al. 2020):

Y, = fO{aO + Et:l [Wk X (ahlc + E?;jﬂcxm)] } (1n

where Y represents the normalized response variable, f; denotes the transfer function
in the output layer, by is the bias value in the output layer, w, is the weights between the
output and hidden layers, f, is the transfer function representing the tan-sigmoid function
in a specific study in the hidden layer, a;, is bias value in the hidden layer, j, represents
the weights involved between the hidden and input layers, and X, denotes the normalized
input variables ranging between 0.1 to 0.9 for a specific study.
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2.7.2 Multiple Regression Analysis

Multiple regression analysis is one of the statistical techniques used to analyse the rela-
tionship between a single dependent variable and a range of independent variables. The
primary purpose of using multiple regression analysis is to use independent variables to
predict the value of a single dependent variable (Wagner et al. 2006). Each predictor is
weighed, with total weights contributing to the overall prediction. The following represents
the equation for describing the overall prediction (Wagner et al. 2006):

Y=a+b1X1 +b2X2+ +anI’1 (18)

where Y denotes the dependent variable; X, and X represent the number of independ-
ent variables; b; and b, represent the weights to ensure maximum prediction of dependent
variable from the set of independent variables.

3 Results and Discussion
3.1 Effect of the Operational Parameters on the Electrochemical Process

Current density was one of the most influential parameters affecting the overall electro-
chemical treatment efficiency. The experiment studied the effect of 15 mA/cm? of current
density on the degradation efficiency of MO by 3D electrochemical process. In addition,
Fig. 3 shows that when the current density of 15 mA/em? was applied for at least 30 min of
electrolysis time to treat a range of initial MO concentrations ranging from 50 to 125 mg/L.,
the MO removal rate constants changed from 0.149 to 0.036 min~ while MO removal
efficiency decreased from 98.8% to 66.0%. Approximarely 70% (0.046 min™") and 90%
(0.241 min_l) of removal efficiencies and removal rate constants were achieved in 2D and
3D electrochemical treatment by Liu et al. (2022). The results indicate that the higher the
initial MO concentration, the lower the MO removal efficiency and removal rate constants
due to competitive reaction between OH and dye pollutants. There were two types of oxi-
dation reaction: 1) direct anodic oxidation of MO pollutants via anode; 2) indirect oxi-
dation of MO via powerful oxidants such as hydroxyl radical and active chlorine species
electrogenerated in bulk solution, anode and particle electrode surfaces. In addition, Fig. 3
shows that the applied current density of 15 mA/cm? increased the regeneration efficiency
of GIC particles beyond 100% after a few adsorption-regeneration cycles. This means that
after 5 cycles, all the adsorbed MO was degraded, leaving the GIC with fully recovered
active sites. In addition, the propagation of error was calculated to determine the effects of
function by variable uncertainty to provide a more accurate measurement of uncertainty.
In this case, the uncertainty propagation for regeneration efficiencies was approximately
15.3%. This value indicates that the effect of electrochemical regeneration on active site
recovery on GIC particle electrodes was not significantly different in each cycle of adsorp-
tion-regeneration, and almost equal proportion or approximately 100% of active sites can
be recovered after electrochemical treatment. Secondly, the result also indicated that the
effect of electrochemical regeneration on the surface roughening of GIC particle electrodes
was minimal as prolonged regeneration can affect the physicochemical properties of parti-
cle electrodes, offsetting the recovery of active sites for better regeneration and adsorption
efficiencies.
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Fig.3 Effect of 15 mA/em? of
current density on the miner-
alisation rate and MO removal
efficiency. The significance of
this result is that higher current
density is required to completely
mineralise large amount of MO
pollutants in higher concentra-
tions. The higher half-life of MO
pollutants indicates that not all
dyes are completely mineralised,
leaving them in the aqueous
solution
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This phenomenon was attributed to surface roughening, which led to changes in sur-
face chemistry or physicochemical properties of GIC (Nkrumah-Amoako et al. 2014). Past
researchers showed that the surface area of GIC was expanded during the electrochemical
regeneration process (Nkrumah-Amoako et al. 2014). During the electrochemical oxidation
process, MO pollutants were adsorbed onto the GIC particle electrodes and oxidized on its
electroactive surface into intermediate byproducts. The electrogenerated hydroxyl radicals
from the water-splitting process and active chlorine species formed during the electrolytic
process helped degrade the MO pollutants through indirect oxidation. In contrast, the direct
oxidation of MO pollutants occurred on the surface of anodic material (Martinez-Huitle
and Ferro 2006). Hydroxyl radicals formed on the surface of the anodic material by phys-
isorption were released into the bulk liquid media to degrade the MO pollutants.

Notwithstanding the effect of physisorption, Fig. 4 shows that the regeneration
efficiency of GIC adsorbent also played a significant role in recovering the surface-active
sites. The regeneration efficiency was influenced by surface roughening of the GIC particle
electrodes, resulting in changes in physicochemical properties. Figure 5 shows that MO
and TOC concentrations decreased significantly when the current density increased from
15 to 35 mA/cm2. However, when 15 to 35 mA/cm? of current densities were applied to
treat the initial MO concentration of 50 mg/L, this significantly decreased MO and TOC
concentrations. The competitive reaction of OH oxidants and active chlorine species
with MO pollutants affected the amount of highly reactive oxidizing species available to
mineralise the organic pollutants completely.

The electrochemical oxidation mechanism of organic pollutants via highly reactive
hydroxyl radicals using anode is the following:

M(s) + H,O(I) - M(-OH) + H*(aq) + ¢~ (19)
M(-OH) — MO(s) + H*(aq) + € (20)
MO(s) + P — M(s) + PO @2n

where P denotes pollutants; M denotes metal oxide electrodes.
The hydroxyl radical is one of the most potent oxidants in an aqueous solution with
E’=2.73 V/SHE, which can be electrogenerated on the surface of the electrode (Serrano
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Fig.4 Effect of 15 mA/cm® of current density on the regeneration efficiency of GIC particle electrodes. The
significance of this result is that electrolysis leads to changes in GIC physicochemical properties, causing
surface roughening and surface area recovery or availability for more adsorption due to high regeneration
efficiency, thereby improving the uptake of MO pollutants

2021). It is desirable to have a weak interaction between the radical and electrode
surface to make reactivity with the nearby pollutant species possible. The physisorption
process depends on the strength of the interaction of hydroxyl radicals with the
electrode surface. Attractive electrostatic forces mainly involve van der Waals’ forces,
which are more vulnerable than a covalent bond. Although the radical species is highly
reactive, it has a half-life of approximately 10 ns (Serrano 2021). Hydroxyl radicals
can be either physisorbed or chemisorbed onto the electrode. If the chemisorption is
predominantly strong, it will hinder the mass transfer of hydroxyl radicals into the bulk
solution, reducing the oxidation potential of the electrochemical system.

Active chlorine species are often present with hydroxyl radicals, especially in
an electrochemical system that uses NaCl as an electrolyte species. H ions lead to
increased acidity of treated wastewater, but it positively allects sustaining hydroxyl radi-
cals and active chlorine species. On the other hand, high current density exacerbates the
side reactions, resulting in reduced treatment efficiency.

In addition, the cathodic half-reaction for active chlorine species and water electroly-
sis for an electrochemical reaction is as follows:

2H,0 (1) + 4e~ — 20H~ (1) + H,(g) (22)

“OCI(D + H,O() + 2¢” = CI7(1) + 20H™ (1) (23)

The presence of chloride and hydroxide species increases alkalinity in the catholyte
solution.
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Fig.5 Effect of changing current densities and electrolysis time on different MO and TOC concentrations.
The significance of this result is that the greater the current density, the greater the mineralisation effi-
clency, resulting in a significant decrease in MO and TOC concentrations over electrolysis time

During electrochemical process, assuming that the nitrogen and sulfur atoms in MO
are converted into nitrate and sulfate, the complete electrochemical oxidation reaction
of MO is given by the equation as [ollows:

CyyH 4 N3NaO38(s) + 38H,0(1) — 14C0,(g) + 90H* (ag) + Na*(ag) + SO~ (ag) + 3NOJ (ag) + 90°~
(24)
For incomplete electrochemical oxidation reaction of MO due to the influence of side
reactions, the equation is as follows:

C4H 4N3Na0,5(s) + 11H,0(1) — 14CO(e) + 36H" (ag) + Na* (ag) + 8~ (aq) + %Nz(aq) +36e”
(25)

Judging from Egs. (24) and (25), both complete and incomplete oxidation reactions influ-
ence the MO and TOC removal efficiencies. Figure 6 shows the differences between the effects
of complete and incomplete oxidation reactions on current efficiency of 3D electrochemical
process. Complete oxidation reaction of MO byOH oxidants resulted in higher current effi-
ciency than incomplete oxidation reaction. This phenomenon was caused by greater utilization
efficiency of current to generate powerful oxidants such as hydroxyl radicals and active chlorine
species to degrade MO pollutants in aqueous solutions. However, when the current density was
increased from 15 to 35 mA/em?, the current efficiency decreased significantly for all initial dye
concentrations. The result indicated that the formation of side reactions produced a significant
amount of intermediate transformation byproducts, which offset the current efficiency.

In electrochemical process, electrical energy consumption is a critically important param-
eter. Flectrical conductivity of the MO solution and GIC particle electrode directly influenced
the energy consumption of the 3D electrochemical reactor. Therefore, enhancing electrical con-
ductivity by integrating the electrochemical reactor with electrically conductive GIC particle
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Fig.6 Effect of different current densities on current efficiency of the 3D electrochemical reactor. The sig-
nificance of this result is that not all current potentials are utilised efficiently to mineralise the MQ pol-
lutants. Some currents were lost through the buildup of side reactions or quenching effect of surrounding
media and interference from intermediate transformation byproducts

electrodes can decrease the solution’s electrical and mass transfer resistances, leading to better
voltage utilization when fixing an electric current. The existence of ions such as nitrate, ammo-
nium and sulphate ions provided electrical conductivity in the solution. Mineralisation of MO
pollutants was accompanied by the evolution of NH}, NOjand SOi_. In addition, the electro-
generated oxidant species may lead to corrosion of the electrodes, inadvertently increasing the
electrical resistance. The increase in ohmic resistance of the electrode due to corrosion may
result in additional maintenance and repair costs after prolonged electrochemical treatment.
Moreover, the results from Fig. 6 showed that the current efficiency significantly impacted the
utilisation efficiency of current, directly influencing the amount of energy channelled into the
degradation of dye contaminants. The differences between the complete and incomplete oxida-
tion reactions were due to differences in the number of coulombic electrons produced. Com-
plete oxidation reactions were considered ideal reactions with more electrons yielded as pre-
sented by Eq. (24). On the other hand, incomplete oxidation reactions involved some loss of
electrons due to inefficient reactions and desirable uptake of electrons due to the quenching
effect of surrounding media. In addition, Fig. 7a shows that when the current density increased
from 15 to 35 mA/em’ for all initial MO concentrations, the electrical energy consumption
increased from 5 kWhikg MO to greater than 30 kWh/kg MO. On the other hand, Fig. 7b shows
that the electrical energy consumption for TOC removal increased more significantly than the
electrooxidation of MO pollutants due to greater electrical energy required to achieve complete
mineralisation efficiency. In addition, the values of electrical energy consumption of TOC were
more critical and reflective of the actual breakdown of dye contaminants into CO, and H,0,
representing the complete reduction of dye contaminants to prevent it from forming aromatic
amines, which could be more ecotoxic than its original organic compound.
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Fig.7 a) Effect of different current densities and initial MO concentrations on electrical energy consump-
tion (kWh/kg MO) of 3D electrochemical reactor; b) Effect of different current densities and initial MO
concentrations on electrical energy consumption (kWh/kg TOC) of 3D electrochemical reactor. This result
shows that higher electrical energy is required to completely mineralise the MO pollutants compared to the
lower electrical energy needed to break down or convert the MO pollutants into intermediate transforma-
tion byproducts through different oxidation pathways. Side reactions may influence the amount of electrical
energy consumption

3.1.1 The Prediction Efficiency of Multi-regression Analysis, ANN and SVM models

To assess the prediction efficiency of ANN model in relation to multiple regression
analysis and SVM models, 14 experimental runs were conducted for each set of cur-
rent density, initial MO concentration and electrolysis time. The ANN prediction results
for the experimental and predicted removal efficiencies demonstrated that the models
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yielded a promising result, with experimental values remarkably close to the predicted
data as shown in Fig. 8a-d. Similarly, the prediction results for electrical energy con-
sumption of MO and TOC and current efficiency showed high R? values between the
experimental and predicted values, highlighting the robustness of ANN optimization
power to provide accurate predictions. Figures 8a-d showed different training, valida-
tion, and testing proportions, and all data were randomly segregated and imported into
the ANN model. The efficiency of MSE calculation depended on the number of neurons
applied in the hidden layer so that the statistical metric could be evaluated. The statisti-
cal analyses were based on the parameterized hypotheses between the experimental and
Al-generated data. The value of MSE trained network was 22.44, along with the corre-
lation coefficient (R?=0.992), as shown in Fig. 8a and e. The degree of curve fitting and
its relationship between experimental and predicted responses were demonstrated by R
The R? values obtained for the training, validation and testing were 0.992, 0.965 and
(.845, respectively as shown in Fig. 8a. The R*-value close to 1 indicates a satisfactory
relationship between outputs and target values. The linear fitting model attained plotting
regression outputs of ANN, which were given in Fig. 8a-d. The plot of validation out-
puts and targets created the model (output=0.72*Target+ 15) in Fig. 8a. Figures 8a-d
show a good correlation between the experimental and theoretical results obtained using
the training function. Furthermore, the ANN topology was examined by varying the
number of layers and neurons at the hidden layer to yield an optimal solution. In other
words, the number of hidden layers was determined by trial-and-error methodology.
Statistical metrics were used as evaluation criteria to determine the best optimal result
with minimal deviation between the response variables in the experimental and theo-
retical results. The prediction capability of ANN did not increase with the number of
neurons in the hidden layer due to overfitting of data, leading to increased error devia-
tion and variability. In addition, one of the prediction results of MO removal efficiency
showed that the R? values for training, validation, testing and all data were 0.992, 0.965,
0.845 and 0.909 in Fig. 8a-d. These results indicated remarkable compatibility between
the experimental and predicted results using the ANN model. Furthermore, Levenberg
Marquardt Post-Diffusion Algorithm (LMPA) was used to train the network. The perfor-
mance plot of the trained network is shown in Fig. 8e-h, which showed that the training
stopped at 0.0713 at epoch 100 in Fig. &f, which was close to the acceptable range. In
general, the function estimation with network parameters less than 100, the LMP tends
to show higher efficiency and speed of calculation. However, high accuracy is still sig-
nificantly prominent in the majority of cases. The benefit of using this algorithm is due
to minimal error. During the data training, the output predicted by the model was com-
paratively better than the expected value, which can be observed when the MSE values
are calculated.

During the first phase, the error training decreased until the network approached
a minimal error, and by supplying more data, the error increased again. The network
training was halted at this stage, and weights were returned to the minimum error. In
addition, Fig. 8e to h showed the statistical significance and error distribution (MSE)
of MO removal efficiency, electrical energy consumption of MO and TOC, and cur-
rent efficiency, predicted by ANN model. The MSE values were significantly low cou-
pled with high R? values determined the goodness of measured and predicted results.
Although linear relationships between the experimental and predicted results showed a
good fit, it provided limited information on the model prediction efficiency due to the
absence of non-linear multiple regression analysis. Furthermore, Fig. 8f and h showed
that the MSE values were the lowest compared to other statistical metrics in the number
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Fig.8 The performance of ANN models with topology for training, validation, test and all data for a) MO
removal efficiency; b) electrical energy consumption (kWh/kg MO); ¢) electrical energy consumption
(kWh/kg TOC); d) current efficiency; e) mean square error of validation performance for MO removal effi-
ciency; f) mean square error of validation performance for electrical energy consumption (kWh/kg MO);
g) mean square error of validation performance for electrical energy consumption (kWh/kg TOC); h)
mean square error of validation performance for current efficiency; i) SVM prediction efficiency between
the experimental and predicted data for MO removal efficiency: j) SVM prediction efficiency between the
experimental and predicted data for electrical energy consumption of MO; k) SVM prediction efficiency
between the experimental and predicted data for electrical energy consumption of TOC; 1) ANN predic-
tion efficiency between the experimental and predicted data for MO removal efficiency; m) RF prediction
efficiency between the experimental and predicted data for MO removal efficiency; n) ANOVA analysis
prediction efficiency between the experimental and predicted data for MO removal efficiency. The signifi-
cance of the result is that when the ANN algorithm yields robust prediction efficiency of response variables
such as MO and TOC removal efficiencies that can be improved significantly, rectifying the imprecise or
complicated data to derive and extract patterns by controlling the operating parameters to minimise system
perturbations or errors
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Fig.8 (continued)

of neurons contained within the hidden layer. The relationship between the experimen-
tal and predicted data can be evaluated using the correlation coefficient. On the other
hand, Fig. 8i-k showed the equivalent prediction results between the experimental and
predicted values, indicating that SVM algorithm can be used to strengthen the optimiza-
tion power of ANN model. In other words, the SVM model yielded one of the best fit-
ness between the experimental and predicted values.

The nature of surrounding media and quenching effect of ions on hydroxyl radicals
and active chlorine species within the bulk solution influenced the synergistic adsorption
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Fig.8 (continued)

and electrochemical oxidation of MO pollutants in wastewater. Some minor offset in the
response variables predicted by the ANN models and experimental data stemmed from
side reactions and interference from the immediate transformation byproducts from differ-
ent oxidation pathways, resulting in slightly reduced correlation coefficients. In addition,
the electrolytic effect of anode and cathode on the surface physicochemical properties of
the GIC adsorbent can impact the adsorption capacity, increasing the surface area avail-
ability for further uptake of MO pollutants from the bulk solution. The surface function-
alisation of GIC adsorbent also played a critical role in imparting electrostatic attraction
between the MO pollutants and adsorbents. Moreover, the normalisation of experimental
and ANN-predicted data shown in Fig. 8a-d indicated that the trained network was applied
throughout the dataset, evidencing no misleading interpretation of the results. The minor
deviation between the experimental and ANN-predicted data was partly due to experimen-
tal variability. Still, the entire experimental dataset yielded a high correlation coefficient
with small MSE values, indicating that the ANN optimisation technique was efficient.
Table 1 lists the MSE/RMSE and R? obtained from Fig. 8 and compares them with val-
ues from the literature. It can be observed that MSE/RMSE and R values for the response
variable MO removal efficiency were approximately similar to the best Al optimization
results achieved by other researchers, albeit experimenting on different pollutants. This
result shows that Al optimization techniques can be applied to the electrochemical treatment
of dye wastewater, which was not previously shown. More interestingly, the ANN-optimised
results were similar to the values in Table 1, especially when compared with the conven-
tional wastewater treatment plants. Minor differences were attributed to the side reactions
and buildup of intermediate transformation byproducts from different oxidation pathways,
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affecting the pollutant removal efficiency. The discrepancies in results are attributed to the
type of pollutant under treatment, unit operations, and other laboratory parameters.

To compare and validate ANN, the Random Forest optimization technique using the
CART algorithm was used to evaluate this work. The following Fig. 9 presents the general
process of random forest by CART algorithm (Wang et al. 2022):

Figure 9 shows the random forest process and computational procedure for gener-
ating the regression trees or optimal tree diagrams. Figure SM1a shows that the opti-
mal tree diagrams using random forest can be used to analyse the energy efficiency of
three-dimensional electrochemical process by finding the optimum current density for
electrolysing the MO textile wastewater. The optimal tree diagram in Figure SM1a in
Supplementary File shows that when the current density dropped below 20 mA/cm?,
the predictive analytics showed terminal node 1 with percentages around 7.1% for a
range of calculations for electrical energy consumption of MO. The optimization results
indicated that any current density below 20 mA/cm? can achieve better energy efficiency
than higher current density. When the current density was between 20 and 30 mA/cm?
at terminal node 2, the prediction results indicated that the electrical energy consump-
tion of MO was higher than terminal node 1, indicating lower energy efficiency when
the current density increased beyond 20 mA/cm?, However, when the current density
increased beyond 30 mA/cm?, the energy efficiency decreased more significantly. The
patterns of electrical energy consumption of TOC for Figure SM1b in Supplementary
File were similar to Figure SM1a except that the amounts of energy consumption of
TOC were higher than the typical energy consumption of MO due to greater electrical
energy required to mineralize the dye contaminants in aqueous solutions. The efficiency
analysis tree approach can optimize or monitor the energy usage in the electrochem-
ical process within the WWTPs to substantially benefit people and the environment,
reducing operational costs and greenhouse gas emissions significantly (Maziotis and
Molinos-Senante 2023; Maziotis et al. 2023).

In conjunction with ANN and SVM models, multiple regression analyses in Fig. 10a-d
showed variations between the fitness of experimental and predicted values. In addition,
multi-regression analysis results presented in Fig. 10b shows a small residual error between
the experimental and predicted values. The result indicates a slight variation between the
experimental and predicted values when determining the adequate current efficiency required
to facilitate oxidation reactions. The benefits of optimisation using multi-regression analysis
are due to more controllability over the process parameters while maintaining the energy effi-
ciency of the oxidation reactions. The results from multiple regression analysis in Fig. 10d
showed minimal residuals between the experimental and predicted results, indicating that
the prediction efficiency was a good fit for optimising the process parameters. On the other
hand, the results from Fig. 10c and d show very minimal residuals between the experimental

Step 4
new data, fimal

Step 2

Step 1 K features are randomly selected
SelectN
dataset by A o
random samp

Fig.9 Random forest process is an ensemble learning method or algorithm for classification and regression
by operating a multitude of decision trees at different training times. The step-by-step procedure used to
construct the decision trees is stipulated
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Fig. 10 a) Multiple regression
analysis for optimisation of MO
removal efficiency at 50 mg/L.
of initial MO concentration; b)
Multiple regression analysis for
optimisation of current efficiency
using current densities rang-

ing from 15 to 35 mA/cm?; ¢)
Multiple regression analysis for
optimisation of electrical energy
consumption of MO using cur-
rent densities ranging from 15 to
35 mA/em?; d) Multiple regres-
sion analysis for optimisation of
electrical energy consumption
of TOC using current densi-

ties ranging from 15 to 35 mA/
cm?. The significance of using
multiple regression analysis is to
analyse the relationship between
dependent variables and several
independent variables to predict
the outcome of the dependent
values. In this case, multiple
regression is used to compare the
effects of initial MO concentra-
tions and current densities on
MO removal efficiency and
electrical energy consumption
of MO and TOC, respectively.
The predictive outcomes of
multiple regression analyses can
be compared with the prediction
efficiency of Al and machine
learning techniques for validation
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Residuals vs Fitted Values

Fig. 10 (continued)
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and predicted values, indicating that the prediction efficiency was a good fit with R” values
greater than (.93, However, both ANN and SVM models yielded high R? values, highlight-
ing its superior optimisation power over multiple regression functions. In addition, a two-
layer feed-forward network imparted with hidden sigmoid neurons and linear output neurons
can solve problems for multidimensional mapping to improve curve fitting to match the data.
MLP network (3:4:4) was trained with the Levenberg-Marquardt backpropagation algorithm
(LMBPA). MSE varied in validation samples, and the training automatically stopped or
adjusted to improve the generalisation. The network was trained for 4 replications to find the
best number of neurons for the hidden layer.

Finally, the multi-regression analysis in Fig. 10c and d shows minor residual errors or
variations between the predicted and experimental values, indicating that the optimisation
technique can achieve more robust process conditions by adjusting parameters. However, the
ANN optimisation method provided the best prediction result over control of process param-
eters compared to multi-regression analysis. In addition, Table 2 summarises model valida-
tion by ANOVA analysis to compare differences between AI/ML optimisation techniques and
multiple regression fit to actual versus predicted values for examining the three-dimensional
electrochemical treatment of 50 mg/I. MO using a current density of 15 mA/cm®.

3.1.2 Monte Carlo Simulations

The uncertainties associated with different ML predicted models were estimated using
Monte Carlo simulations. The uncertainty and variability of input parameters influence the
estimation of uncertainty. Compared to actual data, the predicted variables have an inher-
ent uncertainty in estimating response variables. The Monte Carlo simulation was based on

Table 2 Model validation by comparing AVML optimisation and ANCGVA analysis through multiple linear
regression fit to actual versus predicted data

Actual values MSE MS3E MSE MSE
22.44 17274 149015 183.633
B? R? B? R?
0909 0898 0.507 0,806
ANN (Predicted SVYM (Predicted Random forest ANOVA (Model
values) values) (Predicted values)  validation)
.000 21 35743 39.571 31,1748
37.626 48.84302 38.151 31038 34412
46.088 55.10498 400,559 42382 36.833
453,428 54.61491 42967 45616 30694
45.426 54.61491 45375 44,503 42.535
43341 53.07211 47783 47750 45376
48.320 3675668 530.191 48.805 48218
49.644 57.73682 52.599 47.625 51.05%
47.143 55.88545 55.007 53.584 53.908
£3.73% 65.66176 59.823 47.895 29.582
97.694 03.29384 71.862 88.88% 737788
98.577 93.04727 33.902 98.546 37.994
38.895 0418322 95.942 08395 102.260
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the repeated random sampling (n= 1,000 simulated samples) of the probability distributions
defined for principal response variables of certain variation and uncertainty of each input
parameter. The Monte Carlo approach allows the approximate estimation of variation and
uncertainty stemming from system perturbation associated with specific input parameters
and incorporating them into the estimates of response variables. In addition, simulations with
1,000 iterations were used to construct the distributions to calculate the level of uncertainties
in different predictive model platforms. The simulated parameters can be extended beyond the
current number of operating parameters. Uncertainty analyses in wastewater treatment sys-
tems compare the reliability of results, which is subject to variability that leads to significant
imprecision in the predictive model platforms. The quality of wastewater treatment standards
is based on rigorous regulation of water quality criteria to monitor the risk of adverse effects
on the receiving bodies. This research aims to apply Monte Carlo simulation to assess the
probability of adverse effects of xenobiotic dye wastewater in meeting environmental stand-
ards for effluent discharge. The achievable limits for textile dyeing effluent standards can be
evaluated based on the simulated models to adhere to water quality standards.

Appropriate selection of certain input distributions to estimate uncertainty and variability
between the actual and predicted models from ML optimisation helps facilitate probabilistic
analysis of optimized results. A distribution is determined based on how well it represents a
certain dataset from the actual experimental results. The best representation of probabilistic dis-
tributions can be empirical or take any form of parametric distributions such as normal, loga-
rithmic normal, uniform, triangular etc. All parameters in this study were assumed to be normal
or logarithmic normal distributions. When a certain number of random variables influences
the dataset, the result tends to form a normal distribution as shown in Figure SM2 in Supple-
mentary File. A theoretical criterion for selecting a certain normal distribution is based on a
central limit theorem (CLT). In addition, Figure SM2 shows the probabilistic density distribu-
tions of actual and optimized models. The uniformity of probabilistic distributions and then
lack of skewness or heavy-tailedness highlight the prediction efficiency of AI/ML optimized
models with limited uncertainty or variability. However, the probability distribution for different
artificial intelligence and machine learning-based models showed that the higher the efficiency
of targeted responses, the greater the uncertainty, which impacted the accuracy and precision
of predictive models. The random forest algorithm generated greater uncertainty than other
artificial neural network and support vector machine algorithms, indicating greater mstability
of system perturbation predicted by random forest. The simulated normal distribution seen in
all artificial intelligence and machine learning-based models showed that most of the targeted
responses achieved efficiencies within the 90% and 100% range. The strong correlation between
the current density and targeted responses based on the sensitivity analysis indicated that cur-
rent density had the most significant effect on the pollutant removal efficiency. When the pre-
dicted models were combined, especially between ANN and SVM, the level of uncertainties
or system perturbation increased, leading to greater variability of combined predictive models.
Similarly, if the ANN and RF models were integrated into a single predictive model platform,
the level of uncertainties in prediction efficiency was less than the ANN-SVM model.

4 Conclusions
The results above confirmed that 3D electrochemical treatment integrated with graphite inter-

calation compound (GIC) particle electrodes and anodic oxidation technology is a very effi-
cient technique to degrade methyl orange (MO) pollutants in simulated wastewater, achieving
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greater than 98% removal rate within 30 min of electrolysis time. The GIC particle electrodes
in the 3D electrochemical process act as an electrocatalytic adsorbent material to effectively
improve mineralisation efficiency and generation of OH oxidants, demonstrating the effective-
ness of combined adsorption and electrochemical oxidation. However, the strength of elec-
trolysis in this experiment was limited by the type of electrocatalytic material used, and the
acidified salt concentration was also limited, resulting in slightly reduced electrical conductivity
of solution, and less active chlorine species available to degrade MO pollutants. Nonetheless,
the research results justify the application potential of green and efficient 3D electrochemical
treatment of complex industrial wastewater. The synergistic effect of 3D electrochemical pro-
cess resulted in high MO removal and current efficiencies, reducing overall electrical energy
consumption. In addition, GIC particle electrodes consistently maintained high regeneration
efficiency beyond 100% throughout several consecutive cycles of adsorption and regenera-
tion, highlighting the potential for reusability of particle electrodes. The Al optimisation power
of multi-regression analysis, ANN, SVM and random forest ranked in the following order:
ANN>RF>SVM>multiple regression analysis. The probabilistic distributions and scatter-
plots from Monte Carlo simulations indicated limited uncertainty and variability between actual
and optimised models, highlighting the prediction efficiency of AI/ML. optimisation approaches
that are potentially applicable to water resources engineering and wastewater remediation in
WWTP. Most interestingly, the overall critical findings of the research showed that RF is intrin-
sically suited for analysing multiclass problems, while SVM is only suited for two-class prob-
lems. In this research, the predictive performance of RF versus SVM was approximately com-
parable due to almost equal uncertainties. In contrast, the ANN algorithm yielded significantly
better prediction efficiency than the other two algorithms with fewer uncertainties. Although
RF is considered robust to overfitting and excellent in handling extensive nonlinear data, SVM
can effectively operate at high dimensional spaces or hyperplanes and is versatile in handling
multiple data types. The predictive performance of these algorithms is primarily influenced by
the sample size, the complex nature of the dataset and the type of problem being addressed. The
subsequent studies should focus on evaluating other equally robust classifiers for optimising the
electricity costs from industrial operation and greenhouse gas emissions of WWTP to identify
the potential gap between pellutant generation and discharge sources to improve the efficacy
and broaden the applicability of optimised models.
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6.2 Links and implications

The synergistic performance of three-dimensional electrochemical process enhanced
the mineralisation efficiency of MO while improving the energy efficiency of the
electrochemical reactor. With the support of electrocatalytic adsorbent material, such as GIC
particle electrodes, the pollutant removal efficiency was maximised. The optimisation power
of multiple regression analysis, Al and ML was ranked in the order: ANN > RF > SVM >
Multiple Regression. On the other hand, the probabilistic distributions and scatterplots
generated from Monte Carlo simulations showed limited uncertainty and variability between
the actual and optimised models, justifying the remarkable prediction efficiency of Al/ML
ensembles in optimising the three-dimensional electrochemical process.

Most interestingly, the critical findings demonstrated that RF is more suited at
managing overfitting and better at handling extensive nonlinear data, whereas SVM can
effectively operate at high dimensional spaces or hyperplanes. When the ANN and RF
models were combined into a single predictive model platform, as predicted by the Monte
Carlo simulations, the level of system perturbations or uncertainties in prediction efficiency
was less than the ANN-SVM model. However, the predictive performance of these
algorithms is primarily influenced by the complexity of datasets, nature of datasets, sample
size and the type of problem being addressed. The future studies should focus on evaluating
other robust classifiers, Al and ML ensembles, to determine its optimisation efficiency in
enhancing the energy efficiency of the industrial operation and reducing the greenhouse gas

emission of WWTP, especially when the three-dimensional electrochemical reactor is used.
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COMPUTATIONAL MODELLING OF INDIGO CARMINE
ADSORPTION ONTO BONE CHAR: APPLICATION OF
MONTE CARLO SIMULATION, BAYESIAN NETWORKS,
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING-
BASED OPTIMISATION APPROACHES

7.1 Introduction

This paper is an extension of three-dimensional electrochemical technology, emphasizing the
benefits of using a green, renewable carbon-based adsorbent material, i.e., bone char, to
remove xenobiotic dye pollutants from wastewater. This research specifically focused on
using computational modelling techniques involving the application of Monte Carlo
simulations, a range of combined Al and ML optimization ensembles to predict the targeted
variables, such as dye and TOC removal efficiencies by optimizing operational parameters to
achieve optimal conditions. This research investigated uniquely designed ensembles to
optimise the operational conditions to improve the response variables. Sensitivity analysis
was conducted using Monte Carlo simulation to determine the levels of uncertainty in the
predictive models. The causal relationships between the operational variables were
determined using Bayesian inference network analysis. Computational fluid dynamics
modelling was conducted to design a packed bed reactor system to integrate bone char
adsorbent material into the reactor to remove xenobiotic dye pollutants in wastewater. The
thermal distribution effects, thermodynamic parameters and heat fluxes within the wastewater

treatment system were explored.

Abstract
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Various ensembles of artificial intelligence (Al)c and machine learning (ML)-based
optimization methods have been evaluated to examine the prediction efficiencies of Indigo
Carmine (IC) adsorption onto a bone char adsorbent to ensure adequate wastewater
remediation quality. In this study, Al and ML ensembles were developed to optimize the
model parameters, and Monte Carlo simulation models were used to estimate the
uncertainties of different model parameters. Following the simulation-based comparisons,
Bayesian predictive network analysis was performed to determine the probability distribution
to reveal the causal interrelationships between variables to represent the impact of
uncertainties on the simulation models. In particular, the Indigo Carmine (IC) removal
efficiency and dye loading capacity were optimized using a range of Al and ML optimisation
techniques such as adaptive neuro-fuzzy inference system (ANFIS), support vector machine
(SVM), random forest (RF) and eXtreme Boosting Gradient (XGBoost). The prediction
efficiencies of combined Al and ML ensembles were evaluated for ANN-GA-SVM, ANN-
GA-RF and ANN-GA-XGBoost and ANN-GA optimisations that achieved a coefficient of
determination (R?) of 0.730, 0.445, 0.625 and 0.526, respectively, for IC removal within 20
minutes using bone char (BC). The calculations from the correlation matrix indicated that the
combination of AI/ML models, such as ANN-GA-XGBoost and ANN-GA-RF, yielded the
most significant impact on prediction accuracy with a positive Spearman correlation of 0.726
and 0.694, respectively, relative to ANN-GA. In contrast, ANFIS and ANN-GA-SVM
models generated significantly less uncertainty in prediction efficiency with low mean square
error (MSE) of 0.13 and 3.072, respectively, compared to other Al/ML ensembles.

Keywords: Artificial intelligence; machine learning; adaptive neuro-fuzzy inference
system; Monte Carlo simulation

Water is an essential element for sustaining life. Increasing water scarcity and

pollution are the greatest challenges the world is facing. A specific category of organic
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chemicals deemed unsafe for human consumption is synthetic textile dyes used by various
industries worldwide, such as cosmetics, paper and pulp, plastics, etc. Approximately 15% of
synthetic dyes escape through the industrial effluent system and find its ways into the marine
environment. Textile dyes are xenobiotics with strong physicochemical stability, fixation
efficiency to the natural substrates and the ability to resist chemical and environmental
biodegradation or UV photolysis (Kekes & Tzia, 2020). Xenobiotic dyes are common
environmental contaminants in wastewater effluent systems discharged from textile industry.
Wastewater-containing dyes are a significant environmental contaminant that affects human
health as textile industries generate large amounts of coloured dyeing effluent into the aquatic
environment (Al-Tohamy et al., 2022). Among these dyes, Indigo Carmine (Acid Blue 74)
found widespread industrial applications. It is a highly toxic chemical substance with a strong
dyeing colourant and has various applications in the textile, cosmetics, plastics,
pharmaceutical, leather and food manufacturing industries (Adel et al., 2021; ElI-Kammah et
al., 2022). Nowadays, Indigo carmine dye is synthetic, whereas its natural form was widely
used in the 17" century due to its antibacterial and insect-repellent properties. Synthetic
indigo carmine is often used to dye blue jeans and other household fabrics. However, these
indigo fabrics and clothes are usually disposed into landfill. Indigo carmine dye can be
harmful if ingested, especially when the dye finds its way into food chain and may have the
potential to cause cancer.

The annual production capacity of dyeing wastewater from textile industry is
approximately 0.7 million metric tonnes (Bilal et al., 2022). Indigo Carmine (IC) dye is
extensively used in textile industries due to its colour intensity, which stems from
auxochromes, a chromophore functional group presents in significant amount of synthetic
dyes (Shabir et al., 2022). Indigo dyes are highly hazardous and carcinogenic; they can cause

skin and eye irritation upon direct contact and may lead to chronic damage to the cornea and
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conjunctiva (Guezzen et al., 2023). For this reason, Indigo Carmine is considered a major
contaminant that must be treated or removed prior to discharging dye-contaminated
wastewater into marine environment (Fu et al., 2019).

Many treatment methods have been developed to remove synthetic dyes from
wastewater. These treatment methods produced different removal rates and can be
categorized into physical, chemical and biological technologies such as 99% of dyes can be
removed using membrane filtration (Ma et al., 2022; Mansor et al., 2020), 92-99% dyes
removed by chemical or solvent precipitation (Alikarami et al., 2022), 85-95% by adsorption
(Agdam et al., 2021; Hassani et al., 2015; Obayomi et al., 2023), > 90% of dyes removed by
electrochemical degradation process (Salazar et al., 2018; Tang et al., 2020; Tang et al.,
2022), 100% by advanced oxidation processes (Dadban-Shahamat et al., 2022; Nidheesh et
al., 2022; Saravanan et al., 2022), 98% by Fenton process (Arslan-Alaton et al., 2009;
Esteves et al., 2016; Suhan et al., 2021), greater than 50% by ion-exchange (Hassan & Carr,
2018; Lu et al., 2022), 100% by coagulation-flocculation (Januario et al., 2021; Li et al.,
2017; McYotto et al., 2021), 49-76% by photocatalysis (Chairungsri et al., 2022; Rosa et al.,
2015), 96% by ozonation (EI Hassani et al., 2019; Hu et al., 2016) and > 70% by
microbiological degradation (Singh et al., 2022; Wang et al., 2019). Although chemical and
biological approaches are effective at removing toxic dyes from wastewater, they require
special equipment, and the process is energetically intensive and the addition of chemical
reagents often lead to large amounts of byproducts, whereas the biological process leads to
excessive sludge generation, which requires additional financial expenditures for waste
management (Kuo et al., 2008). On the other hand, other treatment techniques, such as ion-
exchange, photocatalysis, membrane filtration, coagulation-flocculation, chemical oxidation
etc., can be employed to remove dyes from aqueous solutions. Still, these techniques have

significant drawbacks due to high operational costs, undesirable production of toxic
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intermediate byproducts, large volumes of sludge formation, and formation of numerous
heavy metals during synthesis or preparation, which may have adverse health consequences
on humans and aquatic organisms (Obayomi et al., 2023). Moreover, treating reactive azo
dyes is rather challenging due to their diversity of physicochemical properties and structural
complexity (Agdam et al., 2021). Hence, no standalone treatment method is considered
suitable to remove dye wastewater at high efficiency. Nonetheless, adsorption is the most
frequently used technique to remove dyes from wastewater due to its cost-effectiveness,
environmental friendliness, chemical stability, selectivity, high decolourisation efficiency,
simplicity, flexibility and ease of operation (Agdam et al., 2021; Aysan et al., 2016; Obayomi
et al., 2023). No matter how complex the process is, the large-scale adsorption process
requires thorough optimisation of 1C removal by varying the initial dye concentration, contact
time, solution temperature and dye loading capacity to reduce the industrial wastewater
treatment costs while meeting the required quality of pollutant removal efficiency. The more
complex the wastewater treatment process is, the more challenging it is to control the process
parameters in industrial operations, which rely on the operators. Without adequate control of
the process conditions, the large-scale adsorption process may lead to suboptimal design and
operation, resulting in reduced quality of wastewater treatment.

Computational modelling is a common approach to solving complex problems using
experimental data and performing parameter estimation based on the predicted data to
optimise the process parameters. To validate the prediction efficiency of the optimised
parameters, Monte Carlo simulation can determine the level of uncertainty within the process
variables, which may cause a model mismatch to improve robust design and operation of real
processes and make the complex industrial operation relatively more straightforward to
control. To manage the complexity of processes, ensemble forecasting is a useful modelling

approach that combines data sources and models of different types supported with alternative
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assumptions to discern distinct patterns within the models without being restricted by
arbitrary choices and dependencies from a single statistical, artificial intelligence or machine
learning approach limited to a single functional form or dataset (Wu & Levinson, 2021). Past
research had shown that a combination of artificial neural network, particle swarm
optimization, and Monte Carlo simulation was used to investigate the optimum condition of
co-combustion of coal and peanut hull, achieving a multilayer perceptron model with a R? of
0.99994 (Buyukada, 2016). For example, an ensemble machine learning approach can
examine process parameters and other scale-up opportunities of microbial electrochemical
systems for determining hydrogen peroxide production (Chung et al., 2023). More
interestingly, XGBoost ensemble machine learning approach is essential to achieve safe
maintenance of drinking water supply system that requires an interpretable analysis of model
prediction, such as predicting the concentration of algae (Park et al., 2022). However,
complex industrial processes have numerous variables to control, and the interactions
between the variables are largely unknown. To discern the interrelationships between the
causal variables, Bayesian distribution network analysis can be used to estimate the levels of
interactions or interrelationships between the process variables, finding the significance of
impact between the input and output variables. These computational methods require
adequate assumptions, such as approximating probability distribution functions to normal
distributions to facilitate this process. However, such methods do not guarantee the accuracy
of the estimation, but they eliminate the drawbacks of using a single approach, thereby
avoiding costly computational processes.

The uncertainty quantification based on Monte Carlo simulation can be validated
using Bayesian inference, which utilizes the prior knowledge of simulation (Ighnih et al.,
2023). Monte Carlo simulation has been used successfully by other wastewater treatment

technologies. To manage the complexity of chemical engineering process, the combination of
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Monte Carlo simulation and Bayesian network analysis can minimise lengthy computational
time, reducing the computational effort where alternative algorithms can support the complex
computational process. Nonetheless, the combination of optimization approaches, Monte
Carlo simulations and Bayesian distribution network analysis, have yet to be applied to
industrial adsorption process.

In this study, process parameters are optimized using a range of Al and ML
algorithms and subjected to Monte Carlo simulations to determine the level of uncertainty
within the variables. By implementing parallel computing, Bayesian network analysis was
applied to determine the probability distribution; Bayesian inference on parameters can then
be performed quickly. The artificial data were evaluated by simulation through generation of
models. The remainder of his paper evaluated mathematical models of the targeted IC
removal process using various Al and ML optimization techniques. It was subjected to
validation using Monte Carlo simulations and Bayesian inference systems.

2.1. Indigo carmine dye

Indigo carmine dye powder was purchased from Sigma-Aldrich (Merck KGaA),
Australia with a purity of 99.9% and molecular weight of 466.36 g/mol. It has the chemical
formula, C16HsN2Na20sS2 with a dusky, purplish-blue appearance in powder form. It is

soluble in water and alcohol and partially soluble in organic solvents.

2.2.  Adsorbent material

Bovine bone char (BOV) was purchased from Charcoal House, Australia. It is a
precursor for the adsorbent material sourced commercially and relatively inexpensive
adsorbents that can be obtained from waste products in the food industry. The preparation
techniques used by the industry involve pyrolysis, which can influence the yields and textural

features. Factors such as temperature, time and flow rate of gasifying agents are carefully
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adjusted to facilitate the production of bone char to desired features such as particle size,
specific surface area and other physicochemical properties unique to the adsorbent. The bone
char adsorbent has 841 x 250 microns, a specific surface area of 200 m?/mg and a bulk
density of 2.497 kg/m?. The pyrolysis of animal bones under limited oxygen conditions can
maximise carbon contents, enlarging surface area and increasing ash contents.
2.3.  Adsorption studies

Adsorption studies were conducted by varying the process parameters, such as contact
time and initial dye concentration. 1-L of the dye solution with appropriate concentration was
taken into a 250 mL Erlenmeyer flask. The adsorbent dosage was carefully weighed on
analytical balance, added to the flasks, and subjected to mechanical agitation. The agitation
speed was approximately between 150 and 200 rpm, and samples were collected at room
temperature of 22.5°C. The samples were filtered and analysed by a UV-visible
spectrophotometer (HACH DR600) at 610 nm (the maximum absorption wavelength for 1C)
for residual dye concentration in the aqueous solutions. The IC removal efficiency in the

aqueous solution by BC was computed using the following equation:

IC removal (%) = (C‘C;lcf) x 100% (1)

Where Ci and Cr are the initial and final IC concentrations (mg/L), respectively (Pavlovi¢ et
al., 2014).

Adsorption capacity gt (mg/g) was computed by the following equation:

_ (Ci_ce)v

Qe = ——— )
Where m is the adsorbent dosage (g), V is the volume of solution (L). Ci is the initial dye
concentration (mg/L), and Ce is the residual dye concentration (mg/L) at different time

intervals (Pavlovic et al., 2014).

2.4. Dubinin-Radushkevich isotherm model
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Dubinin-Radushkevich isotherm model is an empirical adsorption isotherm model
which is generally applied to adsorption mechanism with Gaussian energy distribution on
heterogeneous surfaces (Maamoun et al., 2021). This isotherm is used to determine the
thermodynamics of the adsorption process. In addition, the model is a semi-empirical
equation involving an ion-exchange mechanism under the assumption that multilayer
adsorption occurs by van der Waals’ forces, which applies to physisorption process
(Pandiarajan et al., 2018). At low pressure, this isotherm model is unable to account for
Henry’s physicochemical laws and describes the sorption process due to impracticality
(Maamoun et al., 2021). The isotherm model also describes the adsorption of gases and
vapours on microporous surface of adsorbents. The most distinctive function of this isotherm
model is temperature-dependent, whereby the adsorption data can be plotted based on the
differences in temperature as a function of dye concentration changes or the amount of dye
adsorbed onto the adsorbent surface, resulting in changes in potential energy distribution.
Dubinin-Radushkevich isotherm model is defined as (Tan et al., 2009):
logeqe = l0geQm — BE (3)
Rearranging the Eq. (3) to give:
de = qmexp(—Be?) (4)
where € can be correlated as:

¢ = RTlog, (1 + cle) ®)

where R is the universal gas constant (8.314 J/mol.K), ¢ is Polanyi potential, 3 is
Dubinin-Radushkevich constant, E is mean adsorption energy and T is the absolute
temperature (K). A plot of log, qe versus 2 enables gm to be determined from the slope. The
constant 8 gives the average free energy E of adsorption per molecule of adsorbate when one
mole of ion is transferred onto the surface of the adsorbent from infinity to the surface of the

adsorbent and can be computed as (Pandiarajan et al., 2018):
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(6)

%||H
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For mean free energy values between 8 and 16 kJ mol, the adsorption process is
considered to be influenced by an ion-exchange mechanism and for values greater than 16 kJ
mol, the adsorption process is considered to be dictated by a particle diffusion mechanism
(Pandiarajan et al., 2018).

2.5.  Physicochemical characteristics of bone char
The classification of bone char involved the findings from the characterisation test

results. The characterisation of the adsorbent material included determining particle size,
surface functionalities and surface morphologies using Fourier Transform Infrared
Spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively.

The particle size of the porous bone char was determined to assess its ability to uptake
the amount of dye adsorbate from the aqueous solution. The particle size has a direct impact
on the maximum adsorptive capacity. In addition, mesopores (2-50 nm), macropores (>50
nm) and micropores (<2 nm) play a significant role in imparting the adsorbent materials with
different adsorptive capacities. Therefore, the larger the particle size, the greater the
availability of pore volume to accommodate a significant amount of dye adsorbate. Aside
from that, the bulk volume of adsorbent encompasses internal and external features whereby
the internal volume involves the region within the enclosed pores, residing within the vicinity
of the adsorbent mass, whereas the external area involves primarily fissures and cracks that
extend deep into the bulk volume of adsorbent with microchannels or networks of varying
widths or sizes (Guo et al., 2022). In addition, the size of the pores on the adsorbent materials
determines how much the dye adsorbate can be adsorbed on its surface or diffused into the
materials. The surface charge or functionalities of the adsorbent materials determine whether
there are any electrostatic repulsive or attractive forces to enhance the adsorption efficiency.

The clogging of pores could be a significant issue when using adsorbents to treat heavily
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polluted wastewater with high turbidity levels. However, particle attrition is another
significant issue in the presence of mechanical disturbances, which cause the adsorbent
particles to break up into smaller particles. When the pore size is very small, the diffusion
rate is influenced by the rate-limiting step, which means the amount of dye adsorbate diffused
into the adsorbent materials is limited.

2.6. Al optimization techniques
1.1.1 Adaptive neuro-fuzzy inference system (ANFIS)
ANFIS is a hybrid algorithm where nodes of a feedforward neural network handle

fuzzy parameters (Zaghloul et al., 2020). It is used to model a complex system with high
uncertainty. The model is characterised by a first-order Takagi-Sugeno fuzzy inference
system (FIS), which transforms the input properties into membership values using input
membership functions (MF) through a fuzzification process. It is also a hybrid model which
comprises an artificial neural network (ANN) with fuzzy logic reasoning. Hence, it can learn
from training data, and the computed solution is mapped onto a FIS, giving a rule-based
system with three essential components: fuzzification, fuzzy database and defuzzification.
The strength of FIS is its non-linear mapping performance between input and output variables
by managing linguistic concepts (Nam et al., 2023). However, one of the limitations of
ANFIS is the increase in the ANFIS input numbers, which may result in lengthening
computational time and rule numbers. Under some circumstances, insufficient data used for
training may lead to failure of the ANFIS model (Heydari et al., 2021). Thus, a standard
ANFIS could not be employed to model an output variable. In this case, the data are
strategically arranged with input parameters randomly divided into smaller groups to reduce
criteria and visual representation to provide a converged solution. This requires considering
constraints such as the number of input parameters, which can be more than 5 or the number
of observations, which can be more than 19 (Heydari et al., 2021). To train the data, the input

neuron values were normalised in the range of 0.1-0.9 by Eq. (7):
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Xinorm = 0.8 X <&) +0.1 (7)

Xj,max ~Xi,min
The accuracy of the ANFIS models was determined with the root mean square error
(RMSE) and the determination of coefficient (R?) in accordance with Eq. (8) and Eq. (9)

(Hadi et al., 2020):

RZ _ Z?=1(Qe,pred_qe,exp)2 (8)
= > 2
Z?=1(Qe,pred_Qe.eXP) +Zin=1(qe,pred—Qe,exp)

RMSE = 251 (Vpreas — Yesps)’ ©)

Where N is the number of experimental runs, y,,req; is the predicted value, yeyp i is
the experimental value, and qe preq aNd g exp are the predicted and experimental adsorption
equilibrium capacity, respectively.

The pilot scale adsorption system can be upscaled by managing multiple
physicochemical parameters and variables, but the process is highly sophisticated and not
well-defined. Moreover, it is also challenging to use specific equations to ascertain quantities
of determinants to define the upscaled adsorption system. Therefore, FIS with fuzzy logic
rules is considered a feasible technological application. A set of fuzzy logic rules is
developed to infer a particular model output. Afterwards, a set of output MFs is used for
defuzzification of the inference output to real output values. This algorithm utilises the input
membership functions to separate the input variables to minimise the search space. It uses
error optimisation algorithms equivalent to the back-propagation feature of neural networks
to adjust the fuzzy parameters. The general ANFIS architecture consists of five distinct layers
(Nam et al., 2023): (i) fuzzy layer, (ii) product layer, (iii) normalisation (or rule) layer, (iv)
defuzzification layer, (v) overall output summation layer. Each layer performs a specific
mathematical process using a first-order Sugeno-type model, which consists of 4 input
variables with fuzzy IF-THEN rules employed in this study. The following outlines different

layer functions with specific mathematical processes:
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Layer 1: Adaptive nodes that map the inputs (x or y) utilising the membership
function p into linguistic variables such as A and B, respectively. Membership functions take
different forms or shapes, including trapezoidal, triangular, generalised bell-shaped curve,
and Gaussian. The output of layer 1 for specific input variables is as follows (Nam et al.,

2023; Zaghloul et al., 2020):

01 = Hai(®) (10)
Rule 1: Ifxis A; and y is By, then f; = p;x+ qy+ 14 (11)
Rule 2: Ifxis A, and y is B,, then f, = p,x+ q,y + 1, (12)

Layer 2: Fixed nodes that apply different logical rules, such as AND/OR by
multiplying the node input signals. The output layer is known as the firing strength, which
can be mathematically expressed as follows (Nam et al., 2023; Zaghloul et al., 2020):
02i = W; = Pai(x) X pp;(y) (13)

u is the membership function, A is the linguistic label related to the membership
function and output, O represents the parameter to which x belongs to A.

Layer 3: Fixed nodes are implemented to normalise the firing strengths, which
involve the calculation of the firing strength ratio at each node and the combination of all
firing strengths. The output layer 3 is known as the normalised firing strength (Nam et al.,
2023; Zaghloul et al., 2020):

Wi

O3;=w; = (14)

wi+w,

Layer 4: Adaptive nodes derived from the following output function (Nam et al.,
2023; Zaghloul et al., 2020):
04 = wif; = wi(p;x + qiy +17) (15)
Where f represents the IF-THEN rule, p, g, and r denote the consequent parameters.
IF-THEN rules can be expressed as: IF x is A AND y is B, it can be written as THEN

f=px+qy+r.
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Layer 5: The sum of all incoming signals from a single fixed node generates an

overall output of the model (Nam et al., 2023; Zaghloul et al., 2020):

Os; = Xiwifi < Ziwif (16)

Xiwi

The output of any node | in layer 1 is denoted as Ou,1, X is the input parameter.

1.1.1 Support vector machine

Support vector regression (SVR) is a machine learning algorithm that can be used for
statistical analysis of regression or classification of non-linear models using the structural risk
minimization (SRM) principle (Nam et al., 2023). SVR has been widely used as a machine
learning algorithm for solving complex regression problems associated with wastewater
treatment simulations. In particular, SVR is used to solve non-linear correlation issues. Given
the training dataset, D = {(x1, y1), (X2, ¥2), ..., (xm, Ym)}, the original dataset used in the
regression problem can be mapped by SVR into a higher dimensional space involving a
kernal function to enable fitting of the original dataset with a theoretical linear regression
function as expressed in the following form (Nam et al., 2023):
fx) = wlpXx)+b a7

Where f(x) is the simulated value obtained from SVR using input variable x, w, and b
denote the coefficient weight vector and bias term achieved by minimizing the upper bound
of the generalization error, respectively. For dataset of x; € R as the training input vector
with d dimensions and y; € R as the training target vector. i = 1: N represents a number of
data pairs, and SVR training data are mapped into a higher dimensional space to generate a
linear model f (w, x) to predict the target vector (Zaghloul et al., 2020). ¢ (x) is the non-linear
mapping function, which is also known as kernel function.

1.1.2 Random forest algorithm

Random forest (RF) is an ensemble machine learning method for classification or

regression that operates on a multitude of decision trees (Wu et al., 2023). It involves a
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modified version of bagging that uses an improved bootstrapping method. RF consists of a
series of decision trees (DT) classifiers, which can be characterized by their high
interpretability, especially in problems with strong physical knowledge, but can be
increasingly unstable and relatively inaccurate when analysing irregular patterns of data and
prone to overfitting the training datasets (Bellamoli et al., 2023). The DT classifiers can be
expressed as h (X, 8y), k=1, 2, 3... with X as an independent input vector and k denotes the
number of decision trees, and 6, is a random vector (Wu et al., 2023). The RF algorithm
starts by selecting bootstrap datasets ¥ (x4, ..., x,) € D(x4, ..., xy) With a random set of
features m € M for t estimators in parallel to nominate node-splitting variables (Qambar &
Khalidy, 2022). For multiclass classification, the output variables can be generated from RF
selected from most decision trees by averaging multiple deep decision trees and trained on
different datasets to reduce variance and overfitting. Most importantly, the hyperparameters
of the RF involve a number of decision trees, the maximum depth of trees and the maximum
number of leaves. Only a fraction of features can be utilized for a tree, and another fraction of
bootstrapped samples can be finely tuned (Bellamoli et al., 2023).

1.1.3 XGBoost algorithm

Extreme Gradient Boosting (XGBoost) is an efficient ensemble of decision tree-based
algorithm using the gradient boost algorithm. The purpose of using this algorithm is to

minimise the regularized equation as follows (Qambar & Khalidy, 2022):

L(®) = XN Los ) +¥T + 24w (18)
Where L (yi, yi) is the regression loss function and equals 0.5 (y;, ¥)?. y is the model

complexity penalizing term, and T represents the number of terminal nodes, whereas A is the

regularization parameter and w; denotes the node j predicted value.

The model output parameter for a sample can be calculated by adding the sum of the

leaves assigned for each regression tree as follows (Ching et al., 2022):
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yi = Z§(=1 fie (x1)
(19)

The regression trees can be added to the ensemble as f: for iteration (t) to form new
regression trees to minimise the learning objective. It can be optimized in an Euclidean space
in a pre-defined structure rather than a singular model to five the following form (Ching et
al., 2022):

L =301y yEh) + flxy) + Q(f)

(20)

For benchmarking purposes, XGBoost model was compared with SVM and RF

models.

1.1.4 Hybrid artificial neural network and genetic algorithm

Single models have some limitations in the learning process. The current learning rate
of a configurable hyperparameter used in the artificial neural network training has a small
positive value ranging between 0.0 and 1.0. This learning rate controls how quickly the
predictive model adapts to the problem. Notwithstanding its benefits, hybrid methods tend to
perform better than a standalone optimization technique to enhance accuracy or minimise
error. This work applies a hybrid combination of artificial neural network (ANN) and genetic
algorithm (GA) to the adsorption data to model and predict IC concentration changes and
removal efficiency based on the operational variables. ANN operates like a human brain and
nervous system with an outstanding ability to learn, classify and optimise data (Asgari et al.,
2020). An ANN consists of an input layer, one or more hidden layers and an output layer that
is known as a multi-layer perceptron (MLP) structure (Ozdogan-Sarikog et al., 2023).
Improvement in ANN modelling is based on the number of hidden layers, neurons and the
types of transfer functions used (Mohammad et al., 2020; Ozdogan-Sarikog et al., 2023). The

Levenberg-Marquardt backpropagation algorithm with 1000 epochs is considered one of the
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best algorithms to train the network (Asgari et al., 2020). The number of neurons in the
hidden layer is arranged within a range of 1-20 to determine the optimum number of neurons
required to generate a minimum mean squared error (MSE). Optimal learning rate is adjusted
between 0.001 and 0.01, starting from the low side and increasing incrementally by 0.0005 to
avoid overshooting the target. A default batch size of 32 is used first, requiring fewer epochs
to converge while avoiding a large batch size, typically requiring a long computation time to
complete an epoch. Approximately 70% of data is allocated for training, whereas 30% of
validation and testing data are used to classify the random variables.

On the other hand, GA emulates the natural evolution process, operating on three
operators: selection, crossover, and mutation (Wahidna et al., 2024). GA functions well in
determining optimal global solutions. The designated parameter values and functions for GA
involve crossover fraction, mutation function and migration function of 0.8, Gaussian and
0.2, respectively. GA generally leads to better forecast accuracy when combining ANN with
an iterative optimization algorithm (Wahidna et al., 2024). The hybrid optimization of the
operational variables was further conducted using three standard Al and ML approaches,
such as RF, SVM, and XGBoost, to generate a new population. All ANN-GA, ANN-GA-RF,
ANN-GA-SVM and ANN-GA-XGBoost optimized data are subjected to Monte Carlo
simulation to determine the levels of uncertainties in the simulated models.

3.1. Mechanism of Indigo Carmine dye adsorption on the solid-
liquid interface

The surface phenomena of adsorption process are influenced by any conditions such
as pressure and temperature changes. The adsorption of dye adsorbate can be affected by
thermodynamic conditions of the aqueous solution. High temperature of the solution can
disrupt the intermolecular forces between the dye adsorbate and adsorbent materials,
loosening up the adhesion at the contact surface within the solid-liquid interphase, resulting

in the desorption of dye adsorbate from the adsorbent surface. Throughout the experimental

149



studies, the temperature of the dye solution was varied to examine the adsorption behaviour
of bone char to remove Indigo Carmine dye pollutants. Bone char has a high degree of
porosity, a strong tendency to uptake significant amounts of dye pollutants from solutions,
and the adsorption equilibrium time takes longer to reach. During the adsorption process, the
concentration of dye adsorbate varies as the adsorbent attracts the dye pollutants using its
surface functionalities. The dye pollutants can either accumulate on the adsorbent surface or
diffuse into the pores of the adsorbent materials as shown in Figure 1.

The thermodynamic conditions of the aqueous solution have a significant effect on the
adsorption efficiency of the adsorbent material. When the pores of the adsorbent material are
solvated by the water molecules, it takes a considerable amount of energy to displace the
water molecules to facilitate the adsorption of dye molecules. If the free energy of the water
molecules is too high and the activation energy of the adsorption process is too large, it
would take a greater amount of energy from the dye molecules to displace the water
molecules to be diffused or adsorbed into the pores of the adsorbent material. The adsorption
process must be thermodynamically favourable to facilitate the adsorption of dye pollutants
onto the adsorbent materials. Therefore, the balance between the Gibbs free energy,
activation energy, enthalpy and other thermodynamic parameters is very critical to facilitate
the adsorption process. In addition, the interactive forces between the adsorbent surface and
dye adsorbate must be strong to facilitate the mass transfer of solute onto a substrate. The
adsorption equilibrium is reached when the adsorbent surface is saturated with dye pollutants.
The isotherm models are used to characterize the adsorption phenomena using detailed
analysis and estimation between the experimental and theoretical models. The nature of the
adsorbate-adsorbent complex is influenced by the variation of operating conditions, which
directly impacts the adsorption process. The physicochemical characteristics of the adsorbent

materials are significant and play major roles in facilitating the adsorption process.
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Figure 1. Inner pore region of the bone char adsorbent.

3.2.  Adsorption data

The batch adsorption studies were performed to examine the uptake amount of IC dye
pollutant using bone char adsorbent. Figure 2a shows the removal ratio of IC pollutants
across different initial 1C concentrations. The dye sorption usually occurs when the IC
molecules diffuse from the bulk liquid onto the adsorbent surface through the solid-liquid
interface. On the other hand, Figure 2b represents the adsorbent loading of IC adsorbates onto
the bone char adsorbent surface. The IC adsorbates interacted with the active sites on the
adsorbent surface through intermolecular interactions such as van der Waals’ interaction,
electrostatic interaction, hydrophobic interaction, m-it electron donor-acceptor interaction, and

hydrogen bonding.

151



1.2

—8—20 mg/L —8— 40 mg/L
60 mg/L 80 mg/L
1 —8— 100 mg/L

0.8

0.4

0.2

Adsorption Time (Mins)

12
——20 mg/L —@—40 mg/L 60 mg/L

10 80 mg/L —@— 100 mg/L

a, (mg/g)

0 10 20 30 40
Adsorption Time (Mins)

Figure 2. a) IC removal efficiencies of bone char adsorbent across different initial dye
concentrations at 30°C; b) Adsorbent loading of bone char adsorbent across different initial
dye concentrations at 30°C.

3.3. Thermodynamics of adsorption systemThe surface phenomena of
adsorption process are influenced by any conditions such as pressure and temperature
changes. The adsorption of dye adsorbate can be affected by thermodynamic conditions of
the aqueous solution. High temperature of the solution can disrupt the intermolecular forces
between the dye adsorbate and adsorbent materials, loosening up the adhesion at the contact

surface within the solid-liquid interphase, resulting in the desorption of dye adsorbate from
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the adsorbent surface. Throughout the experimental studies, the temperature of the dye
solution was varied to examine the adsorption behaviour of bone char to remove Indigo
Carmine dye pollutants. Bone char has a high degree of porosity, a strong tendency to uptake
significant amounts of dye pollutants from solutions, and the adsorption equilibrium time
takes longer to reach. During the adsorption process, the concentration of dye adsorbate
varies as the adsorbent attracts the dye pollutants using its surface functionalities. The dye
pollutants can either accumulate on the adsorbent surface or diffuse into the pores of the
adsorbent materials. The thermodynamic conditions of the aqueous solution have a
significant effect on the adsorption efficiency of the adsorbent material. When the pores of
the adsorbent material are solvated by the water molecules, it takes a significant amount of
energy to displace the water molecules to facilitate the adsorption of dye molecules. If the
free energy of the water molecules is too high and the activation energy of the adsorption
process is too large, it would take a greater amount of energy from the dye molecules to
displace the water molecules to be diffused or adsorbed into the pores of the adsorbent
material. The adsorption process must be thermodynamically favourable to facilitate the
adsorption of dye pollutants onto the adsorbent materials. Therefore, the balance between the
Gibbs free energy, activation energy, enthalpy and other thermodynamic parameters is very
critical to facilitate the adsorption process.

Furthermore, thermodynamic conditions had a significant effect on the adsorptive
performance of bone char. A set of thermodynamic parameters evaluated in Figures 3 and 4
show that Gibbs free energy and activation energy of the IC adsorption equilibrium system
were the lowest at 1.68 kJ/mol and -0.099 kJ/mol (Table 1), respectively, indicating that
minimal free energy from dye molecules was required to displace the water molecules within
interior adsorption sites of the adsorbent, resulting in strong adsorption taking place. Low

Gibbs free energy indicated that the 1C adsorption system at 30°C was thermodynamically
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favourable. When coupled with low activation energy, the adsorption or reaction process was
spontaneous, leading to strong adsorption efficiency. In addition, ANSYS FLUENT software
was used innovatively to investigate the computational fluid dynamics and thermodynamic
effects of a packed bed reactor integrated with bone char adsorbents to filter xenobiotic dye
wastewater, as shown in Figure 5. The path lines represented both flow velocity vectors and
temperature distribution within the packed bed reactor to indicate the process dynamics of the

upscaled adsorption process technology.
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Effect of Increasing Temperature on Gibbs Free Energy of Indigo Carmine Dye Solution

Figure 3. Determination of Gibbs free energy of the solution with temperature ranging from
30°C to 60°C.
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Figure 4. Determination of activation energy of the solution with increasing initial dye
concentration at temperatures ranging from 30°C to 60°C.
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Figure 5. Computational fluid dynamics (CFD) simulation of a packed bed reactor containing
bone char adsorbents for industrial filtration of xenobiotic dye wastewater.

Thermodynamic parameters of IC adsorption using bone char.

T(K) AG (kJ/mol) AH (kJ/mol) AS (kJ/mol.K)
303.15 1676.59 -2071.10 -12.36

313.15 1800.21

323.15 1923.83

333.15 2047.45
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1.15 3.4. AI optimisation of adsorption systemAdaptive neuro-fuzzy inference
system (ANFIS)
ANFIS is a hybrid algorithm where nodes of a feedforward neural network handle

fuzzy parameters (Zaghloul et al., 2020). ANFIS is specifically used to model the IC
adsorption system, which is characterized by high uncertainty, perturbation, or complexity. In
particular, Figure 4a shows the ratio of IC removal versus initial IC concentration in aqueous
solution over time using bone char adsorbent. On the other hand, Figure 4b shows that the
adsorbent loading reached an adsorption equilibrium between 10 to 15 minutes, indicating
that it took considerable time to remove IC from aqueous solution using bone char adsorbent.
Similarly, for modelling artificial neural network (ANN), ANFIS is programmed to train
dataset. Training ANN means determining the input parameters, such as IC concentration
removal, using an optimisation algorithm, as shown in Figure 6a. In this approach, the
premise parameters are determined using gradient descent (GD), and consequence parameters
are generated using the least square estimation (LSE) method.

The coefficient of determination (R?) for determining the degree of curve fitting is
illustrated in Figure 6b. This technique is known as learning with samples. When learning is
completed, an appropriate ANN model can be generated. More critically, the test dataset is
utilised to measure the success of the developed model as shown in Figure 6c. The difference
between the predicted and actual values is the error. In this case, Figure 6d shows that the
correlation coefficient of the test dataset is approximately 0.707. The lower the predictive
error, the better the ANN model is. In particular, ANFIS has adopted some proportion of
learning ability and relational structure to ANN with the decision-making mechanism of
fuzzy logic combined in the system. This way, the most ideal ANFIS architecture is
generated to solve the related problem. The obtained structure is subjected to the test process

to evaluate the level of impact on samples. The lower the predictive error, the more suitable
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the ANFIS model is for optimisation. Unlike ANFIS optimisation, the weight values
generated from ANN could not be defined (Karaboga & Kaya, 2019). This disadvantage is
addressed by fuzzy inference system, which is the critical component of ANFIS. This core

architecture can be exploited to solve various real-world problems.
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Figure 6. a) ANFIS trained input and output data; b) ANFIS generated regression coefficient
of input and output data; c) ANFIS tested input and output data and d) Regression coefficient
of all input and output data.

3.5.  Prediction efficiency of the Al and Monte Carlo simulation models

Simulation-based approaches were formulated using Monte Carlo generated data. The
Monte Carlo simulation provides a variety of possible outcomes determined from the
probability of random variables. It offers a succinct visualisation through deterministic
forecasts and prediction of variables based on uncertainties. By determining the true
probability distribution, the performance of optimised models can be quantified by employing

formal and objective statistical analysis based on criteria such as approximating the
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probability density functions to normal distributions. Table 2 shows the prediction
efficiencies of different optimised models based on the actual experimental values. To
validate the optimised models, one of the requirements was to compare the uncertainties
between the prediction efficiencies of different machine learning-based approaches to
evaluate the estimated uncertainties by studying different shapes of P-P and Q-Q plots, which
represent theoretical cumulative distribution versus empirical cumulative distribution curves
as shown in Figures 7a-h. Figure 7a shows the P-P plot of actual experimental values, which
was not significantly different from the P-P plot of optimised models as shown in Figure 7b.
In contrast, the Q-Q plot in Figure 7e compares the quantiles of standardised normal data
distribution versus actual IC concentration values, which assessed whether the dataset
plausibly came from some theoretical distribution, such as normal data distribution. Judging
from the Q-Q plot of Figure 7e, the standardised normal data distribution was not
significantly different from Figure 7a, indicating that the actual data could be over or
underestimated. The pattern of optimised data in Figure 7b shows the ANN-GA-RF
algorithm resembled all other P-P plots, indicating no significant deviation in prediction.
Compared with Figure 7f, the Q-Q plot shows a significant tendency for ANN-GA-RF-
optimised models to exhibit a slight overfitting data pattern based on the standardised normal
data distribution. When cross-referenced with the ANN-GA-RF-optimised values in Table 2,
there are some minor fluctuations in predicted values. On the other hand, Figure 7c exhibits
an oscillating pattern of optimised data, indicating that the ANN-GA-SVM algorithm tends to
fit the data remarkably well, leading to significant uncertainty or inaccuracy in the predicted
values. Similarly, the Q-Q plot in Figure 7g shows that the standardised normal distribution
of predicted IC concentration values exhibited no overfitting data pattern under ANN-GA-
SVM optimisation. More interestingly, Figure 7d P-P plot shows a more stable pattern of

optimised data, more aligned with the actual experimental values. It exhibits little to no
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fluctuation in predicted values, indicating that the ANN-GA-XGBoost algorithm generated a
remarkable curve fitting between actual and optimised data. Moreover, the Q-Q plot in Figure
7h shows the ANN-GA-XGBoost optimised model exhibited a well-aligned normal data
distribution to the actual data, indicating slightly better prediction efficiency than the ANN-
GA-RF optimised model. Furthermore, Figure 7i shows the probability density function,
which represents a continuous version of a histogram with densities, and it specifies how the
probability density is distributed over a range of actual final 1C aqueous concentrations as
random variables. On the other hand, Figure 7j shows a moderate cumulative relative
frequency of approximately 0.5 or 50%, which was achieved for an actual 1C aqueous
concentration of 85 mg/L. In contrast, at a higher initial IC concentration, especially greater
than 85 mg/L, the cumulative relative frequency increased from 0.5 or 50% to 1.0 or 100%,
indicating that the predictive performance of ANN-GA tends to fit better if a moderately high
IC concentration parameter was considered. Figure 7i shows an increase in probability
density at 30 mg/L, indicating that the ANN-GA-RF algorithm was more suited to accurately
predict a low range of IC concentrations due to less noise or reduced tendency to overfit data.
On the other hand, Figure 7m-n shows that the prediction efficiency of ANN-GA-SVM
optimisation was better when actual 1C aqueous concentration ranging between 40 and 70
mg/L, indicating that this optimisation technique was capable of encapsulating the actual
range of 1C concentration more accurately compared to ANN-GA-RF ensemble. More
interestingly, ANN-GA-XGBoost optimisation generated a strong probability density level,
giving a more accurate prediction of moderately high IC agueous concentration ranging
between 55 and 85 mg/L. In addition, Table 2 ANN-GA optimised values show that the data
more closely resembled the actual values, achieving a stabilised 1C solution equilibrium
concentration of 4.712 mg/L after 20 mins of contact time onwards. In addition, Table 3

provides a more thorough analysis of the actual performance of simulations using descriptive
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statistics to analyse the level of uncertainty in Al/ML-optimised models. Comparing the
skewness versus standard error of skewness, the results showed that ANN-GA-SVM
achieved a skewness of 0.018 versus 0.077 of standard error of skewness, indicating that the
values were sufficiently close, achieving a significant reduction in prediction error. On the
other hand, the skewness values of ANN-GA, ANN-GA-RF and ANN-GA-XGBoost
optimised models were largely different from the standard errors of skewness, indicating
more significant deviations compared to ANN-GA-SVM models, resulting in higher
prediction errors. Similarly, the values of Kurtosis of the ANN-GA-XGBoost and ANN-GA-
SVM optimised models were significantly smaller than the standard errors of Kurtosis,
indicating significantly less variance or extreme deviations compared to ANN-GA and ANN-
GA-RF optimised models. In contrast, the optimised Kurtosis value of ANN-GA-XGBoost
was minimal. At the same time, Table 4 shows the MSE value of this ensemble was 21.407,
indicating that the normal distribution was lightly tailed compared to other ensembles. Still,
the prediction accuracy was limited to a moderately high IC concentration range between 55
and 85 mg/L. The result indicated that the ANN-GA-SVM algorithm achieved better
prediction efficiency than ANN-GA-RF and ANN-GA-XGBoost. Regarding sensitivity
analysis, Figure 8a-i shows that both ANN-GA-XGBoost optimisation has the least
significant impact on the prediction efficiency due to fewer contributions or sensitivities to
the changes in actual IC agueous concentration as shown in Tornado diagrams. In contrast,
the spider diagrams show that ANN-GA-RF exhibited the highest range of impact from
minimal slope between the actual IC aqueous concentration values versus predicted values,
indicating that ANN-GA-RF optimisation has a much greater tendency to overfit the data. A
stronger sensitivity of ANN-GA-RF-predicted models than the actual model indicated greater
overall uncertainty. However, ANN-GA-XGBoost-optimised models demonstrated the least

sensitivity impact compared to ANN-GA-RF-predicted models. Still, the ANN-GA-XGBoost
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tended to underestimate the values of 1C concentration removed from the aqueous solution.
On the other hand, ANN-GA-SVM-optimised models demonstrated a well-balanced
sensitivity impact compared to its counterparts, indicating that it tends to predict the target IC
concentration more accurately.

Furthermore, Table 5 represents the Spearman correlation matrix, which measures the
monotonic association between the variables regarding ranks. It measures the effect that
increasing one variable has on other variables. Occasionally, the relationship among the
variables is non-linear or bivariate normal. If the Spearman correlation coefficient is 1, it
indicates a strong correlation between the variables, whereas 0 indicates a neutral
relationship, and -1 indicates no significant correlation. For example, the simulation results
from three AI/ML optimised models showed that there is a slight negative coefficient of -
0.063 between the predicted results between ANN-GA-XGBoost and ANN-GA-SVM
optimisation techniques, which indicated that these optimisation methods yielded the best
prediction result relative to ANN-GA and ANN-GA-RF ensembles. However, there was a
less positive correlation coefficient of 0.694 and 0.726 between the predicted results obtained
between ANN-GA versus ANN-GA-RF and ANN-GA versus ANN-GA-XGBoost, indicating
that when ANN-GA-RF and ANN-GA-XGBoost optimisation methods were used in
combination resulted in higher positive deviations between the actual and predicted datasets,
overshooting the targeted values of IC concentration. In addition, Table S1 in the
Supplementary Material shows further detail on the simulation results of distributions and
result variables. After simulations, Table S1 results validated that the ANN-GA-SVM
algorithm produced the most accurate prediction compared to ANN-GA, ANN-GA-XGBoost
and ANN-GA-RF algorithms based on its prediction efficiency. In addition, Figure 9
represents the Monte Carlo simulation details of uncertainty estimation and prediction

efficiency of IC removal efficiency in aqueous systems. Improvement in skewness or heavy-
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tailed distributions in Figure 9 regression models indicated strong predictive density forecasts

of 1C adsorption process.

Table 2

Comparison between the prediction efficiencies for removal efficiency of xenobiotic IC dye
using Bone Char at 30°C

Contact Time in  Experimental IC ANN-GA ANN-GA-SVM  ANN-GA-RF ANN-GA-
Mins Concentration (mg/L) Optimisation optimisation optimisation XGBoost
(mg/L) (mg/L) (mg/L) optimisation
(mg/L)

0 30.980 29.802 12.746 7.488 19.633
5 10.392 10.861 9.943 12.436 19.633
10 4.471 5.413 6.933 10.242 5.498
15 4.078 5.052 5.124 6.105 5.498
20 4.706 5.629 4712 5.560 5.498
25 4.549 5.485 4.997 5.368 5.498
30 3.490 4511 5.428 5.893 5.498
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Figure 7. Monte Carlo simulations are used to predict the probability of IC removal
outcomes based on the random variables to evaluate the level of uncertainties in prediction
models; a) P-P plot based on actual IC aqueous concentration by ANN-GA optimisation; b)
P-P plot based on predicted final IC aqueous concentration by ANN-GA-RF optimisation; c)
P-P plot based on predicted final IC aqueous concentration by ANN-GA-SVM optimisation;
d) P-P plot based on predicted final IC aqueous concentration by ANN-GA-XGBoost
optimisation; e) Q-Q plot based on actual IC concentration by ANN-GA optimisation; f) Q-Q
plot based on predicted IC aqueous concentration by ANN-GA-RF optimisation; g) Q-Q plot
based on predicted IC concentration removed by ANN-GA-SVM optimisation; h) Q-Q plot
based on predicted IC aqueous concentration by ANN-GA-XGBoost; i) Histogram of actual
final 1C agqueous concentration by ANN-GA optimisation; j) Empirical cumulative
distribution of actual 1C concentration by ANN-GA optimisation; k) Histogram of predicted
IC aqueous concentration by ANN-GA-RF optimisation; I) Empirical cumulative distribution
of predicted IC aqueous concentration by ANN-GA-RF optimisation; m) Histogram of
predicted IC aqueous concentration by ANN-GA-SVM optimisation; n) Empirical
cumulative distribution of predicted final IC aqueous concentration by ANN-GA-SVM
optimisation; 0) Histogram of predicted final 1C aqueous concentration by ANN-GA-
XGBoost optimisation; p) Empirical cumulative distribution of predicted final 1C aqueous
concentration by ANN-GA-XGBoost optimisation; q) ANOVA regression analysis of IC
removal efficiency versus contact time by ANN-GA-SVM; r) ANOVA regression analysis of
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IC removal efficiency versus contact time by ANN-GA-RF; s) ANOVA regression analysis
of 1C removal efficiency versus contact time by ANN-GA-XGBoost; t) ANOVA regression
analysis of 1C removal efficiency versus contact time by ANN-GA.

Table 3. Summary of simulation results using descriptive statistics to evaluate the
uncertainties in predicting IC removal efficiencies by bone char adsorbent.

Actual IC Concentration

(mg/L) by ANN-GA

IC Concentration by
ANN-GA-Random

IC Concentration by

IC Concentration by

Statistic optimisation Forest ANN-GA-SVM ANN-GA-XGBoost
Nbr. of observations 1000 1000 1000 1000
Nbr. of missing
values 0 0 0 0
Sum of weights 1000 1000 1000 1000
Minimum 66.802 3.846 41.726 56.510
Maximum 102.872 38.401 73.882 88.923
Freq. of minimum 1 1 1 1
Freg. of maximum 1 1 1 1
Range 36.070 34.555 32.157 32.413
1st Quartile 81.489 17.928 54.041 68.628
Median 84.866 21.309 57.414 71.989
3rd Quartile 88.233 24.663 60.777 75.364
21301.44 57421.23 71997.28
Sum 84863.967 9 6 9
Mean 84.864 21.301 57.421 71.997
Variance (n) 25.097 25.025 24.966 24.924
Variance (n-1) 25.123 25.050 24,991 24.949
Standard deviation (n) 5.010 5.002 4.997 4.992
Standard deviation (n-
1) 5.012 5.005 4.999 4.995
Variation coefficient 0.059 0.235 0.087 0.069
Skewness (Pearson) 0.002 0.001 0.018 0.004
Skewness 0.002 0.001 0.018 0.004
Skewness (Bowley) -0.002 -0.004 -0.001 0.002
Kurtosis (Pearson) 0.065 0.009 -0.028 -0.047
Kurtosis 0.071 0.015 -0.023 -0.042
Standard error of the
mean 0.159 0.158 0.158 0.158
Lower bound on
mean (XXXX%) 84.553 20.991 57.111 71.687
Upper bound on mean
(XXXX%) 85.175 21.612 57.731 72.307
Standard error
(Skewness (Fisher)) 0.077 0.077 0.077 0.077
Standard error
(Kurtosis (Fisher)) 0.155 0.155 0.155 0.155
Mean absolute
deviation 3.992 3.990 3.989 3.987
Median absolute
deviation 3.375 3.376 3.379 3.368
Geometric mean 84.715 20.662 57.202 71.823
Geometric standard
deviation 1.061 1.292 1.092 1.072
Harmonic mean 84.566 19.928 56.980 71.648
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Table 4. Error function analysis of prediction efficiencies by various AI/ML ensembles.

ANN-GA-SVM ANN-GA-RF ANN-GA-XGBoost ANN-GA
R? 0.730 0.445 0.625 0.526
Adjusted R? 0.676 0.334 0.550 0.432
MSE 3.072 4,955 21.407 47.967
RMSE 1.753 2.226 4.627 6.926
MAPE 20.884 21.117 48.800 64.370
Sensitivity (Difference (ANN-GA-RF)) b) Sensitivity (Difference (ANN-GA-SVM))
IC Concentration by ANN-GA- C Concentration by ANN-GA-
XGBoost Random Forest
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Figure 8. Monte Carlo simulation models based on the empirical distribution of input
and output variables employing repeated simulation of random variables to determine the
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uncertainties; a) Sensitivity analysis of the difference between the actual and predicted IC
removal efficiencies by ANN-GA-RF; b) Sensitivity analysis of the difference between the
actual and predicted I1C removal efficiencies by ANN-GA-SVM; ¢) Sensitivity analysis of the
difference between the actual and predicted 1C removal efficiencies by ANN-GA-XGBoost;
d) Tornado analysis of the difference between the actual and predicted 1C removal
efficiencies by ANN-GA-RF; e) Tornado analysis of the difference between the actual and
predicted IC removal efficiencies by ANN-GA-SVM; f) Tornado analysis of difference
between the actual and predicted IC removal efficiencies by ANN-GA-XGBoost; g) Spider
analysis of difference between the actual and predicted IC removal efficiencies by ANN-GA-
RF; h) Spider analysis of difference between the actual and predicted IC removal efficiencies
by ANN-GA-SVM; i) Spider analysis of difference between the actual and predicted IC
removal efficiencies by ANN-GA-XGBoost.

Table 5. Simulation results by Spearman correlation matrix.

Actual IC IC IC
Concentratio  Concentratio  IC Concentratio Differenc  Difference
n (mg/L) by n by ANN- Concentratio  n by ANN- Difference e by by ANN-
ANN-GA GA-Random  n by ANN- GA- by ANN- ANN- GA-
Variables optimisation Forest GA-SVM XGBoost GA-RF GA-SVM  XGBoost
Actual IC
Concentratio
n (mg/L) by
ANN-GA
optimisation 1 0.013 0.013 -0.077 0.694 0.682 0.726
IC
Concentratio
n by ANN-
GA-Random
Forest -0.013 1 0.036 -0.037 -0.696 -0.037 0.018
IC
Concentratio
n by ANN-
GA-SVM 0.013 0.036 1 0.017 -0.022 -0.687 0.002
IC
Concentratio
n by ANN-
GA-
XGBoost -0.077 -0.037 0.017 1 -0.015 -0.063 -0.712
Difference
(ANN-GA-
RF) 0.694 -0.696 -0.022 -0.015 1 0.505 0.485
Difference
(ANN-GA-
SVM) 0.682 -0.037 -0.687 -0.063 0.505 1 0.504
Difference
(ANN-GA-
XGBoost) 0.726 0.018 0.002 -0.712 0.485 0.504 1

Please note that hybrid AI/ML differences represent the difference between the actual and

predicted IC removal efficiencies by hybrid algorithms.
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Figure 9. Monte Carlo simulation details are represented by scatter plots and correlation

maps.

3.6. Bayesian distribution network analysisA Bayesian network analysis

involves a mathematical model for representing a causal relationship between random

variables by estimating the conditional probability outcome (Wang et al., 2022). Bayesian

network is an appropriate tool for evaluating the uncertainty with real applications. Through

representation, a Bayesian network projects a probabilistic graphical model to illustrate

knowledge about an uncertain domain. Each node corresponds to a random variable, and each

edge represents a conditional probability for the corresponding random variable (Cui et al.,

2024). The Bayesian approach helps to identify the causal relationship with the 1C adsorption

process by estimating the conditional probability. Figure 10a shows that one of the random
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variables, contact time, has approximately 15% conditional probability based on its impact on
the IC adsorption from 0 to 30 mins.

On the other hand, Figure 10b shows that a temperature range of 45 to 50°C yielded
approximately 43% conditional probability compared to all different temperature ranges,
indicating that this temperature range may significantly impact IC removal efficiency. This
result corresponded to Figure 3 of Gibbs free energy ranging between 1.800 and 1.924
kJ/mol, indicating an optimal condition with a high probability of an IC removal event
occurring at the particular temperature range. Figure 10c shows the highest probability of an
IC removal event occurring at an initial IC concentration of 60 to 80 mg/L. In contrast, other
random variables, such as adsorbent loading (Figure 10d) and IC removal efficiency (Figure
10e) yielded a conditional probability of 15%, indicating no significant causal relationship
between random variables with 1C removal efficiency other than solution temperature and
initial IC concentration at a specific range. Although the results from Bayesian network
analysis showed that adsorbent loading and contact time may have a marginal probabilistic
effect on the IC removal efficiency, solution temperature and initial IC concentration at a
specific range have more impact on the IC removal rate which could not be estimated from
other data analyses other than using Bayesian approach. In addition, Table 6 summarises
Bayesian results that determine the causal relationships among random variables by using
conditional probabilities to represent knowledge about the uncertainty in the variables.
According to Table 6, the Bayesian network analysis shows that solution temperature
between 45 and 50°C and initial IC concentration of 60 to 80 mg/L significantly impacted the
IC removal rate compared to other variables. The Bayesian results also indicated that there
could be some uncertainties in other AI/ML optimisation techniques, which may affect the
prediction efficiency. In addition, Table 7 provides comparative analysis of AI/ML predictive

efficiency between primary and secondary sources.
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Figure 10. Bayesian distribution network analysis is a statistical tool based on an acyclic-
oriented graph and a probability table, which is commonly used in artificial intelligence to
represent data and its uncertainties: a) Marginal probability distribution of the contact time
node; b) Marginal probability distribution of the solution temperature node; ¢) Marginal
probability distribution of the initial IC concentration node; d) marginal probability
distribution of the adsorbent loading node; €) Marginal probability distribution of the IC

removal efficiency.

Table 6

Summary of causal relationships among random variables by using conditional probabilities
to represent knowledge about the uncertainty in the variables.

Contact Time in Mins

Solution Temperature

Initial Dye Concentration

Adsorbent Loading

Dye Removal Efficiency

() (mg/L) (mg/g) (%)
Modality  Probability Modality  Probability  Modality Probability  Modality  Probability  Modality  Probability
[o; [30,000; [20,000; [0; [100,000;
5,000[ 0.143 40,000[  0.143 40,000[ 0.143 1,373 0.143 100,000] 0.142
[5.,000; [40,000; [40,000; [1,373; [33,544;
10,000[  0.143 45,000]  0.143 60,000[ 0.143 1,752[ 0.143 100,000[ 0.142
[10,000; [50,000; [60,000; [1,767; [14,430;
15,000  0.143 60,000[  0.143 80,000[ 0.429 1,793[ 0.143 14,684[ 0.143
[15,000; [60,000; [80,000; [1,793; [13,165;
20,000[  0.143 60,000]  0.143 100,000[  0.143 1,833[ 0.143 14,430[ 0.142
[20,000; [45,000; [100,000; [1,752; [15,190;
25,000  0.143 50,000 0.429 100,000]  0.143 1,762] 0.143 33,544[ 0.143
[25,000; [30,000; [1,762; [14,684;
30,000[  0.143 40,000[  0.143 1,767[ 0.143 15,190[ 0.145
[30,000; [40,000; [1,833; [11,266;
30,0000  0.143 45,000[  0.143 1,833] 0.143 13,165[ 0.145
Table 7
Comparison of AI/ML prediction efficiency between experimental results and secondary sources from
literature.
Type of adsorbent Type of Operating Prediction Reference
pollutant Conditions efficiency
Polymer/graphene/clay/MgFeAl- | Methyl Co=51t0500 | R*(RF)= BinMakhashen
LTH nanocomposite orange and | mg/L 0.92 et al. (2024)
crystal Ci=5 mins
violet to 20 hours
MSE (RF)=
6636.84
RMSE (RF)
=81.47
MAE (RF) =
57.57
Sugarcane-derived carbon dots Methyl red, | Co=50 to R? (SVM- Momina et al.
and T10:2 based chitosan Brilliant 1,000 mg/L RBF kernal (2024)
composite green
function) =
0.7419
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Ci=5-60
mins and 10- | R? (SVM-
240 mins I:)Oéysn 50 7n;ial)
Adsorbent
mass = 0.02-
0.05¢
pH=2-10
Temperature
=30-60°C
Stirring
speed = 60,
80, 100 rpm

ZIF-60 Crystal Co =200 R?(SVM) = | Ismail et al.

violet me/L 0.9812 (2024)

Ci=>24
hours RAE (%)
Adsorbent (SVM) =
dosage = 15.94
0.025 g/L
pH=28.0 RRSE (%)
Temperature (189\2;4) -
=40°C )

Co = Initial dye concentration; C; = Contact time; MAE = Mean absolute error; MSE = Mean squared
error; RAE = Relative absolute error; RF = Random Forest; RMSE = Root mean squared error; RRSE
= Root relative squared error; SVM = Support vector machine

In this study, we developed Monte Carlo simulations, Bayesian networks and Al/ML
optimisation techniques to evaluate the prediction efficiency of bone char adsorption process
using IC as a model pollutant. The data analyses demonstrated that the proposed approaches
could improve the prediction efficiency and estimation accuracy using computational
modelling. Although the model parameters were deduced to impact the 1C adsorption process
directly, solution temperature and initial IC concentration may have a more significant impact
on the adsorption efficiency of bone char, especially when a specific optimal condition was
satisfied. The prediction efficiency of ANFIS optimisation yielded appropriate curve fitting

but with minor uncertainty. On the other hand, Al/ML optimisation techniques had some
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uncertainties, especially for ANN-GA-RF, ANN-GA-XGBoost and ANN-GA due to
overfitting or inability to predict noisy regression problems. In contrast, the ANFIS and
ANN-GA-SVM algorithms yielded minimal prediction error and converged more efficiently
with high accuracy. Therefore, the prediction efficiency of AI/ML algorithms ranked in the
order: ANN-GA-SVM > ANFIS > ANN-GA-XGBoost > ANN-GA-RF > ANN-GA.
However, some issues need to be considered in future work. Increasing noises or
uncertainties in Al/ML optimisation techniques often hamper estimation accuracy. More
challenging upscaled industrial processes require sizeable computational processing power to
model the adsorption efficiency of bone char in a packed bed reactor. Model validation tests
are needed to verify whether the computational models are congruent with the upscaled
adsorption process, especially when there are multiple inlets, outlets and recycling streams,
solution thermodynamics and the overall impact of physicochemical phenomena on the
industrial adsorption process.
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7.2 Links and implications

This research specifically examined the thermodynamic effects and pollutant removal
efficiencies of bone char adsorbents using uniquely developed Al and ML ensembles. Monte
Carlo simulations, Bayesian inference network analysis and computational fluid dynamics
were performed to determine the influential variables and its causal relationships by
subjecting it optimisation to achieve optimal conditions for maximum pollutant removal
efficiency. The results from Al and ML ensembles provided insights into the development of
clean, renewable wastewater treatment system with minimal greenhouse gas emissions and
carbon footprints. The energy efficiency of adsorption process can be improved without

compromising the pollutant removal efficiency and renewability of the adsorbent material.
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Most importantly, the Al and ML optimisation techniques can be applied to other
priority areas of interest, such as the removal of pharmaceutical and PFAS/PFOS-
contaminated wastewater to achieve optimal conditions, especially in highly complex
wastewater treatment plants, where this adsorption technology can be integrated into

industrial processes without incurring significant capital costs.
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This chapter presents a comprehensive overview of the key findings of this PhD

research project and provides a summary of recommendations for future research directions.

8.1. Discussion and conclusions

This PhD research project was initially conceived to investigate specific
anthropogenic pollutants of interest, such as pharmaceutically active compounds and textile
dyes, to be discussed in literature reviews. However, attention was redirected to emphasize
the novelty of AlI/ML technologies applied to wastewater treatment more than highlighting
the types of pollutants suitable for wastewater treatment. There are some ethical dilemmas
regarding whether pharmaceutical wastewater treatment should be progressed into the
technical experimentation stage due to hazardous aspects of chemical properties and its
ability to give rise to antimicrobial resistance genes if not properly managed to avoid

accidental discharge of endocrine-disrupting compounds into natural waters.

Our central focus was to bridge related themes between Papers 1 and 2, giving rise to
Al optimisation techniques applicable to three-dimensional electrochemical reactor and
adsorption technology, which can be practically used to treat model dye pollutants in
contaminated wastewater, as part of technical experimentation. Moreover, the presence of
xenobiotic dye pollutants in our natural waters is more ubiquitous than pharmaceutical
contaminants due to the unregulated nature of textile substances, thereby justifying the focus
on xenobiotic dyes to be used as model pollutants and satisfying overlapping interests of
researchers. Nonetheless, the literature reviews included a thorough discussion and critical
analysis of critical operational parameters and its impacts on targeted responses, setting a
foundation to extend beyond the scope of discussion and application, shifting focus onto

xenobiotic dye wastewater treatment, the intended theme of technical experimentation.

The technical reliability and technoeconomic aspects of three-dimensional
electrochemical oxidation technology were critically evaluated by accounting for its ability to
remove dye and TOC from wastewater, optimising the current efficiency, electrical energy
consumption of dye and TOC and annual electricity cost. On the other hand, the effectiveness
of GIC particle electrodes as adsorbent materials was evaluated using a range of adsorption
kinetics and isotherm models to characterise the adsorption phenomena. The regeneration
efficiency of GIC particle electrodes was equally significant. GIC particle electrodes are
different from a conventional carbon-based adsorbent due to its ability to regenerate in the

presence of an applied electric field electrochemically. The adsorptive capacity of GIC
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particle electrodes can be continuously recovered. However, prolonged electrochemical
regeneration can lead to the depletion of unique surface physicochemical properties or critical
chemical compositions crucial for establishing electrostatic interaction between adsorbates
and adsorbent materials. On the other hand, when intensely high current density is applied,
intermediate transformation oxidation byproducts from the breakdown of parental
compounds can produce undesirable effects on the dye and TOC removal rates. Therefore, a
range of optimisation techniques were uniquely developed to achieve the optimal conditions
for enhancing the pollutant removal efficiency of three-dimensional electrochemical

oxidation technology.

Management of complex operational variables requires Al and ML technologies to
enhance the targeted responses. Although there were some drawbacks associated with some
Al and ML optimisation techniques, more advanced techniques, such as uniquely designed
hybrid ensembles and algorithms, were used to improve the prediction accuracy and precision
of the models. ANOVA and error function analyses were developed to evaluate the
adsorption efficiency and other targeted responses. The salting, pH and thermal effects on the
selectivity reversal of GIC particle electrodes in a binary mixture were evaluated using RSM
optimisation techniques. Nonlinear models were the best kinetic models in the order: Elovich
> Bangham > Pseudo-second > Pseudo-first order. An error function analysis confirmed that
the Redlich-Peterson isotherm model was the best nonlinear regression model due to the
estimation accuracy of dye-loading capacity. The best dye removal efficiency achieved was
approximately 93% using a current density of 45.14 mA/cm?, whereas the TOC removal
efficiency was 67%. These estimated variables were determined based on the RSM
optimisation studies. However, the interactive effects of process variables could be
underestimated based on results from more advanced Al and ML ensembles. The production
of intermediate transformation oxidation byproducts may offset the accuracy and precision of
estimated values due to the extremely high current density used.
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Figure 3. Electrochemical degradation of Reactive Black 5 xenobiotic dye solution
after 5 cycles of treatment.

Another research study was conducted with full emphasis on the use of uniquely
designed CCD-NPRSM, Al, and ML ensembles to improve the accuracy and precision of
estimated targeted responses. Similarly, the experiment was conducted on RB5-polluted
wastewater to investigate the efficacy of Al and ML optimisation techniques to enhance the
pollutant removal rates, using global optimal solutions to achieve optimal conditions for
superior decomposition of RB5. The optimised decolouration efficiencies were 99.30%,
96.63% and 99.14%, for CCD-NPRSM, hybrid ANN-XGBoost ensemble and CART,
respectively, using an applied current density of 20 mA/cm?, 20 mins of electrolysis time and
65 mg/L of RB5 as initial dye concentration. The optimisation results of CCD-NPRSM, Al
and ML ensembles were significantly better in terms of accuracy and precision than a single
optimisation result in another study. The optimised Al and ML models were validated using
analysis of variance (ANOVA), which revealed that hybrid ANN-XGBoost ensemble had the
lowest mean square error (MSE) and best coefficient of determination (R?) of 0.014 and
0.998 compared to other optimisation techniques. Overall, the final research justified that
hybrid ANN-XGBoost ensemble approach is the most feasible optimisation technique for
RB5 dye wastewater treatment. Additional recommendations, such as different combination
of Al and ML variants or higher dimensional order of RSM using nested transfer function
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should be investigated in more detail to maximise the prediction efficiency of models with

potential applications in achieving optimal wastewater treatment conditions.

In comparison to more advanced Al and ML optimisation techniques, approximately
98% of MO removal efficiency was achieved using 15 mA/cm? of current density, 3.62
kWh/kg of electrical energy consumption and 79.53% of current efficiency. The statistical
metrics showed the superiority of different Al and ML optimisation techniques were ranked
in the order: ANN > RF > SVM > Multiple Regression. The sensitivity analysis from Monte
Carlo simulations of unique combination of Al and ML ensembles showed that ANN-RF
ensembles yielded slightly less system perturbations, prediction variability and levels of
estimation uncertainty compared to ANN-SVM model.

Furthermore, the future directions are to investigate the effect of renewable energy-
driven three-dimensional electrochemical processes on pollutant removal efficiency, using
uniquely developed electrically conductive adsorbent materials fabricated from green,
renewable agricultural sources. The physicochemical stability of adsorbent material is critical
to endure sustained electrolysis and protect it against particle attrition. Advanced Al and ML
optimisation approaches should be applied to develop more efficient predictive models for
monitoring complex wastewater matrices and effectively managing process dynamic
conditions using process control systems. The technological capabilities of cutting-edge
cyber-physical systems, blockchain -related technologies and the Internet of Things in the
digital economy can be integrated into the Al and ML software and hardware, improving the
compatibility and facilitating decision-making processes for wastewater treatment industries.
Al-powered three-dimensional electrochemical technology can help to improve energy
efficiency, value engineering, minimise carbon footprint and remove barriers to resource
recovery and energy management processes. Operational costs can be reduced significantly
by streamlining the Al and ML advanced computing techniques to create efficient energy
management processes for renewable energy-driven electrochemical technology, thereby

improving the technoeconomic aspects and financial viability of such technologies.
8.2. Recommendations and future directions

This PhD research project successfully improved the electrochemical degradation of
xenobiotic dye contaminants in wastewater, using uniquely designed Al and ML ensembles
to optimise the three-dimensional electrochemical oxidation technology. The following

research recommendations and future directions are proposed:
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1)

2)

3)

4)

5)

6)

7)

Different combination of Al and ML variants or higher dimensional order of RSM

using nested transfer function should be applied in wastewater management systems

The effect of renewable energy-driven three-dimensional electrochemical processes
on pollutant removal efficiency should be investigated and applied in current

wastewater treatment plants.

Technoeconomic feasibility and environmental impact of renewable energy-driven
three-dimensional electrochemical oxidation technology powered by Al and ML

advanced computing technology should be investigated.

Fabrication of electrically conductive adsorbent materials derived from green,

renewable agricultural sources

Electrode doping and surface morphology tuning using nanoengineering techniques
should be applied to improve the electrocatalytic efficiency of anodic material in the

three-dimensional electrochemical reactor.

Advanced Al and ML computing techniques should be applied to manage data

generated from process control systems in wastewater treatment plants.

The technological capabilities of cutting-edge cyber-physical systems, blockchain -
related technologies and the Internet of Things in the digital economy should be
integrated into the Al and ML software and hardware, improving energy management
processes and reducing operational costs.
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Figure A1. Number of publications by different countries in artificial intelligence technologies applied
to wastewater treatment in 2023 (Scopus Citation Index).
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