
 

 

 

 

 

SUPERIOR DECOMPOSITION OF XENOBIOTIC 

DYES AND PHARMACEUTICAL CONTAMINANTS IN 

WASTEWATER USING RESPONSE SURFACE 

METHODOLOGY, ARTIFICIAL INTELLIGENCE 

AND MACHINE LEARNING FOR OPTIMISATION OF 

A NOVEL THREE-DIMENSIONAL 

ELECTROCHEMICAL TECHNOLOGY 

A Thesis submitted by 

 

Voravich Ganthavee 

(BE/BPharmSc and MSc QS) 

 

 

For the award of 

 

 

Doctor of Philosophy 

 

 

2024 

 

 



 

i 

Rapid global urbanisation and industrialisation have led to the widespread production 

of emerging anthropogenic contaminants such as xenobiotic dyes and pharmaceutical 

pollutants discharged into our natural waters. These pollutants are recalcitrant to 

environmental degradation and often escape into water from industrial effluent systems. In 

this work, a novel graphite intercalation compound (GIC) particle electrode was used to 

investigate the adsorption of synthetic dye pollutant, Reactive Black 5 (RB5), using a three-

dimensional electrochemical reactor to decompose the anthropogenic dye pollutant. Various 

adsorption kinetics and isotherm models were used to characterise the adsorption phenomena 

of GIC and determine the viability of the sorption process. When coupled with 

electrochemical oxidation technology, remarkably high dye removal efficiency can be 

achieved, and GIC can be electrochemically regenerated. Optimisation studies were 

conducted using response surface methodology and ANOVA analysis to provide insight into 

the significance of selectivity reversal from the salting effect of xenobiotic textile dye on GIC 

adsorbent. Non-linear models were simulated using the kinetic data in the order: Elovich > 

Bangham > Pseudo-second order > Pseudo-first order. The Redlich-Peterson isotherm was 

calculated to have a dye-loading capacity of 0.7316 mg/g by non-linear regression analysis. A 

range of error function analyses were used to evaluate the accuracy and precision of 

regression models. The best dye removal efficiency achieved using three-dimensional 

electrochemical treatment was approximately 93% using a current density of 45.14 mA/cm2, 

whereas the highest total organic carbon (TOC) removal efficiency was 67%. Various 

advanced artificial intelligence (AI) and machine learning (ML) optimisation techniques were 

used to enhance the prediction efficiency of dye and total organic carbon (TOC) removal 

efficiencies. The AI/ML optimised decolourisation efficiencies were 99.30%, 96.63% and 

99.14% using central composite design-novel progressive response surface methodology 

(CCD-NPRSM), hybrid artificial neural network-eXtreme boosting gradient (ANN-

XGBoost) ensemble, and classification and regression trees (CART), respectively. The 

prediction efficiency of optimised models ranked in the descending order of hybrid ANN-

XGBoost, CCD-NPRSM and CART. The ANOVA results revealed that hybrid ANN-

XGBoost ensemble yielded a mean square error (MSE) and coefficient of determination (R2) 

of 0.014 and 0.998, outperforming CCD-NPRSM and with MSE and R2 of 0.518 and 0.998. 

The overall result showed that the hybrid ANN-XGBoost approach is the most feasible 

technique for improving the prediction efficiency of RB5 dye wastewater decolourisation.   
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When accustomed to doing the hard thing, life becomes easy. 

When accustomed to doing the easy thing, life becomes difficult. 

It is a trade-off. 

Hardship teaches you strength and perseverance like a river cut through rock. 

We transcend to be fluid in our intelligence, yielding towards the flow of water, and 

accepting the true transformational power of our inner selves. 

Water grows the plant, undeterred by the coldness of water, turning the discomfort 

into opportunities.  
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 1.1 Background  

Global industrialization and rapid population growth increase the large-scale 

production of goods and services. Unprecedented levels of xenobiotics and anthropogenic 

pollutants are discharged or escaped into the aquatic environment. Due to chemically stable 

organic compounds, textile and pharmaceutical residue wastewater is notoriously challenging 

to degrade in industrial effluents (Liu et al., 2021). Contaminants of emerging concern 

(CECs), such as non-regulated xenobiotic dyes and pharmaceutical contaminants, are 

released daily into surface water (Saravanan et al., 2022). Xenobiotic dyes are often produced 

by textile, paper and pulp, leather, tannery and paint and dye manufacturing industries (Bilal 

et al., 2022). Non-regulated pharmaceutical substances and personal care products are 

endocrine-disrupting compounds (EDCs), pesticides and disinfection byproducts that can 

cause adverse impacts on human health and ecology (Samal et al., 2022). Some CECs are 

partially metabolized by organisms, rapidly bioaccumulating toxic metabolites released into 

the environment (Bosio et al., 2021). CECs are highly recalcitrant to environmental 

degradation. However, the toxicity levels related to the xenobiotic dyes have not been 

adequately investigated. Industries' frequent use of these dyes may have severe public health 

consequences if not adequately regulated. Dye pollutants produce intense water colouration 

and cause carcinogenic, teratogenic and mutagenic effects in humans and animals (Tang et 

al., 2020). 

Moreover, the transformation of the synthetic dyes after decomposition may lead to 

the formation of toxic intermediate byproducts due to their reactivities with substances 

present in the environment (Xu et al., 2023). Dye-contaminated wastewater causes intense 

colouration, which indicates that toxic pollution needs to be eliminated (Obayomi et al., 

2023). Otherwise, it can affect the aesthetic quality of the environment. Dyes in industrial 

effluents can cause considerable ecotoxicity and pose a significant risk to human health 

(Alrobei et al., 2021). Synthetic dyes often have complex chemical structures, such as 

substituted aromatic and heterocyclic groups, making them highly recalcitrant to 

environmental degradation (Nidheesh et al., 2018). The incomplete breakdown of these dyes 

may produce aromatic amines, a common intermediate byproduct derivative that is both 

highly toxic and recalcitrant to environmental biodegradation (McYotto et al., 2021). 

Moreover, these synthetic dyes are also highly resistant to removal by conventional 

WWTPs. Common biological treatments, such as anaerobic-aerobic, may not effectively 

eliminate toxic dyes due to inadequate removal efficiency (Feng et al., 2022). Some dyes are 
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highly toxic to microorganisms. For this reason, the conventional biological treatment 

method is not recommended for dye treatment. Therefore, there is an urgent need to find a 

more suitable wastewater treatment method, such as three-dimensional electrochemical 

oxidation technology, which involves combined adsorption and electrochemical oxidation 

technology, to remove dye pollutants more effectively than conventional WWTPs. In 

addition, the developing world is under pressure to utilise this integrated three-dimensional 

electrochemical technology due to its high pollutant removal efficiency, cost-effectiveness, 

and ease of operability. (Liu et al., 2022). A synergistic effect of effective carbon adsorption 

and electrochemical oxidation can enhance the treatment efficiency (Liu et al., 2022). More 

interestingly, low-cost, green adsorption technology synthesized from renewable sources with 

strong electrocatalytic performance can help regenerate the carbon particle electrode (Liu et 

al., 2022). 

Most importantly, additional chemical reagents are not required to help reduce the 

severity of secondary pollution (Yuan et al., 2022). When used appropriately with a novel 

adsorbent material such as GIC, the adsorbent can remove pollutants effectively and 

regenerate to its total adsorptive capacity when subjected to electrochemical regeneration 

(Sun et al., 2013). Compared to conventional activated carbon (AC), which has low electrical 

conductivity but a greater surface area, the activated carbon-containing adsorbed toxic 

contaminants may have to be incinerated or disposed of in a landfill, resulting in secondary 

pollution (Ye et al., 2022). Hence, AC adsorbent is less desirable than GIC unless its usage 

satisfies a particular adsorption regime without electrochemical treatment.  

Furthermore, the influence of operating conditions on the performance of 

electrochemical oxidation technology is highly complex. Advanced optimisation techniques 

must be developed to control the operational conditions of three-dimensional electrochemical 

technology and other wastewater treatment technologies (Gadekar & Ahammed, 2019). 

Response surface methodology, artificial neural network (ANN), support vector machine 

(SVM), eXtreme gradient boosting (XGBoost), random forest (RF), classification and 

regression trees (CART) and Bayesian inference network are some of the artificial 

intelligence, machine learning and statistical optimization techniques used to enhance the 

prediction efficiency of pollutant removal efficiency by optimising for a range of operational 

variables and to determine the causal relationships among the random variables. Ensemble 

forecasting is a modelling approach combining data sources and different models to reduce 

uncertainties and enhance prediction efficiency, accuracy, and reliability of AI and ML 

optimization technologies (Wu & Levinson, 2021). The AI and ML ensembles can be used to 
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predict water quality to achieve safety of the drinking water supply system (Park et al., 2022). 

To ease the complexity of wastewater treatment systems, various artificial intelligence and 

machine learning ensembles were used to improve the intelligent systems and manage 

complex dynamics of mathematical models to optimise the operational conditions of the 

wastewater treatment systems effectively. The advanced AI and ML algorithms can be 

applied to existing operational management systems of wastewater treatment systems, 

forming critical components of advanced computing and software technology for enhancing 

dye and pharmaceutical wastewater treatment systems. With ever-growing issues of 

antimicrobial resistance genes, viral diseases and toxic, xenobiotic textile wastewater, future 

trends are forecasted to rely on developing more advanced AI and ML optimisation 

techniques to improve the process conditions. Since the overall research was centred around 

the three-dimensional electrochemical treatment, specific emphasis was given to extending 

current electrochemical treatment techniques towards integration of advanced AI ensembles 

to optimise the process conditions. In addition, Figure 1 shows that the textile processing 

industry in Bangladesh is one of the major polluters due to its widespread use of natural 

resources. Reactive dyes are commonly used for dyeing purposes. The dye combination is 

highly chemical intensive and requires large water consumption. Figure 1 shows the 

estimated amount of water consumed, wastewater generation, and chemical consumption in 

the textile wet processing units. High water consumption leads to depletion and 

contamination of groundwater. 
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Figure 1. Water and chemical consumption of textile processing industry in Bangladesh 

(Uddin et al., 2023).     

1.2 Significance of study 

Xenobiotic dyes and pharmaceutical contaminants present in aquatic environment can 

pose a significant public health risk. These anthropogenic pollutants are increasingly present 

in the environment due to rapid urbanisation and industrialisation. Water pollution caused by 

textile and fashion industries often flies under the radar and is largely overlooked by 

environmental authorities. There are many treatment methods used to remove xenobiotic dyes 

and pharmaceutical pollutants from water and wastewater, such as conventional biological 

treatment (aerobic-anoxic-anaerobic), adsorption, advanced oxidation processes, Fenton’s 

reagents, photocatalysis, membrane filtration, coagulation-flocculation, electrochemical 

treatment etc. Conventional activated sludge in biological treatment is not suitable due to 

excessive production of sludge, increasing costs associated with sludge management and 

transportation. In the context of advanced oxidation processes (AOPs), Fenton oxidation is an 

effective technology to degrade recalcitrant organic pollutants due to simplicity of process 

but conventional Fenton oxidation processes have some drawbacks, such as acidic pH 

condition, generation of iron sludge and high operational costs associated with high chemical 

input, low resource recovery process and energetically intensive (Bello et al., 2019).   

On the other hand, coagulation-flocculation technique has exceptional performance in 

removing particles from wastewater effectively, causing small particles to clump together to 
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form flocs (Abujazar et al., 2022). The process requires the addition of chemical reagents to 

remove the pollutants by settlement. Using coagulants or flocculants is very costly; it also 

contributes to secondary pollution, and the process is energetically intensive due to limited 

energy recovery. Membrane filtration process, such as forward osmosis, membrane 

distillation and electrodialysis can advance nutrient recovery but often leads to membrane 

fouling, resulting in pressure drop across the membrane, and the process becomes more 

energetically intensive (Xie et al., 2016).  The drawbacks of these conventional treatment 

techniquescan be addressed by using electrochemical oxidation technology, which is a more 

attractive alternative method for wastewater treatment to replace conventional processes 

owning to a substantial quantity of toxic organic pollutants removed from the industrial 

effluent systems, particularly xenobiotic dye wastewater. In addition, adsorption technology 

is a practical approach to remove contaminants from wastewater, particularly when the 

adsorbent is relatively inexpensive and easy to procure or manufacture. The adsorption 

process has minimal sludge generation, is less energetically intensive and does not require 

additional pre-treatment processes. The significance of a hybrid combination of wastewater 

treatment technologies is that they offer a significantly better performance in removing 

pollutants more effectively than using a single treatment method. Xenobiotic dyes and 

pharmaceutical contaminants are highly recalcitrant to environmental degradation and UV 

photolysis, leading to rapid accumulation in the aquatic environment. Hybrid wastewater 

treatment systems are more efficient at eliminating the toxic organic pollutants and its 

intermediate transformation byproducts from the breakdown of xenobiotic dyes and 

pharmaceutical contaminants more effectively than a single treatment method. When 

combining advanced AI and ML optimisation techniques to manage complex process 

parameters. Advanced computing and software technologies bolster the treatment efficiency 

of hybrid systems, facilitating data-driven analysis to minimise uncertainties and reducing 

fluctuations in effluent quality, costs and environmental risks (Zhang et al., 2023).      

 1.3 Research gaps 

Our literature review identified the following research gaps: 

1) The previous methods of optimisation techniques in past research are unreliable due 

to inherent uncertainties and error deviations in the estimated values, especially for 

pollutant removal efficiencies. Statistical optimisation techniques are not adequately 

accounted for due to the absence of a range of error function analyses applicable to 

adsorption kinetics and isotherms. 
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2) Advanced AI and ML ensembles have not been adequately covered in past research to 

enhance models' prediction efficiency, accuracy, and precision, especially for three-

dimensional electrochemical technology. Most AI optimisation techniques, including 

RSM are applied to a simple adsorption or electrochemical oxidation process without 

a specific emphasis on using an ensemble to model a three-dimensional 

electrochemical oxidation technology.  

3) Most RSM and AI/ML optimisation techniques were applied to a simple, 

conventional carbon-based adsorbent fabricated from an energetically intensive 

process. On the other hand, bone char adsorbent can be obtained from renewable and 

widely abundant agricultural sources. More interestingly, the pollutant removal 

efficiency of bone char can be subjected to AI and ML optimisations to improve the 

prediction efficiency, accuracy and precision of models. 

4) The operational parameters used in the experiments were highly complex, requiring 

more novel RSM and/or AI and ML optimisation techniques. Past research has not 

accounted for any causal relationships between operational variables, including 

sensitivity analysis and Bayesian inference networks to account for the impact on the 

target variables.   

5) Past research has not adequately accounted for the selectivity reversal, pH levels and 

salting effect of simulated, highly alkaline xenobiotic dye wastewater on the 

adsorptive capacity of GIC. In addition, the electrochemically regenerative 

performance of GIC was rarely emphasized in a three-dimensional electrochemical 

oxidation technology.  

 1.4 Research questions 

There are seven main research questions in this study: 

1) How can models' prediction efficiency, accuracy, and precision be enhanced to reduce 

uncertainties in the operational variables? 

2) How to optimise the three-dimensional electrochemical oxidation technology and 

individual adsorption technology to enhance the pollutant removal rate? 

3) How to electrochemically regenerate GIC adsorbent and improve the regeneration 

efficiency to recover its adsorptive capacity? 

4) What are the optimal conditions to achieve the best pollutant removal efficiency using 

a three-dimensional electrochemical oxidation technology? 
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5) How to develop AI and ML ensembles, sensitivity analysis and other advanced 

statistical optimisation techniques to enhance the prediction efficiency, accuracy and 

precision of forecasting models? 

6) How to optimise a number of experimental runs while accurately accounting for a 

range of process conditions to determine the most significant interactive effects of 

operational variables on targeted responses? 

7) How can the thermodynamic conditions of xenobiotic dye wastewater be managed to 

improve the pollutant removal performance of bone char? 

 

 1.5 Research aims and objectives 

The overall aim of this research project is to develop the best optimisation techniques 

to enhance the pollutant removal efficiency of a three-dimensional electrochemical reactor to 

achieve the most cost-effective manner to address the techno-economic aspects and energy 

efficiency of the wastewater treatment process for superior decomposition of xenobiotic dyes 

in aqueous solutions. The specific objectives are outlined below: 

1) To optimise the electrical energy consumption of a three-dimensional electrochemical 

reactor using advanced AI and ML ensembles. 

2) To optimise a range of operational variables to enhance targeted responses such as 

dye and TOC removal efficiencies to improve the mineralisation of toxic, xenobiotic 

dyes in wastewater. 

3) To enhance the prediction efficiency, accuracy and precision of forecasting models 

using advanced RSM, AI and ML ensembles for a three-dimensional electrochemical 

oxidation technology and individual adsorption process. 

4) To investigate the uncertainties and causal relationships between the operational 

parameters and conduct sensitivity analysis and Bayesian inference network analysis 

of the impact of interactive variables on the targeted responses. 

5) To model the interactive effects of a range of operational variables on the targeted 

responses to enhance the electrochemical oxidation and adsorption efficiencies of a 

three-dimensional electrochemical reactor, GIC and bone char adsorbents. 

6) To investigate the selectivity reversal, pH and salting effects of simulated, highly 

alkaline xenobiotic dye wastewater on adsorption. 

7) To evaluate the adsorption kinetics and isotherm models using a range of error 

function analyses and/or statistical optimisation techniques.   
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8) To investigate the thermodynamic characteristics of xenobiotic dye wastewater on the 

pollutant removal efficiency of bone char adsorbent. 

9) To investigate the regeneration efficiency of GIC adsorbent using a range of current 

densities, initial dye concentrations and electrolysis durations.  

 1.6 Organisation of the thesis 

This PhD thesis consists of five chapters, and the organisation of the thesis is 

stipulated in Figure 1. 

 Chapter 1 provides the background information, purposes, and significance of the 

study, establishing a cohesive research narrative to guide the readers smoothly through the 

transition between ideas. It helps to resolve research gaps at the outset, minimise repetitions 

or tensions between the thesis components/chapters, and set a foundation to develop 

publication ideas that emerge from a comprehensive review of the whole thesis. 

 Chapter 2 represents the literature review for the study based on the contaminants of 

emerging concerns: Paper 1 (Removal of pharmaceutically active compounds from 

wastewater using adsorption coupled with electrochemical oxidation technology: A critical 

review) presents the current three-dimensional electrochemical oxidation technology and its 

benefits in the mineralisation of xenobiotic pollutants in contaminated wastewater.  

Chapter 3 represents Paper 2 (Artificial intelligence and machine learning for the 

optimization of pharmaceutical wastewater treatment systems: a review) emphasized the 

benefits of artificial intelligence and machine learning optimisation of wastewater treatment 

plants to enhance the removal of specific anthropogenic pollutants such as pharmaceutically 

active compounds in wastewater. This review article sets a theme to justify using AI and ML 

optimisation techniques in wastewater treatment systems for various contaminants. These 

articles highlighted new insights and research gaps, setting a foundation for further 

development of this research project.  

Chapter 4 represents Paper 3 (Removal of reactive black 5 in water using adsorption 

and electrochemical oxidation technology: kinetics, isotherms and mechanisms), foundational 

experimentation with specific emphasis on using a combined adsorption and electrochemical 

oxidation technology, which is also known as a three-dimensional electrochemical oxidation 

technology, to remove xenobiotic dye contaminants from simulated textile wastewater 

synergistically. This research involved a critical investigation of the physicochemical 

properties of GIC adsorbent, using a range of adsorption kinetics and isotherms to evaluate 

the adsorption phenomena of the adsorbent. A range of error function analyses were 
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conducted to examine the uncertainty in the estimated values of adsorption kinetics and 

isotherms to achieve the accuracy and precision of calculations. The regeneration efficiency 

of GIC adsorbent was studied extensively. The impacts of selectivity reversal, salting effect 

and pH levels on GIC adsorption efficiency in a binary mixture of highly alkaline, simulated 

textile wastewater were investigated thoroughly. Electrochemical oxidation efficiency was 

evaluated using a range of current densities to enhance the mineralisation efficiency of 

xenobiotic dye pollutants. 

 Chapter 5 represents Paper 4 (Superior decomposition of xenobiotic RB5 dye using 

three-dimensional electrochemical treatment: Response surface methodology modelling, 

artificial intelligence, and machine learning-based optimisation approaches), which strongly 

emphasized the significance of AI and ML algorithms or the roles of advanced software 

computing in the removal of xenobiotic dye pollutants from wastewater. Hybrid AI and ML 

optimisation techniques were applied to a three-dimensional electrochemical oxidation 

technology to manage a range of complex operational variables and achieve optimal 

conditions for enhancing pollutant removal efficiency. The benefits of using AI/ML 

ensembles include maximising the prediction efficiency of targeted variables, resulting in 

significant accuracy and precision of estimated variables. 

Chapter 6 represents Paper 5 (Monte Carlo Simulation, Artificial Intelligence 

and Machine Learning-based Modelling and Optimization of Three-dimensional 

Electrochemical Treatment of Xenobiotic Dye Wastewater), which investigated more 

advanced combination of AI and ML ensembles, such as integration of Monte Carlo 

simulations with artificial neural networks (ANN), support vector machine (SVM) and 

random forest (RF) algorithms generate various models for optimisation of three-dimensional 

electrochemical treatment of xenobiotic dye wastewater. Hybrid AI and ML optimisation 

techniques help to manage a range of complex operational variables by identifying the 

inherent system perturbations and estimation of uncertainties in predictive model platforms to 

achieve optimal conditions for enhancing the prediction efficiency of targeted variables. This 

resulted in better accuracy and precision of estimated variables to achieve optimal conditions 

for improving pollutant removal efficiency. 

   Chapter 7 presents Paper 6 (Computational modelling of Indigo Carmine adsorption 

onto bone char: Application of Monte Carlo simulation, Bayesian networks, artificial 

intelligence and machine learning-based optimisation approaches), which involved using a 

green, renewable adsorbent material to remove xenobiotic dye from wastewater. The 

uniquely developed AI and ML ensembles, Monte Carlo simulations and Bayesian inference 
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network analysis were used to improve the predictive models of pollutant removal efficiency. 

This research used the unique optimisation techniques and computational fluid dynamics 

modelling to manage a range of operational variables by identifying the influential variables 

and its causal relationships, using sensitivity analysis to improve the adsorption technology. 

The levels of system perturbation and uncertainty were examined in detail to achieve optimal 

conditions of adsorption process. 

 Chapter 8 provides conclusions, future directions and final recommendations for this 

PhD research project. 
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Figure 2. Organisation of the thesis. 

This chapter is subdivided into two main sections corresponding to two review 

articles published during research. The first subsection provides a foundational overview of a 
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three-dimensional electrochemical oxidation technology to remove pharmaceutically active 

compounds from contaminated wastewater. The central emphasis is on using combined 

adsorption and electrochemical oxidation technology to remove a range of pharmaceutical 

contaminants by critically analysing a range of operating parameters to achieve optimal 

conditions for wastewater treatment. Understanding the effects of operating parameters on 

overall wastewater treatment efficiency helps to extend the scope of experimental studies 

towards more effective treatment of ubiquitous, xenobiotic dye pollutants. The second 

subsection emphasises the significance of using AI and ML ensemble optimisation 

techniques to enhance pollutant removal efficiency in existing wastewater treatment systems. 

This research helps to direct the focus on using a unique range of AI/ML ensembles to be 

included in future technical experimentation, albeit reactive dye pollutants will be the central 

focus of wastewater treatment. Overall, this chapter provides a comprehensive discussion, 

emphasizing the optimisation effects of operating parameters on targeted responses. More 

importantly, it sets a foundation for developing technical research, leading to final 

recommendations and future research directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: PAPER 1: REMOVAL OF 

PHARMACEUTICALLY ACTIVE COMPOUNDS FROM 

WASTEWATER USING ADSORPTION COUPLED WITH 

ELECTROCHEMICAL OXIDATION TECHNOLOGY: A 

CRITICAL REVIEW2.1 Introduction 
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This review encompasses a thorough discussion and critical analysis of a specific wastewater 

treatment technology, i.e., a hybrid combination of adsorption and electrochemical oxidation 

technology. The inherent novelty of this hybrid wastewater treatment technology is the 

central theme that is largely emphasized throughout the research. This review was carefully 

crafted to explicitly analyse a range of suitable operating parameters to be adjusted to achieve 

the optimal conditions for electrochemical wastewater treatment. Pharmaceutical 

contaminants were considered as model pollutants rather than specific interest by the 

researchers. The potential application of this hybrid wastewater treatment technology was 

largely emphasized throughout the research, setting a foundation for future technical research 

to be conducted. Notwithstanding the chemical stability of pharmaceutical contaminants, a 

three-dimensional electrochemical oxidation technology involved a synergistic treatment of a 

range of pharmaceutical pollutants given that its mineralisation capability. A near complete 

decomposition of recalcitrant pharmaceutical contaminants in wastewater justified the 

technological capability of this hybrid wastewater treatment technology. Therefore, it is 

evidential that a three-dimensional electrochemical oxidation technology can be extended 

beyond its limits to treat other more ubiquitous contaminants such as xenobiotic dyes, albeit 

with strong certainty that the toxic dye pollutants can be degraded much more effectively 

than pharmaceutical contaminants. The effectiveness of using synergistic wastewater 

treatment techniques to eliminate pharmaceutical contaminants were largely emphasized 

throughout this review article. One of the main benefits include cost-effectiveness of 

adsorption technology used in the research. Others include the technoeconomic feasibility, 

practicality and environmental viability of the adsorption technology involving GIC 

adsorbent or a range of other adsorbent materials which can be obtained from agricultural or 

renewable sources. More significantly, electrochemical regeneration efficiency of 

nanocomposite adsorbent was critical to help recover the adsorptive capacity of adsorbent 

material, making it reusable for many cycles of adsorption and regeneration. On the other 

hand, the electrochemical oxidation technology is a more established electrochemical method 

for mineralising the pollutants but its electrooxidation efficiency can be enhanced using 

optimisation techniques to adjust operational variables such as current density, electrolysis 

time, pH level, adsorbent dosage, initial pharmaceutical concentration etc. The 

electrooxidation efficiency can also be enhanced using strong electrocatalytic anodic 

materials to improve mineralisation of pollutants. The electrocatalytic efficiency of anodes 

can be maximised using advanced electrode doping techniques and surface morphology 

tuning to help improve the advanced oxidation processes, resulting in rapid electro-generation 
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of powerful oxidants, such as hydroxyl and sulphate radicals, persulfate ions and active 

chlorine species to degrade pollutants effectively. More interestingly, the adsorption and 

electrochemical oxidation mechanisms for anodes were largely emphasized throughout the 

review article, highlighting the significance of improving electrocatalysis of electrochemical 

conversion or combustion of organic pollutants rather than just pharmaceutical contaminants. 

The differences between oxygen evolution reaction of non-active and active anodes and its 

effects on electrocatalytic activity were explained in great detail. The future directions and 

recommendations were provided at the end of the review article that emphasized the 

significance of renewable energy-driven electrochemical process. This renewable energy-

driven electrochemical treatment technology can be applied to existing industrial wastewater 

treatment system where the adsorptive capacity of nanocomposite adsorbents can be 

continuously regenerated and electrooxidation efficiency of anodes can be enhanced to 

achieve cost-effectiveness of wastewater treatment process with robust pollutant degradation 

performance.



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 
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2.2 Links and implications 

The central theme of this research is three-dimensional electrochemical oxidation 

technology. Although the research was initially conceived to apply a range of pollutants 

treated by three-dimensional electrochemical oxidation technology, the central focus was on 

the critical analysis of operating parameters applicable to a novel combination of adsorption 

and electrochemical oxidation processes. The technoeconomic feasibility, practicality and 

environmental viability of the three-dimensional electrochemical oxidation technology were 

largely emphasized throughout the review article rather than confining to a narrow focus on 

the realm of pharmaceutical wastewater treatment systems. There is currently a range of 

wastewater treatment technologies under consideration for treating pharmaceutical 

contaminants, but the current researchers have overlooked the potential benefits and broad 

application of three-dimensional electrochemical oxidation technology. There are numerous 

drawbacks associated with the current adsorption technology, such as poor reusability and 

recyclability of adsorbent materials.  

Furthermore, the three-dimensional electrochemical oxidation technology offers an 

enhanced improvement in the mineralisation efficiency of organic pollutants. It allows the 

electrically conductive particle electrode to be regenerated, thereby recovering its adsorptive 

capacity to uptake pollutants continuously. The challenges associated with fabricating 

nanocomposite adsorbent material lie in finding electrically regenerative materials. The 

materials must be obtained from electrically conductive renewable sources to enhance the 

regeneration efficiency of adsorbents. The current thermal or chemical regeneration methods, 

such as incineration, solvent extraction, and landfill disposal of exhausted adsorbents, 

generate significant secondary pollution. The adsorbent fabrication technique leads to high 

energy consumption. Limited adsorptive capacity and regenerative properties of particle 

electrodes could downgrade its usage. Fine-tuning of nanoengineered novel metal-organic 

framework (MOF)-based adsorbent materials with defective structure can improve the 

adsorptive capacity and regeneration efficiency. The synergistic effects of adsorption and 

electrochemical oxidation technology can enhance pollutant removal and mineralisation 

efficiencies. When combined with renewable energy-driven electrochemical processes, 

energy efficiency can be achieved. However, there are challenges in adapting the existing 

electricity grid to power renewable energy-driven electrochemical advanced oxidation 

technologies.       

 



 

31 

CHAPTER 3: PAPER 2: ARTIFICIAL INTELLIGENCE AND 

MACHINE LEARNING FOR THE OPTIMIZATION OF 

PHARMACEUTICAL WASTEWATER TREATMENT 

SYSTEMS: A REVIEW 

3.1 Introduction 

 This review article focuses explicitly on optimising pharmaceutical wastewater 

treatment systems, emphasising artificial intelligence and machine learning technologies. A 

conventional wastewater treatment system is highly complex due to numerous operational 

parameters that require effective control to improve water quality characteristics. This review 

article intends to bridge the gaps between AI/ML technologies and other critical advanced 

computing and information technology (IT) infrastructures such as blockchain technology, 

renewable energy, Big Data mining, cyber-physical systems, Internet of Things and 

automated smart grid power distribution networks. The combined advanced AI and IT 

computing techniques help to monitor fluctuations in contaminants in wastewater treatment 

plants, facilitating data analysis, diagnosing water quality and predicting process parameters. 

The AI/ML applications in pharmaceutical wastewater treatment systems are strongly 

highlighted throughout the review article, providing background information on numerous 

potential applications of AI technologies that can be extended beyond the realm of 

pharmaceutical wastewater treatment towards other treatment systems. Compared to 

pharmaceutical wastewater treatment, AI/ML technologies are equally applicable to textile 

dye wastewater treatment. This review article emphasises the usefulness of AI and advanced 

computing systems rather than just focusing on the process units of pharmaceutical 

wastewater systems.  

Furthermore, the advancement of AI technologies leads to a remarkable 

transformation of conventional wastewater treatment plants towards zero waste generation, 

which is one of the most ideal pathways to achieve a circular economy, where value 

engineering and management processes can be added to the existing wastewater treatment 

systems to improve the outcomes. Similar to the toxicity of xenobiotic dyes, emerging 

pharmaceutical contaminants are equally culpable in causing adverse impacts on human 

health and environment. When pharmaceutically active compounds are discharged into the 

environment, the uptake of these compounds into human body can produce toxic metabolites, 

which have a wide range of side effects on non-target aquatic organisms, even at small 

concentrations. More critically, toxic drug metabolites can lead to multiple resistant strains or 
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antimicrobial-resistant genes and endocrine-disrupting intermediate compounds from the 

breakdown of parental compounds, causing significant carcinogenicity, teratogenicity and 

mutagenicity in humans and aquatic organisms. 

Industrial effluent systems do not just contain pharmaceutically active compounds 

released into the natural waters; xenobiotic dyes, disinfection byproducts, personal care 

products, per- and poly-fluoroalkyl substances are among the toxic contaminants within the 

wastewater. Notwithstanding the narrow scope of pharmaceutical wastewater treatment 

systems, AI and ML optimisation technologies can be applied to other wastewater treatment 

contexts. For the readers' interest, the review article mainly focuses on using AI/ML 

optimisation techniques in pharmaceutical wastewater treatment systems to highlight its 

applicability. Numerous AI/ML algorithms can be applied to other process units within the 

pharmaceutical wastewater treatment systems to empower sustainable circularity, digital twin 

and intelligent data-driven operations, process control systems, and to support predictive 

platforms to achieve energy efficiency and minimise the spread of infectious diseases. AI/ML 

technologies can be used to predict and monitor wastewater quality characteristics such as 

chemical oxygen demand, biochemical oxygen demand, total suspended solids, total 

dissolved oxygen, total dissolved solids and many more. However, the cost of setting up 

complex computation infrastructure to facilitate AI systems is a financial impediment. AI 

systems require compatible hardware and software integrated into the wastewater 

management systems and other computational systems for proper functioning of AI. 

Deploying hardware and software systems into existing wastewater management systems 

results in large energy consumption due to the high demand for computational processing 

power. However, the complexity of AI infrastructure can be managed through optimisation 

and automation, but the debugging and troubleshooting of the process control systems can be 

a significant issue. Effective monitoring of process dynamic conditions requires advanced IT-

powered technologies to facilitate data management of process control systems. Applying 

blockchain-related technologies helps facilitate sustainable wastewater and energy 

management systems. IT security vulnerabilities can be adverted when combined with the 

technological capabilities of the Internet of Things and advanced cyber-physical 

infrastructure. AI-powered process control systems help to minimise carbon footprint and 

remove barriers to resource recovery and energy management processes. Most interestingly, 

AI predictive platform improves models for measuring pharmaceutical wastewater quality 

and its constituents in complex process dynamic environment, minimising the operational 

cost and significantly improving the energy efficiency of wastewater treatment plants.   
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3.2 Links and implications 

The convergence between blockchain technology, Internet of Things, AI, and ML in 

cyber-physical systems synergistically enhances trust, transparency, privacy, and cyber-

security in overall operational systems in pharmaceutical wastewater treatment systems. This 

benefit can be extended to other types of wastewater treatment systems, such as textile dye 

wastewater, biological treatment or physicochemical treatment systems. For renewable 

energy-driven processes, the AI-enabled smart grid distribution network improves the 

adaptability of solar energy into existing wastewater treatment systems to achieve energy 

efficiency and sustainability. AI-integrated systems can also help identify and analyse 

security vulnerabilities or risks in IT infrastructure, monitor complex dynamic behaviours, 

uncertainties, or system perturbations, and manage data in the process control systems of 

wastewater treatment plants.  

Furthermore, distributed energy systems improve the utilisation efficiency of 

renewable energy technologies with the support of blockchain technology. However, the 

main disadvantage of hybrid AI/ML ensembles generated models involves complicated 

design constraints and uncertainties in predicted data arising from data clustering, making it 

challenging to determine exact data patterns. The scalability of blockchain technology can 

pose a significant issue due to the incompatibility of software and hardware systems, data 

security vulnerabilities and interoperability of existing IT systems. System-wide compromise 

arising from incompatible AI software with existing operational systems can lead to a 

cascade of design errors, malfunctions and vulnerability to cyber-attacks on critical IT 

infrastructure. Nonetheless, the assistance of AI-powered technologies can help improve the 

reliability, computing efficiency, and overall performance of wastewater treatment systems 

through the standardisation of frameworks and compliance with assessment metrics. 
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4.1 Introduction 

Among all aquatic pollutants, xenobiotic dyes and pigments are the most ubiquitous 

organic contaminants. These organic contaminants are highly resistant to environmental 

degradation due to the chemical stability of dye compounds. Xenobiotic dyes are 

anthropogenic contaminants often discharged into water from industrial effluents, especially 

from textile manufacturing, food processing, dye and paint industries. Xenobiotic dyes are 

carcinogenic and ecologically toxic if it finds its way into food chain. Similar to 

pharmaceutically active compounds, the breakdown byproducts of xenobiotic dyes can be 

even more toxic due to incomplete oxidation or mineralisation of intermediate transformation 

byproducts from its parental compounds.  

Furthermore, there are several ways to treat xenobiotic dyes in contaminated water, 

such as adsorption, membrane filtration, chemical coagulation-flocculation, photocatalytic 

degradation, Fenton process, biological treatment, electrochemical treatment and many more. 

However, there are some drawbacks associated with different treatment methods. Membrane 

filtration method often leads to membrane fouling due to the buildup of contaminants on 

membrane surfaces. Coagulation-flocculation techniques can require chemical additives and 

contribute to secondary pollution if improperly managed. Biological treatment can generate 

excessive sludge production, resulting in high transportation and sludge management costs. 

Among these treatment methods, the simplest and most practical method is adsorption. It is 

highly effective at removing pollutants non-selectively with minimal sludge generation and 

does not require any pre-treatment process. There have been several attempts to regenerate 

the adsorptive capacity of carbon-based adsorbents using electrochemical techniques. 

However, activated carbon adsorbents have high porosity and low electrical conductivity, 

limiting its ability to regenerate its adsorptive capacity electrochemically. Thermal 

regeneration of activated carbon adsorbent was investigated, but the disposal of exhausted 

activated carbon adsorbents into landfill can pose a significant environmental issue. 

Incineration of activated carbon also contributes to secondary pollution. Therefore, this 

technical experiment used graphite intercalation compound (GIC) as a suitable alternative to 

activated carbon adsorbents due to its ability to electrochemically regenerate. GIC has high 

electrical conductivity compared to conventional activated carbon and little to no porosity. It 

can be electrochemically regenerated in situ by an electrochemical oxidation process. When 

used in a sequential batch electrochemical reactor, GIC can be electrochemically regenerated. 

On the other hand, organic pollutants can be further degraded with the additional support of 
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anodic oxidation technology in the reactor. The combined hybrid treatment method of GIC 

adsorbents and direct electrochemical oxidation of the reactor gives rise to a three-

dimensional electrochemical reactor.  

Furthermore, a three-dimensional electrochemical reactor contains GIC particle 

electrodes and anodic oxidation technology to synergistically enhance the electrochemical 

degradation of xenobiotic dye contaminants more effectively than a conventional, single 

wastewater treatment method. A three-dimensional electrochemical oxidation can effectively 

generate hydroxyl radicals and active chlorinated species to mineralise the xenobiotic dyes 

into inert carbon dioxide and water provided that the complete oxidation process can be 

achieved. There are a range of operational parameters to consider, such as adjusting current 

density, electrolysis time, adsorbent dosage and initial dye concentration to improve pollutant 

removal efficiency.  

This research article comprehensively studies adsorption kinetics, isotherms and 

electrochemical oxidation mechanisms of a three-dimensional electrochemical oxidation 

technology. A range of error functions, linear and non-linear regression analyses are used to 

determine the accuracy and precision of process variables. Response surface methodology 

(Kanneganti et al.) optimisation technique was applied to GIC adsorbents to optimise the 

adsorption process. The salting and thermal effects of simulated, alkaline dye-contaminated 

wastewater on selectivity reversal of GIC adsorbents were critically evaluated using RSM 

optimisation technique.  
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4.2 Links and implications 

Reactive Black 5 (RB5) xenobiotic dye contaminants were successfully mineralised using a 

three-dimensional electrochemical reactor. The advanced oxidation processes effectively 

degraded the xenobiotic dye pollutant to inert carbon dioxide and water. The GIC adsorption 

process was optimised using a central composite design-response surface methodology 

(CCD-RSM), which was shown to improve the accuracy and precision of estimated targeted 

variables to model optimum removal rates. Although salt concentration in simulated, alkaline 

dye-contaminated wastewater had demonstrated to have a limited impact on the selectivity 

reversal of GIC adsorption process, pH had a more stabilising effect on the adsorption 

process. The strength of adsorption was primarily governed by electrostatic interaction 

between GIC adsorbents and dye adsorbates. The regeneration efficiency of GIC adsorbents 

was improved using optimal current density, and the mineralisation efficiency of pollutants 

was enhanced when a three-dimensional electrochemical oxidation process was used.  

 The best adsorption kinetic model to characterise the adsorption phenomena was the 

Elovich kinetic model, which yielded the best fitness. A near complete oxidation or 

mineralisation efficiency was achieved within 30 mins of electrolysis time and 45 mA/cm2 of 

current density. Although the adsorptive capacity of GIC adsorbents can be improved further, 

the adsorption or pollutant removal efficiency was suppressed by the presence of intermediate 

transformation oxidation byproducts when high current density was applied. The changes in 

surface physicochemical properties of GIC adsorbents caused by extremely high current 

density resulted in reduced regeneration efficiency and increased likelihood of particle 

attrition or corrosion. Future research should focus on maximising the regeneration efficiency 

and improving the physicochemical stability of adsorbents. 
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5.1 Introduction 

 This research article focuses explicitly on using a three-dimensional electrochemical 

reactor to treat dye-polluted wastewater, emphasising artificial intelligence and machine 

learning optimisations. Graphite intercalation compound was used as a particle electrode to 

adsorb xenobiotic dye contaminants from simulated wastewater. A more advanced, novel 

progressive central composite design-response surface methodology (CCD-NPRSM), hybrid 

artificial neural network-extreme gradient boosting (ANN-XGBoost) ensemble, and 

classification and regression trees (CART) were used to optimise the operational parameters 

of the three-dimensional electrochemical treatment of reactive black 5 (RB5) polluted 

wastewater.  

 The chemical stability of RB5 is a desirable dyeing property for textile manufacturers, 

making it suitable for staining cotton and other cellulose fibres. The black intensity of 

colouration is ideal for dyeing materials manufactured by the textile, printing, and leather 

industries. However, RB5 is highly recalcitrant to environmental degradation. It contributes 

to significant ecological toxicity when industrial effluents are discharged into marine 

environment without proper control measures.  

 Three-dimensional electrochemical oxidation technology offers an attractive method 

for wastewater treatment, especially when a hybrid treatment method is used to maximise 

pollutant removal and mineralisation efficiencies. In the electrochemical oxidation 

mechanism, this research article shows that there are two mechanisms to characterise the 

pollutant removal process: 1) direct oxidation involves the electron transfer from the organic 

pollutants to the electrode surface; 2) indirect oxidation involves electrogenerated oxidizing 

species to degrade and oxidise organic pollutants. In addition, electrically regenerative GIC 

particle electrodes were used to recover the adsorptive capacity when the particles were 

placed in the regeneration zone of the three-dimensional electrochemical reactor. Organic 

pollutants were adsorbed and oxidised on the surface of particle electrodes simultaneously. 

Highly oxidising species with strong oxygen evolution reaction potential mediated the 

combined oxidation process from anodic reaction and particle surface. In addition, GIC 

particle electrodes exhibited superior electrocatalytic potential and regeneration efficiency, 

restoring full adsorptive capacity after several adsorption and regeneration cycles, resulting in 

sustained catalytic oxidation performance. 

 Complex process variables warrant using AI and ML optimisation techniques to 

manage the combined effects of electrochemical systems. The efficacy of three-dimensional 
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electrochemical oxidation technology relies on the accuracy and precision of AI and ML 

predictive models to determine the best, optimal conditions for the electrochemical 

decomposition of RB5-polluted wastewater. Several novelties were associated with using 

different CCD-NPRSM, AI and ML ensembles to improve the prediction efficiency of 

targeted variables. A conventional RSM was originally used to predict targeted responses 

using an empirical second-order polynomial equation. More interestingly, this RSM 

technique was adapted to a uniquely designed transfer function to establish multilevel nested 

models. The optimisation procedure involved measuring maximum dye and TOC removal 

efficiencies, optimal current density, and electrical energy consumption for RB5 and total 

organic carbon (TOC) removal rates. TOC strongly indicates mineralisation efficiency 

associated with a particular electrical energy consumption.  

On the other hand, hybrid ANN-XGBoost ensemble was an algorithm used to 

optimise the three-dimensional electrochemical treatment of RB5-polluted wastewater. 

Although XGBoost generated a relatively weaker model than ANN, combining these two 

hybrid ensembles significantly enhanced the prediction efficiency of targeted responses. A 

second-order Taylor expansion of the loss function was used to integrate a regular term to 

generate an optimal solution to balance the decline in the loss function. This resulted in better 

management of model complexity and effectively mitigating overfitting issues. In addition, 

the predictive analytics by CART machine learning optimisation was another significant 

approach used to optimise the three-dimensional electrochemical reactor. It possessed the 

ability to manage large datasets, messy or missing data, or any extreme outliers and other 

nonlinear relationships. CART-generated models effectively visualise predicted values and 

the interactive effects of variables to achieve optimal prediction accuracy. The predictive 

accuracy and precision of three different CCD-NPRSM were critically evaluated using 

ANOVA analysis to justify the validity of the models.     
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5.2 Links and implications   

 The prediction efficacy of targeted responses was critically evaluated using uniquely 

designed CCD-NPRSM, AI and ML ensemble algorithms to optimise the three-dimensional 

electrochemical treatment of RB5-contaminated wastewater. The effects of operational 

parameters on targeted responses, such as dye and TOC removal efficiencies, current 

efficiency, electrical energy consumption of RB5 and TOC removals, and electricity cost 

were effectively optimised to achieve optimal conditions. The optimisation results showed 

that CCD-NPRSM, hybrid ANN-XGBoost ensemble and CART algorithms, along with its 

approximating functions, successfully led to satisfactory convergence of solutions, resulting 

in the best fitness of modelling. The key optimisation results showed that hybrid ANN-

XGBoost ensemble generated the best optimal solution with TOC mineralisation efficiency 

of 90.47% compared to 89.76% and 89.68% by CCD-NPRSM and CART optimisations. 

Although CART optimisation was effective, the prediction errors of response variables were 

significantly higher than other optimisation techniques. Overall, the predictive efficiency of 

hybrid ANN-XGBoost ensemble exceeded expectations compared to other optimisation 

methods.   
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6.1 Introduction 

 This article is an extension of Paper 4 research, specifically emphasising the advanced 

combination of AI and ML ensembles to optimise the process conditions of three-

dimensional electrochemical treatment of xenobiotic dye wastewater. The synergistic 

performance of three-dimensional electrochemical process of sequential batch reactor 

allowed a rapid degradation of methyl orange (MO) dye pollutant in xenobiotic dye 

wastewater. In the absence of AI and ML-optimised models, the targeted variables, such as 

MO and TOC removal efficiencies, electrical energy consumption and current efficiency 

could not be accurately predicted, optimised and estimated. One of the most remarkable 

findings from this research was that the mineralisation efficiency of 50 mg/L MO was rapidly 

degraded using a current density of 15 mA/cm2. The electrochemical degradation 

mechanisms were mediated by direct and indirect oxidation processes involving highly 

oxidizing species, such as hydroxyl radicals and active chlorine species. Novel electro-

regenerative and electro-degradative GIC particle electrodes were incorporated into the three-

dimensional electrochemical reactor to facilitate the electrochemical degradation and 

adsorption of MO dye pollutant.  

 Furthermore, unique combination of AI and ML ensembles was formulated involving 

artificial neural networks, support vector machine and random forest and finally combining it 

with Monte Carlo simulations, to conduct sensitivity analysis and manage the system 

perturbations, process variabilities and estimation uncertainties in the process conditions of 

three-dimensional electrochemical reactor. In addition, the prediction efficiency of each 

AI/ML technique was compared with multiple regression analyses and ranked in terms of 

superiority of the predictive models. More importantly, AI and ML ensembles were used to 

balance the current efficiency and electrical energy consumptions of three-dimensional 

electrochemical reactor, while maintaining its mineralisation and energy efficiencies. 
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6.2 Links and implications 

 The synergistic performance of three-dimensional electrochemical process enhanced 

the mineralisation efficiency of MO while improving the energy efficiency of the 

electrochemical reactor. With the support of electrocatalytic adsorbent material, such as GIC 

particle electrodes, the pollutant removal efficiency was maximised. The optimisation power 

of multiple regression analysis, AI and ML was ranked in the order: ANN > RF > SVM > 

Multiple Regression. On the other hand, the probabilistic distributions and scatterplots 

generated from Monte Carlo simulations showed limited uncertainty and variability between 

the actual and optimised models, justifying the remarkable prediction efficiency of AI/ML 

ensembles in optimising the three-dimensional electrochemical process.  

Most interestingly, the critical findings demonstrated that RF is more suited at 

managing overfitting and better at handling extensive nonlinear data, whereas SVM can 

effectively operate at high dimensional spaces or hyperplanes. When the ANN and RF 

models were combined into a single predictive model platform, as predicted by the Monte 

Carlo simulations, the level of system perturbations or uncertainties in prediction efficiency 

was less than the ANN-SVM model. However, the predictive performance of these 

algorithms is primarily influenced by the complexity of datasets, nature of datasets, sample 

size and the type of problem being addressed. The future studies should focus on evaluating 

other robust classifiers, AI and ML ensembles, to determine its optimisation efficiency in 

enhancing the energy efficiency of the industrial operation and reducing the greenhouse gas 

emission of WWTP, especially when the three-dimensional electrochemical reactor is used.      
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COMPUTATIONAL MODELLING OF INDIGO CARMINE 

ADSORPTION ONTO BONE CHAR: APPLICATION OF 

MONTE CARLO SIMULATION, BAYESIAN NETWORKS, 

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING-

BASED OPTIMISATION APPROACHES 

7.1 Introduction 

This paper is an extension of three-dimensional electrochemical technology, emphasizing the 

benefits of using a green, renewable carbon-based adsorbent material, i.e., bone char, to 

remove xenobiotic dye pollutants from wastewater. This research specifically focused on 

using computational modelling techniques involving the application of Monte Carlo 

simulations, a range of combined AI and ML optimization ensembles to predict the targeted 

variables, such as dye and TOC removal efficiencies by optimizing operational parameters to 

achieve optimal conditions. This research investigated uniquely designed ensembles to 

optimise the operational conditions to improve the response variables. Sensitivity analysis 

was conducted using Monte Carlo simulation to determine the levels of uncertainty in the 

predictive models. The causal relationships between the operational variables were 

determined using Bayesian inference network analysis. Computational fluid dynamics 

modelling was conducted to design a packed bed reactor system to integrate bone char 

adsorbent material into the reactor to remove xenobiotic dye pollutants in wastewater. The 

thermal distribution effects, thermodynamic parameters and heat fluxes within the wastewater 

treatment system were explored.  

 

 

Abstract 
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Various ensembles of artificial intelligence (AI)c and machine learning (ML)-based 

optimization methods have been evaluated to examine the prediction efficiencies of Indigo 

Carmine (IC) adsorption onto a bone char adsorbent to ensure adequate wastewater 

remediation quality. In this study, AI and ML ensembles were developed to optimize the 

model parameters, and Monte Carlo simulation models were used to estimate the 

uncertainties of different model parameters. Following the simulation-based comparisons, 

Bayesian predictive network analysis was performed to determine the probability distribution 

to reveal the causal interrelationships between variables to represent the impact of 

uncertainties on the simulation models. In particular, the Indigo Carmine (IC) removal 

efficiency and dye loading capacity were optimized using a range of AI and ML optimisation 

techniques such as adaptive neuro-fuzzy inference system (ANFIS), support vector machine 

(SVM), random forest (RF) and eXtreme Boosting Gradient (XGBoost). The prediction 

efficiencies of combined AI and ML ensembles were evaluated for ANN-GA-SVM, ANN-

GA-RF and ANN-GA-XGBoost and ANN-GA optimisations that achieved a coefficient of 

determination (R2) of 0.730, 0.445, 0.625 and 0.526, respectively, for IC removal within 20 

minutes using bone char (BC). The calculations from the correlation matrix indicated that the 

combination of AI/ML models, such as ANN-GA-XGBoost and ANN-GA-RF, yielded the 

most significant impact on prediction accuracy with a positive Spearman correlation of 0.726 

and 0.694, respectively, relative to ANN-GA. In contrast, ANFIS and ANN-GA-SVM 

models generated significantly less uncertainty in prediction efficiency with low mean square 

error (MSE) of 0.13 and 3.072, respectively, compared to other AI/ML ensembles.  

Keywords: Artificial intelligence; machine learning; adaptive neuro-fuzzy inference 

system; Monte Carlo simulation 

Water is an essential element for sustaining life. Increasing water scarcity and 

pollution are the greatest challenges the world is facing. A specific category of organic 
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chemicals deemed unsafe for human consumption is synthetic textile dyes used by various 

industries worldwide, such as cosmetics, paper and pulp, plastics, etc. Approximately 15% of 

synthetic dyes escape through the industrial effluent system and find its ways into the marine 

environment. Textile dyes are xenobiotics with strong physicochemical stability, fixation 

efficiency to the natural substrates and the ability to resist chemical and environmental 

biodegradation or UV photolysis (Kekes & Tzia, 2020). Xenobiotic dyes are common 

environmental contaminants in wastewater effluent systems discharged from textile industry. 

Wastewater-containing dyes are a significant environmental contaminant that affects human 

health as textile industries generate large amounts of coloured dyeing effluent into the aquatic 

environment (Al-Tohamy et al., 2022). Among these dyes, Indigo Carmine (Acid Blue 74) 

found widespread industrial applications. It is a highly toxic chemical substance with a strong 

dyeing colourant and has various applications in the textile, cosmetics, plastics, 

pharmaceutical, leather and food manufacturing industries (Adel et al., 2021; El-Kammah et 

al., 2022). Nowadays, Indigo carmine dye is synthetic, whereas its natural form was widely 

used in the 17th century due to its antibacterial and insect-repellent properties. Synthetic 

indigo carmine is often used to dye blue jeans and other household fabrics. However, these 

indigo fabrics and clothes are usually disposed into landfill. Indigo carmine dye can be 

harmful if ingested, especially when the dye finds its way into food chain and may have the 

potential to cause cancer.   

The annual production capacity of dyeing wastewater from textile industry is 

approximately 0.7 million metric tonnes (Bilal et al., 2022). Indigo Carmine (IC) dye is 

extensively used in textile industries due to its colour intensity, which stems from 

auxochromes, a chromophore functional group presents in significant amount of synthetic 

dyes (Shabir et al., 2022). Indigo dyes are highly hazardous and carcinogenic; they can cause 

skin and eye irritation upon direct contact and may lead to chronic damage to the cornea and 
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conjunctiva (Guezzen et al., 2023). For this reason, Indigo Carmine is considered a major 

contaminant that must be treated or removed prior to discharging dye-contaminated 

wastewater into marine environment (Fu et al., 2019).  

Many treatment methods have been developed to remove synthetic dyes from 

wastewater. These treatment methods produced different removal rates and can be 

categorized into physical, chemical and biological technologies such as 99% of dyes can be 

removed using membrane filtration (Ma et al., 2022; Mansor et al., 2020), 92-99% dyes 

removed by chemical or solvent precipitation (Alikarami et al., 2022), 85-95% by adsorption 

(Aqdam et al., 2021; Hassani et al., 2015; Obayomi et al., 2023), > 90% of dyes removed by 

electrochemical degradation process (Salazar et al., 2018; Tang et al., 2020; Tang et al., 

2022), 100% by advanced oxidation processes (Dadban-Shahamat et al., 2022; Nidheesh et 

al., 2022; Saravanan et al., 2022), 98% by Fenton process (Arslan-Alaton et al., 2009; 

Esteves et al., 2016; Suhan et al., 2021), greater than 50% by ion-exchange (Hassan & Carr, 

2018; Lu et al., 2022), 100% by coagulation-flocculation (Januário et al., 2021; Li et al., 

2017; McYotto et al., 2021), 49-76% by photocatalysis (Chairungsri et al., 2022; Rosa et al., 

2015), 96% by ozonation (El Hassani et al., 2019; Hu et al., 2016) and > 70% by 

microbiological degradation (Singh et al., 2022; Wang et al., 2019). Although chemical and 

biological approaches are effective at removing toxic dyes from wastewater, they require 

special equipment, and the process is energetically intensive and the addition of chemical 

reagents often lead to large amounts of byproducts, whereas the biological process leads to 

excessive sludge generation, which requires additional financial expenditures for waste 

management (Kuo et al., 2008). On the other hand, other treatment techniques, such as ion-

exchange, photocatalysis, membrane filtration, coagulation-flocculation, chemical oxidation 

etc., can be employed to remove dyes from aqueous solutions. Still, these techniques have 

significant drawbacks due to high operational costs, undesirable production of toxic 
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intermediate byproducts, large volumes of sludge formation, and formation of numerous 

heavy metals during synthesis or preparation, which may have adverse health consequences 

on humans and aquatic organisms (Obayomi et al., 2023). Moreover, treating reactive azo 

dyes is rather challenging due to their diversity of physicochemical properties and structural 

complexity (Aqdam et al., 2021). Hence, no standalone treatment method is considered 

suitable to remove dye wastewater at high efficiency. Nonetheless, adsorption is the most 

frequently used technique to remove dyes from wastewater due to its cost-effectiveness, 

environmental friendliness, chemical stability, selectivity, high decolourisation efficiency, 

simplicity, flexibility and ease of operation (Aqdam et al., 2021; Aysan et al., 2016; Obayomi 

et al., 2023). No matter how complex the process is, the large-scale adsorption process 

requires thorough optimisation of IC removal by varying the initial dye concentration, contact 

time, solution temperature and dye loading capacity to reduce the industrial wastewater 

treatment costs while meeting the required quality of pollutant removal efficiency. The more 

complex the wastewater treatment process is, the more challenging it is to control the process 

parameters in industrial operations, which rely on the operators. Without adequate control of 

the process conditions, the large-scale adsorption process may lead to suboptimal design and 

operation, resulting in reduced quality of wastewater treatment.  

Computational modelling is a common approach to solving complex problems using 

experimental data and performing parameter estimation based on the predicted data to 

optimise the process parameters. To validate the prediction efficiency of the optimised 

parameters, Monte Carlo simulation can determine the level of uncertainty within the process 

variables, which may cause a model mismatch to improve robust design and operation of real 

processes and make the complex industrial operation relatively more straightforward to 

control. To manage the complexity of processes, ensemble forecasting is a useful modelling 

approach that combines data sources and models of different types supported with alternative 
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assumptions to discern distinct patterns within the models without being restricted by 

arbitrary choices and dependencies from a single statistical, artificial intelligence or machine 

learning approach limited to a single functional form or dataset (Wu & Levinson, 2021). Past 

research had shown that a combination of artificial neural network, particle swarm 

optimization, and Monte Carlo simulation was used to investigate the optimum condition of 

co-combustion of coal and peanut hull, achieving a multilayer perceptron model with a R2 of 

0.99994 (Buyukada, 2016). For example, an ensemble machine learning approach can 

examine process parameters and other scale-up opportunities of microbial electrochemical 

systems for determining hydrogen peroxide production (Chung et al., 2023). More 

interestingly, XGBoost ensemble machine learning approach is essential to achieve safe 

maintenance of drinking water supply system that requires an interpretable analysis of model 

prediction, such as predicting the concentration of algae (Park et al., 2022). However, 

complex industrial processes have numerous variables to control, and the interactions 

between the variables are largely unknown. To discern the interrelationships between the 

causal variables, Bayesian distribution network analysis can be used to estimate the levels of 

interactions or interrelationships between the process variables, finding the significance of 

impact between the input and output variables. These computational methods require 

adequate assumptions, such as approximating probability distribution functions to normal 

distributions to facilitate this process. However, such methods do not guarantee the accuracy 

of the estimation, but they eliminate the drawbacks of using a single approach, thereby 

avoiding costly computational processes. 

The uncertainty quantification based on Monte Carlo simulation can be validated 

using Bayesian inference, which utilizes the prior knowledge of simulation (Ighnih et al., 

2023). Monte Carlo simulation has been used successfully by other wastewater treatment 

technologies. To manage the complexity of chemical engineering process, the combination of 
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Monte Carlo simulation and Bayesian network analysis can minimise lengthy computational 

time, reducing the computational effort where alternative algorithms can support the complex 

computational process. Nonetheless, the combination of optimization approaches, Monte 

Carlo simulations and Bayesian distribution network analysis, have yet to be applied to 

industrial adsorption process. 

In this study, process parameters are optimized using a range of AI and ML 

algorithms and subjected to Monte Carlo simulations to determine the level of uncertainty 

within the variables. By implementing parallel computing, Bayesian network analysis was 

applied to determine the probability distribution; Bayesian inference on parameters can then 

be performed quickly. The artificial data were evaluated by simulation through generation of 

models. The remainder of his paper evaluated mathematical models of the targeted IC 

removal process using various AI and ML optimization techniques. It was subjected to 

validation using Monte Carlo simulations and Bayesian inference systems.  

2.1. Indigo carmine dye  

Indigo carmine dye powder was purchased from Sigma-Aldrich (Merck KGaA), 

Australia with a purity of 99.9% and molecular weight of 466.36 g/mol. It has the chemical 

formula, C16H8N2Na2O8S2 with a dusky, purplish-blue appearance in powder form. It is 

soluble in water and alcohol and partially soluble in organic solvents.  

 

2.2. Adsorbent material 

Bovine bone char (BOV) was purchased from Charcoal House, Australia. It is a 

precursor for the adsorbent material sourced commercially and relatively inexpensive 

adsorbents that can be obtained from waste products in the food industry. The preparation 

techniques used by the industry involve pyrolysis, which can influence the yields and textural 

features. Factors such as temperature, time and flow rate of gasifying agents are carefully 
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adjusted to facilitate the production of bone char to desired features such as particle size, 

specific surface area and other physicochemical properties unique to the adsorbent. The bone 

char adsorbent has 841 × 250 microns, a specific surface area of 200 m2/mg and a bulk 

density of 2.497 kg/m3. The pyrolysis of animal bones under limited oxygen conditions can 

maximise carbon contents, enlarging surface area and increasing ash contents.   

2.3. Adsorption studies 

Adsorption studies were conducted by varying the process parameters, such as contact 

time and initial dye concentration. 1-L of the dye solution with appropriate concentration was 

taken into a 250 mL Erlenmeyer flask. The adsorbent dosage was carefully weighed on 

analytical balance, added to the flasks, and subjected to mechanical agitation. The agitation 

speed was approximately between 150 and 200 rpm, and samples were collected at room 

temperature of 22.5°C. The samples were filtered and analysed by a UV-visible 

spectrophotometer (HACH DR600) at 610 nm (the maximum absorption wavelength for IC) 

for residual dye concentration in the aqueous solutions. The IC removal efficiency in the 

aqueous solution by BC was computed using the following equation: 

IC removal (%) = (
Ci−Cf

Ci
) × 100%        (1) 

Where Ci and Cf are the initial and final IC concentrations (mg/L), respectively (Pavlović et 

al., 2014). 

Adsorption capacity qt (mg/g) was computed by the following equation: 

qt =
(Ci−Ce)V

m
           (2) 

Where m is the adsorbent dosage (g), V is the volume of solution (L). Ci is the initial dye 

concentration (mg/L), and Ce is the residual dye concentration (mg/L) at different time 

intervals (Pavlović et al., 2014).  

2.4. Dubinin-Radushkevich isotherm model 
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Dubinin-Radushkevich isotherm model is an empirical adsorption isotherm model 

which is generally applied to adsorption mechanism with Gaussian energy distribution on 

heterogeneous surfaces (Maamoun et al., 2021). This isotherm is used to determine the 

thermodynamics of the adsorption process. In addition, the model is a semi-empirical 

equation involving an ion-exchange mechanism under the assumption that multilayer 

adsorption occurs by van der Waals’ forces, which applies to physisorption process 

(Pandiarajan et al., 2018). At low pressure, this isotherm model is unable to account for 

Henry’s physicochemical laws and describes the sorption process due to impracticality 

(Maamoun et al., 2021). The isotherm model also describes the adsorption of gases and 

vapours on microporous surface of adsorbents. The most distinctive function of this isotherm 

model is temperature-dependent, whereby the adsorption data can be plotted based on the 

differences in temperature as a function of dye concentration changes or the amount of dye 

adsorbed onto the adsorbent surface, resulting in changes in potential energy distribution. 

Dubinin-Radushkevich isotherm model is defined as (Tan et al., 2009): 

logeqe = logeqm − βE2         (3) 

Rearranging the Eq. (3) to give: 

qe = qmexp(−βε2)          (4) 

where ε can be correlated as: 

ε = RTloge (1 +
1

Ce
)          (5) 

where R is the universal gas constant (8.314 J/mol.K), 𝜀 is Polanyi potential, 𝛽 is 

Dubinin-Radushkevich constant, E is mean adsorption energy and T is the absolute 

temperature (K). A plot of loge qe versus 𝜀2 enables qm to be determined from the slope. The 

constant β gives the average free energy E of adsorption per molecule of adsorbate when one 

mole of ion is transferred onto the surface of the adsorbent from infinity to the surface of the 

adsorbent and can be computed as (Pandiarajan et al., 2018): 
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E =
1

√2β
           (6) 

For mean free energy values between 8 and 16 kJ mol-1, the adsorption process is 

considered to be influenced by an ion-exchange mechanism and for values greater than 16 kJ 

mol-1, the adsorption process is considered to be dictated by a particle diffusion mechanism 

(Pandiarajan et al., 2018).  

2.5. Physicochemical characteristics of bone char 

The classification of bone char involved the findings from the characterisation test 

results. The characterisation of the adsorbent material included determining particle size, 

surface functionalities and surface morphologies using Fourier Transform Infrared 

Spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively.  

The particle size of the porous bone char was determined to assess its ability to uptake 

the amount of dye adsorbate from the aqueous solution. The particle size has a direct impact 

on the maximum adsorptive capacity. In addition, mesopores (2-50 nm), macropores (>50 

nm) and micropores (<2 nm) play a significant role in imparting the adsorbent materials with 

different adsorptive capacities. Therefore, the larger the particle size, the greater the 

availability of pore volume to accommodate a significant amount of dye adsorbate. Aside 

from that, the bulk volume of adsorbent encompasses internal and external features whereby 

the internal volume involves the region within the enclosed pores, residing within the vicinity 

of the adsorbent mass, whereas the external area involves primarily fissures and cracks that 

extend deep into the bulk volume of adsorbent with microchannels or networks of varying 

widths or sizes (Guo et al., 2022). In addition, the size of the pores on the adsorbent materials 

determines how much the dye adsorbate can be adsorbed on its surface or diffused into the 

materials. The surface charge or functionalities of the adsorbent materials determine whether 

there are any electrostatic repulsive or attractive forces to enhance the adsorption efficiency. 

The clogging of pores could be a significant issue when using adsorbents to treat heavily 
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polluted wastewater with high turbidity levels. However, particle attrition is another 

significant issue in the presence of mechanical disturbances, which cause the adsorbent 

particles to break up into smaller particles. When the pore size is very small, the diffusion 

rate is influenced by the rate-limiting step, which means the amount of dye adsorbate diffused 

into the adsorbent materials is limited. 

2.6. AI optimization techniques 

1.1.1  Adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS is a hybrid algorithm where nodes of a feedforward neural network handle 

fuzzy parameters (Zaghloul et al., 2020). It is used to model a complex system with high 

uncertainty. The model is characterised by a first-order Takagi-Sugeno fuzzy inference 

system (FIS), which transforms the input properties into membership values using input 

membership functions (MF) through a fuzzification process. It is also a hybrid model which 

comprises an artificial neural network (ANN) with fuzzy logic reasoning. Hence, it can learn 

from training data, and the computed solution is mapped onto a FIS, giving a rule-based 

system with three essential components: fuzzification, fuzzy database and defuzzification. 

The strength of FIS is its non-linear mapping performance between input and output variables 

by managing linguistic concepts (Nam et al., 2023). However, one of the limitations of 

ANFIS is the increase in the ANFIS input numbers, which may result in lengthening 

computational time and rule numbers. Under some circumstances, insufficient data used for 

training may lead to failure of the ANFIS model (Heydari et al., 2021). Thus, a standard 

ANFIS could not be employed to model an output variable. In this case, the data are 

strategically arranged with input parameters randomly divided into smaller groups to reduce 

criteria and visual representation to provide a converged solution. This requires considering 

constraints such as the number of input parameters, which can be more than 5 or the number 

of observations, which can be more than 19 (Heydari et al., 2021). To train the data, the input 

neuron values were normalised in the range of 0.1-0.9 by Eq. (7): 
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xi,norm = 0.8 × (
xi−xi,min

xi,max−xi,min
) + 0.1        (7) 

The accuracy of the ANFIS models was determined with the root mean square error 

(RMSE) and the determination of coefficient (R2) in accordance with Eq. (8) and Eq. (9) 

(Hadi et al., 2020): 

R2 =
∑ (qe,pred−qe,exp̅̅ ̅̅ ̅̅ ̅̅ ̅)

2n
i=1

∑ (qe,pred−qe,exp̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

+∑ (qe,pred−qe,exp)
2n

i=1
n
i=1

                  (8)   

RMSE = √
1

N
∑ (ypred,i − yexp,i)

2N
i=1                    (9)  

Where N is the number of experimental runs, ypred,i is the predicted value, yexp,i is 

the experimental value, and qe,pred and qe,exp are the predicted and experimental adsorption 

equilibrium capacity, respectively. 

The pilot scale adsorption system can be upscaled by managing multiple 

physicochemical parameters and variables, but the process is highly sophisticated and not 

well-defined. Moreover, it is also challenging to use specific equations to ascertain quantities 

of determinants to define the upscaled adsorption system. Therefore, FIS with fuzzy logic 

rules is considered a feasible technological application. A set of fuzzy logic rules is 

developed to infer a particular model output. Afterwards, a set of output MFs is used for 

defuzzification of the inference output to real output values. This algorithm utilises the input 

membership functions to separate the input variables to minimise the search space. It uses 

error optimisation algorithms equivalent to the back-propagation feature of neural networks 

to adjust the fuzzy parameters. The general ANFIS architecture consists of five distinct layers 

(Nam et al., 2023): (i) fuzzy layer, (ii) product layer, (iii) normalisation (or rule) layer, (iv) 

defuzzification layer, (v) overall output summation layer. Each layer performs a specific 

mathematical process using a first-order Sugeno-type model, which consists of 4 input 

variables with fuzzy IF-THEN rules employed in this study. The following outlines different 

layer functions with specific mathematical processes: 
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Layer 1: Adaptive nodes that map the inputs (x or y) utilising the membership 

function μ into linguistic variables such as A and B, respectively. Membership functions take 

different forms or shapes, including trapezoidal, triangular, generalised bell-shaped curve, 

and Gaussian. The output of layer 1 for specific input variables is as follows (Nam et al., 

2023; Zaghloul et al., 2020): 

O1,i = μAi(x)                    (10) 

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1              (11) 

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2              (12) 

Layer 2: Fixed nodes that apply different logical rules, such as AND/OR by 

multiplying the node input signals. The output layer is known as the firing strength, which 

can be mathematically expressed as follows (Nam et al., 2023; Zaghloul et al., 2020): 

O2,i = wi = μAi(x) × μBi(y)                  (13) 

 μ is the membership function, A is the linguistic label related to the membership 

function and output, O represents the parameter to which x belongs to A. 

Layer 3: Fixed nodes are implemented to normalise the firing strengths, which 

involve the calculation of the firing strength ratio at each node and the combination of all 

firing strengths. The output layer 3 is known as the normalised firing strength (Nam et al., 

2023; Zaghloul et al., 2020): 

O3,i = wi =
wi

w1+w2
                    (14) 

Layer 4: Adaptive nodes derived from the following output function (Nam et al., 

2023; Zaghloul et al., 2020): 

O4,i = wifi = wi(pix + qiy + ri)                  (15)     

Where f represents the IF-THEN rule, p, q, and r denote the consequent parameters. 

IF-THEN rules can be expressed as: IF x is A AND y is B, it can be written as THEN 

f=px+qy+r. 
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Layer 5: The sum of all incoming signals from a single fixed node generates an 

overall output of the model (Nam et al., 2023; Zaghloul et al., 2020): 

O5,i = ∑ wifi ∝
∑ wifii

∑ wii
i                     (16) 

The output of any node I in layer 1 is denoted as O1,I, x is the input parameter. 

1.1.1 Support vector machine 

Support vector regression (SVR) is a machine learning algorithm that can be used for 

statistical analysis of regression or classification of non-linear models using the structural risk 

minimization (SRM) principle (Nam et al., 2023). SVR has been widely used as a machine 

learning algorithm for solving complex regression problems associated with wastewater 

treatment simulations. In particular, SVR is used to solve non-linear correlation issues. Given 

the training dataset, D = {(x1, y1), (x2, y2), …., (xm, ym)}, the original dataset used in the 

regression problem can be mapped by SVR into a higher dimensional space involving a 

kernal function to enable fitting of the original dataset with a theoretical linear regression 

function as expressed in the following form (Nam et al., 2023): 

f(x) = wTφ(x) + b                  (17) 

Where f(x) is the simulated value obtained from SVR using input variable x, w, and b 

denote the coefficient weight vector and bias term achieved by minimizing the upper bound 

of the generalization error, respectively. For dataset of 𝑥𝑖 ∈ 𝓡𝒅 as the training input vector 

with d dimensions and 𝑦𝑖 ∈ 𝓡 as the training target vector. i = 1: N represents a number of 

data pairs, and SVR training data are mapped into a higher dimensional space to generate a 

linear model f (w, x) to predict the target vector (Zaghloul et al., 2020). 𝜑(𝑥) is the non-linear 

mapping function, which is also known as kernel function.  

1.1.2 Random forest algorithm 

Random forest (RF) is an ensemble machine learning method for classification or 

regression that operates on a multitude of decision trees (Wu et al., 2023). It involves a 
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modified version of bagging that uses an improved bootstrapping method. RF consists of a 

series of decision trees (DT) classifiers, which can be characterized by their high 

interpretability, especially in problems with strong physical knowledge, but can be 

increasingly unstable and relatively inaccurate when analysing irregular patterns of data and 

prone to overfitting the training datasets (Bellamoli et al., 2023). The DT classifiers can be 

expressed as h (X, θk), k=1, 2, 3… with X as an independent input vector and k denotes the 

number of decision trees, and 𝜃𝑘 is a random vector (Wu et al., 2023). The RF algorithm 

starts by selecting bootstrap datasets 𝜓 (𝑥1, … , 𝑥𝑛) ∈ 𝐷(𝑥1, … , 𝑥𝑁) with a random set of 

features m ∈ M for t estimators in parallel to nominate node-splitting variables (Qambar & 

Khalidy, 2022). For multiclass classification, the output variables can be generated from RF 

selected from most decision trees by averaging multiple deep decision trees and trained on 

different datasets to reduce variance and overfitting. Most importantly, the hyperparameters 

of the RF involve a number of decision trees, the maximum depth of trees and the maximum 

number of leaves. Only a fraction of features can be utilized for a tree, and another fraction of 

bootstrapped samples can be finely tuned (Bellamoli et al., 2023).  

1.1.3 XGBoost algorithm 

Extreme Gradient Boosting (XGBoost) is an efficient ensemble of decision tree-based 

algorithm using the gradient boost algorithm. The purpose of using this algorithm is to 

minimise the regularized equation as follows (Qambar & Khalidy, 2022): 

L(∅) = ∑ L(yi, yi) + γT +
1

2
λ‖ωj‖

2N
i=1              (18) 

Where L (yi, yi) is the regression loss function and equals 0.5 (𝑦𝑖 , 𝛾)2. 𝛾 is the model 

complexity penalizing term, and T represents the number of terminal nodes, whereas λ is the 

regularization parameter and 𝜔𝑗 denotes the node j predicted value.  

The model output parameter for a sample can be calculated by adding the sum of the 

leaves assigned for each regression tree as follows (Ching et al., 2022): 
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yî = ∑ fk(xi)
K
i=1                    

(19) 

The regression trees can be added to the ensemble as ft for iteration (t) to form new 

regression trees to minimise the learning objective. It can be optimized in an Euclidean space 

in a pre-defined structure rather than a singular model to five the following form (Ching et 

al., 2022): 

ℒ = ∑ l(yi, yi
t−1̂ ) + ft(xi) + Ω(ft)n

i=1                             

(20) 

For benchmarking purposes, XGBoost model was compared with SVM and RF 

models. 

1.1.4 Hybrid artificial neural network and genetic algorithm  

Single models have some limitations in the learning process. The current learning rate 

of a configurable hyperparameter used in the artificial neural network training has a small 

positive value ranging between 0.0 and 1.0. This learning rate controls how quickly the 

predictive model adapts to the problem. Notwithstanding its benefits, hybrid methods tend to 

perform better than a standalone optimization technique to enhance accuracy or minimise 

error. This work applies a hybrid combination of artificial neural network (ANN) and genetic 

algorithm (GA) to the adsorption data to model and predict IC concentration changes and 

removal efficiency based on the operational variables. ANN operates like a human brain and 

nervous system with an outstanding ability to learn, classify and optimise data (Asgari et al., 

2020). An ANN consists of an input layer, one or more hidden layers and an output layer that 

is known as a multi-layer perceptron (MLP) structure (Özdoğan-Sarıkoç et al., 2023). 

Improvement in ANN modelling is based on the number of hidden layers, neurons and the 

types of transfer functions used (Mohammad et al., 2020; Özdoğan-Sarıkoç et al., 2023). The 

Levenberg-Marquardt backpropagation algorithm with 1000 epochs is considered one of the 
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best algorithms to train the network (Asgari et al., 2020). The number of neurons in the 

hidden layer is arranged within a range of 1-20 to determine the optimum number of neurons 

required to generate a minimum mean squared error (MSE). Optimal learning rate is adjusted 

between 0.001 and 0.01, starting from the low side and increasing incrementally by 0.0005 to 

avoid overshooting the target. A default batch size of 32 is used first, requiring fewer epochs 

to converge while avoiding a large batch size, typically requiring a long computation time to 

complete an epoch. Approximately 70% of data is allocated for training, whereas 30% of 

validation and testing data are used to classify the random variables. 

On the other hand, GA emulates the natural evolution process, operating on three 

operators: selection, crossover, and mutation (Wahidna et al., 2024). GA functions well in 

determining optimal global solutions. The designated parameter values and functions for GA 

involve crossover fraction, mutation function and migration function of 0.8, Gaussian and 

0.2, respectively. GA generally leads to better forecast accuracy when combining ANN with 

an iterative optimization algorithm (Wahidna et al., 2024). The hybrid optimization of the 

operational variables was further conducted using three standard AI and ML approaches, 

such as RF, SVM, and XGBoost, to generate a new population. All ANN-GA, ANN-GA-RF, 

ANN-GA-SVM and ANN-GA-XGBoost optimized data are subjected to Monte Carlo 

simulation to determine the levels of uncertainties in the simulated models.  

3.1. Mechanism of Indigo Carmine dye adsorption on the solid-

liquid interface 

The surface phenomena of adsorption process are influenced by any conditions such 

as pressure and temperature changes. The adsorption of dye adsorbate can be affected by 

thermodynamic conditions of the aqueous solution. High temperature of the solution can 

disrupt the intermolecular forces between the dye adsorbate and adsorbent materials, 

loosening up the adhesion at the contact surface within the solid-liquid interphase, resulting 

in the desorption of dye adsorbate from the adsorbent surface. Throughout the experimental 
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studies, the temperature of the dye solution was varied to examine the adsorption behaviour 

of bone char to remove Indigo Carmine dye pollutants. Bone char has a high degree of 

porosity, a strong tendency to uptake significant amounts of dye pollutants from solutions, 

and the adsorption equilibrium time takes longer to reach. During the adsorption process, the 

concentration of dye adsorbate varies as the adsorbent attracts the dye pollutants using its 

surface functionalities. The dye pollutants can either accumulate on the adsorbent surface or 

diffuse into the pores of the adsorbent materials as shown in Figure 1. 

The thermodynamic conditions of the aqueous solution have a significant effect on the 

adsorption efficiency of the adsorbent material. When the pores of the adsorbent material are 

solvated by the water molecules, it takes a considerable amount of energy to displace the 

water molecules to facilitate the adsorption of dye molecules. If the free energy of the water 

molecules is too high and the activation energy of the adsorption process is too large, it 

would take a greater amount of energy from the dye molecules to displace the water 

molecules to be diffused or adsorbed into the pores of the adsorbent material. The adsorption 

process must be thermodynamically favourable to facilitate the adsorption of dye pollutants 

onto the adsorbent materials. Therefore, the balance between the Gibbs free energy, 

activation energy, enthalpy and other thermodynamic parameters is very critical to facilitate 

the adsorption process. In addition, the interactive forces between the adsorbent surface and 

dye adsorbate must be strong to facilitate the mass transfer of solute onto a substrate. The 

adsorption equilibrium is reached when the adsorbent surface is saturated with dye pollutants. 

The isotherm models are used to characterize the adsorption phenomena using detailed 

analysis and estimation between the experimental and theoretical models. The nature of the 

adsorbate-adsorbent complex is influenced by the variation of operating conditions, which 

directly impacts the adsorption process. The physicochemical characteristics of the adsorbent 

materials are significant and play major roles in facilitating the adsorption process.      
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Figure 1. Inner pore region of the bone char adsorbent. 

3.2. Adsorption data 

The batch adsorption studies were performed to examine the uptake amount of IC dye 

pollutant using bone char adsorbent. Figure 2a shows the removal ratio of IC pollutants 

across different initial IC concentrations. The dye sorption usually occurs when the IC 

molecules diffuse from the bulk liquid onto the adsorbent surface through the solid-liquid 

interface. On the other hand, Figure 2b represents the adsorbent loading of IC adsorbates onto 

the bone char adsorbent surface. The IC adsorbates interacted with the active sites on the 

adsorbent surface through intermolecular interactions such as van der Waals’ interaction, 

electrostatic interaction, hydrophobic interaction, ᴨ-ᴨ electron donor-acceptor interaction, and 

hydrogen bonding.  
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Figure 2. a) IC removal efficiencies of bone char adsorbent across different initial dye 

concentrations at 30°C; b) Adsorbent loading of bone char adsorbent across different initial 

dye concentrations at 30°C. 

3.3. Thermodynamics of adsorption systemThe surface phenomena of 

adsorption process are influenced by any conditions such as pressure and temperature 

changes. The adsorption of dye adsorbate can be affected by thermodynamic conditions of 

the aqueous solution. High temperature of the solution can disrupt the intermolecular forces 

between the dye adsorbate and adsorbent materials, loosening up the adhesion at the contact 

surface within the solid-liquid interphase, resulting in the desorption of dye adsorbate from 
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the adsorbent surface. Throughout the experimental studies, the temperature of the dye 

solution was varied to examine the adsorption behaviour of bone char to remove Indigo 

Carmine dye pollutants. Bone char has a high degree of porosity, a strong tendency to uptake 

significant amounts of dye pollutants from solutions, and the adsorption equilibrium time 

takes longer to reach. During the adsorption process, the concentration of dye adsorbate 

varies as the adsorbent attracts the dye pollutants using its surface functionalities. The dye 

pollutants can either accumulate on the adsorbent surface or diffuse into the pores of the 

adsorbent materials. The thermodynamic conditions of the aqueous solution have a 

significant effect on the adsorption efficiency of the adsorbent material. When the pores of 

the adsorbent material are solvated by the water molecules, it takes a significant amount of 

energy to displace the water molecules to facilitate the adsorption of dye molecules. If the 

free energy of the water molecules is too high and the activation energy of the adsorption 

process is too large, it would take a greater amount of energy from the dye molecules to 

displace the water molecules to be diffused or adsorbed into the pores of the adsorbent 

material. The adsorption process must be thermodynamically favourable to facilitate the 

adsorption of dye pollutants onto the adsorbent materials. Therefore, the balance between the 

Gibbs free energy, activation energy, enthalpy and other thermodynamic parameters is very 

critical to facilitate the adsorption process. 

Furthermore, thermodynamic conditions had a significant effect on the adsorptive 

performance of bone char. A set of thermodynamic parameters evaluated in Figures 3 and 4 

show that Gibbs free energy and activation energy of the IC adsorption equilibrium system 

were the lowest at 1.68 kJ/mol and -0.099 kJ/mol (Table 1), respectively, indicating that 

minimal free energy from dye molecules was required to displace the water molecules within 

interior adsorption sites of the adsorbent, resulting in strong adsorption taking place. Low 

Gibbs free energy indicated that the IC adsorption system at 30°C was thermodynamically 
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favourable. When coupled with low activation energy, the adsorption or reaction process was 

spontaneous, leading to strong adsorption efficiency. In addition, ANSYS FLUENT software 

was used innovatively to investigate the computational fluid dynamics and thermodynamic 

effects of a packed bed reactor integrated with bone char adsorbents to filter xenobiotic dye 

wastewater, as shown in Figure 5. The path lines represented both flow velocity vectors and 

temperature distribution within the packed bed reactor to indicate the process dynamics of the 

upscaled adsorption process technology.  

 

Figure 3. Determination of Gibbs free energy of the solution with temperature ranging from 

30°C to 60°C. 

ΔG (30°C) ΔG (40°C) ΔG (50°C) ΔG (60°C)
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Figure 4. Determination of activation energy of the solution with increasing initial dye 

concentration at temperatures ranging from 30°C to 60°C. 

 

Figure 5. Computational fluid dynamics (CFD) simulation of a packed bed reactor containing 

bone char adsorbents for industrial filtration of xenobiotic dye wastewater. 
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1.1.5 3.4. AI optimisation of adsorption systemAdaptive neuro-fuzzy inference 

system (ANFIS) 

ANFIS is a hybrid algorithm where nodes of a feedforward neural network handle 

fuzzy parameters (Zaghloul et al., 2020). ANFIS is specifically used to model the IC 

adsorption system, which is characterized by high uncertainty, perturbation, or complexity. In 

particular, Figure 4a shows the ratio of IC removal versus initial IC concentration in aqueous 

solution over time using bone char adsorbent. On the other hand, Figure 4b shows that the 

adsorbent loading reached an adsorption equilibrium between 10 to 15 minutes, indicating 

that it took considerable time to remove IC from aqueous solution using bone char adsorbent. 

Similarly, for modelling artificial neural network (ANN), ANFIS is programmed to train 

dataset. Training ANN means determining the input parameters, such as IC concentration 

removal, using an optimisation algorithm, as shown in Figure 6a. In this approach, the 

premise parameters are determined using gradient descent (GD), and consequence parameters 

are generated using the least square estimation (LSE) method. 

The coefficient of determination (R2) for determining the degree of curve fitting is 

illustrated in Figure 6b. This technique is known as learning with samples. When learning is 

completed, an appropriate ANN model can be generated. More critically, the test dataset is 

utilised to measure the success of the developed model as shown in Figure 6c. The difference 

between the predicted and actual values is the error. In this case, Figure 6d shows that the 

correlation coefficient of the test dataset is approximately 0.707. The lower the predictive 

error, the better the ANN model is. In particular, ANFIS has adopted some proportion of 

learning ability and relational structure to ANN with the decision-making mechanism of 

fuzzy logic combined in the system. This way, the most ideal ANFIS architecture is 

generated to solve the related problem. The obtained structure is subjected to the test process 

to evaluate the level of impact on samples. The lower the predictive error, the more suitable 
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the ANFIS model is for optimisation. Unlike ANFIS optimisation, the weight values 

generated from ANN could not be defined (Karaboga & Kaya, 2019). This disadvantage is 

addressed by fuzzy inference system, which is the critical component of ANFIS. This core 

architecture can be exploited to solve various real-world problems.  

 

 

Figure 6. a) ANFIS trained input and output data; b) ANFIS generated regression coefficient 

of input and output data; c) ANFIS tested input and output data and d) Regression coefficient 

of all input and output data.  

3.5. Prediction efficiency of the AI and Monte Carlo simulation models 

Simulation-based approaches were formulated using Monte Carlo generated data. The 

Monte Carlo simulation provides a variety of possible outcomes determined from the 

probability of random variables. It offers a succinct visualisation through deterministic 

forecasts and prediction of variables based on uncertainties. By determining the true 

probability distribution, the performance of optimised models can be quantified by employing 

formal and objective statistical analysis based on criteria such as approximating the 
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probability density functions to normal distributions. Table 2 shows the prediction 

efficiencies of different optimised models based on the actual experimental values. To 

validate the optimised models, one of the requirements was to compare the uncertainties 

between the prediction efficiencies of different machine learning-based approaches to 

evaluate the estimated uncertainties by studying different shapes of P-P and Q-Q plots, which 

represent theoretical cumulative distribution versus empirical cumulative distribution curves 

as shown in Figures 7a-h. Figure 7a shows the P-P plot of actual experimental values, which 

was not significantly different from the P-P plot of optimised models as shown in Figure 7b. 

In contrast, the Q-Q plot in Figure 7e compares the quantiles of standardised normal data 

distribution versus actual IC concentration values, which assessed whether the dataset 

plausibly came from some theoretical distribution, such as normal data distribution. Judging 

from the Q-Q plot of Figure 7e, the standardised normal data distribution was not 

significantly different from Figure 7a, indicating that the actual data could be over or 

underestimated. The pattern of optimised data in Figure 7b shows the ANN-GA-RF 

algorithm resembled all other P-P plots, indicating no significant deviation in prediction. 

Compared with Figure 7f, the Q-Q plot shows a significant tendency for ANN-GA-RF-

optimised models to exhibit a slight overfitting data pattern based on the standardised normal 

data distribution. When cross-referenced with the ANN-GA-RF-optimised values in Table 2, 

there are some minor fluctuations in predicted values. On the other hand, Figure 7c exhibits 

an oscillating pattern of optimised data, indicating that the ANN-GA-SVM algorithm tends to 

fit the data remarkably well, leading to significant uncertainty or inaccuracy in the predicted 

values. Similarly, the Q-Q plot in Figure 7g shows that the standardised normal distribution 

of predicted IC concentration values exhibited no overfitting data pattern under ANN-GA-

SVM optimisation. More interestingly, Figure 7d P-P plot shows a more stable pattern of 

optimised data, more aligned with the actual experimental values. It exhibits little to no 
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fluctuation in predicted values, indicating that the ANN-GA-XGBoost algorithm generated a 

remarkable curve fitting between actual and optimised data. Moreover, the Q-Q plot in Figure 

7h shows the ANN-GA-XGBoost optimised model exhibited a well-aligned normal data 

distribution to the actual data, indicating slightly better prediction efficiency than the ANN-

GA-RF optimised model. Furthermore, Figure 7i shows the probability density function, 

which represents a continuous version of a histogram with densities, and it specifies how the 

probability density is distributed over a range of actual final IC aqueous concentrations as 

random variables. On the other hand, Figure 7j shows a moderate cumulative relative 

frequency of approximately 0.5 or 50%, which was achieved for an actual IC aqueous 

concentration of 85 mg/L. In contrast, at a higher initial IC concentration, especially greater 

than 85 mg/L, the cumulative relative frequency increased from 0.5 or 50% to 1.0 or 100%, 

indicating that the predictive performance of ANN-GA tends to fit better if a moderately high 

IC concentration parameter was considered. Figure 7i shows an increase in probability 

density at 30 mg/L, indicating that the ANN-GA-RF algorithm was more suited to accurately 

predict a low range of IC concentrations due to less noise or reduced tendency to overfit data. 

On the other hand, Figure 7m-n shows that the prediction efficiency of ANN-GA-SVM 

optimisation was better when actual IC aqueous concentration ranging between 40 and 70 

mg/L, indicating that this optimisation technique was capable of encapsulating the actual 

range of IC concentration more accurately compared to ANN-GA-RF ensemble. More 

interestingly, ANN-GA-XGBoost optimisation generated a strong probability density level, 

giving a more accurate prediction of moderately high IC aqueous concentration ranging 

between 55 and 85 mg/L. In addition, Table 2 ANN-GA optimised values show that the data 

more closely resembled the actual values, achieving a stabilised IC solution equilibrium 

concentration of 4.712 mg/L after 20 mins of contact time onwards. In addition, Table 3 

provides a more thorough analysis of the actual performance of simulations using descriptive 
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statistics to analyse the level of uncertainty in AI/ML-optimised models. Comparing the 

skewness versus standard error of skewness, the results showed that ANN-GA-SVM 

achieved a skewness of 0.018 versus 0.077 of standard error of skewness, indicating that the 

values were sufficiently close, achieving a significant reduction in prediction error. On the 

other hand, the skewness values of ANN-GA, ANN-GA-RF and ANN-GA-XGBoost 

optimised models were largely different from the standard errors of skewness, indicating 

more significant deviations compared to ANN-GA-SVM models, resulting in higher 

prediction errors. Similarly, the values of Kurtosis of the ANN-GA-XGBoost and ANN-GA-

SVM optimised models were significantly smaller than the standard errors of Kurtosis, 

indicating significantly less variance or extreme deviations compared to ANN-GA and ANN-

GA-RF optimised models. In contrast, the optimised Kurtosis value of ANN-GA-XGBoost 

was minimal. At the same time, Table 4 shows the MSE value of this ensemble was 21.407, 

indicating that the normal distribution was lightly tailed compared to other ensembles. Still, 

the prediction accuracy was limited to a moderately high IC concentration range between 55 

and 85 mg/L. The result indicated that the ANN-GA-SVM algorithm achieved better 

prediction efficiency than ANN-GA-RF and ANN-GA-XGBoost. Regarding sensitivity 

analysis, Figure 8a-i shows that both ANN-GA-XGBoost optimisation has the least 

significant impact on the prediction efficiency due to fewer contributions or sensitivities to 

the changes in actual IC aqueous concentration as shown in Tornado diagrams. In contrast, 

the spider diagrams show that ANN-GA-RF exhibited the highest range of impact from 

minimal slope between the actual IC aqueous concentration values versus predicted values, 

indicating that ANN-GA-RF optimisation has a much greater tendency to overfit the data. A 

stronger sensitivity of ANN-GA-RF-predicted models than the actual model indicated greater 

overall uncertainty. However, ANN-GA-XGBoost-optimised models demonstrated the least 

sensitivity impact compared to ANN-GA-RF-predicted models. Still, the ANN-GA-XGBoost 
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tended to underestimate the values of IC concentration removed from the aqueous solution. 

On the other hand, ANN-GA-SVM-optimised models demonstrated a well-balanced 

sensitivity impact compared to its counterparts, indicating that it tends to predict the target IC 

concentration more accurately.  

Furthermore, Table 5 represents the Spearman correlation matrix, which measures the 

monotonic association between the variables regarding ranks. It measures the effect that 

increasing one variable has on other variables. Occasionally, the relationship among the 

variables is non-linear or bivariate normal. If the Spearman correlation coefficient is 1, it 

indicates a strong correlation between the variables, whereas 0 indicates a neutral 

relationship, and -1 indicates no significant correlation. For example, the simulation results 

from three AI/ML optimised models showed that there is a slight negative coefficient of -

0.063 between the predicted results between ANN-GA-XGBoost and ANN-GA-SVM 

optimisation techniques, which indicated that these optimisation methods yielded the best 

prediction result relative to ANN-GA and ANN-GA-RF ensembles. However, there was a 

less positive correlation coefficient of 0.694 and 0.726 between the predicted results obtained 

between ANN-GA versus ANN-GA-RF and ANN-GA versus ANN-GA-XGBoost, indicating 

that when ANN-GA-RF and ANN-GA-XGBoost optimisation methods were used in 

combination resulted in higher positive deviations between the actual and predicted datasets, 

overshooting the targeted values of IC concentration. In addition, Table S1 in the 

Supplementary Material shows further detail on the simulation results of distributions and 

result variables. After simulations, Table S1 results validated that the ANN-GA-SVM 

algorithm produced the most accurate prediction compared to ANN-GA, ANN-GA-XGBoost 

and ANN-GA-RF algorithms based on its prediction efficiency. In addition, Figure 9 

represents the Monte Carlo simulation details of uncertainty estimation and prediction 

efficiency of IC removal efficiency in aqueous systems. Improvement in skewness or heavy-
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tailed distributions in Figure 9 regression models indicated strong predictive density forecasts 

of IC adsorption process.  

Table 2 

Comparison between the prediction efficiencies for removal efficiency of xenobiotic IC dye 

using Bone Char at 30°C 
Contact Time in 

Mins 

Experimental IC 

Concentration (mg/L) 

ANN-GA 

Optimisation 

(mg/L) 

ANN-GA-SVM 

optimisation 

(mg/L) 

ANN-GA-RF 

optimisation 

(mg/L) 

ANN-GA-

XGBoost 

optimisation 

(mg/L) 

0 30.980 29.802 12.746 7.488 19.633 

5 10.392 10.861 9.943 12.436 19.633 

10 4.471 5.413 6.933 10.242 5.498 

15 4.078 5.052 5.124 6.105 5.498 

20 4.706 5.629 4.712 5.560 5.498 

25 4.549 5.485 4.997 5.368 5.498 

30 3.490 4.511 5.428 5.893 5.498 
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Figure 7. Monte Carlo simulations are used to predict the probability of IC removal 

outcomes based on the random variables to evaluate the level of uncertainties in prediction 

models; a) P-P plot based on actual IC aqueous concentration by ANN-GA optimisation; b) 

P-P plot based on predicted final IC aqueous concentration by ANN-GA-RF optimisation; c) 

P-P plot based on predicted final IC aqueous concentration by ANN-GA-SVM optimisation; 

d) P-P plot based on predicted final IC aqueous concentration by ANN-GA-XGBoost 

optimisation; e) Q-Q plot based on actual IC concentration by ANN-GA optimisation; f) Q-Q 

plot based on predicted IC aqueous concentration by ANN-GA-RF optimisation; g) Q-Q plot 

based on predicted IC concentration removed by ANN-GA-SVM optimisation; h) Q-Q plot 

based on predicted IC aqueous concentration by ANN-GA-XGBoost; i) Histogram of actual 

final IC aqueous concentration by ANN-GA optimisation; j) Empirical cumulative 

distribution of actual IC concentration by ANN-GA optimisation; k) Histogram of predicted 

IC aqueous concentration by ANN-GA-RF optimisation; l) Empirical cumulative distribution 

of predicted IC aqueous concentration by ANN-GA-RF optimisation; m) Histogram of 

predicted IC aqueous concentration by ANN-GA-SVM optimisation; n) Empirical 

cumulative distribution of predicted final IC aqueous concentration by ANN-GA-SVM 

optimisation; o) Histogram of predicted final IC aqueous concentration by ANN-GA-

XGBoost optimisation; p) Empirical cumulative distribution of predicted final IC aqueous 

concentration by ANN-GA-XGBoost optimisation; q) ANOVA regression analysis of IC 

removal efficiency versus contact time by ANN-GA-SVM; r) ANOVA regression analysis of 
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IC removal efficiency versus contact time by ANN-GA-RF; s) ANOVA regression analysis 

of IC removal efficiency versus contact time by ANN-GA-XGBoost; t) ANOVA regression 

analysis of IC removal efficiency versus contact time by ANN-GA.   

  

Table 3. Summary of simulation results using descriptive statistics to evaluate the 

uncertainties in predicting IC removal efficiencies by bone char adsorbent. 

Statistic 

Actual IC Concentration 

(mg/L) by ANN-GA 

optimisation 

IC Concentration by 

ANN-GA-Random 

Forest 

IC Concentration by 

ANN-GA-SVM 

IC Concentration by 

ANN-GA-XGBoost 

Nbr. of observations 1000 1000 1000 1000 

Nbr. of missing 

values 0 0 0 0 

Sum of weights 1000 1000 1000 1000 

Minimum 66.802 3.846 41.726 56.510 

Maximum 102.872 38.401 73.882 88.923 

Freq. of minimum 1 1 1 1 

Freq. of maximum 1 1 1 1 

Range 36.070 34.555 32.157 32.413 

1st Quartile 81.489 17.928 54.041 68.628 

Median 84.866 21.309 57.414 71.989 

3rd Quartile 88.233 24.663 60.777 75.364 

Sum 84863.967 

21301.44

9 

57421.23

6 

71997.28

9 

Mean 84.864 21.301 57.421 71.997 

Variance (n) 25.097 25.025 24.966 24.924 

Variance (n-1) 25.123 25.050 24.991 24.949 

Standard deviation (n) 5.010 5.002 4.997 4.992 

Standard deviation (n-

1) 5.012 5.005 4.999 4.995 

Variation coefficient 0.059 0.235 0.087 0.069 

Skewness (Pearson) 0.002 0.001 0.018 0.004 

Skewness 0.002 0.001 0.018 0.004 

Skewness (Bowley) -0.002 -0.004 -0.001 0.002 

Kurtosis (Pearson) 0.065 0.009 -0.028 -0.047 

Kurtosis 0.071 0.015 -0.023 -0.042 

Standard error of the 

mean 0.159 0.158 0.158 0.158 

Lower bound on 

mean (XXXX%) 84.553 20.991 57.111 71.687 

Upper bound on mean 

(XXXX%) 85.175 21.612 57.731 72.307 

Standard error 

(Skewness (Fisher)) 0.077 0.077 0.077 0.077 

Standard error 

(Kurtosis (Fisher)) 0.155 0.155 0.155 0.155 

Mean absolute 

deviation 3.992 3.990 3.989 3.987 

Median absolute 

deviation 3.375 3.376 3.379 3.368 

Geometric mean 84.715 20.662 57.202 71.823 

Geometric standard 

deviation 1.061 1.292 1.092 1.072 

Harmonic mean 84.566 19.928 56.980 71.648 

 



 

167 

Table 4. Error function analysis of prediction efficiencies by various AI/ML ensembles. 

 ANN-GA-SVM ANN-GA-RF ANN-GA-XGBoost ANN-GA 

R2 0.730 0.445 0.625 0.526 

Adjusted R² 0.676 0.334 0.550 0.432 

MSE 3.072 4.955 21.407 47.967 

RMSE 1.753 2.226 4.627 6.926 

MAPE 20.884 21.117 48.800 64.370 
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Figure 8. Monte Carlo simulation models based on the empirical distribution of input 
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uncertainties; a) Sensitivity analysis of the difference between the actual and predicted IC 

removal efficiencies by ANN-GA-RF; b) Sensitivity analysis of the difference between the 

actual and predicted IC removal efficiencies by ANN-GA-SVM; c) Sensitivity analysis of the 

difference between the actual and predicted IC removal efficiencies by ANN-GA-XGBoost; 

d) Tornado analysis of the difference between the actual and predicted IC removal 

efficiencies by ANN-GA-RF; e) Tornado analysis of the difference between the actual and 

predicted IC removal efficiencies by ANN-GA-SVM; f) Tornado analysis of difference 

between the actual and predicted IC removal efficiencies by ANN-GA-XGBoost; g) Spider 

analysis of difference between the actual and predicted IC removal efficiencies by ANN-GA-

RF; h) Spider analysis of difference between the actual and predicted IC removal efficiencies 

by ANN-GA-SVM; i) Spider analysis of difference between the actual and predicted IC 

removal efficiencies by ANN-GA-XGBoost.  

Table 5. Simulation results by Spearman correlation matrix. 

Variables 

Actual IC 

Concentratio

n (mg/L) by 

ANN-GA 

optimisation 

IC 

Concentratio

n by ANN-

GA-Random 

Forest 

IC 

Concentratio

n by ANN-

GA-SVM 

IC 

Concentratio

n by ANN-

GA-

XGBoost 

Difference 

by ANN-

GA-RF 

Differenc

e by 

ANN-

GA-SVM 

Difference 

by ANN-

GA-

XGBoost 

Actual IC 

Concentratio

n (mg/L) by 

ANN-GA 

optimisation 1 0.013 0.013 -0.077 0.694 0.682 0.726 

IC 

Concentratio

n by ANN-

GA-Random 

Forest -0.013 1 0.036 -0.037 -0.696 -0.037 0.018 

IC 

Concentratio

n by ANN-

GA-SVM 0.013 0.036 1 0.017 -0.022 -0.687 0.002 

IC 

Concentratio

n by ANN-

GA-

XGBoost -0.077 -0.037 0.017 1 -0.015 -0.063 -0.712 

Difference 

(ANN-GA-

RF) 0.694 -0.696 -0.022 -0.015 1 0.505 0.485 

Difference 

(ANN-GA-

SVM) 0.682 -0.037 -0.687 -0.063 0.505 1 0.504 

Difference 

(ANN-GA-

XGBoost) 0.726 0.018 0.002 -0.712 0.485 0.504 1 

Please note that hybrid AI/ML differences represent the difference between the actual and 

predicted IC removal efficiencies by hybrid algorithms. 
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Figure 9. Monte Carlo simulation details are represented by scatter plots and correlation 

maps. 

3.6. Bayesian distribution network analysisA Bayesian network analysis 

involves a mathematical model for representing a causal relationship between random 

variables by estimating the conditional probability outcome (Wang et al., 2022). Bayesian 

network is an appropriate tool for evaluating the uncertainty with real applications. Through 

representation, a Bayesian network projects a probabilistic graphical model to illustrate 

knowledge about an uncertain domain. Each node corresponds to a random variable, and each 

edge represents a conditional probability for the corresponding random variable (Cui et al., 

2024). The Bayesian approach helps to identify the causal relationship with the IC adsorption 

process by estimating the conditional probability. Figure 10a shows that one of the random 
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variables, contact time, has approximately 15% conditional probability based on its impact on 

the IC adsorption from 0 to 30 mins. 

On the other hand, Figure 10b shows that a temperature range of 45 to 50ºC yielded 

approximately 43% conditional probability compared to all different temperature ranges, 

indicating that this temperature range may significantly impact IC removal efficiency. This 

result corresponded to Figure 3 of Gibbs free energy ranging between 1.800 and 1.924 

kJ/mol, indicating an optimal condition with a high probability of an IC removal event 

occurring at the particular temperature range. Figure 10c shows the highest probability of an 

IC removal event occurring at an initial IC concentration of 60 to 80 mg/L. In contrast, other 

random variables, such as adsorbent loading (Figure 10d) and IC removal efficiency (Figure 

10e) yielded a conditional probability of 15%, indicating no significant causal relationship 

between random variables with IC removal efficiency other than solution temperature and 

initial IC concentration at a specific range. Although the results from Bayesian network 

analysis showed that adsorbent loading and contact time may have a marginal probabilistic 

effect on the IC removal efficiency, solution temperature and initial IC concentration at a 

specific range have more impact on the IC removal rate which could not be estimated from 

other data analyses other than using Bayesian approach. In addition, Table 6 summarises 

Bayesian results that determine the causal relationships among random variables by using 

conditional probabilities to represent knowledge about the uncertainty in the variables. 

According to Table 6, the Bayesian network analysis shows that solution temperature 

between 45 and 50°C and initial IC concentration of 60 to 80 mg/L significantly impacted the 

IC removal rate compared to other variables. The Bayesian results also indicated that there 

could be some uncertainties in other AI/ML optimisation techniques, which may affect the 

prediction efficiency. In addition, Table 7 provides comparative analysis of AI/ML predictive 

efficiency between primary and secondary sources.   
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Figure 10. Bayesian distribution network analysis is a statistical tool based on an acyclic-

oriented graph and a probability table, which is commonly used in artificial intelligence to 

represent data and its uncertainties: a) Marginal probability distribution of the contact time 

node; b) Marginal probability distribution of the solution temperature node; c) Marginal 

probability distribution of the initial IC concentration node; d) marginal probability 

distribution of the adsorbent loading node; e) Marginal probability distribution of the IC 

removal efficiency.  

Table 6 

Summary of causal relationships among random variables by using conditional probabilities 

to represent knowledge about the uncertainty in the variables. 
Contact Time in Mins Solution Temperature 

(°C) 

Initial Dye Concentration 

(mg/L) 

Adsorbent Loading 

(mg/g) 

Dye Removal Efficiency 

(%) 

Modality Probability Modality Probability Modality Probability Modality Probability Modality Probability 

[0; 

5,000[ 0.143 

[30,000; 

40,000[ 0.143 

[20,000; 

40,000[ 0.143 

[0; 

1,373[ 0.143 

[100,000; 

100,000] 0.142 

[5,000; 

10,000[ 0.143 

[40,000; 

45,000[ 0.143 

[40,000; 

60,000[ 0.143 

[1,373; 

1,752[ 0.143 

[33,544; 

100,000[ 0.142 

[10,000; 

15,000[ 0.143 

[50,000; 

60,000[ 0.143 

[60,000; 

80,000[ 0.429 

[1,767; 

1,793[ 0.143 

[14,430; 

14,684[ 0.143 

[15,000; 

20,000[ 0.143 

[60,000; 

60,000] 0.143 

[80,000; 

100,000[ 0.143 

[1,793; 

1,833[ 0.143 

[13,165; 

14,430[ 0.142 

[20,000; 

25,000[ 0.143 

[45,000; 

50,000[ 0.429 

[100,000; 

100,000] 0.143 

[1,752; 

1,762[ 0.143 

[15,190; 

33,544[ 0.143 

[25,000; 

30,000[ 0.143 

[30,000; 

40,000[ 0.143 

 

[1,762; 

1,767[ 0.143 

[14,684; 

15,190[ 0.145 

[30,000; 

30,000] 0.143 

[40,000; 

45,000[ 0.143 

[1,833; 

1,833] 0.143 

[11,266; 

13,165[ 0.145 

 

Table 7 

Comparison of AI/ML prediction efficiency between experimental results and secondary sources from 

literature. 

Type of adsorbent Type of 

pollutant 

Operating 

Conditions 

Prediction 

efficiency 

Reference 

Polymer/graphene/clay/MgFeAl-

LTH nanocomposite 

Methyl 

orange and 

crystal 

violet 

C0 = 5 to 500 

mg/L 

Ct = 5 mins 

to 20 hours 

R2 (RF) = 

0.92 

 

MSE (RF)= 

6636.84 

 

RMSE (RF) 

= 81.47 

 

MAE (RF) = 

57.57 

BinMakhashen 

et al. (2024) 

Sugarcane-derived carbon dots 

and TiO2 based chitosan 

composite 

Methyl red, 

Brilliant 

green 

C0 = 50 to 

1,000 mg/L 

R2 (SVM-

RBF kernal 

function) = 

0.7419 

Momina et al. 

(2024) 
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Ct = 5-60 

mins and 10-

240 mins 

Adsorbent 

mass = 0.02-

0.05 g 

pH = 2-10 

Temperature 

= 30-60°C 

Stirring 

speed = 60, 

80, 100 rpm 

 

R2 (SVM-

polynomial) 

= 0.5576 

ZIF-60 Crystal 

violet 

C0 = 200 

mg/L 

Ct = >24 

hours 

Adsorbent 

dosage = 

0.025 g/L 

pH = 8.0 

Temperature 

= 40°C 

R2 (SVM) = 

0.9812 

 

RAE (%) 

(SVM) = 

15.94 

 

RRSE (%) 

(SVM) = 

19.92 

Ismail et al. 

(2024) 

C0 = Initial dye concentration; Ct = Contact time; MAE = Mean absolute error; MSE = Mean squared 

error; RAE = Relative absolute error; RF = Random Forest; RMSE = Root mean squared error; RRSE 

= Root relative squared error; SVM = Support vector machine 

 

In this study, we developed Monte Carlo simulations, Bayesian networks and AI/ML 

optimisation techniques to evaluate the prediction efficiency of bone char adsorption process 

using IC as a model pollutant. The data analyses demonstrated that the proposed approaches 

could improve the prediction efficiency and estimation accuracy using computational 

modelling. Although the model parameters were deduced to impact the IC adsorption process 

directly, solution temperature and initial IC concentration may have a more significant impact 

on the adsorption efficiency of bone char, especially when a specific optimal condition was 

satisfied. The prediction efficiency of ANFIS optimisation yielded appropriate curve fitting 

but with minor uncertainty. On the other hand, AI/ML optimisation techniques had some 
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uncertainties, especially for ANN-GA-RF, ANN-GA-XGBoost and ANN-GA due to 

overfitting or inability to predict noisy regression problems. In contrast, the ANFIS and 

ANN-GA-SVM algorithms yielded minimal prediction error and converged more efficiently 

with high accuracy. Therefore, the prediction efficiency of AI/ML algorithms ranked in the 

order: ANN-GA-SVM > ANFIS > ANN-GA-XGBoost > ANN-GA-RF > ANN-GA. 

However, some issues need to be considered in future work. Increasing noises or 

uncertainties in AI/ML optimisation techniques often hamper estimation accuracy. More 

challenging upscaled industrial processes require sizeable computational processing power to 

model the adsorption efficiency of bone char in a packed bed reactor. Model validation tests 

are needed to verify whether the computational models are congruent with the upscaled 

adsorption process, especially when there are multiple inlets, outlets and recycling streams, 

solution thermodynamics and the overall impact of physicochemical phenomena on the 

industrial adsorption process.   
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efficiency. The results from AI and ML ensembles provided insights into the development of 

clean, renewable wastewater treatment system with minimal greenhouse gas emissions and 
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 Most importantly, the AI and ML optimisation techniques can be applied to other 

priority areas of interest, such as the removal of pharmaceutical and PFAS/PFOS-

contaminated wastewater to achieve optimal conditions, especially in highly complex 

wastewater treatment plants, where this adsorption technology can be integrated into 

industrial processes without incurring significant capital costs.    
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 This chapter presents a comprehensive overview of the key findings of this PhD 

research project and provides a summary of recommendations for future research directions. 

8.1. Discussion and conclusions 

 This PhD research project was initially conceived to investigate specific 

anthropogenic pollutants of interest, such as pharmaceutically active compounds and textile 

dyes, to be discussed in literature reviews. However, attention was redirected to emphasize 

the novelty of AI/ML technologies applied to wastewater treatment more than highlighting 

the types of pollutants suitable for wastewater treatment. There are some ethical dilemmas 

regarding whether pharmaceutical wastewater treatment should be progressed into the 

technical experimentation stage due to hazardous aspects of chemical properties and its 

ability to give rise to antimicrobial resistance genes if not properly managed to avoid 

accidental discharge of endocrine-disrupting compounds into natural waters.  

Our central focus was to bridge related themes between Papers 1 and 2, giving rise to 

AI optimisation techniques applicable to three-dimensional electrochemical reactor and 

adsorption technology, which can be practically used to treat model dye pollutants in 

contaminated wastewater, as part of technical experimentation. Moreover, the presence of 

xenobiotic dye pollutants in our natural waters is more ubiquitous than pharmaceutical 

contaminants due to the unregulated nature of textile substances, thereby justifying the focus 

on xenobiotic dyes to be used as model pollutants and satisfying overlapping interests of 

researchers. Nonetheless, the literature reviews included a thorough discussion and critical 

analysis of critical operational parameters and its impacts on targeted responses, setting a 

foundation to extend beyond the scope of discussion and application, shifting focus onto 

xenobiotic dye wastewater treatment, the intended theme of technical experimentation. 

The technical reliability and technoeconomic aspects of three-dimensional 

electrochemical oxidation technology were critically evaluated by accounting for its ability to 

remove dye and TOC from wastewater, optimising the current efficiency, electrical energy 

consumption of dye and TOC and annual electricity cost. On the other hand, the effectiveness 

of GIC particle electrodes as adsorbent materials was evaluated using a range of adsorption 

kinetics and isotherm models to characterise the adsorption phenomena. The regeneration 

efficiency of GIC particle electrodes was equally significant. GIC particle electrodes are 

different from a conventional carbon-based adsorbent due to its ability to regenerate in the 

presence of an applied electric field electrochemically. The adsorptive capacity of GIC 
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particle electrodes can be continuously recovered. However, prolonged electrochemical 

regeneration can lead to the depletion of unique surface physicochemical properties or critical 

chemical compositions crucial for establishing electrostatic interaction between adsorbates 

and adsorbent materials. On the other hand, when intensely high current density is applied, 

intermediate transformation oxidation byproducts from the breakdown of parental 

compounds can produce undesirable effects on the dye and TOC removal rates. Therefore, a 

range of optimisation techniques were uniquely developed to achieve the optimal conditions 

for enhancing the pollutant removal efficiency of three-dimensional electrochemical 

oxidation technology.  

Management of complex operational variables requires AI and ML technologies to 

enhance the targeted responses. Although there were some drawbacks associated with some 

AI and ML optimisation techniques, more advanced techniques, such as uniquely designed 

hybrid ensembles and algorithms, were used to improve the prediction accuracy and precision 

of the models. ANOVA and error function analyses were developed to evaluate the 

adsorption efficiency and other targeted responses. The salting, pH and thermal effects on the 

selectivity reversal of GIC particle electrodes in a binary mixture were evaluated using RSM 

optimisation techniques. Nonlinear models were the best kinetic models in the order: Elovich 

> Bangham > Pseudo-second > Pseudo-first order. An error function analysis confirmed that 

the Redlich-Peterson isotherm model was the best nonlinear regression model due to the 

estimation accuracy of dye-loading capacity. The best dye removal efficiency achieved was 

approximately 93% using a current density of 45.14 mA/cm2, whereas the TOC removal 

efficiency was 67%. These estimated variables were determined based on the RSM 

optimisation studies. However, the interactive effects of process variables could be 

underestimated based on results from more advanced AI and ML ensembles. The production 

of intermediate transformation oxidation byproducts may offset the accuracy and precision of 

estimated values due to the extremely high current density used. 
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Figure 3. Electrochemical degradation of Reactive Black 5 xenobiotic dye solution 

after 5 cycles of treatment. 

Another research study was conducted with full emphasis on the use of uniquely 

designed CCD-NPRSM, AI, and ML ensembles to improve the accuracy and precision of 

estimated targeted responses. Similarly, the experiment was conducted on RB5-polluted 

wastewater to investigate the efficacy of AI and ML optimisation techniques to enhance the 

pollutant removal rates, using global optimal solutions to achieve optimal conditions for 

superior decomposition of RB5. The optimised decolouration efficiencies were 99.30%, 

96.63% and 99.14%, for CCD-NPRSM, hybrid ANN-XGBoost ensemble and CART, 

respectively, using an applied current density of 20 mA/cm2, 20 mins of electrolysis time and 

65 mg/L of RB5 as initial dye concentration. The optimisation results of CCD-NPRSM, AI 

and ML ensembles were significantly better in terms of accuracy and precision than a single 

optimisation result in another study. The optimised AI and ML models were validated using 

analysis of variance (ANOVA), which revealed that hybrid ANN-XGBoost ensemble had the 

lowest mean square error (MSE) and best coefficient of determination (R2) of 0.014 and 

0.998 compared to other optimisation techniques. Overall, the final research justified that 

hybrid ANN-XGBoost ensemble approach is the most feasible optimisation technique for 

RB5 dye wastewater treatment. Additional recommendations, such as different combination 

of AI and ML variants or higher dimensional order of RSM using nested transfer function 
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should be investigated in more detail to maximise the prediction efficiency of models with 

potential applications in achieving optimal wastewater treatment conditions. 

In comparison to more advanced AI and ML optimisation techniques, approximately 

98% of MO removal efficiency was achieved using 15 mA/cm2 of current density, 3.62 

kWh/kg of electrical energy consumption and 79.53% of current efficiency. The statistical 

metrics showed the superiority of different AI and ML optimisation techniques were ranked 

in the order: ANN > RF > SVM > Multiple Regression. The sensitivity analysis from Monte 

Carlo simulations of unique combination of AI and ML ensembles showed that ANN-RF 

ensembles yielded slightly less system perturbations, prediction variability and levels of 

estimation uncertainty compared to ANN-SVM model. 

Furthermore, the future directions are to investigate the effect of renewable energy-

driven three-dimensional electrochemical processes on pollutant removal efficiency, using 

uniquely developed electrically conductive adsorbent materials fabricated from green, 

renewable agricultural sources. The physicochemical stability of adsorbent material is critical 

to endure sustained electrolysis and protect it against particle attrition. Advanced AI and ML 

optimisation approaches should be applied to develop more efficient predictive models for 

monitoring complex wastewater matrices and effectively managing process dynamic 

conditions using process control systems. The technological capabilities of cutting-edge 

cyber-physical systems, blockchain -related technologies and the Internet of Things in the 

digital economy can be integrated into the AI and ML software and hardware, improving the 

compatibility and facilitating decision-making processes for wastewater treatment industries. 

AI-powered three-dimensional electrochemical technology can help to improve energy 

efficiency, value engineering, minimise carbon footprint and remove barriers to resource 

recovery and energy management processes. Operational costs can be reduced significantly 

by streamlining the AI and ML advanced computing techniques to create efficient energy 

management processes for renewable energy-driven electrochemical technology, thereby 

improving the technoeconomic aspects and financial viability of such technologies. 

8.2. Recommendations and future directions 

 This PhD research project successfully improved the electrochemical degradation of 

xenobiotic dye contaminants in wastewater, using uniquely designed AI and ML ensembles 

to optimise the three-dimensional electrochemical oxidation technology. The following 

research recommendations and future directions are proposed: 
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1) Different combination of AI and ML variants or higher dimensional order of RSM 

using nested transfer function should be applied in wastewater management systems 

2) The effect of renewable energy-driven three-dimensional electrochemical processes 

on pollutant removal efficiency should be investigated and applied in current 

wastewater treatment plants. 

3) Technoeconomic feasibility and environmental impact of renewable energy-driven 

three-dimensional electrochemical oxidation technology powered by AI and ML 

advanced computing technology should be investigated. 

4) Fabrication of electrically conductive adsorbent materials derived from green, 

renewable agricultural sources 

5) Electrode doping and surface morphology tuning using nanoengineering techniques 

should be applied to improve the electrocatalytic efficiency of anodic material in the 

three-dimensional electrochemical reactor. 

6) Advanced AI and ML computing techniques should be applied to manage data 

generated from process control systems in wastewater treatment plants. 

7) The technological capabilities of cutting-edge cyber-physical systems, blockchain -

related technologies and the Internet of Things in the digital economy should be 

integrated into the AI and ML software and hardware, improving energy management 

processes and reducing operational costs.  
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Figure A1. Number of publications by different countries in artificial intelligence technologies applied 

to wastewater treatment in 2023 (Scopus Citation Index). 

 
Figure A2. Subject fields of publications in artificial intelligence technologies applied to wastewater 

treatment in 2023 (Scopus Citation Index). 
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Figure A3. Network visualisation of publications on artificial intelligence applied to wastewater 

treatment during 1990-2023 (Web of Science, Science Citation Index). 

 




