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A method that can assess the benefit for both the customers and the distribution grid when household or
community batteries are installed without central control is presented. An agent-based model is used where the
household assets' characteristics and behaviours are modelled and linked to a network model. Electricity data
from dwellings on one street in Townsville, Australia, was used to populate the models, and simulations were run
under three battery scenarios. The scenarios considered were a) “Business as usual” when no battery storage is

installed, b) individual batteries are installed at each household, c) a community battery that would supply all
the households is installed. Customer benefits are calculated from the operational costs savings using two types
of tariffs available in Queensland. The network assets’ health is assessed considering load, current and voltage
levels at the distribution transformer. These simulations lead to a better informed decision for the customer, and
give the utility insight into how such technologies might impact their assets.

1. Introduction

The electricity sector is going through a transformation phase
driven by customers as they take up new technologies and are being
more involved in managing their energy usage [1]. One such tech-
nology is energy storage devices (ESD), which present many opportu-
nities for the distribution network service providers (DNSP), the com-
munity at large and individual customers. ESD can provide power
system services (e.g. frequency control), act as an alternative supply
source during outage events, provide local services and deferral of in-
frastructure upgrades [2-4], absorb the excess energy supplied by solar
photovoltaics (PV) on low voltage networks during the middle of the
day, and avoid high voltages issues on low voltage (LV) networks [5]. In
addition they can preserve the atmosphere and natural resources, lim-
iting carbon emissions by not relying on the grid which is mainly de-
pendent on fossil fuel, especially in Australia [6]. Finally, when pow-
ered by renewable energy sources, ESD have the potential to reduce
electricity bills for customers by optimising their consumption [7].

With high electricity costs, high penetration rates of solar PV [8]
and the recently growing affordability of batteries [9,10], the market of
privately owned batteries is expected to undergo a rapid increase in the
near future in Australia [11]. While some customers might be able to
afford their own battery, investing in a shared battery might be an al-
ternative option until the cost of batteries becomes low enough for mass

uptake. As customers are presented with the option of installing pri-
vately-owned batteries, whether they are individually owned or shared
amongst users, they need to consider how this technology might benefit
them. One question these customers are faced with is then: “how would
a battery system benefit me given my lifestyle and the current electricity
tariffs?”

In parallel, as greater numbers of privately-owned batteries are in-
stalled independently, the DNSP might not have much control over
their installation and operation. The DNSP are very aware of the risk
batteries present to their business, in terms of partial or full grid de-
fection [12], and are preparing for change to ensure they remain re-
levant. Unexpected behaviours might be observed on their network in
terms of load, voltage and current fluctuations which could affect the
health of their assets, and the provision of electricity. A question that
the DNSP might then have is: “what is the impact on the network of pri-
vately-owned and operated battery systems without central control?”

This paper presents a method to assess the benefits to both the in-
dividual consumers and the DNSP when household or community
batteries are installed without central control. This research aims at
providing the customer with a custom-tailored analysis to make an
informed choice, and the DNSP with a way to plan their system as more
batteries are being installed.

To achieve this, a custom-developed agent-based modelling and
simulation (ABMS) software, called MODAM (MODular Agent-based
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Model) [13], was extended and used. MODAM, was initially developed
to assess the impact of different trajectories of consumption at different
locations of the electricity distribution grid over many years on the
medium voltage (MV) network [14,15]. In here reported work,
MODAM has been extended to perform simulations at the LV network
where individual circuits within the home and assets on the LV network
are described within the model. The extension of the model to the LV
network and its validation are described in this paper. MODAM was
then used to run simulations for a specific LV network. This was done
using data from a case study conducted by Ergon Energy, a DNSP in
Queensland, Australia. The set up and results of the simulations are
presented in this paper, demonstrating the application of the agent-
based model (ABM) and answering the two questions raised above. The
simulations investigate two types of battery settings that the customers
might consider for installation: a) the battery is owned and operated by
each individual house or b) the battery ownership and its operation are
shared between residents. The customer assessment compares the op-
erational costs of these two arrangements under two tariff structures,
while the network assessment considers the performance for the dis-
tribution feeder or transformer in terms of power consumption, voltage
and current levels.
This paper's contribution is threefold:

An ABM of electrical flows over household circuits, LV and MV
networks. The ABM captures information about the electrical
equipment in terms of their specifications, their operation and their
connection to one another within the home and on the network. This
ABM allows modelling at a fine level of detail and performing si-
mulations at varying scales, from within the home up to the zone
substation;

Integration of various models and data-types, including me-
tered data, within one framework, facilitated by the modular and
compositional approach in building the ABM and the simulations
[13,16]. The models link the loads and generation on the system, the
performance of the physical system/network infrastructure, the
tariff structures driving the operations of the battery systems, and
energy management systems. By capturing the complex interactions
between the different elements composing the system, integrated
analyses can be performed;

Simulations to support decision-making for individual custo-
mers and network planning for the DNSP. These can guide the
decision-making process of the customer by comparing the opera-
tional costs of different battery systems, while the DNSP can assess
how their usage might impact their network. Different viewpoints of
technological uptake are consequently assessed simultaneously.
Simulations output can also be used by the DNSP to enter an en-
gagement process with their customers seeking the installation of a
new technology to reach a mutually beneficial outcome.

This paper is structured as follows: Section 2 places this work in
relation to other work. Section 3 describes the extension of the model to
the LV network and its validation. The simulations setup and the results
are presented in Section 4. A discussion follows in Section 5, with
conclusion and future work in Section 6.

2. Related work

A growing number of studies of the integration of ESD into the grid
can be found in the literature, especially in the context of smart-grids.
In many cases, agent-based approaches have been used [17] for their
capacity to represent the different entities of the system at a fine level of
detail, and see the impact of their actions and interactions at the system
level. They have been especially popular when studying the manage-
ment of distributed ESD within a distribution network [18-23]. This is
due to the fact that the rules governing their functioning and the
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communication to other assets can be described in detail so that a de-
sired goal can be achieved for the grid overall.

Often a central control system is used to coordinate an aggregation
of independently owned batteries by means of communication. This
central control aims at reaching a desired goal, such as reducing losses
over the network [18], increasing the reliability of the micro-grid [19],
maximising houses self-consumption [20], enhancing locally generated
power usage [19,21], reducing the customers energy bills with minimal
network investment [23] or maximising their profits [19,22]. This ap-
proach aligns with the agent-based control systems subclass of multi-
agent systems (MAS). Another subclass of MAS showing similarities
with agent-based control systems is agent-based modelling (ABM). Si-
milarly, agent-based models are a class of computational models that
represent a system as a collection of individual entities, called agents
that are autonomous, self-directed, self-contained and social [24]. The
main difference between these two MAS is that agent-based control
systems are built to achieve a desired emergent state of the system
while agent-based modelling aims at discovering the emergent state of
the system. In both cases, the agents interact with one another and their
environment but the agent-based control systems rectify the situation if
the system's emergent behaviour does not align with the desired goal.
As the expected number of ESD uptake increases, having a centralised
control might become a real challenge, especially as the integrity of the
whole system can become compromised [25]. The work presented in
this paper belongs to the class of agent-based modelling, where the
focus is on understanding how the electricity system might be impacted
over time by the different agents' evolution without central control. The
only “control” that might be considered is an exogenous one, where
different interventions or policies are implemented, such as a change in
tariff structure, which might impact the agent's decision rules.

Agent-based modelling has been used for many energy applications,
such as design of power markets [26,27], demand response manage-
ment [28], adoption of energy technology [29-33], or transition in
large-scale sociotechnical system [34]. Lately, it has been used to model
the adoption of PV and batteries with examples of case studies in On-
tario [35], and Germany [36]. These studies investigate how the wider
adoption of PV and battery impact the grid in terms of load required.
This estimation is however made for the overall area under study,
without considering the actual network configuration. While such stu-
dies are valuable in terms of understanding the changing energy de-
mand over an area, they do not explain how it might affect the assets
over which the power flows. Such consideration is necessary when
planning the system, or simply maintaining it under evolving require-
ments. With new technologies, pockets of technology adoption appear
on the network resulting from the social interactions of the people [29].
These might lead to great fluctuations in the voltages and currents that
can potentially damage system assets. There is currently, however, little
published ABM work that addresses the issues of system design and
planning [37].

In terms of battery systems investigated for the integration of ESD
into the grid [18-23], the term “community battery” often refers to the
aggregation of individually owned-batteries that are managed through
a central system, as opposed to one single technical system that is
shared amongst residents. An example of such shared system is cur-
rently being trialled in Western Australia [38], where 52 households
can feed-in and draw energy from a 420 kWh battery that has been
connected to the grid. It is expected that we will see more and more of
these systems over the next few years, due to a growing popularity of
the sharing economy, but also because sharing resources might be the
only option for some, such as those living in strata. However, in order
for the customers to choose the best technological option, they need to
understand the cost savings that can be achieved. By comparing the
effect of tariffs on the performance of different types of batteries cou-
pled with PVs such as in the work presented in Ref. [39], the customer
can better choose which technology to adopt. The different types of
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batteries presented in Ref. [39] however only compare individually
owned batteries. A comparison of a community energy storage to sto-
rage owned by individual houses is presented in Ref. [40]. In their
work, the authors compare the two storage settings in terms of the
required capacity of the battery systems in communities with solar
generation and how much they reduce exports to the community. They
show that community energy storage is more beneficial than in-
dividually owned batteries especially in communities with high solar
PV installation, however their results are not linking the energy flows to
the network assets.

The different studies presented above highlight that there is a need
to understand how different battery systems installed with solar PV will
impact the loads and the assets over the network. The work presented in
this paper fills this gap, where the different assets consuming and
producing electricity within the home are modelled and their usage
impact on the LV network is assessed by linking the energy flows to the
network infrastructure. Assessment of the benefits for the individual
customers and the DNSP is done using agent-based modelling and si-
mulation, which is a technique that has proven to be useful when
modelling system evolution without central control.

2.1. The agent-based model — modelling at the low voltage network

MODAM, an agent-based modelling software developed using a
dynamic agent composition [13] was used and extended for the purpose
of this study.

An agent is defined in MODAM as

Agent = Asset + Behaviours

Where data can be used to populate either or both their attributes. The
asset and its behaviours then come together dynamically to create an
agent at simulation setup.

When extending the ABM, these three aspects needed to be con-
sidered. The extension of the asset and the behaviour models was
guided by the simulation aim as well as the data available. Thanks to
the compositional approach in building the ABM, existing assets and
behaviours’ definitions could be reused to answer the analyses aim,
facilitating the task. Details about the model extension and its valida-
tion are given below.

2.2. Extension of the agent-based model

2.2.1. The data

With the growing number of installation of smart meters and home
energy management systems (HEMS), electricity consumption and
generation data is becoming more widely available. Our ABM takes
advantage of available data when possible, making it a data-driven as
well as a rule-based model. In some instances, data is used directly from
logs; in other instances, data is used to populate rule-based descriptions
of agents' behaviours or to develop sub models of agents’ behaviours.

Ergon Energy, the DNSP partnering on this project, supplied two
main types of data: 1) consumption data and generation data from solar
PV, collected at the meter for three tariff types and by HEMS for dif-
ferent circuits within the homes, and 2) data describing the config-
uration of the LV network and the circuits within the homes.

This data had been collected and used for a case study that aimed at
understanding consumers and their interactions with new technologies.
The case study site consisted of one street in Townsville were 14 houses
are connected to a 100 kVA transformer on a three phase LV network.
Nine of these fourteen houses (labelled S[1--14] in the network con-
figuration file) participated in the study and were supplied with solar
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panels, battery systems and HEMS. Data from the participating houses
are described below (omitting non-participatory sites S01, S09, S10 and
S14).

Both the data collected by the HEMS and at the meter point were
recorded for every half hour over three weeks in January 2016. HEMS
data was recorded in Excel spreadsheet with headers describing the
household circuits. Because the HEMS were setup manually without
following a naming convention, headers varied from file to file. For
example, some headers read “A.C” or “AC” or “A.C.1” for air-condi-
tioners. These names were consolidated manually to obtain consistently
named categories, reducing the number of headers from 41 to 12 ca-
tegories. These categories consisted in air-conditioning, battery, bore
pump, hot water, light, outdoor building, oven, pool pump, power
plugs, solar panels, spa, and stove. This data was used to inform the
extension of the asset model, in terms of assets and their characteristics,
see Section 3.1.2, as well as to populate the household load behaviour
model. Fig. 1 shows the average hourly load consumed or generated for
each of the circuits recorded by the HEMS for each household. The
loads of all of the appliances within the home are displayed as stacked
for every half hour, including the load generated by the solar panels
displayed as a negative value. The overall consumption, being the sum
of all the loads within the home, is also shown by a line. In some cases,
the load from solar generation is greater than the household demand,
resulting in excess generation which is then exported to the grid. This is
the case for example for S04 who produces more on average than they
consume between 8am and 4pm. Fig. 1 therefore highlights how the
loads vary between the different households, in terms of patterns of
daily consumption and overall daily consumption. It can also be used to
understand which appliances contribute most to the load and when, in
the aim of finding ways to reduce individuals’ bills. For example S04
has its load peaking on average at 5am because of the load for the pool
pump while they are exporting their solar energy during the middle of
the day. Assuming that their feed-in tariff is lower than their load tariff,
they would be better off switching the time of their pool pump from
morning to the middle of the day to absorb their excess generation.

The data recorded at the meter point, also recorded in spreadsheets,
was used for model validation. This data was available over a longer
period of time, 18 months, and was limited to the same three weeks in
January for the model validation. Fig. 2(a) shows the daily average
consumption for the different households over the 18 months, broken
down into the amount of PV exported to the grid (orange) and what is
billed to the customer (grey). For example, S04 imports on an average
day 17 kWh from the grid and exports around 13.4 kWh, leaving an
average net import from the grid of 3.6 kWh while S11 imports on
average 21.3kWh, exports 2.5kWh, giving an average net import of
18.7 kWh. This figure highlights how the households differ in the
consumption and production despite being located in the same street. It
further highlights how much of the energy produced by the PV panels is
not used within the home on an average day. Misalignment between the
solar generation and the demand, which is defined as the ratio of PV
exported to the total PV generated as defined in Ref. [40], was further
calculated using the HEMS data over three weeks. Fig. 2(b) shows a
histogram of the misalignment values calculated for every half hour for
all the households. The proportion of time when the solar panels export
is displayed against the ratio of solar exported to the total solar gen-
erated. For example, between 10 and 20% of the solar generated by the
PVs is exported for around 30% of the time when PVs generate. The
average misalignment over the three weeks for all homes was 22%,
which is not excessive. However, when calculating these values for
individual households, the misalignment values ranged from 2% to
62%, as shown in Table 7. This means that for those with high
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Fig. 3. Extension of the asset model. The (previous) network model and the (new) household model can work independently to perform simulations at the medium
network level, or the household level, and together to perform simulations at the low and medium network level.

misalignment, e.g. 62%, only 38% of the electricity they produce
matches their demand. If the feed-in tariff is much lower than the load
tariff, customers are not benefiting much from the installation of their
solar panels. In addition, if a large number of households have such
high misalignment values on a LV network, the grid might see a drop in
their load in the middle of the day and their voltages rise. Such high
misalignment values give a case for both individuals and the DNSP to
investigate the usage of batteries to absorb the excess PV generation.

The data describing the configuration of the LV network was also
provided in spreadsheet, and was used to populate the asset model at
simulation runtime. The configuration of the circuits within the home
was described through a schematic representation. This data was used
to define the connections between the different appliances, such as the
connection between the battery and the solar panels when charging,
and some selected circuits when discharging. It was also used to un-
derstand which appliances were connected to which meter points used
for tariff charges. This data was used to guide the extension of the asset
and behaviour models, but cannot be published due to confidentiality
agreement.

2.2.2. Extension of the asset model

The first step in extending the software was to extend the Asset
model. In MODAM, the assets are described in a data model, where
their attributes and their relationship to one another are defined using
the Eclipse Modelling Framework (EMF) [41]. Fig. 3 shows the network
model, previously developed for the MV network, and the newly cre-
ated household model that links it down to the LV network. In this
figure, the models are defined at the top (networkmodel and house-
holdmodel), and all their entities, classes or data types, are defined
underneath. When an entity extends an existing one, it is specified by
the arrow following its definition. For example, class Premise extends
class Asset in networkmodel. Further, the two models are linked to each
other through this system of class extension. Here, networkmodel is re-
ferenced in the householdmodel, with some of its classes extending ones
defined in networkmodel. This is the case for the class Circuit which
extends Asset, or Pv which extends SolarPanel, initially defined in net-
workmodel. Fig. 3 shows the different classes from the householdmodel
that are extending those in networkmodel, through the highlighted lines.

Looking more closely at the householdmodel, it can contain zero or

many households, where each Household extends Premise from the
networkmodel (see blue line in Fig. 3). A Circuit is also defined, ex-
tending the entity Asset from the networkmodel (green line in Fig. 3).
Then, the different circuit types, as described in the HEMS files after
consolidating the names, are given. They all extend the entity Circuit,
and can be attached to a Premise according to the hierarchy defined in
the networkmodel. Other types of appliances defined in the house-
holdmodel, such as the solar panels and the batteries are also linked to
the networkmodel in a similar manner (see orange and black lines).

These links allow the two models to work together as one, achieving
the goal of extensibility of the ABM within MODAM without having the
cost of rewriting a new model specifically for the LV network. It is also
possible to use the models independently depending on the type of
analysis required, providing flexibility in the approach, as well as
performing analyses at different levels of details.

2.2.3. Extension of the behaviour model

Following the creation of this data model, coding was undertaken in
Java to define the behaviours of these new assets. Population of the
assets' attributes was done using data in an automated manner, ex-
tracting this information from the network configuration files provided
by the DNSP. Usage and generation data for the agents’ behaviours
were either populated from the HEMS files or calculated using rules or
sub models.

As an example, household batteries had their behaviour im-
plemented using an algorithm based on the time of the day. It was
chosen to match the control algorithms implemented in the DNSP trials
in the first instance and could therefore be used to validate the model,
by comparing the outputs of the simulation and the recorded battery
data. It was then kept for the simulations as it represents what is cur-
rently available commercially, in addition to being what customers
might choose to use intuitively when looking at the tariff types cur-
rently available. For example, the shared community battery currently
trialled in Western Australia [38] allows the customers to draw from
the battery from 3pm every day, which corresponds to the start of the
peak period. Other implementations of battery control systems are
available in MODAM but are beyond the scope of this paper.

The battery scheduling algorithm used in this project is given in
Pseudocode 1.
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Initialisation by user input or data files:

ChargingTimes[1, .., N.]
DischargingTimes[1, .., Np]
N,

Np

N

At

ConverterRate

n
Depth of Discharge

SOCinax

SOCpmin= SOCmax * Depth of Discharge

CT

ChargingCeiling

Computation
Fort = 1,2.. N, compute

The times of charge for each day

The times of discharge for each day

Total number of time steps over the charging period

Total number of time steps over the discharging period
The number of time steps within the simulation period
The time step duration as a proportion of an hour

The converter rate of the battery (in kW)

The round trip efficiency of the battery [0..1]

The percentage of the battery beyond which the battery
cannot discharge (%)

Maximum State of Charge of the battery: the maximum
level of energy the battery can charge up to; usually the
total capacity of the battery (in kWh)

Minimum State of Charge of the battery: the lowest
threshold under which the battery cannot discharge (in
kWh)

A coefficient used when recharging the battery, that
increases slightly the power transfer to ensure the
battery is charged at the end of the day [0..1]

The maximum load value to cover both the household
demand and the charging of the battery

Load(t) = Z Load;(t)
=1

Where:

Load;(t) is the load of each circuit connected to the battery at time step t; it can be positive when
consuming or, negative when generating.

Load(t) is the load that needs to be covered by the battery or/and the grid; when positive, the
battery can discharge and cover this load; when negative, this load can be used to recharge the
battery.

And SOC(t) and PB(t)
Where:
SOC(t) is the state of charge of the battery, and PB(t) is the battery power transfer at time step t.

They are calculated at each time step according to:
e if(t € DischargingTimes)
SOC(t) = SOC(t—1) + PB(t) » At Equation 1
Where

P5(t) = — min(Load (t) , ConverterRate, SOC(t — 1) — SOCypin ) Equation 2

e elseif(t € RechargingTimes)
S0C(t) = SOC(t—1)+ PB(t) »n* At Equation 3

Where

SOCpax — SOC(t — 1)

N * C,, ChargingCeiling — Load(t) ) Equation 4
C

PB(t) = min(ConverterRate,

Pseudocode 1 — Scheduling algorithm for the time dependent battery.

Pseudocode 1 — Scheduling algorithm for the time dependent battery.

In Pseudocode 1, the parameters are initialised either by the user in
the command line, or in data files. The sets of ChargingTimes and
DischargingTimes which are specified by the user are disjoint, meaning
that the battery is either charging or discharging. Within each set of
ChargingTimes or DischargingTimes, there can be many non-overlapping
subsets, so that the battery can cycle from charging to discharging many
times over a day. The two sets (ChargingTimes and DischargingTimes)
consist of sets of integers which represent the different periods within a
day. For example, the user can specify the times to discharge the battery
to be between 6 and 9am, as well as between 2.30pm and 9pm. These
will then be converted within the code to a set of integers indicating the

time steps (e.g. Refs. [12-18,29-42] when the time step is half hour).

During the computation, the load (Load (¢)) and the state of charge
(SOC (1)) of the battery are calculated at each time step based on the
previous time step and the power (PE(t)) either injected (at charging
time) or released (at discharging time). Equation (3) differs from
Equation (1) by an efficiency factor so that the losses due to the battery
charging and discharging are taken into account.

The discharging of the battery aims at covering the load that is re-
quired by the appliances connected to it, unless such load exceeds the
converter rate (ConverterRate) or the amount of energy left in the bat-
tery. During the set time for discharging, if the solar generation is
greater than the load, the battery will still recharge. Indeed, the load
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Fig. 4. Overall view of the models required to answer the aim of the study.

being negative, it will be the minimum value and will then be added to
the state of charge (SOC).

The charging of the battery is such that it is constant over the re-
charging period and ensures that the battery is full at the end of it. It has
to be noted that the charging will only happen if the household load,
plus the one required to charge the battery is under a maximum de-
mand value (ChargingCeiling), set by the user. This ensures that the
overall load does not exceed an acceptable threshold, such as the ca-
pacity of the transformer when connected to it. A coefficient, C,, is also
set in Equation (4) to ensure that the battery is recharged at the end of
the day, in case the maximum demand value is set and limits the
charging over some time steps.

2.3. Bringing the models and sub models together at simulation runtime

Having extended the asset model and defined new behaviour
models, simulations can then be set up. From the definition of the
models and input parameters set by the user, the agents and their re-
lationship to one another and the environment are created at simulation
setup. The simulation then runs, letting the agents make their own
decision at each time step according to what they perceive from their
environment and other agents they are in relation with, and the rules
they follow.

Fig. 4 shows the relationship between the different models that
come together to answer the aim of the simulations. In order to assess
simultaneously the benefits of installing a battery for individual cus-
tomers and the DNSP (‘Assessment at the System Level’ block in Fig. 4),
models describing the household loads and generation, the network
assets, the battery system and the tariff structures needed to be defined
(‘Modelling and Simulation’ block). Within each of these models, sub
models were required such as the ones describing the loads over the
household circuits or those specifying the battery operation.

Table 1
—Mean absolute deviation, mean squared error and maximum deviation for the
households for model validation.

Household  Mean Squared Mean Absolute Maximum Deviation
Deviation (kWh) Deviation (kWh) (kWh)

S02 0.25 0.39 2.4

S04 0.22 0.35 1.65

S05 0.15 0.26 2.34

S11 0.36 0.43 2.42

2.4. Validation of the model

Verification and validation of the model was undertaken.
Verification was done using unit testing [42] in Java. Unit testing is a
software method that consists in running a series of tests on the smallest
parts of an application to ensure that they perform as designed. All the
classes describing each agent's operations were therefore checked for
correctness.

Validation was performed using quantitative methods [43]. Data
recorded at the households were compared to simulation output. Be-
cause the data was obtained from a trial project for which one of the
aim was to assess different types of batteries from different manu-
facturers, different settings had been used to define their control due to
programming limitations of the control systems. The recorded data
relevant to the battery control algorithm presented in Pseudocode 1 was
then limited to 2 types of batteries, installed over 4 different house-
holds. This data was used for the validation of the model, by comparing
the simulation output using the same battery settings and the data re-
corded from the HEMS. These battery control algorithms mimicked
those implemented in the households’ installations. They covered the
essential loads (lights and power circuits) at the household, after having
been charged from the solar panels, as described in the circuit sche-
matics provided by the DNSP.

The difference between the recorded and the simulated data was then
calculated for these four households. Table 1 shows the mean absolute
deviation, the mean squared deviation and the maximum deviation at each
household. Time-series graphs were also plotted to illustrate the difference
between simulated data and actual records for each point in time over the
simulation period. Fig. 5 shows such time-series for one household, S05, and
limited to one week for clarity purpose. It can be noted that for most
households in Table 1 and Table SO5 in Fig. 5, the difference between si-
mulated and measured data is rather small, giving confidence in the im-
plemented battery sub model, and the integration of the different models to
represent the system overall.

3. Benefit assessment of battery installation for individual
consumers and the DNSP

MODAM was then used to run simulations for the LV network over
one street in Townsville, to answer the two questions mentioned in the
introduction. In order to assess the benefits for both the customers and
the DNSP when installing a battery system, simulations were performed
under three scenarios:
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Fig. 5. Time-series of the observed and simulated overall consumption at household S05 for one week with battery.

Table 2
Tariff details as applied to the simulations (Financial Year 2016/17, GST in-

clusive).

Tariff 12A — ToU  Tariff 11 — Single

Tariff Rate Tariff
Off peak (c/kWh) 21.845 27.071
Peak (c/kWh) 61.452 27.071
Being between 15-21.30 in
summer
111.437 98.529

Supply charge (c per day)

e Scenario a) “Business as usual” when no battery is installed,

e Scenario b) Individual batteries are installed at each household,

® Scenario c) A shared community battery that would supply all the
households is installed.

The first question was answered by assessing the benefit for individual
customers by comparing the operational costs of these three arrangements
using two types of tariffs. It has to be noted that capital and maintenance
costs were not considered in this study. While omitting such costs impacts
the economics overall, this choice was made to highlight the cost benefits
when choosing between the two types of battery settings rather than lim-
iting the results to a specific technology. In addition, the batteries con-
sidered in this project had already been chosen by the partner DNSP on this
project, following an energy audit of the households. The work presented
here can then be viewed as a second step when deciding on what tech-
nology setup to adopt. It can follow an optimisation process that identifies
the type of individual battery to be installed according to their economics
such as the one reported in Ref. [44].

The second question was answered by assessing the impact of such
installations on the network assets looking at load, current and voltage
levels at the transformer.

A description of the simulations set up is given below, followed by
an assessment of their output.

3.1. The simulations

The simulations stem from the premise that a customer or a group of
customers will consider installing a battery in the view to reducing their
electricity costs. Whether a customer chooses to install an individual
battery or to pool with others will depend on the electricity tariffs, the
way electricity is consumed in the home, and the type of battery and its
management system [39]. The simulations were therefore setup con-
sidering these four variables.

3.1.1. Input to the simulations

3.1.1.1. Tariffs. Different types of electricity tariffs currently exist in
Australia. The most common ones for residential customers are single
rate, time of use (ToU) and controlled load tariffs [45]. Single rate
tariffs offer the same rate throughout the day and the year, while ToU
tariffs have different costs depending on the time of the day which are
often broken down into peak, off-peak and shoulder times. Finally,
controlled load tariff is charged for specific appliances that are
connected to dedicated circuits in the home, such as electric hot
water systems.

The rates vary between each of these tariffs, and for the different
retailers offering them. In some parts of Australia, however, where
there is no competition, the prices can be specified by the regulator.
This is the case, for example, in Queensland (except South East

Table 3
Solar PV size and battery energy system rating for each household.
Household Solar PV Size (kW) Scenario b) Scenario ¢)
Individual Battery Rating Community Battery Rating
S02 2.4 3kW, 10 kWh (Battery Type 1) 50 kW, 134 kWh
S03 4.6 5kW, 20 kWh (Battery Type 4)
S04 5 (2*%2.5 kW) 3kW, 10 kWh (Battery Type 1)
S05 4.5 6 kW, 12kWh (Battery Type 3)
S06 3 5kW, 20 kWh (Battery Type 4)
S07 4.9 7.5kW, 16 kWh (Battery Type 2)
S08 4.9 7.5kW, 16 kWh (Battery Type 2)
S11 2.8 3kW, 10 kWh (Battery Type 1)
S13 4.9 5kW, 20 kWh (Battery Type 4)
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Fig. 6. Illustration of the network configuration under the two battery systems set up.

Table 4
Simulated battery properties.
Battery Properties Community Battery Battery Battery Battery
Battery Type 1 Type 2 Type 3 Type 4
SOCpax (kWh) 134 10 16 12 20
SOCin (kWh) 26.8 2 3.2 2.4 4
ConverterRate (kVA) 50 3 7.5 6 5
n (%) 85 85 85 85 85
Depth of Discharge (%) 80 80 80 80 80
Table 5
User input for simulations.
Simulation Parameter Value
DischargingTimes/...] 15-21.5
ChargingTimes]...] 0-14.5

Charging Ceiling (kWh) 100 - for community battery only
At 0.5 (1/2h)
N 1440 (= 30 days*48 timesteps)

Queensland), where the tariffs are set and reviewed every year by the
regulator. An example of tariffs, taken from the Queensland Gazette
[46], is given for the financial year 2016/17 in Table 2. It shows the
price difference between a single rate tariff (Tariff 11) and a ToU tariff
(Tariff 12A). These two tariffs were used in the simulations.

3.1.1.2. Consumption within the home. Consumption data recorded over
the different circuits of each of the households was used as input to the
simulation. While the households under study were all located in the
same street, the consumption varied greatly between the different
households, as shown in Section 3.1.1. In addition to the consumed
load, data for the produced load from the solar panels for each of the
houses was used. Details of the installed solar PV are given in Table 3.

While the validation of the simulation was done using the battery to
cover the essential loads only, as set up in the experiments, the rest of

Table 6

the simulations are done such that the battery will cover as much of the
households’ needs as possible. The assumption was that all the circuits
were on the same tariff, and that the battery would be used to cover
these loads. This choice was done following current trends observed in
the industry, where many people are switching some or all of their
control loads to the main tariff, in order to maximise the use of their
solar panels. This is so that they can limit or totally cancel the export of
their PV generation to the grid. It is expected that once a battery is
installed, this trend will be reinforced.

3.1.1.3. Types of battery. As mentioned earlier, two types of
installations were considered for the batteries. The first one was such
that each house had its own battery (scenario b) while the second one
considered having a common battery installed under the distribution
transformer (scenario c). Fig. 6 illustrates these two types of battery
configuration with the connections of the households to the network.

The individual batteries were modelled as individual assets and
attached to each of the household's assets in the ABM, while the com-
munity battery was attached below the transformer. Details of the in-
dividual and community batteries are given in Table 3. As mentioned
previously, the individual battery types had been selected by the
partner DNSP as part of their trial. The same four types of batteries
(Battery Type 1 to 4 in Table 3) were considered in this study, using
their characteristics to set up the battery parameters in the simulations.
The community battery was chosen to be equivalent to the sum of the
individual batteries in terms of capacity, resulting in a 134 kWh
common battery. The size of the inverter was chosen to be 50 kW, upon
looking at the average load of the transformer (around 50 kW), the
transformer rating (100 kVA) and in line with the grid operated battery
inverter sizes currently in use. It has to be noted that the size of the
battery could have also been chosen as the maximum energy demand of
all the households. This would have resulted in choosing a smaller size
common battery while still ensuring that their load is always covered.
However, the aim of these simulations was not to optimise the size of
the batteries, but rather to provide a comparison between two
equivalent types of installations in terms of capacity.

3.1.1.4. Management system - battery control algorithms. The battery

Comparison over all the households of the demand, imports from the grid, exports to the grid and batteries charging loads for scenarios a) and b).

Scenario a)

Scenario b)

No Battery Individual batteries

Household Demand (kWh) Exports (kWh) Imports (kWh) Battery usage (kWh) Battery charge (kWh) Exports (kWh) Imports (kWh)
S02 882 31 913 310 36 10 927
S03 2310 13 2322 888 119 0 2429
S04 199 346 546 165 24 281 504
S05 755 82 837 243 32 29 816
S06 1470 72 1542 663 95 9 1573
S07 2846 20 2865 535 94 6 2945
S08 706 152 858 321 57 70 832
S11 297 257 555 273 35 149 481
S13 875 216 1091 440 66 129 1071




F. Boulaire, et al.

Table 7

Energy Strategy Reviews 26 (2019) 100372

Misalignment values between generation and consumption for each household, and percentage difference in imports from the grid for scenario a) and b) due to the

charging needs from the batteries (efficiency factor).

S02 S03 S04 S05 S06 S07 S08 S11 S13
Misalignment Value (%) 9 2 45 35 18 3 33 62 32
Change (%) in load imported from the grid between scenario a) and b) 1.5 4.6 -7.7 —-25 2.1 2.8 -3 -13.3 -1.8
Change (%) in load exported to the grid between scenario a) and b) -69.7 -98.7 -19 —64.5 —87.2 -71.7 —54.3 —-42.3 -40

properties used for the simulation are summarised in Table 4 and the
simulation parameters in Table 5.

As mentioned previously, the battery scheduling algorithm pre-
sented in Pseudocode 1 was dependent on the time of the day. Based on
the ToU tariff described in Table 2, the battery discharging times were
set from 3pm to 9.30pm. Different times for charging the battery were
trialled. The one showing the least impact on the grid was chosen to be
presented in this paper, being from midnight to 2.30pm. The Char-
gingCeiling value was set in this study to 100 kW for the common bat-
tery. This was chosen based on the rating of the transformer, ensuring
that any additional load on the network during the battery charging
would not overload it. The time step (At) for the simulations was set as
0.5, being for every half an hour, in line with the time frequency of the
data supplied.

3.1.2. Types of simulations - simple sum of loads and load flow analysis

MODAM can perform simulations using a simple sum of loads over
the network for each of the assets, as well as a load flow analysis. The
simulations were performed using both these methods, and served
different purposes. The simple sum of loads was used to calculate the
overall electricity consumption for each of the households, allowing
calculating the operational costs and savings for each scenario. The load
flow analysis allowed understanding of the voltage and current fluc-
tuations at the transformer, so that usage of the LV network assets could
be assessed.

The load flow analysis was performed for each of the phases of the
LV network in turn. The impact of each phase on the other was not
taken into account due to the current software limitation. Simulation
outputs gave the load, voltages and currents for each household and for
the transformer simultaneously.

3.2. Simulations results

3.2.1. The network viewpoint - load, voltage and current over the LV
network

For the three scenarios, the simulations output was analysed for
each of the households as well as for the transformer. The results are
summarised in Table 6, Table 7 and Table 8.

Table 6 shows for each of the households their demand, their im-
ports from the grid and their exports to the grid from the excess solar
generation for scenarios a) and b). When a battery is installed, the
additional load required to recharge it due to the losses is shown in
column ‘Battery charge’. In addition, a column labelled ‘Battery usage’
displays the load that is drawn from the battery during peak hour. It
also corresponds to the load that is imported to recharge the battery at a
different time during the day. As an illustration, household S02 has an
overall demand of 882kWh over the simulation period. Without a

battery, this demand is supplied by importing 913 kWh from the grid,
while 31 kWh are exported to the grid. When adding an individual
battery, 310kWh of its demand is shifted from the peak time to the
recharging period. This shifted load was either covered by the solar
panel, leaving an export to the grid of 10 kWh, or imported from the
grid. An additional 36 kWh was also imported to cover the recharging
needs of the battery due to its efficiency factor. This led to an overall
import from the grid of 927 kWh. Results for scenario c) are not dis-
played in Table 6 as they are not very meaningful at the household
level. Indeed, for scenario c), the excess solar generation of individual
households is absorbed by the common battery most of the time and
consequently shows O export to the grid by individual households.
When the battery is full and the excess generation is exported to the
grid, the origin of the electricity is not tracked to the individual
households but amalgamated over all the households in the simula-
tions. The results for scenario c) are consequently most meaningful
when considering all the households together, and are shown in
Table 8.

Table 7 summarises the change in load exported and imported for
scenario a) and b) for all the households, using the data in Table 6
where scenario a) is the baseline. The reduction in solar export ranges
from 19% to 99% when adding the individual batteries. As can be seen,
not all the solar generation has been absorbed by the batteries, which is
due to their settings. In some cases, the battery is nearly fully charged
close to 3pm and cannot absorb the excess solar generation. This can be
solved by having less load imported earlier, leaving a lower SOC in the
battery just before 3pm that can be filled using the solar output. This
however has the drawback that in case of low solar output, the battery
might not be fully charged by 3pm or it might need to increase its draw
from the grid, potentially creating a new peak. Also, in some cases,
some solar generation is still observed during the discharging times of
the battery — that is, after 3pm, when the households’ demand is lower
than the solar generated. Such outcome leads to question the way the
tariff was designed which might not be optimal for the network. Having
a narrower band for the peak period, might result in less export to the
grid which translates into a reduced load to recharge the battery over
the rest of the day. While the impact is quite minimal when looking at
such a small case study, it can be expected to matter when studied over
much larger areas.

Table 8 displays the same columns as Table 6 but summed over all
the households, i.e. what is seen at the transformer, for the three sce-
narios. Regardless of the battery installed, the load exported from the
excess PV generation, as seen as the transformer, is reduced by 67%
with the individual battery and 94% with the community one. The load
imported from the grid, however, has increased by 2.6% for scenario b)
and 2.4% for scenario c) due to the additional load required to recharge
the batteries because of losses.

Table 8
Imports from and exports to the grid, and battery usage and charge over all the households.
Scenario a) No Battery Scenario b) Individual batteries Scenario ¢) Community battery
Imports (kWh) 10750 11032 11009
Exports (kWh) 410 135 25
Battery additional charge (kWh) - 557 644
Battery usage (kWh) - 3838 4386

10
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Fig. 7. Load for the peak day at the transformer for each of the scenarios over the simulation period.
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Fig. 8. Load for the peak day at the transformer under scenario a) “No Battery”, and same day load for scenario b) “Individual Batteries” and c) “Common Battery”.

From the grid viewpoint, there has been a slight increase overall in
terms of the load supplied when adding the batteries. Understanding
how the daily patterns of load, voltage and current have changed is
then important to quantify the impact the addition of batteries has on
the LV network.

The peak day, which is used as the metric when planning the net-
work, was investigated for loads at the transformer, as shown in Fig. 7.
A shift can be observed in the peak time from 8pm to 5am for both
battery configurations. The new peaks, however, happened on different
days. The three graphs of Fig. 7 are for the three days when the
transformer peaked under each of the scenarios, which are different
days. The peak at the transformer has now increased from 20.1 kWh

over half an hour with scenario a) to 20.5kWh with scenario b), and
22.2 kWh with scenario c). Despite an increase in the peak value with
the installation of the batteries, this peak is not significantly greater
than the base case scenario. In any case, it is far lower than the trans-
former rating.

Fig. 8 shows the new profile of the loads when looking at the peak
day from scenario a). This graph illustrates how the batteries would
change the profile of the load for a day that potentially would see other
surrounding network transformers peak as well. This might be the case
for example on a day of extreme temperatures, in this particular en-
vironment hot days, when many air-conditioners will be switched on.
This graph shows that with the addition of batteries, the previous peak

11
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Fig. 9. Phase A current measured at transformer terminal for the three scenarios for one week over the simulation period.

load in the evening is shifted from 8pm to 10pm and is slightly lower.
Another interesting point in Fig. 8 concerns the export of load in the
afternoon, which is reduced under the two battery scenarios. Scenario
b), however, shows a new dip in the curve at 3pm. This is because some
of the households are exporting because their load needs are still lower
than their PV production, and the batteries are all in discharge mode,
meaning that this excess generation is not being absorbed by a neigh-
bouring household. A similar dip can also be observed for scenario c).
However, this dip is smaller because the excess PV of some of the
households is absorbed by neighbouring households. Only then does the
battery discharge, to cover the remainder of the load required under the
transformer.

For each of the households of the study, voltage and current were

also analysed. The voltages in all cases stayed the same at unity, with no
significant deviation. Major differences in currents were, however, re-
corded in various cases. The maximum current of each load point for
almost all cases stayed the same or was reduced with the addition of
storage. However, for some periods of the day, the peak current at the
households increased.

In order to investigate the battery operation impact on the whole
network, the impact of each scenario on the total current passing
through the transformer was also analysed. Fig. 9 presents the current
of phase A at the transformer for the three scenarios over one week. The
first message of the figure is that using battery storage in the network
reduces the current in some points. However, at some other times the
storage addition causes significant increase in the current.

0.201
0.151
- [
= :
=¥
@
& 0.101
a
=
©
E
=
= /
pa—
0.05
Measurements
— No Battery
0.004 —- Individual Batteries
Common Battery

Time

Fig. 10. Time of Day current per unit on phase A of transformer for the three scenarios for the peak day.
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To investigate the current changes in more detail, Fig. 10 shows the
time of day current of the transformer in phase A for the three scenarios
for the peak day. In line with the results for the load, Fig. 10 shows that
addition of storage to the network will result in a major decrease in
peak hours’ current at the transformer terminal. Comparing scenario b)
and c) shows that scenario c) further reduces the peak period current.
On the other hand, recharging storage from midnight to 2.30pm results
in another peak current in the early morning. Consequently, the addi-
tion of storage will not increase the life cycle of the transformer in this
case. This early morning peak probably corresponds to a time when
controlled load appliances are turned on. To prevent this new peak
from happening, the timing of either the battery or these controlled
load appliances usage could be shifted. It has to be noted that the size of
the transformer is quite large for the requirements of the households in
that street, so this is not currently a concern. However, if the load at the
transformer was to increase due to the addition of new dwellings, for
example, this would have to be investigated further.

From this analysis, a few conclusions can be drawn regarding the
impact of the installation of batteries without central control on the
given LV network.

Simulations of the installations of either type of batteries have
shown a shift in the peak time of the load, and currents on all three
phases from the evening (8pm) to the early hours of the morning (5am),
for the peak load day as well as some other days. In some instances, this
peak is higher than the previous evening peak, although marginally.
Despite this new peak, the ratings are still under the transformer's
rating, and while batteries will not increase the life cycle of the trans-
former, they will not decrease it either in this case.

In terms of benefit of one type of battery compared to the other, the
results indicate that the common battery has the advantage over the
individual installation, as it cancels most feed-in from the solar PVs to
the grid. Also, the load is at zero for the entirety of the peak period for
the ToU tariff (3pm until 9.30pm), while the load starts increasing with
individual batteries due to the limited capacity for some of the users.
This gives the opportunity to free the network capacity for other areas
that would need a greater load supplied during the evening peak.

3.3. The customer viewpoint - costs simulations

One of the main factors influencing people's decision when pur-
chasing a new device is cost. Using the simulation output for every half
hour, the cost of electricity for each of the households was calculated,
applying a single rate tariff (Tariff 11) and a ToU tariff (Tariff 12A)
currently available in Queensland. These tariffs are described in the
Queensland Government Gazette [46], and summarised in Table 2. The
calculations were done for 3 weeks in January, the hottest and wettest
month in tropical Townsville. Doing these calculations for a whole year
or more would give the customer a more realistic appreciation of the
price difference between the different options; however, such data was
not available.

The peak charges were applied to every day of the simulation be-
cause the peak time for the ToU is between 3pm and 9.30pm for every
day during the summer months (1st of December until 28th of
February). The off-peak charges were applied to the rest of the day, and
the daily charge for each day of the observation period was then added.

Table 9
Contribution of each household to the battery when charging (from PV output
surplus) and when discharging (from household consumption).

S02 S03 S04 SO05 S06 SO7 SO8 S11 S13

Contribution to battery 06 02 67 16 14 03 29 51 41
recharge (%)

Contribution to battery 7.2 223 37 54 15 229 75 6.2 98

discharge (%)
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A 6c feed-in-tariff was also applied when the electricity generated by
the solar panel exceeded the household's load requirements and the
battery was fully charged.

With the community battery, two ways of sharing the costs were
trialled, resulting in two costing scenarios, namely c1, and c2. In both
cases, when discharging, the community battery tries to supply each
household according to their demand without a cap. All the excess PV
generated by the individuals is assumed to first be absorbed by their
neighbours on the LV network and then by the community battery
when recharging. When the solar output is not sufficient to cover the
battery charging needs, the required load is then drawn from the grid.

When calculating the costs, the first approach (scenario cl) con-
siders that the load drawn from the grid is divided amongst the users in
an even manner. This means that each individual was charged an ad-
ditional 558.9 kWh (= (4386 + 644)/9 from Table 8) to their con-
sumption during the off-peak period.

Because the users have very different needs and load patterns as
illustrated in Fig. 1, such approach might not be a fair way of sharing
the common resources. During this study, the residents were inter-
viewed regarding their electricity consumption and use of new tech-
nologies. When mentioning community batteries, most residents
thought this was a good idea, however, the question of fairness around
sharing the costs was raised on numerous occasions, highlighting this
could be a real hurdle to their adoption. In light of this, another ap-
proach to sharing the costs was trialled.

In the second approach (scenario c2), the shareholders bank their
excess solar output in the community battery. Once they have used
their solar savings, the load to recharge the battery (what has been used
and the additional needs due to losses) is divided amongst them pro-
portionally to their usage of the battery, as shown in Table 9.

Costs for each of the households, for both tariffs and for the four
costing scenarios (a, b, cl1 and c2) were then calculated and are dis-
played in Table 10 and Fig. 11.

It can be seen that for scenario a) the costs of electricity are much
higher for the ToU tariff than the single rate one. This is expected as
most households consume a fair bit of electricity during the late after-
noons, as shown in Fig. 1, which corresponds to the peak price. Under
scenario c1) and c2), the costs are lower for the ToU tariff than for the
single rate tariff for all the households. The same can be said for sce-
nario b), except for SO7. Such output was expected as the battery set up
is such that it reduces, and most of the time cancels, the reliance on
electricity coming from the grid during the peak charging period.
Therefore, the unit price that is paid will be that of the off-peak tariff,
which is cheaper than the unit price of the single rate tariff. The ex-
ception, for SO7, is due to the fact that it is a high consumer, and its
battery is not sufficiently large to answer its demand during the peak
period. It therefore has to rely on the grid at times during the peak
period when a higher rate is applied.

In scenario cl), the highest consumers receive most of the com-
munity battery benefits. The lowest consumer sees a 52% increase in
their bills from an individual to a community battery under the ToU
tariff, while the highest consumer has their bill reduced by 36% (S07).
Using the second approach to sharing the costs is fairer as most con-
sumers see a reduction in their costs from cl) to c2), apart from the
three highest consumers (503, S06, and S07). Overall, pooling together
in a community battery under a ToU tariff will be cheaper than having
their own battery for all consumers.

It has to be noted that these results look only at the operational
costs; other considerations would need to be investigated further when
investing in such battery. For example, in addition to sharing the load in
a fair manner, some compensation by the highest users might need to be
considered as they use the battery much more, thereby leading to a
faster ageing of the battery.

Thanks to these simulations using actual electricity usage data, and
the price calculations, the customer is able to better understand how an
energy storage system would benefit him/her. In addition, when
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Table 10

Energy Strategy Reviews 26 (2019) 100372

Operating costs in Australian dollars over the three weeks period for the three scenarios and the two tariffs.

Scenario a) Scenario b)

Scenario c1)

Scenario c2)

No Battery Individual Batteries Common Battery — Even Share Common Battery — Share according to contribution
Single Rate Tariff ToU Tariff Single Rate Tariff ToU Tariff Single Rate Tariff ToU Tariff Single Rate Tariff ToU Tariff

$02 274.9 359.3 280 240.8 333.8 280 278.3 233.8

S03 657.5 937.8 687.1 610.1 536.5 445 691.8 567.7

S04 156.6 197.3 149.2 126.7 2289 192.7 110.2 92.9

S05 251.2 307.7 248.6 209.9 321.4 268.9 239.5 202

S06 442.6 633.2 455 381.3 400.9 333.9 449.4 371.5

S07 804 1066.1 826.6 872.8 674.8 555.5 839.3 686.7

S08 252.8 344 250.6 216 294.5 246.6 226.6 190.8

S11 164.3 249.1 150.8 131.3 203.4 173 107.4 93.4

S13 311.9 432.9 311.7 259.6 325 270.8 275.2 229.5

facilitating a group of people who are investigating the uptake of a
common asset, such as a battery, this way of using the simulations can
lead to a more informed and transparent decision-making process. This
provides the customers with a way to understand the impact of a de-
cision on their costs, as well as bring forward ways to share the profits
fairly.

4. Discussion

The simulations presented in Section 4 highlighted the benefits in
terms of electricity cost savings for individual customers, as well as the
network asset usage in terms of voltage and current fluctuations for two
types of battery installations. MODAM allowed to simultaneously assess
the benefits for the different stakeholders by linking different models
within one framework. These included models of the loads and gen-
eration on the system, the performance of the physical system, the tariff
structures driving the operations of the battery systems and energy
management systems. MODAM allowed performing detailed analyses at
the individual household level, as well as make the assessment at the LV
network level from finely defined entities and their operation. This
scalability was performed without losing information or making broad
assumptions about the network's entities under study because actual
network configuration data and individuals' load data were used. Ex-
tending the ABMS was facilitated by the way MODAM is designed,
using a compositional approach. The agents described in the model can
be reused regardless of the level of detail at which the simulations are
performed, avoiding unnecessary implementation and potential coding
errors. It further allows moving from a micro to a macro representation
of the system using the same rules and assumptions but bringing more

information to the simulation according to the level of detail of the
analysis aim. Having the various models and data-types at different
scales and integrated within one framework provides a holistic view of
the system while preserving the specific properties of the agents si-
mulated.

The method presented in this paper can assist during the electricity
sector transition. As new technologies and business models are being
introduced, MODAM can be used by the DNSP as part of an engagement
process with customers who have either been targeted or are volunta-
rily looking at installing new technologies. This has the potential to give
the customer or group of customers, a personal insight into the cost
savings they might realise while the network still achieves the specific
outcomes it desires. For example, a group of users, such as a body
corporate in a strata building or a group of neighbours seeking the
installation of a battery system can quantify the benefit for each user
and the common areas, using their own data. The DNSP or a third party
can then devise a strategy for a fair sharing of costs and benefits
amongst the users, as well as in terms of usage of their network. The
DNSP can also ensure that the new technologies are set up in a way that
is not going to hinder the network while still providing the benefits to
the customers. For example, in this study, if left to their own device, the
customers could have had any recharging times they chose. While the
ones presented in this paper are from midnight to 2.30pm, they could
have chosen to have the batteries recharging from 10pm until 2.30pm
(that is, over the whole off-peak period) or from 6am until 2.30 p.m.
(that is, only from when the solar panels produce). In both cases, this
would have led to a higher peak to the one presented here; in the
evening in the first case, and around 9.30am in the second case. By
using the approach presented in this paper and understanding the

Operating Costs (AUD) over 3 Weeks

1200

1000

Costs{(AUD)

400

AN Y

8

5]
OO\
AN
AN

505

AN NN

Zi

/20000

OSSN\
AMMINNN..a.S.

AN

Households

B Flat Rate Scenarioa % ToU Scenario a

M Flat Rate Scenario c1 % ToU Scenario c1

B Flat Rate Scenario b % ToU Scenario b

M Flat Rate Scenario c2 % ToU Scenario c2

Fig. 11. Operating costs in Australian dollars over the three weeks period for the three scenarios and the two tariffs.

14



F. Boulaire, et al.

different viewpoints, both parties can reach an agreement that will
benefit them both.

Finally, it is likely that the approach presented in this paper can also
be used to assess the impact of different policies, such as those relating
to tariff design. In this study, only two tariffs were used as proxies to the
selection of battery control algorithms. It is possible to test other types
of tariffs, as well as other types of incentives that influence the patterns
of consumption using simple rules, such as those presented in Ref. [47].
These rules would represent exogenous types of control, being alter-
natives to centrally controlling batteries through their management
system. The simulations could be run over larger areas, and, as new
technologies are being taken up by individuals, parts of the networks
might show very different behaviours than initially anticipated, leading
to either an over or under-utilisation of their assets at different times of
the day. This can have implications in terms of reliability of the net-
work, if over-utilised, or revenue loss, if under-utilised. Testing in-
centives in such a way using simulations in MODAM could provide a
good overview of their impact on the network.

5. Conclusion and future work

This paper presented the extension of MODAM, an existing ABM
software, to perform simulations at the LV network level with the aim
of assessing the benefits for both the customer and the DNSP when
installing two types of battery settings, without centrally controlled
management systems.

Information describing the configuration of the LV network in terms
of network assets and its connected households, down to the household
circuits, were added to the agent-based model definition. New beha-
viours were implemented such as those to represent the battery man-
agement systems and the demand over the household circuits. The ABM
was validated by comparing recorded data at the household meter point
to output of simulations under battery control algorithms with similar
logic. Simulations were then run for three scenarios of battery system
installations. Results showed that, in this case study, either individual
or shared batteries would bring operational savings to the customers
under the two tariffs considered. The assessment further showed that
for this particular case, even without central control, the LV network
did not see any major detriment to its assets. From the network view-
point, these simulations allow them to understand the impact of new
technology installation on their assets, as well as a way to engage with
their customers who are planning on installing a battery. One crucial
point when considering installing a common battery though is a fair
distribution of the benefits amongst the users. Monitoring of the usage
is important to ensure that users’ requirements are met and benefits are
shared equitably, to avoid unexpected detrimental behaviours and to
reward people appropriately if it is to be successfully taken up.

Future work will involve running simulations over larger areas,
looking at the impact of individual and shared storage resources at the
MV level, as well as of virtual power plants over suburbs, using various
tariffs and incentives to quantify the benefits for both the customers and
the DNSP.
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