Modelling riparian woodland response to altered and novel disturbance regimes

in production landscapes

Kate Reardon-Smith¹ Andy Le Brocque¹, Alan House²

¹ Australian Centre for Sustainable Catchments & Faculty of Sciences University of Southern, Toowoomba Qld, Australia ² AECOM, Brisbane Qld, Australia

Floodplain development

Upper Condamine

- Reduced extent of native vegetation

• Land use change & intensification

Loss of hydrological connectivity

State and transition conceptual model

Upper Condamine floodplain riparian woodlands

Phyla canescens (lippia)

Eucalyptus camaldulensis/E. tereticornis

Floristic composition model

Multivariate pattern analysis (PRIMER-BIOENV)

Response variable	Key Explanatory variables (best single & best set of 6)	Spearman's r (best single)	Spearman's r (best set of 6)
Floristic composition	GW depth₅₀₀₀, lippia cover, GW trend ₅₀₀₀ , remnant ₂₀₀₀ , GW bores ₅₀₀₀	0.307	0.449

E. camaldulensis/tereticornis dieback severity model

Bayesian Model Averaging (R)

Response variable	Key explanatory variables (posterior effect probability > 0.75)	Min BIC	n _{models}	Max r² (best 5 models)
Dieback severity (WWI)	GW depth₅₀₀₀ (1.00*), grazing ₅₀₀ (0.99), GW bores ₅₀₀₀ (0.80)	-8.177	63	0.627

* values in parentheses are posterior effect probabilities

USO AUSTRALIA

Key findings:

- lippia-invaded landscape (dominant functional invasive species)
 - \rightarrow novel ecosystems, with altered response to flooding, grazing & drought
- increasingly fragmented (disconnected) hydrological landscape
 → chronic groundwater decline & loss of drought resilience where groundwater depth exceeds rooting depth of keystone eucalypts

→ increased potential for metapopulation failure of keystone eucalypts & transition to new ecosystem types

Can current policy paradigms - based around environmental flow provision - address critical threats to groundwater-dependent riparian ecosystems in the northern MDB?

This research was supported by the ACSC and USQ through an APA scholarship.

Thanks also to our field assistants & to the landholders of the Upper Condamine floodplain for access to their properties and their interest in the research.

Email: reardons@usq.edu.au