
ABDM: An Extended Flexible Delegation Model in RBAC∗

Min Li Hua Wang
Department of Mathematics & Computing

University of Southern Queensland
Queensland, Australia

{limin, wang}@usq.edu.au

Abstract

Role-based access control (RBAC) is recognized as an
efficient access control model and its delegation authority
has been proved to be flexible and useful for information
sharing on distributed environment. In today’s highly dy-
namic distributed systems, collaboration is necessary for
information sharing with others, so a user may want to
delegate a collection of permissions, named an ability, to
another user or all members of a group. Based on this
fact, this paper builds a new ability-based delegation model
(ABDM) within RBAC and develops its delegation algo-
rithm. The framework includes both ability-based user-user
delegation and user-group delegation. Further, we analyze
delegation granting and revocation authorization. Com-
pared with other existing delegation models, this ability-
based delegation model provides great flexibility in author-
ity management.

1. Introduction

Role-based access control (RBAC) is a promising access
control technology for the modern computing environment
[6, 4, 19]. In RBAC, a role is used to associate users and
permissions. Permissions are associated with roles, and
users are assigned to appropriate roles thereby acquiring the
roles’ permissions. As show in Figure 1, the relationships
between users and roles, and between roles and permissions
are many-to-many (i.e, a permission can be associated with
one or more roles, and a role can be associated with one or
more permissions). The security policy of the organization
determines the user-role relationship, role-permission rela-
tionship and the allocation of each role’s capabilities. The
RBAC model supports the specification of several aspects:

a. User/role associations - the constraints specifying user
authorization to perform roles;

∗The research is support by an ARC Discovery Grant DP0663414.

User Name

USERS

Role Name

Senior-Junior

ROLES

OBJECT

OPERATION

User role Assignment (UA) Permission-role assignment (PA)

m n

m n

m n

m

n

Indicated many to many relationships

PERMISSIONS

Figure 1: RBAC relationship

b. Role hierarchies - the constraints specifying which
role may inherit all of the permissions of another role;

c. Duty separation constraints - there are user/role asso-
ciations indicating conflict of interest;

c1. Static separated duty (SSD) - a constraint spec-
ifying that a user cannot be authorized for two different
roles;

c2. Dynamic separation duty (DSD) - a constraint
specifying that a user can be authorized for two different
roles but cannot act simultaneously in both;

d. Cardinality - the maximum number of users allowed,
i.e. how many users can be authorized for any particular
role (role cardinality), e.g., only one manager.

The number of roles and users and permissions associ-
ated to roles in a large enterprise system can be hundreds
or thousands. Managing these roles, users, permissions
and their interrelationships is a vital challenge that is of-
ten highly decentralized and delegated to a small team of
project groups. RBAC allows us to model security from the
perspective of the organization, because we can align secu-
rity modeling to the roles and responsibilities in the organi-
zation. Most large organizations have some business rules
related to access control policy such as need-to-know, sepa-
ration of duty, rotation of sensitive job positions, and so on.

Delegation of authority is an important one to implement
the rules.

In access control systems, the delegation requirement
arises when a user needs to act on another user’s behalf to
access resources. This might be only within a limited time,
for example, a vacation, sharing resources temporarily with
others, and so on. Otherwise users may perceive security as
a hindrance and bypass it. With delegation, the delegated
user has the privileges to react to situations or access infor-
mation without referring back to the delegating user.

Role-based delegation model based on role-based access
control (RBAC) has been proven to be a flexible and useful
access control for information sharing on distributed collab-
orative environment [14]. The basic idea behind delegation
is that some active entity in a system delegates authority
to another active entity to carry out some functions on be-
half of the former. Delegation in computer can be human to
human, human to machine, machine to machine, and per-
haps even machine to human. A number of models deal-
ing with various aspects of delegation have been published
[12, 10, 7, 13, 11, 8]. The RBDM0 [2, 3] and RDM2000
[17] model, in particular, are user-to-user delegation primar-
ily based on roles. Furthermore, Wang et al. [15] proposed
a role-based delegation model which support user-to-group
delegation. Zhang et al. proposed permission-based del-
egation model (PBDM) [18], where a user can delegate a
permission to the others accomplished by permission-role
assignment and user-role assignment.

Actually, in many situations, a delegator wants to dele-
gate a collection of permissions (named an ability) to dele-
gatees. There may be some problems arising in the previous
delegation models. For example, the permission of opening
a bank account is composed of many different individual
permissions, such as, accessing identification, social secure
history, credit limits and so on. When the delegator wants to
delegate his ability (opening an account) to others, it does
not make sense if delegating only part of the permissions to
delegatees, since the entire set is needed to do the task prop-
erly. If the number is huge, it may be a hard work to com-
plete the delegation with PBDM, since each time only one
permission can be assigned to a role in permission-based
delegation model. In this paper, we propose a new delega-
tion model, named ability-based delegation model, which
can solve this problem easily. We focus exclusively on this
ability-based delegation framework, which provides great
flexibility in authority management.

The rest of this paper is organized as follows: In Sec-
tion 2, we propose a developed assignment framework
which includes group-role assignment and ability-role as-
signment. Our new introduced ability-based delegation
model (ABDM) including delegation granting and revoca-
tion models are given in Section 3. Finally, we conclude the
paper in Section 4.

2. Ability, Group and Authorization assign-
ment

Role-based access control (RBAC) involves individual
users being associated with roles as well as roles being asso-
ciated with permissions (each permission is a pair of objects
and operations). As such, a role is used to associated users
and permissions. A user in this model is a human being.
A role is a job function or job title within the organization
associated with authority and responsibility. A permission
is an approval of a particular operation to ba performed on
one or more objects. When we want to open a bank account,
many different individual permissions are involved. It does
not make sense to assign only part of the permissions to a
role, since the entire set is needed to do the task properly.
The idea is that application developers package permissions
into collections, named ability, which must be assigned to-
gether as a unit to a role. Once the notion of ability is intro-
duced, by analogy there should be a similar concept on user
side.

An ability is a collection of permissions that should be
assigned as a single unit to a role. We denote B as the set
of abilities.

A group is a collection of users who can accept a role
assignment in the same times. Such a group can be viewed
as a team. We denote G as the set of groups.

Different from the previous permission-role assignment,
ability-role assignment is more difficult to be achieved.
Since if there is a huge number of permissions involved in
an ability, we have to do excessive jobs in order to finish
the ability-role assignment, because each time we can just
assign one permission to the role according to the previous
permission-role assignment. So it is desired to assign all of
the permissions in the ability to the role at once. The same
situation happens when we want to define a group with a
large number of users for role assignment. Since the func-
tion of an ability (or a group) is to collect permissions (or
users) together so that administrators can treat them as a sin-
gle unit. Assigning abilities to roles and groups to roles are
therefore very much like permission-role assignment and
user-role assignment. In this way, the problems stated above
can be resolved easily.

A prerequisite condition is an expression using Boolean
operators ‘∧’ and ‘∨’ on terms of the form r and r where
r is a role and ‘∧’ means ‘and’, ‘∨’ means ‘or’. A prereq-
uisite condition is evaluated for a user u by interpreting r
to be true if (∃r′ ≥ r), (u, r′) ∈ UA and r to be true if
(∃r′ ≥ r), (u, r′) /∈ UA, where UA is a set of user-role
assignments.

Note that the notion of a prerequisite condition is iden-
tical to that, expect the boolean expression is now evalu-
ated for membership and nonmembership of an ability (or a

group) in specified roles. For a given set of roles R, let CR
denotes all prerequisite conditions that can be formed using
the roles in R. AR is the set of administrative roles. This
leads to the following definitions.

Definition 1: Ability-role assignment and revocation are,
respectively authorized by

can assigna ⊆ AR × CR × 2R

can revokea ⊆ AR × 2R

The meaning of can assigna(x, y, Z) is that a mem-
ber of the administrative role x can assign an ability
whose current membership satisfies the prerequisite con-
dition y to regular roles in range Z . The meaning of
can revokea(x, Y) is that a member of the administrative
role x can revoke membership of an ability from any regular
role y ∈ Y .

Definition 2: Group-role assignment and revocation are, re-
spectively, authorized by

can assigng ⊆ AR × CR × 2R

can revokeg ⊆ AR × 2R

The meaning of can assigng(x, y, Z) is that a mem-
ber of the administrative role x can assign a group
whose current membership satisfies the prerequisite con-
dition y to regular roles in range Z . The meaning of
can revokeg(x, Y) is that a member of the administrative
role x can revoke membership of a group from any regular
role y ∈ Y . To identify a role range within the role hierar-
chy, the following closed and open intervals are used.

[x, y] = {r ∈ R|x ≥ r ∧ r ≥ y} (x, y] = {r ∈ R|x >
r ∧ r ≥ y}
[x, y) = {r ∈ R|x ≥ r ∧ r > y} (x, y) = {r ∈ R|x >
r ∧ r > y}.

3. Ability-based Delegation model (ABDM)

In this section we propose our flexible ability-based del-
egation model which supports role hierarchy. An intuitive
overview of this model is described first, and then a formal
definition will be presented.

3.1. Ability-based user-user Delegation

The central idea of this model is to create one or more
delegation roles (DTR), and assign abilities to them. In
RBAC, permissions are associated with roles, and users are
assigned to appropriate roles thereby acquiring the roles’
permissions. For example, in Figure 2 John who is in role
PL acquires an ability b and a permission p. If John wants
to delegate his ability b to Jenny, he can delegate according
to following three phases.

1. John creates a temporary delegation role D1.

[Role hierarchy]

PL

PE QE

PJ

PM

PD

E

Role User

PL

PE
QE

PJ

PM

D1

John

Tom
Smith

Jenny

Scott

Jenny

[User-Role Assignment] [Permission-Role Assignment]

Role Permission

ability
confirm program

req program

usep pj1 bbs

review program
error report

check prod plan

PL

PE

QE

PJ

PM

D1 ability

Figure 2: Example of ability delegation

2. John assigns the ability b to D1 with ability-role as-
signment.

3. John assigns Jenny to D1 with user-role assignment.
Roles in DTR are distinct from regular roles (RR).

DTR cannot be assigned to any other roles, because it
will generate invalid ability inheritance in role hierarchy.
Therefore, roles in this model are partitioned into regular
roles (RR) and delegation roles (DTR). This partition in-
duces a parallel partition of UA and BA which are user-role
assignment and ability-role assignment respectively. UA
is separated into user-regular role assignment (UAR) and
user-delegation role assignment (UAD). BA is similarly
separated into ability-regular role assignment (BAR) and
ability-delegation role assignment (BAD). Delegation role
can be placed in the regular role hierarchy when the del-
egated ability includes all the permissions of a delegating
role, otherwise it is isolated from the hierarchy. Delegation
role cannot have any senior regular role if it is placed in the
role hierarchy, since delegated abilities cannot be inherited
through role-role hierarchy.

We have the following components for ability-based del-
egation model:

Sets: U, B, R, RR, DTR are sets of users, abilities,
roles, regular roles, and delegation roles respectively.

R = RR ∪ DTR
UAR ⊆ U × RR is a user to a regular role assignment

relation.
UAD ⊆ U ×DTR is a user to a delegation role assign-

ment relation.
UA = UAR ∪ UAD
BAR ⊆ B × RR is an ability to a regular role assign-

ment relation.
BAD ⊆ B × DTR is an ability to a delegation role

assignment relation.
BA = BAR ∪ BAD
Abilities: R → 2B is a function mapping a role to a set

of abilities.
Abilities(r) = Abilities R(r) ∪ Abilities D(r)
where
Abilities R(r) = {b|∃r′ < r, (b, r′) ∈ BAR}

Abilities D(r) = {b|∃r′ < r, (b, r′) ∈ BAD}
senior(r) : P → 2R, a function mapping a role to all its

senior roles in role hierarchy.
∀dtr ∈ DTR, senior(dtr) ∩ RR = ∅: for each delega-

tion role there is no senior regular role.
own(u) : U → 2DTR and �(u1, u2 ∈ U, dtr ∈

DTR), (u1 = u2) ∧ (dtr ∈ own(u1) ∧ dtr ∈ own(u2)),
a function mapping a user to a set of delegation roles which
he/she created.

ability d(r) : DTR → 2B , a function mapping a dele-
gation role to a set of abilities.

ability∗(u): a function mapping a user to a set of abili-
ties with BAD.

ability∗(u) = {b ∈ B|∃r ∈ DTR, (u, r) ∈ UAD ∧
(b, r) ∈ BAD}

A delegation relation in ability-based user-user delega-
tion model is a constraint on UAD and BAD.

3.2. Ability-based User-Group delegation

Now we analyze group delegation. In some cases, we
may need to define whether or not a user can delegate an
ability to a group and how many times, or up to the max-
imum delegation depth. We only analyze one-step group
delegation in this paper which means the maximum delega-
tion path is 1. Figure 3 shows the role hierarchy structure
of RBAC in an example of a problem-oriented system POS
which has two projects. In Figure 4 Tony who is in role Co2
acquires all the permissions and abilities of role Co2. Now
Tony wants to delegate one of his abilities to Project 1,
which means Tony wants to delegate the ability to all peo-
ple involved in Project 1. According to the ability-based
user-user delegation, in the third step we have to use user-
role assignment. If the number of users in Project 1 is
small, it may be easy to finish, otherwise, it is hard to fin-
ish the work as each time just one user can be assigned to
the role. It will be time-consuming if based on user-user
delegation. To solve the problem, we propose ability-based
group delegation framework , in which Tony can finish the
delegation according to following steps:

1. Tony creates a temporary delegation role D1.
2. Tony assigns the ability b to D1 with ability-role as-

signment.
3. Tony assigns all user of Project 1 to D1 with group-

role assignment.
In fact, ability-based group delegation is achieved by

ability-role assignment and group-role assignment. Same
as before, a delegation role cannot have any senior roles
since delegated abilities cannot be inherited. Roles in this
model are partitioned into regular roles RR and delegation
roles (DTR). This partition induces a parallel partition of
GA and BA which are group-role assignment and ability-
role assignment respectively. GA is separated into group-

Delegation Algorithm
Input: delegator u, ability b∗, delegatee.
Output: true if delegator u can delegate an ability b∗ to delegatee;
false otherwise.
Step 1: /*Delegator creates a temporary delegation role D1 */
Suppose (u, r) ∈ UA which means that delegator u is in role r,
Let Poolwithrole r = {p|(p, r) ∈ PA} ∪ {b|(b, r) ∈ BA},
/*Poolwithrole r is the set of all permissions and abilities which
are related to role r*/
If {b∗} = Poolwithrole r /*role r only has an ability b∗*/
Delegator can let role r to be the temporary delegation role D1.
go to Step 3
If {b∗} ⊂ Poolwithrole r

/*role r not only has the ability b∗ but also other permissions*/
Delegator creates a temporary delegation role D1.
go to Step 2
else
return false and stop.
Step 2: /*whether the delegator can assign the abilityb∗ to
delegation role D1 or not*/
Let S = πRoleRange(σdelegator(can assigna))

/*S is the role range where the ability b∗ can be assigned to*/
If D1 ∈ S, /* the delegation role is in the role range*/
go to Step 3.
/* the ability b∗ can be assigned to D1 by delegator*/
else
return false and stop.
Step 3: /*whether the delegator can assign the delegatee to
the delegation role D1*/
Suppose the delegatee is a user u′,
Let S = πRoleRange(σdelegator(can assign)),
/* S is the role range where the user can be assigned to*/
If D1 ∈ S, /* the delegation role is in the role range*/
the user u′ can be assigned to the delegation role D1.
Suppose the delegatee is a group g,
Let S = πRoleRange(σdelegator(can assigng)),
/* S is the role range where the group can be assigned to*/
If D1 ∈ S, /* the delegation role is in the role range*/
the group g can be assigned to the delegation role D1.
return true;
else
return false.

RoleName Prereq.Condition M
HO2 [AP, Ho1] 1
Co1 CS 2

Table 1: Example of can delegatea

RoleName RoleRange
Ho1 [Co1, CS]
Re1 [AP, AP]

Table 2: Example of del revokea

Project 1
Head Officer (HO1)

Project 2
Head Officer (HO2)

Director(DIR)

Collaborator 1
(Co1)

Report 1
(Re1)

Report 2
(Re2)

Collaborator 2
(Co2)

Analysis Project
(AP)

Assessment Project
(AsP)

Community Service
(CS)

Figure 3: Role hierarchy in POS

role user

Co2 Tony

D1 Group
{all users in project 1}

role permission

Co2 ability
error report

D1 ability

[User-Role Assignment] [Permission-Role Assignment]

Figure 4: Example of Group Delegation

regular role assignment (GAR) and group-delegation role
assignment (GAD). BA is similarly separated into ability-
regular role assignment (BAR) and ability-delegation role
assignment (BAD). Hence we have the following elements
and functions in group delegation:

Sets: U, G, B, R, RR, DTR are sets of users, groups,
abilities, roles, regular roles, and delegation roles respec-
tively.

R = RR ∪ DTR

GAR ⊆ G×RR is a group to a regular role assignment
relation.

GAD ⊆ G × DTR is a group to a delegation role as-
signment relation.

GA = GAR ∪ GAD.
BAR ⊆ B × RR is an ability to a regular role assign-

ment relation.
BAD ⊆ B × DTR is an ability to a delegation role

assignment relation.
BA = BAR ∪ BAD

Abilities: R → 2B is a function mapping a role to a set
of abilities.

Abilities(r) = Abilities R(r) ∪ Abilities D(r)
where
Abilities R(r) = {b|∃r′ < r, (b, r′) ∈ BAR}
Abilities D(r) = {b|∃r′ < r, (b, r′) ∈ BAD}
senior(r) : P → 2R, a function mapping a role to all its

senior roles in role hierarchy.
∀dtr ∈ DTR, senior(dtr) ∩ RR = ∅: for each delega-

tion role there is no senior regular role.

own(u) : U → 2DTRand�(u1, u2 ∈ U, dtr ∈
DTR), (u1 = u2) ∧ (dtr ∈ own(u1) ∧ dtr ∈ own(u2)),
a function mapping a user to a set of delegation roles which
he/she created.

ability d(r) : DTR → 2B , a function mapping a dele-
gation role to a set of abilities.

ability∗(g): a function mapping a group to a set of abil-
ities with BAD.

ability∗(g) = {b ∈ B|∃r ∈ DTR, (g, r) ∈ GAD ∧
(b, r) ∈ BAD}

A delegation relation in ability-based user-group delega-
tion model is a constraint on GAD and BAD.

The delegation algorithm described above provides a
way for the delegator to delegate an ability to the desired
delegatee.

3.3. Ability-based Delegation Authoriza-
tion

In this section, we develop the delegating and revocation
models. The goal of the delegation authorization is to im-
pose restrictions on which role can be delegated to whom.
Here, we partially adopt the notation of prerequisite condi-
tion from [14] to introduce delegation authorization in the
delegation framework.

Definition 7: can delegatea is a relation of RR × CR ×
M where RR, CR, M are sets of regular roles, prerequisite
conditions, and maximum delegation depth, respectively.

The meaning of can delegatea(r, cr, m) means a dele-
gator who has regular role r can delegate an ability to any
user or group whose current entitlements in role satisfy the
prerequisite condition cr without exceeding the maximum
delegation depth m. Table 1 shows the can delegatea rela-
tions with the prerequisite conditions in the POS example.
The meaning of can delegatea(Ho2, [AP, Ho1], 1) is that
a user of role Ho2 can delegate his/her ability to a group
in which users are members of either role AP , or Co1, or
Re1, or Ho1. In addition, the delegated ability cannot be re-
delegate to other users or groups with the maximum depth
of delegation is 1. The second tuple authorizes that a user of
role Co1 can assign an ability to another user who has CS
role and the delegated ability can be re-delegate to other
users or groups with the maximum depth of delegation is 2.

Definition 8: An ability-based delegation revocation is a
relation del revokea ⊆ RR × 2R, where RR is the set of
regular roles.

The meaning of (x, Y) ⊆ del revokea is that a delega-
tor who has regular role x can revoke relationship of a user
or group from any role y ∈ Y , where Y defines the range of
revocation. Table 2 gives the del revokea relation in Fig-
ure 3. The first tuple shows that the delegator who has the

role Ho1 can revoke a delegation relationship of a group
from any role in [Co1, CS]. The second tuple shows that
he delegator who has the role Re1 can revoke a delegation
relationship of a user from role in AP .

Actually, the revocation process can be finished through
any of the following cases:

1. Revoke the user-delegation role assignment or group-
delegation role assignment.

2. Revoke the ability-delegation role assignment.
3. Revoke delegation role.

4. Conclusion

In this paper, we popularize user to group and permission
to ability. Based on this, we proposed a flexible ability-
based delegation model and developed according delega-
tion algorithms. Moreover, we have analyzed the delegating
framework including delegating authorization and revoca-
tion with constraints on ability-based delegation. The work
presented in this paper has significantly extended previous
work, which provides a flexible and useful management of
delegation authority in role-based access control environ-
ment.

References

[1] M. Abadi, M. Burrows, B. Lampson and G. Plotkin, A cal-
culus for access control in distributed system, ACM Trans.
Program. Lang. Syst. 15(4), 706-734, 1993.

[2] E. Barka and R. Sandhu, Framework for Role-Based Dele-
gation Models, Proc of 16th Annual Computer Security Ap-
plication Conference (ACSAC 2000). December, 2000.

[3] E. Barka and Ravi Sandhu, A Role-Based Delegation Model
and Some Extensions, Proc. of 23rd National Informa-
tion Systems Security Conference (NISSC 2000). December,
2000.

[4] E. Bertino, E. Ferrari, and Vijay Atluri. Specification and en-
forcement of authorization constraints in workflow manage-
ment systems. ACM Transactions on Information and System
Security, 2(1),February 1999.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis and A. Keromytis. The
role of trust management in distributed systm security, Secu-
rity Internet Programming pp. 185-210.

[6] D. F. Ferraiolo, J. F. Barkley, and D. Richard Kuhn. A role
based access control model and reference implementation
within a corporate intranet. ACM Transactions on Informa-
tion and System Security, 2(1), February 1999.

[7] M. Gasser, E. McDermott, An Architecture for practical Del-
egation in a Distributed System, IEEE Computer Society
Symposium on Research in Security and Privacy. May, 1990.

[8] C. Goh and A. Baldwin, Towards a more Complete Model
of Role, Proc. of 3rd ACM Workshop on Role-Based Access
Control. October, 1998.

[9] N. Li and B. N. Grasof, A practically implementation and
tractable delegetion logic, IEEE Symposium on Security and
Privacy, pp. 27-42.

[10] J. D. Moffett. Delegation of Authority Using Domain Based
Access Rules, PhD Thesis. Dept of Computing, Imperial
College, University of London. 1990.

[11] N. Nagaratnam and D. Lea, Secure Delegation for Dis-
tributed Object Environments, USENIX Conference on Ob-
ject Oriented Technologies and Systems. April, 1998.

[12] R. Sandhu, V. Bhamidipati and Q. Munawer, The ARBAC97
Model for Role-Based Administration of Roles, ACM Trans-
actions on Information and System Security, Volume 2,
Number 1, February, 1999.

[13] L. A. Stein. Delegation Is Inheritance, Proc. of Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’87). October, 1987.

[14] H. Wang, J. Cao, Y. Zhang, Formal authorization approaches
for permission-role assignment using relational algebra oper-
ations, Proceedings of the 14th Australasian Database Con-
ference, Feb. 2-7, 2003, Adelaide, Australia, Vol. 25, No.1,
pages:125-134.

[15] H. Wang, J. Li, R. Addie, S. Dekeyser and R. Watson, A
framework for Role-based group delegation in distributed
environment, the 29th Australasian Computer Science Con-
ference (ACSC2006), Australian Computer Society, Hobart,
Australia, 2006.

[16] H. Wang, J. Cao, Y. Zhang, A Consumer Anonymity Scal-
able Payment Scheme with Role Based Access Control, 2nd
International Conference on Web Information Systems Engi-
neering (WISE’2001), Dec. 3-6, 2001, Kyoto, Japan.

[17] L. Zhang, Gail-Joon Ahn, and Bei-Tseng Chu, A rule-based
Framework for Role-Based Delegation, Proc. 6th ACM Sym-
posium on Access Control Models and Technologies (SAC-
MAT 2001), May, 2002.

[18] X. Zhang, Sejong Oh, and R. Sandhu, PBDM: A Flexible
Delegation Model in RBAC, 8th ACM Symposium on Access
Control Models and Technologies (SACMAT), Como, Italy,
June 2-3, 2003: 149-157.

[19] M. Zurko, R. Simon, and T. Sanlippo. A user-centered mod-
ular authorization service built on an rbac foundation. IEEE
Symposium on Research in Security and Privacy, pages 57-
71, Oak-land, CA, May 1999.

