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A B S T R A C T

Vegetation resilience is crucial for understanding the self-repair and adaptive capacity of regional ecosystems. 
Opencast coal mine dumps, typical targets for ecological restoration, exhibit highly unstable vegetation eco-
systems after restoration, making them prone to state shifts. However, existing studies have limitations in 
capturing vegetation resilience characteristics and its climatic driving mechanisms. This study addresses these 
deficiencies by focusing on the Pingzhuang West Opencast Coal Mine dumps, utilizing Critical Slowing Down 
(CSD) theory and long-term Landsat remote sensing data from 2008 to 2024. We propose ’MultiRes’, a pixel-level 
(30 m) method to calculate vegetation resilience. Unlike traditional fixed-window approaches, MultiRes offers 
adaptive window sizes with a wide range of stability. We analyzed the spatiotemporal dynamics of vegetation 
resilience after restoration, evaluated the effectiveness of vegetation restoration, and quantitatively assessed the 
impact of key climatic drivers across different phases. Results reveal that: (1) After restoration, vegetation 
resilience at each dump experienced three phases: initial enhancement, decline, and renewed enhancement. (2) 
Vegetation resilience improved significantly compared to the initial fragile ecosystem, with over 88 % of the area 
showing improvement, especially at Taipingdi, where the enhancement rate reached 99.85 %. (3) The influence 
of key climatic drivers remained consistent within each dump across all phases, particularly in the first and third 
phases. Areas dominated by a single climatic driver generally showed more significant changes than those 
influenced by combined drivers. These findings demonstrate that vegetation resilience captures stage-specific 
ecological patterns that NDVI alone cannot detect, thereby supporting adaptive restoration and climate- 
informed management in mining environments.

1. Introduction

Vegetation is a vital component of ecosystems and a sensitive indi-
cator of climate change, essential for maintaining regional and global 
ecosystem stability (Seddon et al., 2016). Increasingly, studies have 
emphasized the role of vegetation beyond natural landscapes, particu-
larly trees, grasses, and urban green infrastructures, in mitigating 
environmental risks, regulating hydrology, and enhancing climate 
resilience in urban environments (e.g., Ghalehteimouri et al., 2024(a); 
Ghalehteimouri et al., 2024(b); Golestani et al., 2024; Kamran et al., 
2024; Nasr et al., 2025). However, mine rehabilitation significantly 

alters topography and landscape structure, impacting local vegetation 
cover and ecological function (Antwi et al., 2008; Worlanyo and 
Jiangfeng, 2021). Opencast coal mine dumps, often targeted for 
ecological restoration, are typically characterized by rocky, nutrient- 
deficient substrates prone to frequent erosion. These conditions result 
in fragile vegetation struggling to achieve stability after restoration 
(Hancock et al., 2020; Wang et al., 2020; Li et al., 2024(b)). Therefore, 
monitoring vegetation’s self-repair and adaptive capacity in such envi-
ronments is crucial.

The capacity of vegetation ecosystems for self-repair and adaptation 
largely depends on their resilience—the ability to withstand and recover 
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from environmental disturbances (Scheffer et al., 2009; Van Meerbeek 
et al., 2021). Low vegetation resilience increases sensitivity to distur-
bances and the risk of sudden, permanent ecological degradation 
(Scheffer et al., 2015; Dakos et al., 2015). McDougall et al. (2013)
provided long-term empirical evidence from a degraded grassland sys-
tem in western North America to support these views. Despite extensive 
research on climate change, the response of vegetation resilience to 
climatic drivers in mining areas remains insufficiently explored (Liu 
et al., 2024). Monitoring the spatiotemporal dynamics of vegetation 
resilience and analyzing key climatic drivers in mining dumps are 
essential for assessing vegetation’s self-repair and adaptive capacity and 
understanding climate-driven mechanisms, informing targeted ap-
proaches to vegetation restoration.

Traditional studies on vegetation dynamics in mining areas have 
primarily used vegetation indices to monitor changes in vegetation 
cover (e.g., Li et al., 2015; Zhang et al., 2019; Hutayanon and Sompra-
song, 2023). This method, facilitated by remote sensing technology, 
allows for efficient and broad-scale monitoring of vegetation health. Li 
et al. (2015) compared Normalized Difference Vegetation Index (NDVI), 
Normalized Burn Ratio (NBR), and Normalized Difference Moisture 
Index (NDMI) and found that NDVI effectively distinguishes green 
vegetation. Zhang et al. (2019) and Zhang et al. (2023) utilized remote 
sensing imagery to compute fractional vegetation coverage (FVC) and 
other indices, reconstructing the recovery process of coal mine dumps. 
In Southeast Asia, Hutayanon and Somprasong (2023) applied spatial- 
integrated analysis with NDVI to monitor vegetation growth in the 
Mae Moh coal mine area. However, while vegetation indices, particu-
larly NDVI, effectively reflect average level of greening status, they have 
limitations in characterizing vegetation’s self-repair and adaptive ca-
pacity in response to environmental disturbances. Understanding 
ecological adaptability, especially after restoration, requires more sen-
sitive metrics like vegetation resilience (Boulton et al., 2022).

CSD theory offers a practical framework for characterizing vegeta-
tion resilience, positing that resilience declines as an ecosystem nears a 
collapse threshold, evidenced by a slowing recovery rate (Wichers et al., 
2016). This approach has been effectively applied to assess vegetation 
resilience under various environmental disturbances, including climate 
change, natural disasters, and human activities. For example, Flores 
et al. (2024) predict that up to 47 % of the Amazon rainforest’s vege-
tation resilience may decline by 2050, driven by unprecedented stress 
from warming temperatures, extreme droughts, deforestation and fires. 
Similarly, Van Belzen et al. (2017)applied CSD theory to explore vege-
tation resilience in tidal zones across Europe and North America. 
Concurrently, Wang et al. (2023)(b) investigated how vegetation 
greening correlates with resilience in China’s Loess Plateau. These 
studies underscore CSD’s broad applicability across diverse ecosystems, 
offering valuable theoretical insights and fresh perspectives on evalu-
ating vegetation resilience in opencast coal mine dumps.

To address deficiencies in the dynamic monitoring, as well as 
quantification of vegetation self-repair and adaptive capacity in open-
cast coal mine dumps, this study applies Critical Slowing Down (CSD) 
theory to this specific scenario. We further investigate the effects of 
climatic drivers on vegetation resilience after restoration. We selected a 
typical study area in China, the Pingzhuang West Opencast Coal Mine 
dumps. This study aims to (1) Propose a method for developing an in-
dicator of vegetation self-repair and adaptive capacity using an adaptive 
window decomposition, (2) explore the temporal and spatial charac-
teristics of vegetation resilience, (3) evaluate changes in vegetation 
resilience across different phases after restoration quantitatively, and 
(4) quantify the impact of key climatic drivers at different phases of the 
recovery process. The findings provide a reliable basis for evaluating 
vegetation resilience, identifying and predicting critical stages of re-
covery, and enhancing the understanding of climatic influences on 
vegetation restoration, ultimately supporting the development of 
effective ecological restoration strategies.

2. Study area and data

2.1. Study area overview

The Pingzhuang West Opencast Coal Mine is an ecologically 
vulnerable region, where the surrounding environment is severely 
degraded due to the idleness of the pit after resource extraction, and it 
faces severe climatic conditions such as high winds, droughts, and cold, 
recognized as a critical area for ecosystem conservation and restoration 
in China. The mine is in Yuanbaoshan District, Chifeng City, Inner 
Mongolia Autonomous Region (Fig. 1). The study area experiences a 
mid-temperate, semi-arid continental climate characterized by cold, dry 
winters and short, humid summers, with most precipitation occurring 
during the summer. The vegetation in the region is primarily grassland. 
The mine encompasses three external rehabilitated areas: Taipingdi 
dump, Shanhou dump, and Sanjia dump, which cover approximately 
526.42 ha, 64.88 ha, and 552.81 ha, respectively. The research period of 
this study follows the implementation of vegetation restoration mea-
sures. Specifically, restoration efforts began in 2008 at the Taipingdi and 
Shanhou dumps, and in 2014 at Sanjia dump. Subsequent to these ef-
forts, the dumps have experienced several years of natural regrowth.

2.2. Data sources and preprocessing

The study utilizes remotely sensed data comprising Landsat satellite 
images and high-resolution imagery. Landsat satellite images acquired 
between December 2005 and February 2024 were processed on the 
Google Earth Engine (GEE) platform, with the Auto-NDVIcb algorithm 
developed by our team (Li et al., 2024(a)) applied to automatically 
generate seasonal maximum NDVI data. The algorithm consists of four 
main steps: (1) calculation of time-series NDVI images, (2) automatic 
selection of the reference NDVI image, (3) construction of the calibra-
tion model, and (4) batch calibration and fusion. The GEE script is 
available in the Code Availability section. This processing incorporated 
surface reflectance (SR) datasets from the Landsat 5 Thematic Mapper 
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM + ) and Landsat 
8 Operational Land Imager (OLI). High-resolution imagery from the 
Gaofen-1 satellite was sourced from the Land Observation Satellite Data 
Service Platform of the China Centre for Resources Satellite Data and 
Application (https://data.cresda.cn/). High-resolution imagery of the 
study area from 2024 was imported into ArcGIS, and the vector 
boundaries of the three dumps and stope were manually delineated.

Daily meteorological data, including temperature, precipitation, and 
net solar radiation from 2008 to 2024, were sourced from the ERA5- 
Land reanalysis dataset (https://www.ecmwf.int) (Muñoz Sabater, 
2021). Furthermore, our team installed the BX-H1100 multifunctional 
meteorological station within the study area to collect hourly observa-
tions from January to June 2024. The collected field data were used to 
calibrate the ERA5-Land temperature data using a simple linear 
regression model. Detailed information on the field data collection and 
calibration are provided in Supplementary Materials A1.

3. Methods

3.1. Vegetation resilience calculation

Fig. 2 illustrates the workflow of the MultiRes Method, a pixel- 
adaptive approach developed to calculate vegetation resilience by 
optimizing the decomposition of seasonal NDVI time series. Specifically, 
MultiRes identifies the optimal sliding window size for each pixel during 
Seasonal and Trend decomposition using Loess (STL), thereby ensuring 
that the stability of the resulting residuals is not affected by the choice of 
window size. Seasonal maximum NDVI was used as the input to generate 
seasonal vegetation resilience maps at a spatial resolution of 30 m, 
suitable for localized analyses such as dumps.

Initially, the Auto-NDVIcb algorithm was applied to automatically 

H. Wang et al.                                                                                                                                                                                                                                   International Journal of Applied Earth Observation and Geoinformation 141 (2025) 104646 

2 

https://data.cresda.cn/
https://www.ecmwf.int


generate seasonal maximum NDVI data from December 2005 to 
February 2024. This algorithm selects the NDVI image with the highest 
mean value within the research period as the reference image. Based on 
the consistency of tones between similar geographical entities, mathe-
matically represented by the similarity of cumulative distribution 
functions, it establishes a mapping relationship of NDVI pixel values 
between all NDVI images and the reference image. This effectively ad-
dresses the issues of abnormal mosaic lines and value biases caused by 
temporal inconsistencies in traditional NDVI products. Furthermore, a 
cross-sensor calibration model is established to solve the inconsistency 
of NDVI values caused by different sensors. Details of this calibration can 
be found in Supplementary Material A2. The NDVI formula is presented 
in Equation (1). 

NDVI =
ρNIR − ρR

ρNIR + ρR
(1) 

where ρNIR is the surface reflectance in the near-infrared band, and ρR 
is the surface reflectance in the red band. NDVI is widely used to 
quantify vegetation greenness, as healthy vegetation strongly reflects 
near-infrared light and absorbs red light (Huang et al., 2021).

Subsequently, we employed the Multi-Window-Finder (MWF) 
method to determine the optimal sliding window size for STL decom-
position of the seasonal maximum NDVI data (Imani and Keogh, 2021). 
This method evaluates a range of candidate window sizes and selects the 
one that minimizes the moving average error. The applicability and 
accuracy of MWF have been verified using 250 time-series datasets from 
diverse domains in the Knowledge Discovery and Data Mining (KDD) 
Cup. We applied this method across the study area to generate the 
optimal window size for each pixel, as shown in Fig. 3.

Next, the pixel-level optimal window sizes derived from the MWF 
method (Fig. 3) were used as inputs for STL. STL separates each NDVI 

Fig. 1. Geographical location of Pingzhuang West Opencast Coal Mine.Photographs taken in August 2024.
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time series into trend, seasonal, and residual components through 
locally weighted regression (Wang et al., 2012). By incorporating the 
spatially adaptive window sizes into the decomposition process, we 
effectively removed long-term trends and seasonal effects, resulting in 
more stable NDVI residuals suitable for subsequent resilience analysis 
based on CSD theory (Apaydin et al., 2021).

To evaluate the stability of NDVI residual components obtained 
through STL decomposition, we utilized classical methods, including 
Augmented Dickey-Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS) test and variance measures, to explore the suitability and 
robustness of the MultiRes. The ADF test is based on the null hypothesis 
that the time series is non-stationary, whereas the KPSS test assumes 
stationarity (Van Greunen et al., 2014). As shown in Table 1, in the 

traditional fixed-window approach, the ADF p-values and variance 
exhibited substantial fluctuations across different window sizes, 
particularly when the window size was 50 at the Shanhou dump and 40 
or 50 at the Sanjia dump. In these cases, the residual series even failed to 
meet the requirements for subsequent vegetation resilience analysis. 
This indicates that the traditional method has significant window 
sensitivity defects and its stability is difficult to guarantee. By contrast, 
the MultiRes adaptively determines the optimal window for each pixel, 
maintaining stable residuals across diverse regions and environmental 
conditions.

Finally, according to CSD theory, the ecosystem becomes increas-
ingly susceptible to state shifts as vegetation resilience diminishes, 
leading to slower recovery after disturbances (Dakos et al., 2012; Meisel 

Fig. 2. Workflow of the MultiRes Method.
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et al., 2015; Diks et al., 2019). Under these conditions, the similarity 
between successive time points in the dataset increases, leading to 
heightened temporal autocorrelation in the vegetation index (Scheffer 
et al., 2009). Consequently, this study employs the first-order autocor-
relation coefficient, AC(1), as an indicator of vegetation resilience, 
detailed in Equation (2). AC(1) values range from − 1 to 1, where higher 
values signify reduced resilience and a heightened risk of succumbing to 
disturbances (Dakos et al., 2010; Scheffer et al., 2015). For instance, 
Smith and Boers (2022) demonstrated that increasing AC(1) values 
revealed persistent losses of vegetation resilience from 1992 to 2017 in 
high-latitude regions, southern Africa, and parts of Australia. 

Zt+1 = AC(1)Zt + εt (2) 

where Zt is the stable seasonal maximum NDVI time series value at 
time t, Zt+1 is the stable seasonal maximum NDVI time series value at 
time t + 1, and εt is the residual obtained using ordinary least squares.

We utilized an equal-interval classification method for NDVI levels 
(Hu and Xia, 2019), vegetation resilience is categorized into five levels 
based on AC(1) values, as depicted in Table 2.

3.2. Temporal trend analysis

To investigate the changes in vegetation resilience after restoration, 
Kendall’s τ was used to assess the trends in the AC(1) values. Kendall’s τ 
is a non-parametric method that measures the correlation between two 
variables by comparing the rank order of paired data points (Shiekh and 
El-Hashash, 2022). A key advantage of this approach is its independence 
from standard distribution assumptions and its robustness in handling 
outliers (Xu et al., 2013), making it particularly suited for environmental 
and meteorological studies. The formula for Kendall’s τ is detailed in 
Equation (3) – (6) (Kendall, 1938). 

τ(X,Y) = Nc − Nd
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N0 − TX

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N0 − TY

√ (3) 

where 

N0 = N(N − 1)/2 (4) 

TX =
∑P

p=1
tp(tp − 1)/2 (5) 

TY =
∑Q

q=1
uq(uq − 1)/2 (6) 

where N0 is the total number of discordant pairs, while Tx and TY are the 
number of ties in datasets X and Y, respectively. tp and uq are the lengths 
of the ties in the pth and qth ranks in datasets X and Y, P and Q are the 
numbers of tied groups in datasets X and Y. This study’s datasets X and Y 
correspond to the time series and AC(1) values. Each pixel’s AC(1) value 
is treated as a time series, and Kendall’s τ is calculated to evaluate the 
AC(1) trend over each period. The value of τ ranges from [-1, 1], where 
τ = 1 indicates a perfect positive correlation (i.e., consistent trend), τ =
-1 indicates a perfect negative correlation (i.e., opposing trend), and τ 
close to 0 suggests no significant correlation in the trend of AC(1) over 
time.

Fig. 3. Pixel-level optimal window sizes for STL decomposition.

Table 1 
Comparison of STL decomposition residuals between the MultiRes method and traditional fixed-window approaches.

Window size Taipingdi Shanhou Sanjia
ADF 
p-value

KPSS p-value Variance ADF 
p-value

KPSS 
p-value

Variance ADF 
p-value

KPSS 
p-value

Variance

10 0.0103 0.1000 0.0043 0.0121 0.1000 0.0034 0.0138 0.1000 0.0047
20 0.0101 0.1000 0.0040 0.0105 0.1000 0.0031 0.0111 0.1000 0.0043
30 0.0105 0.1000 0.0045 0.0280 0.1000 0.0039 0.0253 0.1000 0.0050
40 0.0124 0.1000 0.0046 0.0474 0.1000 0.0042 0.0564 0.0999 0.0050
50 0.0142 0.0999 0.0047 0.0599 0.1000 0.0044 0.0985 0.0983 0.0056
MultiRes 0.0100 0.1000 0.0038 0.0101 0.1000 0.0028 0.0102 0.1000 0.0039

Table 2 
Classification criteria for vegetation resilience levels based on AC(1).

AC(1) range vegetation resilience level

AC(1) ≥ 0.6 very low vegetation resilience
0.6 ＞ AC(1) ≥ 0.2 low vegetation resilience
0.2 ＞ AC(1) ≥ -0.2 medium vegetation resilience
− 0.2 ＞ AC(1) ≥ -0.6 high vegetation resilience
AC(1) ＜ − 0.6 very high vegetation resilience
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3.3. Vegetation resilience effectiveness evaluation

The effectiveness of vegetation resilience enhancement or reduction 
was quantified by calculating the difference in resilience between the 
current state and the initial state when restoration measures were 
implemented. The calculation method is provided in Equation (7). 

D value = AC(1)n − AC(1)i (7) 

where D_value is the change in vegetation resilience at the dump over a 
given period. AC(1)n and AC(1)i represent the AC(1) values at the end 
and beginning of the study period, respectively. A D_value less than 
0 indicates an enhancement in vegetation resilience, while a positive 
D_value signifies a decline in vegetation resilience.

3.4. Contribution analysis of key climatic influences

The Lindeman, Merenda, and Gold (LMG) model was used to allocate 
the relative contributions of each independent variable in the regression 
model (Grömping, 2007), distinguishing the contributions of key cli-
matic drivers (average temperature, total precipitation, and average net 
solar radiation) to vegetation resilience. R2 represents the proportion of 
the variability in the dependent variable that the model explains. The 
LMG method decomposes R2by considering the order of regression 
variables, averaging the unweighted R2 for each variable sequence, thus 
effectively avoiding the effects of variable order. Ultimately, the total R2 

is decomposed into non-negative components for each regression vari-
able (Yao et al., 2018). Compared to other decomposition methods, the 
LMG method effectively avoids the effects of regression variable order, 
thereby providing an accurate measure of the relative importance of 
each factor. It has been widely applied in meteorological research (Li 
et al., 2021; Yang et al., 2022; Wang et al., 2023(a)). In this study, we 
implemented the method using the ’Relaimpo’ package in R software.

Based on analyzing the contributions of the three key climatic drivers 
to vegetation resilience, this study defined and classified the dominant 
climatic drivers for each pixel, as shown in Table 3. C_P, C_T, and C_R 
represent the contributions of precipitation, temperature, and net solar 
radiation to vegetation resilience.

4. Results

4.1. Spatiotemporal dynamics and trends of vegetation resilience in the 
dumps after restoration

The spatiotemporal dynamics and trends of vegetation resilience in 
the dumps after restoration were observed by analyzing the AC(1) time 
series. Taipingdi and Shanhou began vegetation restoration measures in 
2008, while Sanjia started in 2014. At this time, the dumps experienced 
significant anthropogenic disturbances. Fig. 4 presents the seasonal 

average NDVI and AC(1) time series of the dumps after restoration. 
Fig. 5 illustrates the spatial distribution of vegetation resilience trends 
across different phases. Figs. 4 and 5 indicate that vegetation resilience 
experienced three distinct phases at the dumps: significant enhance-
ment, decline, and renewed enhancement. Currently, Taipingdi and 
Shanhou are in the third phase, while Sanjia, which started restoration 
later, is transitioning between the second and third phases. Fig. 6 depicts 
the spatial distribution of annual maximum vegetation resilience from 
2008 to 2021 in the study area, and Fig. 7 shows the classification results 
of annual maximum vegetation resilience in the dumps after restoration. 
Figs. 6 and 7 indicate that the year of restoration was marked by the 
lowest vegetation resilience, predominantly classified as “low” and 
“medium,” indicating that the self-repair and adaptive capacity of the 
vegetation ecosystem were severely threatened.

First Phase: Significant Enhancement of Vegetation Resilience.
During the first phase, vegetation resilience significantly improved 

following the implementation of restoration measures, enhancing the 
ecosystem’s self-repair and adaptive capacity. Among the dumps, Sanjia 
exhibited the fastest improvement in vegetation resilience, with Ken-
dall’s τ of − 0.884, followed by Shanhou and Taipingdi. Fig. 5 (b) in-
dicates that most areas within the three dumps exhibited increased 
vegetation resilience during this phase. By the end of the first phase, the 
dominant type of annual maximum vegetation resilience at Taipingdi (in 
2012) was classified as “high.” However, frequent vehicle and machin-
ery movement caused soil compaction and surface erosion, resulting in 
“medium” and “low” vegetation resilience on north–south dirt road 
through Taipingdi, with no significant improvement. Similarly, Shanhou 
(in 2015) showed predominantly “high” vegetation resilience, with two 
dirt roads traversing the western and central portions of the dump 
classified as “medium.” Sanjia (in 2019) had a mix of “high” and “me-
dium” vegetation resilience.

Second Phase: Decline in Vegetation Resilience.
In the second phase, vegetation resilience declined, indicating a 

reduction in the ecosystem’s self-repair and adaptive capacity. Taipingdi 
experienced the most rapid decline, followed by Sanjia and Shanhou. 
Fig. 5 (c) shows that most areas in Taipingdi and Shanhou experienced 
decrease vegetation resilience, particularly in the central Taipingdi and 
northern Shanhou. Sanjia also showed a general decline in vegetation 
resilience, with sporadic areas of improvement in the northern and 
central regions. By the end of the second phase, the annual maximum 
vegetation resilience of both Taipingdi and Shanhou (in 2017) was 
mainly classified as “medium.” At Sanjia (in 2021), the vegetation 
resilience was predominantly “high” and “medium,” with a dispersed 
spatial distribution.

Third Phase: Renewed Enhancement of Vegetation Resilience.
In the third phase, vegetation resilience improved once more, indi-

cating enhanced self-repair and adaptive capacity of the ecosystem. 
Taipingdi showed a faster rate of improvement, with Kendall’s τ of 
− 0.723, while Shanhou exhibited a slower recovery, with Kendall’s τ of 
− 0.532. As shown in Fig. 5 (d), most areas in Taipingdi exhibited an 
increasing trend in vegetation resilience, with the majority of the annual 
maximum resilience levels classified as “high” and isolated patches in 
the northern part classified as “very high.” The dirt road in the southern 
and central parts continued to be classified as “medium.” At Shanhou, 
the two dirt roads did not show a clear trend of improvement, with the 
vegetation resilience levels remaining mixed, primarily classified as 
“high” and “medium,” with some areas along the western side and the 
roads showing “low” vegetation resilience.

4.2. Evaluating vegetation resilience across different phases

This section quantitatively evaluates changes in vegetation resilience 
throughout the study period and across each phase (Phase 1, Phase 2, 
and Phase 3), labeled as D_value, D1_value, D2_value, and D3_value, as 
shown in Fig. 8 (e), (f), (g), and (h). Fig. 8 (a) illustrates the initial spatial 
distribution of vegetation resilience when restoration began, while Fig. 8

Table 3 
Definition and classification criteria of dominant climatic drivers influencing 
vegetation resilience.

Dominant 
Drivers

Criteria Description

PRCP C_P ≥ 1/3＆C_T < 1/3＆ 
C_R < 1/3

Dominated by Precipitation

TEMP C_T ≥ 1/3＆C_P < 1/3＆ 
C_R < 1/3

Dominated by Temperature

NSSR C_R ≥ 1/3＆C_P < 1/3＆ 
C_T < 1/3

Dominated by Net Solar Radiation

PRCP＆TEMP C_P ≥ 1/3＆C_T ≥ 1/3＆ 
C_R < 1/3

Dominated by Precipitation and 
Temperature

PRCP＆NSSR C_P ≥ 1/3＆C_R ≥ 1/3＆ 
C_T < 1/3

Dominated by Precipitation and Net 
Solar Radiation

TEMP＆NSSR C_T ≥ 1/3＆C_R ≥ 1/3＆ 
C_P < 1/3

Dominated by Temperature and Net 
Solar Radiation
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(b), (c), and (d) illustrate the spatial distribution of vegetation resilience 
at the end of Phases 1, 2, and 3, respectively. Table 4 summarizes the 
proportions of areas where vegetation resilience either enhanced or 
declined.

Overall, vegetation resilience at the dumps improved significantly 
from the initial fragile ecosystem, showing a gradual increase in self- 
repair and adaptive capacity. Among the three dumps, more than 88 
% of the area experienced enhancements in vegetation resilience. Field 
surveys indicated that areas with favorable soil conditions and loose soil 
texture showed more pronounced increases in vegetation resilience. For 
instance, Taipingdi enhanced 99.85 % of its area, most notably on the 
eastern and western sides. Conversely, areas with hard soil or residual 
coal slag showed limited vegetation resilience improvement, with some 
areas even exhibiting a decline, particularly near dirt roads subjected to 
vehicle compaction. Sanjia showed a resilience improvement in 94.04 % 
of its area. However, the northeast side, which contained residual coal 
slag, experienced a decline in vegetation resilience, hindering vegeta-
tion growth. Shanhou exhibited an increase in vegetation resilience in 
88.58 % of its area, while vegetation resilience decreased near the two 
dirt roads in the western and central regions. These findings indicate 
that soil physical properties, particularly looseness and disturbance 
levels, are key to vegetation resilience.

During the first phase, vegetation resilience generally improved 
across all dumps, with enhancements in over 95 % of each are. Specif-
ically, at Taipingdi, 98.65 % of the area experienced improvement, 
while declines were mainly concentrated around the central dirt road. At 
Shanhou, vegetation resilience increased in 99.69 % of the area. Sanjia 
saw enhancement in 95.02 % of its area, with declines predominantly 
occurring in the southwest mounds and the northeast side. In the second 
phase, there was a widespread decline in vegetation resilience across the 
dumps, particularly in Taipingdi and Shanhou, where declines affected 

97.17 % and 99.38 % of the areas, respectively. At Sanjia, 55.73 % of the 
area showed a decline, primarily in the southwest reclamation area that 
had been leveled and in the central region. In the third phase, 99.26 % of 
Taipingdi and 83.74 % of Shanhou showed increased vegetation resil-
ience, albeit at a lower degree than in the first phase.

4.3. Influence of key climate drivers on vegetation resilience

This section explores the impacts of three key climate drivers, total 
precipitation (TotalPrecip), mean temperature (meanTemp), and mean 
net solar radiation (meanSolar) on vegetation resilience. Fig. 9 presents 
the median contributions of key climate drivers to vegetation resilience 
in each phase at the dumps. We observed a significant pattern: the 
ranking of climatic drivers remained consistent within each dump 
throughout the phases, even though it differed across the dumps. This 
indicates that, although climatic conditions fluctuated, the interaction 
patterns and weighting among the three drivers did not change signifi-
cantly. Fig. 10′s ternary diagrams illustrate the contributions from 
combinations of these drivers, where each point represents a pixel’s 
contribution, and the point density indicates the frequency of these 
combinations within the dumps. The similar shapes of the ternary dia-
grams in the first and third phases suggest stable vegetation resilience 
during both the enhancement and renew enhancement phases. In 
contrast, the distinct shape in the second phase, characterized by a 
decline in vegetation resilience, indicated a shift in the influence of 
climatic drivers. Based on the classification of dominant climatic drivers 
in Table 3, Fig. 11 and Table 5 depict the spatial distribution and pro-
portions of areas influenced by six types of dominant climatic drivers 
after restoration. Areas dominated by a single climatic driver generally 
covered more of the dump than those influenced by combined drivers, 
with precipitation and net solar radiation playing key roles in vegetation 

Fig. 4. Seasonal average NDVI and AC(1) time series for each dump after restoration.

Fig. 5. Spatial distribution of vegetation resilience trends across different phases in the dumps.
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Fig. 6. Spatial distribution of annual maximum vegetation resilience in the study area.
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Fig. 7. Spatial distribution of classified annual maximum vegetation resilience in the dumps after restoration.
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resilience. These findings provide crucial insights for optimizing vege-
tation restoration strategies and supporting targeted measures to 
enhance ecological benefits at different phases of restoration.

At Taipingdi, precipitation was the most influential climatic driver 
across all three phases, according to the median contributions, followed 
by temperature and net solar radiation. In the first phase, precipitation 
alone and its combined effect with temperature were the main drivers of 
vegetation resilience changes. Region A in the ternary diagram showed 
high point density, indicating a strong impact of these two climatic 
drivers, covering 37.82 % and 52.54 % of the area. The effect of pre-
cipitation alone was mainly concentrated around the dump’s edges, 
while the combined effect of precipitation and temperature was 
distributed in the central area. In the second phase, Region B shifted 
towards precipitation and net solar radiation, increasing their respective 
contributions. Areas driven by precipitation alone accounted for 68.82 
% of the area. The influence of net solar radiation increased in the 
northeastern part of the dump, with the dominant type being a combi-
nation of precipitation and solar radiation, covering 11.9 % of the area. 
In the third phase, the number of pixels influenced solely by precipita-
tion increased again, with an area coverage of 78.01 %. The area 

affected solely by net solar radiation also increased slightly, mainly 
around the dirt roads and surrounding dump areas.

At Shanhou, precipitation contributed most significantly across the 
three phases, as indicated by median contributions, followed by net 
solar radiation and temperature. The dominant climatic driver types 
were precipitation alone and net solar radiation alone. In the first phase, 
the area influenced by precipitation alone accounted for 30.35 %. In 
comparison, net solar radiation alone accounted for 30.56 %, and the 
combined influence of the two covered 28.6 %, with a scattered distri-
bution across the dump. In the second phase, the cluster shifted towards 
precipitation, and the area influenced by precipitation alone increased 
to 45.27 %, mainly distributed along the two dirt roads in the central 
and western parts of the dump. In the third phase, the points in the 
ternary diagram were more evenly distributed, with an increase in the 
influence of temperature. However, precipitation and net solar radiation 
remained the dominant drivers.

At Sanjia, during the two phases, the median contributions of cli-
matic drivers showed that net solar radiation had the highest contri-
bution, followed by precipitation, with temperature having the least 
influence. Net solar radiation alone was the primary dominant climatic 

Fig. 8. Spatial distribution of vegetation resilience at initial restoration and the end of each phase, including quantitative evaluation of effectiveness.

Table 4 
Proportions of areas exhibting enhanced or declined vegetation resilience during each phase.

Phase 
Dump

Initial to End Phase1 Phase2 Phase3
<0 >0 <0 >0 <0 >0 <0 >0

Taipingdi 99.85 % 0.15 % 98.65 % 1.36 % 2.83 % 97.17 % 99.26 % 0.75 %
Shanhou 88.58 % 11.42 % 99.69 % 0.21 % 0.62 % 99.38 % 83.74 % 16.26 %
Sanjia 94.04 % 5.96 % 95.02 % 4.98 % 44.27 % 55.73 % — —
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Fig. 9. Median contributions of key climatic drivers to vegetation resilience in each phase at the dumps.

Fig. 10. Ternary diagrams of key climatic driver contributions for each phase in the dumps.
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driver. In the first phase, the points in the ternary diagram clustered at 
Region C, indicating a low contribution from temperature. Net solar 
radiation alone accounted for 60.88 % of the area, covering most of the 
dump except for the central dirt road and the southwest mound. The two 
types of combined drivers involving net solar radiation and precipitation 
accounted for 80.37 % of the area. In the second phase, Although the 
dominant drivers remained unchanged, the pixel distribution became 
more uniform, with sporadic temperature occurrences acting as the sole 
driver in certain areas.

5. Discussion

5.1. Staged analysis of vegetation resilience in dumps

Vegetation resilience describes the capacity of vegetation ecosystems 
to recover to a sustainable state following environmental disturbances, 
crucial for ecosystem adaptation and long-term sustainability (Elmqvist 
et al., 2003). To verify the reliability of the vegetation resilience results, 
we calculated the first-order autocorrelation coefficient AC(1) using 
sliding windows of 3, 4, 5, and 6 years, with experimental results 
showing similar fluctuations across different window sizes. Comparing 
vegetation resilience curves obtained with different sliding windows and 
the restoration timelines of the three dumps, we determined that a 4- 
year window was optimal.

Integrating CSD theory with remote sensing technology provides 
novel insights into vegetation ecosystems stability across different 
restoration phases in mining environments. CSD theory effectively 
captures “critical transitions,” while remote sensing delivers high- 
resolution data for monitoring restoration. Based on this, we observed 

an interesting phenomenon at Pingzhuang West Opencast Coal Mine 
dumps: vegetation resilience experienced three phases—significant 
enhancement, decline, and renewed enhancement. During the first 
phase, introducing restoration measures led to rapid vegetation growth, 
indicating strong self-repair and adaptive capacity. However, these re-
sponses were mainly driven by external interventions rather than 
spontaneous ecosystem regulation. In the second phase, the vegetation 
entered a ’bottleneck’ period, with slowed growth likely resulting from 
nutrient depletion and increased competition. This resource limitation 
diminished resilience, a common issue in mine restoration that 
frequently results in stagnation or delayed recovery (Meuser, 2012; 
Morel et al., 2015). In the third phase, vegetation ecosystem gradually 
recovers through self-regulation, stabilizing with optimized plant 
structures and strengthened root networks, enhancing resilience and 
allowing it to cope better with external disturbances. This three-phase 
model illustrates a typical transition trajectory from external de-
pendency to self-regulation, highlighting different ecological mecha-
nisms and their responses to disturbances at each phase (Tittonell, 
2020).

However, NDVI fails to capture this phenomenon because it mainly 
reflects the current greenness of vegetation. AC(1) reflects different in-
formation by emphasizing vegetation self-repair and adaptability. To 
enable a direct comparison of the staged characteristics between NDVI 
and AC(1), we extracted both indicators using the same sliding window 
approach, thereby minimizing seasonal interference. Results shown in 
Fig. 12 indicate that AC(1) captures aspects of vegetation resilience that 
NDVI cannot detect, particularly in revealing the internal dynamics of 
ecosystem resilience across the three phases. This stage characteristic is 
consistent with the research results of Gillson et al. (Gillson and Ekblom, 

Fig. 11. Spatial distribution of dominant climatic drivers influencing vegetation resilience in each phase.

Table 5 
Proportions of areas influenced by six types of dominant climatic drivers after restoration.

Dominant Drivers PRCP TEMP NSSR PRCP＆TEMP PRCP＆NSSR TEMP ＆NSSR

Taipingdi Phase1 37.82 % 2.85 % 3.17 % 52.54 % 2.47 % 1.14 %
Phase2 68.82 % 4.06 % 1.18 % 13.60 % 11.90 % 0.44 %
Phase3 78.01 % 0.81 % 5.37 % 6.45 % 8.68 % 0.69 %

Shanhou Phase1 30.35 % 2.26 % 30.56 % 5.45 % 28.60 % 2.78 %
Phase2 45.27 % 2.98 % 20.06 % 6.89 % 7.61 % 17.18 %
Phase3 29.42 % 7.41 % 26.34 % 16.05 % 11.21 % 9.57 %

Sanjia Phase1 16.51 % 0.80 % 60.88 % 1.38 % 19.49 % 0.94 %
Phase2 25.99 % 5.90 % 43.80 % 11.33 % 6.54 % 6.44 %
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2009; Shilpakar et al., 2021; Kusch et al., 2022). The finding provides 
data support for the quantitative assessment of vegetation resilience at 
different stages. Additionally, we found that vegetation resilience does 
not always increase concurrently with greening. This finding aligns with 
Wang et al.’s research on the Loess Plateau of China (Wang et al., 2023 
(b)). These observations suggest that relying solely on NDVI may not 
fully capture the restoration process of vegetation ecosystems. Identi-
fying and analyzing the staged characteristics of vegetation resilience 
can help strengthen monitoring and management during critical pe-
riods, thereby achieving sustainable ecosystem recovery.

5.2. Climatic influences of vegetation resilience in dumps

Previous studies, including those by Isbell et al., 2015, have 
demonstrated the significant influence of key climatic drivers such as 
precipitation, temperature, and net solar radiation on vegetation resil-
ience (Isbell et al., 2015; Hossain et al., 2023; Luo et al., 2024). Our 
study found that the main climatic drivers of vegetation resilience varied 
among the dumps. At Taipingdi, precipitation contributed most signif-
icantly to vegetation resilience. At Shanhou, both precipitation and net 
solar radiation were important contributors. Moreover, at Sanjia, net 
solar radiation was the dominant driver. Field investigations and liter-
ature analysis revealed that Taipingdi’s vegetation primarily consists of 
species like Populus simonii and sea buckthorn. The shallow roots of 
Populus simonii make it highly dependent on surface soil moisture (Zhai 
et al., 2023), and the loose soil and weak water retention capacity in the 
area limit water uptake from deeper soil, making vegetation heavily 
reliant on precipitation. The restoration efforts at Shanhou were less 
intensive, resulting in a balanced soil structure that retains some mois-
ture while providing good aeration. This balance supports water reten-
tion and sunlight penetration, making precipitation and net solar 
radiation significant contributors to vegetation resilience. Sanjia’s 
vegetation mainly consists of pine, a drought-tolerant, deep-rooted 
species (Ne’eman and Osem, 2021) capable of accessing groundwater. 
The hard soil in the area also retains moisture well, reducing the vege-
tation’s reliance on surface water and making net solar radiation a more 
critical driver for photosynthesis. Additionally, the influence of climatic 
drivers on vegetation resilience was consistent across different phases, 
indicating that the underlying conditions, such as soil texture and 
vegetation type, partly determined the vegetation’s sensitivity to cli-
matic drivers. Therefore, the Pingzhuang West Opencast Coal Mine’s 
Taipingdi dump and Houshan dump could be properly irrigated for 
future management, and a mixture of trees could also be planted for all 
dumps to enhance and stabilize vegetation resilience. This approach can 
improve long-term ecosystem stability while reducing future restoration 
and maintenance costs, thereby offering both ecological and economic 
benefits.

5.3. Limitations and future work

This study emplpyed the concept of vegetation resilience, which has 
potential and limitations (Dakos et al., 2015; Liu et al., 2019). The 

metric, as measured by AC(1), is grounded in CSD theory, which allows 
for the estimation of recovery capacity without controlled experiments 
(Smith et al., 2022). This approach primarily relies on long-term satellite 
vegetation index datasets (Zeng et al., 2022). Perious studies have 
demonstrated its effectiveness by comparing the metric with empirically 
estimated recovery rates following disturbances (Smith and Boers, 2022; 
Smith et al., 2023). However, the resilience signal provided by CSD 
theory mainly serves as an early warning rather than a definitive pre-
diction of critical ecological shifts (Kéfi et al., 2013).

To enhance the practical applicability and policy relevance of the 
findings, we propose two key areas for future research: First, efforts 
should be directed toward establishing clearer connections between 
vegetation resilience metrics and actual critical transitions in mining 
ecosystems (Forzieri et al., 2022). Second, comparative studies across 
opencast mining regions in neighboring provinces, as well as across 
different climatic zones, are needed to better understand how restora-
tion outcomes vary under diverse environmental conditions. Such 
studies would contribute to distinguishing generalizable patterns from 
region-specific resilience responses.

6. Conclusions

This study developed a vegetation resilience indicator based on CSD 
theory and long-term Landsat quantitative remote sensing, providing 
insights into vegetation ecosystems’ self-repair and adaptive capacity in 
opencast coal mine dumps. Compared to traditional fixed-window ap-
proaches, the pixel-adaptive MultiRes method has a wide range of sta-
bility. Based on the resilience indicator AC(1), we conducted a 
comprehensive analysis to assess spatiotemporal dynamics, effects, and 
key climatic influences on vegetation resilience after restoration. This 
study addresses issues that remain unresolved in previous vegetation 
research on opencast coal mine dumps. We have come to the following 
conclusions:

(1) This study identified a phased progression in the self-repair and 
adaptive capacity of vegetation in the Pingzhuang West Opencast Coal 
Mine dumps after restoration. Vegetation resilience followed a distinct 
“three-phase” temporal trajectory: significant enhancement, decline, 
and renewed enhancement. In the first phase, resilience significantly 
improved, with the dominant resilience levels shifting from “low” and 
“medium” to “medium” and “high.” During the second phase, the veg-
etation’s capacity for self-repair and adaptation declined. Among the 
three dumps, Taipingdi experienced the most rapid deterioration, fol-
lowed by Sanjia and Shanhou. In the third phase, both Taipingdi and 
Shanhou demonstrated renewed enhancement in vegetation resilience. 
Taipingdi exhibited predominantly “high” annual maximum resilience 
levels, while Shanhou displayed a comparatively gradual recovery.

(2) Following years of natural self-regulation and adaptation, vege-
tation resilience in the dumps significantly improved compared to the 
initial fragile ecosystem. Over 88 % of the area showed resilience 
enhancement, with Taipingdi experiencing the most notable increase, 
reaching 99.85 %. Over 95 % of each dump area exhibited improved 
resilience in the first phase. However, the second phase saw a 

Fig. 12. Comparison of NDVI and AC(1) trends in each dump.
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widespread decline, particularly in Taipingdi and Shanhou, where 
97.17 % and 99.38 % of the areas experienced decreased resilience. In 
the third phase, 99.26 % of Taipingdi and 83.74 % of Shanhou experi-
enced resilience enhancement, though the magnitude of improvement 
was smaller compared to the first phase.

(3) Vegetation resilience sensitivity to climatic drivers remained 
relatively stable over time, particularly during the first and third phases. 
Key climatic drivers, including precipitation, temperature, and net solar 
radiation, played key roles in vegetation resilience dynamics. While the 
contribution ranking of these drivers differed across the dumps, it 
remained consistent within each dump throughout all phases. At Tai-
pingdi, precipitation contributed the most, followed by temperature and 
net solar radiation. At Shanhou, precipitation and net solar radiation 
were the most significant contributors, followed by temperature. At 
Sanjia, net solar radiation was the primary driver, followed by precipi-
tation and temperature. Moreover, areas dominated by a single climatic 
driver were generally more significant than those dominated by a 
combination of two drivers, with precipitation and net solar radiation 
playing significant roles in vegetation resilience dynamics.
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