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Abstract: 
As a low-gradient arid region spanning the tropics to the temperate zone, the Lake Eyre basin 
has undergone gentle late Cenozoic crustal warping leading to substantial alluvial deposition, 
thereby forming repositories of evidence for palaeoclimatic and palaeohydrological changes 
from the Late Tertiary to the Holocene. Auger holes and bank exposures at five locations along 
the lower 500 km of Cooper Creek, a major contributor to Lake Eyre in the eastern part of the 
basin, yielded 85 luminescence dates (TL and OSL) that, combined wit a further 142 
luminescence dates from northeastern Australia, have established a chronology of multiple 
episodes of enhanced flow regime from about 750 ka to the Holocene. Mean bankfull 
discharges on Cooper Creek upstream of the Innamincka Dome at 250–230 ka or oxygen 
isotope stages (OIS) 7–6 are estimated to have been 5 to 7 times larger than those of today, 
however, substantially less reworking has occurred during and after OIS 5 than before. Lower 
Cooper Creek appears to have similarly declined. In the Tirari Desert adjacent to Lake Eyre 
there is evidence of widespread alluvial activity, perhaps during but certainly before the 
Middle Pleistocene, yet the river became laterally restricted in OIS 7 to 5. While the 
Quaternary has been characterised by a dramatically oscillating wet–dry climate, since oxygen 
isotope stage OIS 7 or 6 there has been a general decline in the magnitude of the episodes of 
wetness to which the eastern part of central Australia has periodically returned. During the last 
full glacial cycle, Cooper Creek's periods of greatest runoff and sand transport were not during 
the last interglacial maximum of OIS 5e (132–122 ka) but later in OIS 5 when sea levels and 
global temperatures were substantially below those of 5e or today. Fluvial activity returned in 
OIS 4 and 3, but not to the extent of mid and late OIS 5; strongly seasonal but still powerful 
flows transported sand and fed source-bordering dunes in OIS 5 and 3. This chronology of 
fluvial activity in the late Quaternary broadly coincides with that for rivers of southeastern 
Australia and suggests that the wet phases in eastern central Australia have not been governed 
as much by the northern monsoon as by conditions in the western Pacific close to the east 
coast both north and south. Flow confinement within the Innamincka Dome has locally 
amplified Cooper Creek's energy, and here evidence exists for short but high-magnitude 
episodes of flow during the Last Glacial Maximum and in the early to middle Holocene, 
conditions that were capable of forming large palaeochannels but that were not long-lived 
enough to rework the river's extensive floodplains elsewhere along its length. 
 
 
 

Author post-print of  
Nanson, G.C. and Price, D.M. and Jones, B.G. and Maroulis, Jerry and Coleman, M. and 
Bowman, H. and Cohen, T.J. and Pietsch, T.J. and Larsen, J.R. (2008) Alluvial evidence for 
major climate and flow regime changes during the middle and late Quaternary in eastern 
central Australia. Geomorphology, 101. pp. 109-129. ISSN 0169-555X 



Introduction 
 

Cecil Madigan (1946), geographer, scientist and explorer, described the Simpson Desert as the 
“dead heart” of Australia, adopting the term from Gregory (1906) who undertook fossil-
collecting expeditions on Warburton Creek near Lake Eyre in 1901-02 (Fig. 1). These fossils, 
along with the alluvial record of the basin, provide evidence for episodes in the Quaternary 
when large powerful rivers crossed a wetter continent and filled Lake Eyre (e.g. Nanson et al., 
1992, 1998; Magee et al., 1995,2004) and the rivers and lakes supported a diverse ecology of 
now mostly extinct marsupial, avian and reptilian megafauna (Tedford and Wells , 1990).  
 
Central Australia has undergone truly remarkable shifts in climate and flow regime during the 
late Cenozoic with climatic variation achieving its maximum amplitude and frequency during 
the Quaternary. The purpose of this paper is to present stratigraphic evidence for the spatial 
distribution, magnitude and chronology of these changes in the arid centre of Australia, 
specifically northeast of Lake Eyre along the course of one of the lake's major contributories, 
Cooper Creek (Fig.1). This part of the lake basin has a long accretionary record for the late 
Cenozoic, a period that coincided with generally drying conditions globally. Unlike the world's 
high latitude and high altitude areas that were so severely impacted by the direct effects of 

 
 

Fig. 1. The study areas along Cooper Creek, located as A1, A2, B1, B2 and C.  
The inset map shows the Lake Eyre basin within Australia. 

 



glaciation, the Quaternary over much of Australia has represented essentially a continuum with 
what was happening during the preceding Tertiary, albeit that the wet-dry variability became 
more dramatic. Environmental changes in arid Australia as far back as the Middle Pleistocene 
now lie within the range of luminescence sedimentary dating. The Lake Eyre basin presents a 
long and comprehensive alluvial history of Australia's “dead heart” and, as such, offers 
detailed insights into past environmental changes in this now largely dry continent. Important 
questions remain to be answered. Just how wet was Australia at times during the Quaternary, 
what has controlled the wet-dry cycles over this period, and has there been an overall drying 
trend in the mid to late Quaternary? The stratigraphic alluvial record along the lower ~500 km 
of Cooper Creek is interpreted here as a proxy for changes in rainfall and runoff in the eastern 
part of central Australia. 
 
2. The Lake Eyre basin 
Latitudinally spanning the tropics to the temperate zone and characterised by a centripetal 
drainage system, the 1.14 million km2 Lake Eyre basin (Fig. 1) forms a shallow depression that 
preserves an extensive array of fluvial, aeolian and lacustrine deposits recording climate and 
flow regime changes, evidence that is particularly detailed for the past ~300 ka. At present, 
strongly seasonal dryland rivers in the eastern Lake Eyre basin, including Cooper Creek and 
the Diamantina and Georgina Rivers, direct monsoon floodwaters through a low-gradient 
region of western Queensland known as the Channel Country (Fig. 1). Here the landscape is 
characterised by an intricate array of fluvial and aeolian landforms that include extensive and 
commonly dry muddy floodplains with braided and reticulate surficial channels and occasional 
aeolian dunes interspersed with entrenched anabranching channels and permanent waterholes 
(Nanson et al., 1986; 1988; Rust and Nanson, 1986). Downstream of Innamincka on Cooper 
Creek and from Goyder Lagoon on the Diamantina–Georgina Rivers (Fig. 1), these rivers are 
remote and difficult to access so have been less well studied. Yet every decade or so, usually 
requiring a La Nina event, floodwaters reach Lake Eyre, the basin's depocentre. With an area 
of 9355 km2 and its floor 6 to 15 m below sea level, this lake is one of the world's largest salt 
playas. 
 
Formed by the confluence of the Barcoo and Thomson Rivers and fed from the western slopes 
of the Great Dividing Range, Cooper Creek has a catchment area of 306 000 km2. In terms of 
the geomorphology and Quaternary history (e.g. Nanson et al., 1986, 1988, 1992; Rust and 
Nanson,1986; Knighton and Nanson,1994a; Fagan and Nanson, 2004; Maroulis et al., 2007), 
hydrology (Kotwicki, 1986; Kotwicki and Isdale, 1991; Knighton and Nanson, 1994b, 2000, 
Knighton and Nanson, 2001), floodplain sediments and soils (Nanson et al., 1986; Rust and 
Nanson, 1989; Maroulis and Nanson, 1996) and aquatic ecology (e.g. Kingsford et al.,1999; 
Puckridge et al., 2000), Cooper Creek is the most intensively described Channel Country 
system. Furthermore, Lake Eyre has also been subject to detailed palaeoenvironmental study 
(Magee et al., 1995; 2004; Magee and Miller, 1998; Nanson et al., 1998; DeVogel et al., 2004) 
and, to a lesser extent, so too have the streams entering the western side of the lake (Croke et 
al., 1996, 1998). 
 
2.1. Climate and hydrology 
The arid climate of the Lake Eyre basin displays long hot summers interrupted by short cool 
winters with marked diurnal temperature variations. The principal synoptic influences on 
present rainfall in the Lake Eyre drainage basin are in the form of incursions of moist tropical 
air that pass over the northern tablelands and eastern Great Dividing Range during the summer 
months (Allan, 1990). Mean annual rainfall decreases markedly from about 400–500 mm in 
the northeast of the basin to about 100 mm near Lake Eyre, with the variability of rainfall, 
among the highest recorded in Australia, being caused by vagaries of tropical cyclone and 
monsoon–trough conditions (Kotwicki, 1986; Kotwicki and Isdale, 1991). Mean annual 
evaporation (Class A Pan) grades progressively from about 2400 mm/a in the northeast to 
more than 3600 mm/a near Lake Eyre. Mean daily maximum temperatures (1972–1999) at 
Moomba, near the centre of the Lake Eyre basin (Fig. 1), are 37.5 °C in January and 19.2 °C in 



July, with mean daily minimums in the same months, 23.3 °C and 6.3 °C, respectively. Annual 
rainfall at Moomba (1972–2005) has averaged 206 mm/a with a mean monthly maximum of 
40.0 mm in January and a mean monthly minimum of 8.6 mm in August. 
Cooper Creek's mean annual runoff is characterised by high streamflow variability with long 
periods of low or zero flow and occasional periods of extremely high discharge. Mean annual 
runoff decreases over a downstream distance of ~420 km from 3.05 km3 at Currareva to 1.26 
km3 at Nappa Merrie (Fig. 1), with high Cv values (hydrologic variability) by world standards 
(1.61 and 2.20, respectively) (Puckridge et al., 1998; Knighton and Nanson, 1994a, 2001). 
On Cooper Creek, the largest flood on record occurred in January– February 1974, with 
maximum daily discharges of 25,000 m3/s at Currareva (near Windorah) and 5800 m3/s at 
Nappa Merrie (Fig. 1). This topical climatic event resulted in the simultaneous flooding of all 
major watercourses in the Lake Eyre drainage basin and the subsequent inundation of Lake 
Eyre to its highest recorded level. The dominance of this flood at both Currareva and Nappa 
Merrie contrasts with the mean annual flood which is relatively small at both stations (96.7 
m3/s at Currareva and 40.0 m3/s at Nappa Merrie) and generates extremely steep relative flood 
magnitude (Q/Q2.33) curves (Knighton and Nanson, 1994a, 2001). These data illustrate the 
enormous transmission losses between Currareva and Nappa Merrie as the river progresses 
towards the increasingly arid centre of the basin. 
 
2.2. Soils and vegetation 
Heavily cracked clays (vertisols) with a high proportion of smectite (montmorillonite) 
dominate the present Cooper Creek floodplain in the Channel Country and, because of the 
abundance of dunes, to a lesser extent downstream of the Innamincka Dome. These self-
mulching soils form a low-relief gilgai surface pattern and their low-density sand-sized 
mud aggregates play a vital role in the development of braid-like channels on the floodplain 
surface (Nanson et al., 1986, 1988; Rust and Nanson, 1989; Maroulis and Nanson, 1996; 
Fagan and Nanson, 2004). 
 
Coolabah (Eucalyptus microtheca) and river red gum (E. camaldu-lensis) form a narrow 
riparian woodland that dominates the anastomosing channels and waterholes (billabongs). At 
places on the floodplains and on the base and lower slopes of the dunes, sandhill canegrass 
(Zygochloa paradoxa) and several Acacia spp., with other desert shrubs grow. Forbes and 
grasses on the upper slopes of the dunes vary annually and seasonally in terms of cover 
density. Lignum (Muehlenbeckia florulenta) is common along the channels and adjacent to the 
many permanent waterholes. 
 
2.3. Geology 
The Channel Country and lower Cooper and Warburton Creeks are located on a complex 
sequence of nested, gently warped basins and associated near-horizontal sedimentary 
sequences that date from the Early Palaeozoic to the Cainozoic Lake Eyre Basin (Tedford et 
al., 1986; Wells and Callen, 1986; Wrecker, 1989; Krieg et al., 1990; Alley, 1998) (Fig. 2). 
Based on observations in southeastern Australia, their deformation is likely to be ongoing 
today (Sandiford, 2003) and their basin histories are essential to understanding the 
arrangement of the contemporary drainage systems and the division of the depositional settings 
investigated here. 



 
Fig. 2. The Cretaceous and Neogene geology of the relevant field area within the Lake Eyre basin  

(from Wells and Callen, 1986; Alley, 1998). 
 
2.3.1.  The Mesozoic 
The modern landscape has been greatly influenced by the structural and lithological features of 
the Eromanga Basin (Early Jurassic-Late Cretaceous), a broad intracratonic structure of mostly 
terrestrial clastic strata (with a thin Early Cretaceous marine transgression) upturned on its 
eastern margin. Deformation of this basin occurring during the mid-Tertiary resulted in the 
development of extensive northwest to northeast-trending anticlines that control the broad 
topography and drainage patterns of the present surface. In western Queensland, Cooper Creek 
flows south along one of the intervening depressions, the extensive north-trending Cooper 
Syncline (Fig. 2). Northwest of the Grey Range, it takes an abrupt turn westward along the 
Wilson Depression, passing through the Innamincka Dome between Nappa Merrie and 
Innamincka where it enters South Australia. The continuing rise of the dome across the river's 
path has contributed upstream to the spectacular array of low-gradient floodplains, channels 
and waterholes that have been described in detail by Nanson and co-workers, and downstream 
west of Innamincka township to the low-gradient ‘fan’ of interrelated channels, terminal lakes 
and source-bordering dunes described by Coleman (2002). 
 
Despite having an alluvial connotation, the ‘Channel Country’ of western Queensland is 
predominantly an erosional landscape of broad shallow valleys between structural highs that 
are formed mostly of Late Cretaceous Winton Formation, a terrestrial mudstone and lithic 
sandstone representing a period of northward regional drainage (Senior, 1968). The ridges are 
commonly pedogenically silicified and characterised by low highly-fretted erosional 
escarpments, mesas and extensive gibber-strewn pediments. The wide intervening low-



gradient floodplains receive their fine-grained alluvia from weathered finer Cretaceous 
sediments and their shrinking-swelling clays from the Cainozoic basalts in northwestern 
Queensland. 
 
2.3.2.  The Cainozoic 
This period has been characterised by a wide range of environmental conditions revealed in a 
time-series of sub-basins illustrating a generally drying trend through to the late Quaternary. 
Unconformably overlying the Winton Formation along the Cooper Creek valley in western 
Queensland is the Glendower Formation (Senior et al., 1978) (termed Eyre Formation in South 
Australia), a partly silicified fluviatile arenite with lesser conglomerate, and with arenaceous 
components becoming finer, swampy and more laminated downstream. Late Palaeocene to 
Middle Eocene in age, it represents a warm wet phase of deposition in the Lake Eyre basin, a 
landscape dominated by river systems, including the precursor to Cooper Creek, forming 
deposits over 100 m thick with carbonaceous clays (swamp deposits) farthest southwest. Slight 
warping east of Lake Eyre during the Oligocene created the Corryanna and Gason Domes and 
associated Birdsville Track Ridge that separated with an uplifted silicified surface (Sturts 
Stony Desert) the westward Lake Eyre and eastward Callabonna Basins (Wells and Callen, 
1986) (Fig. 2). Upstream of this doming in the Callabonna Basin the Namba Formation, and 
downstream of it, nearer the present lake, the equivalent Etadunna Formation are Late 
Oligocene to Early Miocene in age and represented a drier phase of shallow freshwater lakes. 
 
The Tirari Formation is interpreted as representing the next stage of increasing aridity towards 
the Quaternary. It is characterised by a red-brown or brick-red mudstone and muddy sandstone 
with interstitial gypsum nodules and rhizomorphs and capped with a massive gypsum crust. 
Magnetically reversed, the upper part is interpreted as older than the Brunhes-Matuyama 
boundary (~780 ka; Tedford and Wells, 1990). However, with its base magnetically normal, it 
is probably Late Pliocene or Early Pleistocene in age (Gilbert Chron 3.9-3.4 Ma; Tedford et 
al., 1992). It is interpreted as a fan-delta system of channels representing a period drier than 
previously but substantially wetter than much of the Quaternary, with extensive floodplains, 
expanded lacustine sediments and abundant megafauna present. It probably ended under 
strongly evaporative conditions with elevated saline watertables and gypsum formation 
(Tedford et al., 1986). 
 
The Early to Middle Pleistocene is represented by ongoing alluviation with deposition of the 
Kutjitara Formation (Wells and Callen, 1986), fluvial channels cut and filled into the Tirari 
Formation with coarser, more poorly sorted medium to fine sands and red mudstone that is less 
intensely gypcreted than the Tirari Formation. It has aeolian and lacustrine facies near Lake 
Eyre. This is overtopped with Middle to Late Pleistocene Katipiri Formation, mostly 
unconsolidated, white fine sand showing festoon cross-stratification sets interspersed with mud 
drapes, with thin basal conglomerates formed of clasts of gypsum- and carbonate-cemented 
lithic fragments and some older rocks (Tedford et al., 1986). It is similar to Kutjitara 
Formation but less weathered. 
 
The abundant fossil remains of marsupial and reptilian megafauna presented in the Tirari, 
Kutjitara and Katipiri Formations (Wells and Callen, 1986; Krieg et al., 1990; Tedford and 
Wells, 1990) indicate that these animals utilised periods of greatly enhanced pluvial conditions 
during the mid to late interglacials and interstadials to occupy the now-arid Australian interior 
via the river corridors and lake systems. They survived until ~46 ka, a date broadly coincident 
with the arrival of humans who have been attributed as the cause of megafaunal extinction 
continent-wide (Roberts et al., 2001). The Katipiri Formation (named in South Australia as the 
Katipiri Sands by Stirton et al. (1961), although essentially the same unit extends up Cooper 
Creek into western Queensland) is the focus of this paper. It has been intensively studied 
stratigraphically (Wells and Callen, 1986; Tedford et al., 1986; Tedford and Wells, 1990; 
Tedford et al., 1992; Magee, 1997) and provides a remarkable repository of evidence for 
Middle to Late Pleistocene climate and flow regime changes (Nanson et al., 1986, 1988; Rust 



and Nanson,1986; Nanson and Tooth,1999; Maroulis et al., 2007). 
 
 
3. Study sites in geological context 
In the context of the domes and basins through which Cooper Creek passes, Middle to Late 
Pleistocene alluvial sequences are examined here at five separate locations along the creek. 
First, in a vertical sequence of what is essentially the Katipiri Formation beneath the Shire 
Road (Site A1, Fig.1), alluvium trapped in the Cooper Syncline upstream of the rising 
Innamincka Dome (Fig. 2) is described and dated from the Early and Middle Pleistocene to the 
Holocene. Second, at Chookoo nearby (Site A2, Fig. 1), two distinct fluvial units overlie an 
older one again and have given rise to associated source-bordering dunes during the Late 
Pleistocene (Maroulis et al., 2007). At a third location within the Innamincka Dome (Site B1, 
Fig. 1), augering revealed the approximate dimensions of Holocene palaeochannels and 
evidence of the magnitude of Last Glacial Maximum (LGM) channel activity. At the fourth 
location, the Katipiri Formation is exposed by migration of a meander bend of Cooper Creek at 
Tilcha Waterhole and Wills Grave on the ‘Cooper Creek Fan’ downstream of the Innamincka 
Dome in the northwestern part of the Callabonna Basin (Site B2, Figs.1 and 3a). At the fifth 
location, we examine both the Tirari and Katipiri Formations on lower Cooper Creek in the 
Tirari Desert in the Lake Eyre basin, east of Lake Eyre and downstream of the Gason and 
Corryanna Domes (Site C, Figs. 1 and 3b). These diverse locations provide tectonically 
emplaced windows through which to view the chronology and magnitude of flow regime 
change during the Pleistocene along middle and downstream Cooper Creek in the now-arid 
Lake Eyre basin. 
 
4. Luminescence and U series dating 
A large amount of the chronostratigraphic work was undertaken in this study using TL while 
various optically stimulated luminescence (OSL) dating methods were still being developed 
(large aliquot, multiple and single aliquot and single grain). 
 



 
Fig. 3. a. The path of Cooper Creek in the Strzelecki Desert downstream of Innamincka (Area B2 in Fig. 1) 
showing the locations of Tilcha Waterhole (WH) and Wills Grave. b. The incised channel of lower Cooper Creek in 
the Tirari Desert showing the extensive adjacent linear dunefield and the locations of Katipiri, Cuttapirra, Parranna 
and South Tilla Tilla Waterholes (Area C in Fig. 1). source-bordering dunes are dark dotted lines and northward 
aligned linear dunes are lighter dotted lines. 
 
Although usually not a problem for aeolian samples in desert areas with abundant sunlight, TL 
can suffer from incomplete bleaching for sediments transported under water. As a consequence 
two comparative studies involving 11 OSL analyses and 10 TL analyses have been undertaken 
to establish if the TL data obtained from alluvium within the Cooper Creek 
floodplain are indeed comparable to OSL determinations from the same sample or location. 



One of the comparative studies (upper floodplain material near site A1) was conducted using 
large aliquot OSL analyses of material isolated from the same samples as used for the TL 
analyses, whereas the other study (alluvial sands at site B2) was undertaken using single grain 
OSL dating of additional samples collected from the same strata and at the same location 
sampled for TL analysis (although not identical samples). The TL data for all samples is 
shown in Table 1 and the results of the TL/OSL comparisons are presented in Table 2. 
 
 
 
 

 
 
Table 1 
TL ages for alluvial and aeolian sequences 
 
 
 
 
 
 
 
                                                                                   



Table 2 

 
 
The TL procedures in the University of Wollongong laboratory have been described elsewhere 
(Nanson et al., 1991) and are not repeated here. Sample preparations for OSL analyses were 
designed to isolate pure extracts of appropriately sized quartz grains. Treatments were applied 
to remove carbonates, feldspars, organic matter, heavy minerals and acid soluble fluorides, all 
of which are contaminants that can interfere with the analysis procedure. For the six samples 
collected from near site A1 palaeodoses were determined on 5 mm aliquots of 180-212 urn 
quartz, using the single aliquot regenerative-dose (SAR) protocol (Murray and Wintle, 2000). 
The reported OSL palaeodose is the weighted average of 24 individual aliquot determinations. 
The dose rate data for these samples was collected using thick source alpha counting (for U 
and Th) in combination with flame photometry (for K) was used for determination of dose 
rate. Dose rates have been calculated based on the assumption of secular equilibrium in the 
238U and 232Th chains, using the conversion factors of Stokes et al. (2003). For the OSL 
samples collected at site B2 burial doses were determined via single grain analysis using 
methods and instrumentation described in detail in Olley et al. (2004). Dose rates were 
calculated from radionuclide activity concentrations measured using high resolution gamma 
spectrometry (Murray et al., 1987). The high resolution gamma spectrometry revealed no 
secular disequilibrium for these samples, providing support for our assumption of secular 
equilibrium used in dose rate calculations based on thick source alpha counting. 
 
For all OSL samples cosmic dose rates were calculated from Prescott and Hutton (1994). (3-
attenuation factors were taken from Mejdahl (1979) and the effective internal a dose rate 
(applied to all samples) has been estimated using an a-efficiency ‘a’ value of 0.04 ±0.02 (as 
measured previously for quartz grains from southeastern Australia, e.g. Bowler et al., 2003). 
An assumed long term water content of 5 ± 5% has been used to adjust dry dose rates. 
Differences in calculated dose rate evident in Table 2 are primarily the result of the use of 
different p attenuation factors consistent with the larger grain size used for OSL. There were 
also small differences in measured radionuclide content, consistent with sampling variation, 
and in techniques used for uncertainty assignation and propagation. 
 
For the TL/OSL comparison, what were assumed to be relatively young samples were initially 
chosen from near site A^ because any residual luminescence acquired in periods prior to the 
last episode of transport and luminescence bleaching would be more apparent in younger age 
determinations. These young sandy mud samples were collected on the Cooper Creek 
floodplain approximately 2 km northeast of Goonbabinna Waterhole from auger holes under 



conditions of total light exclusion and later divided in dim red light in the OSL darkroom for 
separate analyses in the University of Wollongong TL and OSL laboratories. The TL/OSL 
pairs from near site A1 show remarkable correspondence (Table 2). A series of five additional 
OSL samples was collected and dated from a vertical section of clean alluvial sand at Tilcha 
Waterhole (Fig. 3a) that have been previously dated by us in the range of ~97 to ~152 ka with 
TL (Table 1). For the sandy mud samples, in three of the six cases (W2839, W2845, W2846), 
the error margins overlap whereas in the remaining three cases (W2844, W2849, W2850) they 
very nearly do, for all pairs lie within ±12%. In other words, there is no evidence of any 
systematic differences between the TL and OSL determinations. It is worth noting that at this 
site both the OSL and TL analysis techniques are based on large aliquots, and therefore any 
grain to grain variation in dose is likely to be equally masked in both cases. Single grain OSL 
dating was therefore subsequently applied to five additional samples collected from a vertical 
section of clean alluvial sand at Site B2 (Tilcha Waterhole — Figs. 3a, 7 and 8) that has been 
previously dated by us in the range of ~97 to ~152 ka with TL (Table 1). The single grain OSL 
dates all fall within this range. The general correspondence between the single grain OSL dates 
and the TL dates indicates that for Cooper Ck samples luminescence techniques (whether OSL 
or TL) which rely on large aliquots are not adversely affected by the presence of significant 
proportions of unbleached grains. These results indicate that TL and OSL (large aliquot or 
single grain) techniques appear to be acceptable for differentiating late Quaternary 
stratigraphic units and depositional events along Cooper Creek. 
 
U series dating was applied in two instances by Dr Steve Short, at the time from Australian 
Nuclear Sciences and Technology Organisation at Lucus Heights, Sydney, and the methods 
used have been described in Nanson et al. (1991). 
 
5. Site investigations along Cooper Creek 
Alluvial evidence for flow regime changes have been investigated at five locations along the 
middle and lower reaches of Cooper Creek, from the Shire Road near Naccowlah to near its 
terminus in Lake Eyre (Sites A1 to C, Fig. 1). 
 
5.1. Location A1; Shire Road 
A series of eight auger holes was sunk to depths of 7 to 35 m at variable intervals along a 14 
km transect of the Cooper Creek floodplain (Fig. 4). In addition, three trenches were excavated 
to depths of ~7 m immediately adjacent to three of the auger holes to obtain stratigraphic 
evidence, described in detail elsewhere (Maroulis, 2000). The truck-mounted solid augering 
system limited the precision of the stratigraphic detail that could be obtained from below the 
level of the excavated pits, however, samples were withdrawn and removed from the auger tip 
at each 1–2 m of auger length, and these provided a guide to the general sedimentary character 
of this wide and deep floodplain section. 
 
The floodplain consists of 0.5–5.0 m of surficial massive sandy mud that dates from essentially 
modern at the surface to b10 ka at its lower contact with sand (~1.5 m) near the main channel 
on the western side of the floodplain, and to N60 ka at the sand contact (~4 m) near the eastern 
side (the oldest basal age obtained for this surficial floodplain mud was ~100 ka obtained on 
the Durham Road transect ~25 km to the north; Maroulis, 2000). Although commonly 
deposited as pelleted bedload (Maroulis and Nanson, 1996), no flow structures have been 
preserved because of the self-mulching character of these muds. These contemporary channels 
and waterholes are entrenched in this upper mud unit and transport virtually no sand today 
(Knighton and Nanson, 1994a,b; 2000). 
 



 
 

Fig. 4. The stratigraphy of the Shire Road transect (Area A1 in Fig. 1). 
 

Below the mud down to the limit of augering (~35 m) consists of coarse to fine sand, 
occasional mud lenses, Fe–Mn stained units and some fine gravel. The oldest ages in the upper 
6–7 m of the sand body occur at the eastern end of the transect (197±24 to 164±25 ka) whereas 
at the western end there is clear evidence of reworking to depths of ~12 m since ~80 ka. 
 
On the older eastern end of the transect, the basal muds and uppermost sands are partly 
indurated with abundant calcrete and gypcrete. The individual strata are thin, have sharp 
erosional reactivation surfaces and display limited bedding structures, evidence of flashy 
fluvial processes probably associated with the valley side well away from the main flow. In 
contrast the much younger western end of the transect is substantially less indurated. Trench 
SR3-T towards the western side of the floodplain shows an upward fining laterally-accreting 
greyish-brown to very pale brown sand body. Palaeocurrent directions 60° to 120° away from 
downvalley and laterally-accreting bar surfaces indicate a strongly sinuous laterally migrating 
system. The base of the trench consists of large-scale festooned cross-bedded fine-medium 
sand, some minor calcrete rhizomorphs and scattered pebbles, and TL dates at 41.9±5.1 ka 
(W2296). This grades up to very fine sand formed of large trough cross-beds and climbing 
ripple sets. The upper part consists of very well-sorted fine sands (possibly aeolian) and TL 
dated at 29.9±2.6 ka (W2037) in the adjacent auger hole (SR3). The base of the floodplain clay 
capping is at 1 m. 
 
TL dates from the alluvial fine sands on the western side of the floodplain include those of 
10.5±0.9 ka (W2030) and 38.1±3.5 ka (W2031) at SR1, 58.3±6.3 ka (W2033) at SR2, andat 
41.9±5.1 (W2296) and 77.5±6.6 ka (W2038) at SR3. In combination these suggest that 
western side of the floodplain above 10–12 m has been reworked and filled since marine 
oxygen isotope stage (OIS) 5, as illustrated with the 80 ka isochron in Fig. 4, and that fluvial 
activity has contracted here over the last full glacial climate cycle. 
 
Below this upper part, thick units of coarse to medium sand, some with sequences fining 
upward to fine sand, date from 183±18 ka (W2041) to 133±15 ka (W2039) at 12–
9mdepth,toasoldas740±55ka (W2036)at27mdepth, with intermediate dates of  
512±83ka(W2035), 454±174 ka (W2046) and 405±43 ka (W2034) between 21 and 15 m in 



depth. Only occasional mud lenses interrupt an otherwise uniform and essentially 
unconsolidated sand body extending to over 30 m in depth. The presence of mud intraclasts 
and balls within the sand indicates that the associated channels probably had muddy banks and 
fine overbank floodplains that were reworked by this laterally and vertically accreting system. 
 
At a depth of 27 m below the Shire Road the alluvium is at 45 m Australian Height Datum 
[AHD]. This means that it is a remarkable 6 m below the bed of Cooper Creek (51 m AHD) at 
the Burke and Wills Bridge near Nappa Merrie, some 95 km downstream where the river 
enters the bedrock constriction of the Innamincka Dome. Clearly, sand accretion even well 
upstream of the Shire Road, is essentially a product of upwarping in the dome since the 
Brunhes–Matuyama reversal (~780 ka), and probably before that as well. TL ages plotted 
against depth at Shire Road suggest a relatively uniform accretion rate of about 0.036 mm/a 
from 27 m to the floodplain surface on the eastern side of the floodplain. However, on the 
reworked western side it has accreted from ~12 mdepthat~130 ka to the surface nearly three 
times more rapidly at ~0.092 mm/a. 
 
As well as accumulating alluvium upstream, Cooper Creek over this period must also have 
been incising into the dome. At this stage, neither the rate of incision nor the rate of uplift is 
known. However, assuming Cooper Creek was in a state of mass–balance equilibrium and able 
to move all the sediment load supplied from upstream, other than that trapped because of the 
rising dome (in other words, none of the upstream accretion is due to flow incompetence 
regardless of uplift), the long term uplift rate must have exceeded the rate of incision 
(denudation) by 0.036 mm/a. The sediment accretion rate of ~0.092 mm/a since OIS 5 on the 
western side of the floodplain probably represents a cut and fill adjustment within the longer 
term overall uplift trend. We are currently undertaking a cosmogenic isotope analysis of the 
denudation rate of the dome in order to determine its rate of uplift. 
 
This entire Shire Road sequence can be considered to be equivalent to the Katipiri Formation 
in South Australia (Stirton et al., 1961) that we describe and date in detail below. The depth of 
alluvial sand beneath the Shire Road shows Cooper Creek to have been a much more powerful 
system, and certainly more laterally active than it is today. A large palaeochannel near 
Naccowlah Waterhole near the Shire Road was identified, partly excavated and dated as being 
250– 230 ka (OIS 8–7) by Rust and Nanson (1986; their Fig. 5). Its width was ~500 m, mean 
depth ~4.5 m, wavelength ~4 km and bend radius of curvature ~2 km. The slope of the sinuous 
channel over that part of the floodplain would have been 8 cm km-1 (i.e. somewhat less than 
the valley slope) and Manning's n at bankfull for a wide sand-bed system can be assumed to 
have been about 0.025. From these data an approximate bankfull discharge of ~2200 m3s-1 can 
be calculated. Knighton and Nanson (2000)have estimated the present mean annual flood 
discharge at Meringhina Waterhole 35 km upstream of the Shire Road (the only nearby 
location where the entire flow of Cooper Creek up to bankfull passes through a single channel) 
to be ~330 m3s-1 and, from their paper, the dimension of that waterhole and a Manning's 
equation calculation suggest a bankfull discharge of about 410 m3s-1. This suggests that 
channel-forming flows during OIS 7 were some 5 to 7 times those of present Cooper Creek. 
While periods of sandy fluvial activity during OIS 5 at the Shire Road were more powerful 
than anything subsequently, only episodes prior to OIS 6 saw reworking of the entire 
floodplain. OIS 5 and later phases were capable of only working the western part of the 
floodplain at this location. Alluvial reworking of the floodplain at the Shire Road section 
continued as far as 2–3 km from the present channel until about 40 ka (SR3 in Fig. 4). Two 
hundred metres east of the main channel there is evidence of alluvial reworking during the 
early Holocene, suggesting conditions then were somewhat more energetic than in the present 
system which is essentially a tree-lined and laterally stable system of anabranches with 
cohesive muddy banks. Stratigraphic evidence from near Longreach on the Thomson River (a 
major tributary to Cooper Creek in its upper catchment; Fig. 1) suggests that the main channel 
contracted to its present very low energy state during the middle and late Holocene (Nanson et 
al., 1988, their Fig. 10). Similar evidence is presented below for Cooper Creek within the 



Innamincka Dome. 
 
The Shire Road transect reveals a chronostratigraphy of Cooper Creek from the Middle 
Pleistocene to the Holocene, with evidence that fluvial activity prior to OIS 5 was significantly 
more energetic than anything that has occurred subsequently. OIS 5 was only moderately 
active and subsequent phases of fluvial activity were even less so. 
 
5.2. Location A2; Chookoo 
In a recent study of source-bordering dune development at Chookoo, 10 km south of the Shire 
Road on the western side of the floodplain (Fig. 1), Maroulis et al. (2007) identified several 
periods of pronounced fluvial activity. The actual luminescence ages are listed in their paper 
but are summarised here in Fig. 5 as units of oxygen isotope stage (Fig. 5). Augering here was 
limited to the upper 15 m of the floodplain. Below about 10 m depth occurs an extensive unit 
of medium to coarse sand dating from OIS 8 to 6 (~270 to ~160 ka). Above this an OIS 5 unit 
(~105 to ~80 ka) inset with alluvial fine to medium sands that essentially represent two units 
(Fig. 5), the first dated in OIS 4 (~65 ka) and the second in OIS 3 (~50 ka). Source-bordering 
dunes were derived from active sandy channels in late OIS 5 (~85–80 ka) and mid OIS 3(50–
40 ka), but none apparently during OIS 4. After ~40 ka sand–channel activity largely ceased 
and the flood-plains and channels were inundated with mud, isolating the dunes as emergent 
features on the floodplain. They concluded that the formation of source-bordering dunes 
occurred along large sandy meandering rivers with beds seasonally exposed to the prevailing 
southerly winds. The provision of abundant aeolian sand appears to have required seasonally 
wetter conditions and more powerful rivers than exist under today's seasonal but much drier 
climate. Global temperatures in late OIS 5 and in OIS 3 were significantly below those of the 
present, therefore the flows appear to be the product of cooler seasonally-wet conditions. The 
limited size and distribution of such dunes on Cooper Creek suggest that aeolian conditions 
were localised on particular bends, relatively short lived and probably characterised the end of 
a fluvial phase. 
 
In summary, stratigraphic evidence from the Shire Road and Chookoo transects suggests that 
fluvial episodes in the Middle and Late Pleistocene on Cooper Creek were much more 
powerful than those of today. Flows appear to have declined in intensity from OIS 6 to OIS 5 
and 3, with flows sufficient to feed sand to source-bordering dunes largely ceasing in late OIS 
3 (~40–35 ka). Evidence for some minor fluvial activity by a sand-transporting river in the 
Holocene at the Shire Road transect is not replicated at Chookoo, probably because by the 
Holocene the active system appears to have greatly reduced in size, and Chookoo is some 3 
km away from what remains of the primary channel (Goonbabinna Waterhole). 

 
 

Fig. 5. A summary transect at Chookoo Dunes (Area A2 in Fig. 1) showing the aeolian units and underlying 
alluvial units divided by luminescence ages into oxygen isotope stages (after Maroulis et al., 2007). 

 
5.3. Location B1; Innamincka Dome 
The post OIS 3 record is relatively poorly represented along most of Cooper Creek because by 
the onset of OIS 2, discharges had clearly declined from the earlier maxima that left such 
widely distributed deposits in Stages 5 and 3. Furthermore, the limited energy these reduced 
flows had must have been dispersed over extensive flood-plains that in Queensland exceed 60 



km in width. However, as Cooper Creek reaches South Australia it enters the Innamincka 
Dome near Nappa Merrie (Figs.1 and 2) where it becomes greatly confined; large floods are in 
places restricted in width to just a few hundred metres! Consequently, the dome can act as a 
local amplifier, concentrating the energy of Cooper Creek. At a cross section at the upper end 
of Cullyamurra (Cullamurra) Waterhole, some 15 km upstream of Innamincka Township, the 
floodplain is only ~800 m wide and Cooper Creek exits a fully confined bedrock reach (Fig. 
6). Because of this, there is little opportunity for lateral migration and the chronstratigraphic 
data in Fig. 6 should therefore be indicative of the palaeochannel dimensions. 
 
Luminescence ages from four auger holes have identified two episodes of alluvial activity here 
(Bowman, 2003). It appears that there was a large channel in OIS 3, its deposits yielding 
alluvial TL ages below the level of the Holocene channel of about 42 to 33 ka, similar to ages 
from alluvial sands within 3 km east of the main Cooper Creek channel at the Shire Road 
transect and at Chookoo. A large early to mid Holocene channel appears to have been reduced 
in size in the late Holocene to form the present waterhole. Another section of auger holes 
several kilometres downstream of that described here has also been shown by Bowman (2003) 
to illustrate contraction of a large channel in the period from about 8–7 ka to 3 ka. This early to 
mid Holocene activity may also relate to that dated at ~10 ka about 200 m east of the main 
Cooper Creek channel on the Shire Road transect (Fig. 4). 
 
From augered and TL dated transects, Bowman (2003) estimated the width of the mid 
Holocene channel to have been 400 m while the mean depth was bedrock controlled and 
therefore similar to the present 9.5 m. The likely cross-sectional area was therefore about 3800 
m2. Using a Manning's n calculated for the present waterhole (0.028) and a HEC-RAS 
modelled water surface slope of 0.0002, the bankfull discharge is estimated here to have been 
~8600 m3s-1 or ~8.6 times the present bankfull discharge of ~1000 m3s-1. A sensitivity analysis 
undertaken by varying Manning's n values from 0.025 and 0.032, and water surface slopes 
from 0.00017 to 0.00025, produces bankfull discharges between 7 and 11 times the present. 
These are substantially larger than increases of 5 to 7 times present Cooper Creek based on 
Meringhina Waterhole near the Shire Road for the fluvially more active OIS 8–7 period. 
However, with flows jetting out of a confined bedrock reach immediately upstream of the 
alluvially flanked Cullyamurra Waterhole, it is very likely that moderate increases in Holocene 
discharges were capable of a much greater channel enlargement here than would larger flows 
in the unconfined setting near the Shire Road. Suffice to say that early to mid Holocene 
discharges were considerably larger and more powerful than those of today.  
 
However, it seems such events may have been very infrequent, perhaps catastrophic, but not 
necessarily representing a wholesale upward shift in the flow regime, as this was not a period 
represented by significant Holocene reworking of Cooper Creek floodplain beyond the 
Innamincka Dome (Nanson et al., 1988; 1992). 
 



 
Fig. 6. Confinement of Cooper Creek and its floodplain within the Innamincka Dome (Area B1 in Fig. 1), showing 

the location of the stratigraphic section at the upstream end of Cullyamurra Waterhole. 
 
Also within the Innamincka Dome, Coleman (2002) obtained TL dates of 27.8±2.5 ka 
(W2582), 20.1 ±2.9 ka (W2580) and 18.3±2.1 ka (W2670) from a substantial channel infill at 
a cross section some 5 km downstream that is shown in Fig. 6. These dates show that there 
must also have been enhanced discharges through the dome at and just before the LGM, a time 
traditionally seen as markedly arid in the Lake Eyre basin (e.g. Magee et al., 2004). This 
episode also probably consisted of infrequent events rather than an overall change in the flow 
regime, similar to that which occurred later in the Holocene. These LGM episodes of extreme 
floods were also unable to rework the floodplain beyond the effect of the energy-amplifying 
dome. We are currently undertaking further investigations of the alluvium within the 
Innamincka Dome, as it appears to be a location sensitive to recording changes in the Cooper 
Creek basin not yet seen to be recorded elsewhere on the floodplain during the LGM and in the 
Holocene. 
 
5.4. Location B2; Tilcha Waterhole 
Tilcha Waterhole on ‘Cooper Creek Fan’ is ~17 km downstream from Innamincka where 
Cooper Creek exits its confinement in the Innamincka Dome. (Figs. 1, 2 and 3a). Immediately 
opposite Wills Grave, a large meander bend on Cooper Creek is slowly eroding its right bank 
and exposing a ~22 m high section of basal fluvial sands and overlying aeolian dune deposits 
(Figs. 7 and 8). At the base of this section, slightly indurated 10-50 cm thick sets of yellowish 
brown trough cross-beds of medium sand yielded a TL age of 146 ±13 ka (W2469). This is 
overlain by well-sorted smaller (<20 cm) sets of pale brown medium sand trough cross-beds 
that dated at 152±18 ka (W2468). It is likely that these ages, along with the nearby OSL ages 



of 127 ±11 ka and 123 ±16 ka, are slight underestimates, as the moisture content at this depth 
is likely to have fluctuated due to intermittent rises in the watertable. This lowest visible 
portion of the section above water level to ~41.7 m AHD appears to be an OIS 6 fluvial 
sequence. 
 
The next unit consists of a thin (< 10 cm) lag of pebbles topped with a thin layer of well-sorted 
very pale brown fine sand. The pebbles appear to form the base of the OIS 5 deposit. 
Overlying them is a sequence of mud balls, some armoured with small pebbles, topped by a1m 
thick coset of trough cross-bedded pale brown medium sand (sets 25-30 cm) that TL dates at 
120±12 ka (W2240) and 97.0±8.4 ka (W2467) and OSL dates at 108±11 ka and 123±11 ka. 
This OIS 5 unit fines upwards into 3.6 m of poorly sorted brownish yellow and very pale 
brown, trough cross-bedded sets (10-30 cm) of fine sand giving a TL date of 108 ± 8 ka 
(W2239), and capped with 2 m of massive blocky floodplain mud. 
 
The remainder of the section above ~49 m AHD is formed of aeolian units separated by 
palaeosols. Aeolian Unit 1 consists of 1.0 m of poorly sorted very pale brown fine-grained 
laminated sand giving a TLage of 56.3 ±4.6 ka (W2677). Accumulation continued as a 
vertically accreting palaeosol marked by 1.6 m of very poorly sorted pale brown very fine-
grained sand characterised by wind ripples, root channels and carbonate rhizomorphs that gave 
TL ages of 58.0±5.3 ka(W2465) and 55.5±5.1 ka (W2237). Aeolian Unit 1 is capped by a 0.9 
m thick hard calcrete. 
 
Aeolian Unit 2 starts at 52.2 m AHD and consists of~1 m of poorly sorted fine red sand with a 
TL age of 36.1 ±3.2 ka (W2464). This is overlain by 0.5 m of poorly sorted yellow fine cross-
bedded dune sand (orientation 245°) indurated with calcrete and giving a TL age of 29.4± 2.8 
ka (W2235). It is capped with a thin palaeosol with wind ripples oriented 170° and a few 
carbonate rhizomorphs. 
 
Aeolian Unit3 extends from54.4to58.0mAHD.Itconsistsof3.8mof dune cross-bedded sets (20–
50 cm) of very poorly sorted yellow, brownish yellow and pale brown sandorientatedat320–
340°. They give TL ages of 20.1±1.5 ka (W2234) and 21.4±1.8 ka (W2233) and contain a few 
carbonate rhizomorphs and carbonate leisegangs. There is evidence of reactivation surfaces 
and sand accretion around palaeovegetation (grasses). This is capped with a 0.85 m thick 
poorly sorted fine sandy palaeosol that gave a TL age at 0.5 m depth of 14.3±1.0 ka (W2232) 
but may have been contaminated by bioturbation with surface material. The overlying 3–4 m 
of still partly active dunes have been dated nearby as Holocene (Coleman, 2002). 
The section at Tilcha Waterhole represents active fluvial deposition during OIS 6 and 5, 
followed by at least three phases of aeolian activity in OIS 3 and 2. Interestingly, no OIS 3 
fluvial deposits are present on this side of the river, for reasons apparent below. 
 



 
Fig. 7. a. Satellite image of Cooper Creek as it exits into the Strzelecki desert. Note the presence of linear dunes 
that interrupt the path of the Cooper and the presence of east– west trending arcuate source-bordering dunes. Flow 
is from right to left. The white box indicates the location of the trench in B, and associated stratigraphic section in 
Fig. 8. The image is an enhanced satellite image derived from Landsat 5 TM—25 metre pixel (Geocoded—1995) 
and Landsat 7 ETM 12.5 metre pixel (Geocoded—2000). b. Tilcha Waterhole and the stratigraphic section from the 
right bank presented in Fig. 8. 
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Fig. 8. The stratigraphic section and associated TL dates on the northern bank of Tilcha Waterhole (Figs. 3a, 7a). 
Single grain OSL dates are in italics in brackets. 

 
5.5. Location B2; Wills Grave 
On the left bank, opposite the above section on Tilcha Waterhole, is a well-defined meander 
loop, an historic site known as Wills Grave (Fig. 3a), with a sequence of floodplain scrolls 
visible from the air but not on the ground. Here Cooper Creek has been progressively eroding 
into its right bank to expose the Tilcha section, and in the process has left an alluvial record of 
its migration. 
 
A sequence of four holes were augered to depths of 22 m with a truck-mounted drilling rig in a 



transect orthogonal to the scroll pattern near the apex of the end(Fig.9).Auger Hole1on the 
floodplain,at49m AHD and about 9 m above typical low water level, consists of coarse and 
large pebbles at the base (43 m AHD) overlain by unconsolidated coarse very pale brown sand 
that TL dated at26.2±2.7ka(W2574), fining up to fine sand at the surface. Auger Hole 2, a 
further 50 m south, arrested in the clay of the Namba Formation at 38 m AHD but from 10.2 m 
up to 8.0 m depth consists of unconsolidated very pale brown coarse alluvial sand that gave a 
TL age of 45.5±5.9 ka (W2575) at 39 m AHD. This unit was overlain by5 m of a coarse to 
medium very pale brown to yellowish sand and pebble unit, fining in the uppermost 3.5 m to 
very pale brown medium fluvial sand. Auger Hole 3, south again by another 50 m, penetrated 
the Oligo-Miocene Namba Formation to 26 m AHD. Above this were two alluvial units fining 
upwards from basal unconsolidated coarse very pale brown sand and pebbles to very pale 
brown medium sand, the lowermost providing a TL age of 250± 60 ka (W2578) at 37 m AHD. 
Above this a third very pale brown medium sand and pebble unit 4 m thick gave a TL age of 
55.3 ± 7.6 ka (W2577) at 43 m AHD, and was overlain by unit of very pale brown medium 
sand with no pebbles that gave an age of 35.9±3.5 ka (W2576) at 46 m AHD or 3 m depth 
overtopped with 2 m of fine sand. A further 55 m south, this last age is closely replicated (35.9 
±4.3 ka; W2579) at a similar depth in an 8 m deep sand body in Auger Hole 4. 
 
5.6. Interpretation of Tilcha Waterhole and Wills Grave 
These two adjacent sites on the ‘Cooper Creek Fan’ (Fig. 1) appear to represent a number of 
fluvially active periods with the transport and deposition of coarse to medium sand and fine 
gravel during episodes in the Middle and Late Pleistocene. There is evidence of an active 
channel that migrated across this general location, truncating the Oligo-Miocene Namba 
Formation at about 250 ka. Subsequent lateral activity by Cooper Creek truncated this ~250 ka 
alluvium, replacing it with OIS 6 alluvium (~150 to ~145 ka) that is visible at the base of the 
Tilcha section. It may be the same unit as that dated in OIS 6 at Shire Road (185-165 ka) and 
at Chookoo (~160 ka). This is superimposed with OIS Stage 5 alluvium (~120 to ~100 ka) 
visible in the lower part of the Tilcha section, overlapping in age although somewhat older 
than the OIS 5 fluvial unit at Chookoo (~105 to ~80 ka). During OIS 3, a precursor to the 
present channel migrated northwards through the OIS 6 and OIS 5 deposits, laying down the 
scroll-patterned floodplain at Wills Grave that dates from ~55 to 45 ka. The ~35 ka ages from 
Holes 3 and 4 appear to represent a chute channel across the meander loop at about this time 
and correspond to deposits of similar age in the cross section immediately below the 
bedrock choke of the Innimincka Dome (Fig. 6). The ~26 ka date from Hole 1 appears to 
coincide with a period of somewhat enhanced alluvial reworking characterised by flow 
confinement and a resulting amplification of the alluvial record within the Innamincka Dome 
and consequently not widely recognised outside it (Cohen et al., in prep). During at least a part 
of OIS 3, on the floodplain immediately north of this very slowly migrating bend, southerly 
winds were forming source-bordering dunes of OIS 3 age at Tilcha (~60 to ~55 ka) that 
became capped with a well-defined calcrete palaeosol. Relatively thin aeolian deposits appear 
to have been laid down between ~35 and ~30 ka, either with sand from the ~35 ka chute 
channel or with that reworked from adjacent older OIS 3 dunes. About 3.5 m of aeolian sand 
was added to the upper part of the Tilcha section at ~22 to ~20 ka during the LGM. This raises 
the question of whether the river was seasonally active to supply sand at this time, or if this too 
is largely reworked sand from older dunes? Since about 25 ka, the river appears to have 
remained in roughly its present location and, unlike sections within the Innamincka Dome, 
provides no evidence of a period of enhanced early to mid Holocene flow. However, the 
bankfull channel here is over 200 mwide with an extensive sandy gravel point bar that may at 
depth represent the infill of an early–mid Holocene channel. 
 
5.7. Tirari Desert 
In the Tirari Desert (Fig. 1) Cooper Creek is incised some 0–20 m into the relatively 
unconsolidated Tertiary and Quaternary formations exposed in river bluffs, the depth of 
incision increasing as the river approaches Lake Eyre. Away from the river, exposures also 
occur in wave-cut margins of now dry lakes. In this most arid part of the Lake Eyre basin, 



fluctuating lake levels, expanding and shrinking rivers and periodic dune development have 
provided conditions suitable for episodes of intense gypsum and carbonate formation 
providing material suitable for U series dating. Callen and Nanson (1992) briefly reviewed 
these exposures in response to other suggestions of the age of the alluvium and dunes in this 
region. 

 
Fig. 9. The auger hole stratigraphy of Wills Grave on the southern bank of Tilcha Waterhole (Fig. 3a). 

 
The oldest stream patterns, faintly visible in the Tirari Desert from aerial photographs and 
remotely sensed imagery, are low sinuosity distributaries indicative of fan-deltas that Tedford 
et al. (1986) referred to as ‘prior streams’. They are aligned west to northwest and are only 
apparent after flooding fills and aligns the clay-pans in the interdune corridors. These systems 
deposited the Tirari and Kutjitara Formations in the Late Tertiary and Early Pleistocene. Here 
we describe in detail an outcrop of the Kutjitara Formation at Lake Hydra (Figs. 1 and 10) 
representing one of these fan-deltas. 
 
Along lower Cooper Creek, abundant outcrops of the Katipiri Formation reflect the shift in 
sedimentology and sedimentary architecture from the low sinuosity relatively wide and 
shallow Kutjitara distributary system to the narrower more sinuous inset channels of the 
Katipiri Formation. The two meander belts of the Katipiri Formation (southern and northern, 
Fig. 10) are more extensive than the present floodplains and are partly overlain by encroaching 
linear dunes. The very different planform of Lake Eyre associated with each formation, the 
different marsupial fossil types and abundances and the strong disconformity separating these 
two fluvial sequences suggests a substantial time difference between the deposition of the 
Kutjitara and Katipiri Formations (Tedford et al., 1986; Tedford and Wells, 1990). 
 
5.8. Lake Hydra 
This dry lake pan appears to have incised by deflation into basal lacustrine dark grey clays of 
the Wipajiri Formation deposited by an earlier Late Tertiary eastward extension of Lake Eyre. 
It is a late Quaternary feature constrained by formation of the present regional dunefield 
(Callen and Nanson, 1992). Pollen from the Wipajiri Formation suggests moister conditions in 
the Late Tertiary than today, with patches of Casuarina-dominated forest or open woodland 
and no significant grass understory but varying fresh to brackish rivers (Tedford et al., 1986; 



Luly, pers. comm., 1990; Alley, 1998). Wave erosion on this now dry lake has exposed a 6 m 
high cliff in the Kutjitara Formation on a small island at the western side of the lake (Fig. 10). 
The exposure reveals shallow units of muds and horizontally bedded unconsolidated white-
grey and orange stained fluvial sands with multiple small cross-beds mainly less than 2 cm 
thick making up ~20 cm thick cosets (Fig. 11) which here is overlain by dune sand that 
contains fragments of emu egg shell and human-crafted stone flakes. The northern end of the 
exposure has been entrenched by a 3–4 m deep (width unknown) channel infilled with fine 
sand (only the upper part is shown in Fig. 11). The depth of the channel contrasts with the 
shallow flow structures it is cut into. A 2.3 m long 0.7 m deep trench was excavated into the 
lake floor near the base of the vertical section to reveal that here the Kutjitara Formation is 
inset into an earlier lake clay and has itself been partially eroded by a subsequent lake 
depositing highly organic inclined beds (Fig. 11). There is evidence of disturbance by animals 
having walked over this soft shoreline. 
 
The Lake Hydra section is reasonably typical of the Kutjitara Formation and suggests wide 
shallow fluctuating flows spread over a wide area and entering a lake larger than present. The 
climate must have been variable for the relatively narrow deep channel suggests a base level 
fluctuation with associated incision and subsequent infilling. In general, fluvial activity 
appears to have been low energy, probably shallow deltaic. There is no evidence of great 
channel sinuosity and nothing in the deposits to indicate significant channel migration. Two 
saturated TL ages gave values N320±71 ka (W810) and N440±90 ka (W809), the latter from 
the more recent sandy channel-fill and, although not definitive, they support an Early 
Pleistocene to possibly Late Tertiary interpretation. It is into the Kutjitara and the older Tirari 
Formations that the Katipiri Formation along Cooper Creek is inset. 
 
5.9. Lower Cooper Creek 
Here (Location C, Fig. 1) Cooper Creek is incised into a shallow alluvial trough encroached 
upon by some minor northward extension of the linear dunefield. It consists of a series of 
shallow disjunct salty waterholes with low source-bordering dunes adjacent to the channel, but 
the trough every decade or so fills with floodwaters that spread into the linear swales of the 
adjacent dunefield. A series of alluvial exposures up to 6 m in thickness, in places topped with 
aeolian dunes, occur along lower Cooper Creek between South Tilla Tilla Waterhole and 
Katipiri Waterhole (1 km upstream of Eli Hartigs Soak — the type section for the Katipiri 
Formation; Fig. 3b). Several of these stratigraphic sections are described here and two were 
surveyed to within ±1.5 m of AHD using an Omnistar-based DGPS correction. 

 
Fig. 10. The Tirari Desert adjacent to Lake Eyre, showing the northern and southern palaeomeander belts and the 



path of the lower reach of Cooper Creek along the northern belt (after Wells and Callen, 1986). 
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Fig. 11. A near vertical exposure of the Kutjitara Formation on the island on the western side of Lake Hydra in the 
Tirari Desert (Fig.10). A pit excavated in the lake floor, several metres away from the base of the section, exposes a 
continuation of the vertical section below 6.8 m relative datum. The upper part of a 3–4 m deep trench is exposed 
near the top of the section. Possible animal foot prints have disturbed one of the lower organic boundaries in the pit 
on the lake floor. As this location has not been surveyed to AHD, heights are given only to a relative datum. 
 
The oldest unit investigated on lower Cooper Creek is the Tirari Formation at Eli Hartigs Soak 
near Katipiri Waterhole (Fig. 3b). Here an 8 m high bluff of dark orange fluvial sand on the 
north bank overlies a basal unit of grey lacustrine clay, probably Etadunna Formation. The 
overlying alluvium is Tirari Formation and consists of interbedded strata each 30–50 cm thick 
of gritty coarse to medium trough-bedded sand and uniform muds. This yielded a saturated TL 



age of N290±48 (W811). From about 5 m to 2 m there is a fining upward fluvial coset of very 
shallow trough sets of muddy fine to very fine sand, heavily indurated with gypseous 
rhizomorphs and massive gypsum. One hundred metres upstream the same coset can be 
viewed showing well-defined large cross-beds accreting over trough sets and inter-bedded mud 
sets. The upper alluvial contact is overlain by 1 m of the eroded remnant of an old dune formed 
of medium sand with interbedded mud (aeolian dust?). To the north, relatively modern aeolian 
dunes overlie the eroded relatively-flat upper surface of the exposure. This substantial 
exposure of the Tirari Formation with gritty coarse sands at the base suggests a more powerful 
river than later laid down the Katipiri Formation in this area. 
 
Also on the north bank of Cooper Creek but at Katipiri Waterhole (Fig. 3b) a 30 m long and ~6 
m high section of Katipiri Formation yielded a TL date of 108±10 ka (W812) from well-
defined trough sets of medium to fine mostly white quartz sand (Fig. 12). These sands fine 
upwards to about 3.2 m of interbedded grey mud and fine sand strata forming a west-dipping 
lateral accretion succession below a truncated uppermost surface. Sand deposition appears to 
have been rapid with loading deformation structures in some of the lower trough sets. The site 
provides clear evidence of migration and lateral accretion of a scrolled meandering channel 
system. 
 
Another substantial exposure of Katipiri Formation on the northern bank occurs at Cuttupirra 
Waterhole (Fig. 3b). The lowest barely exposed unit in this section below 5.7 m depth is dark 
orange stained fine sand, probably Tirari Formation (Fig. 13). The basal unit of the Katipiri 
Formation here consists of a few centimetres of clay, probably deposited in pools, overlain by 
20 cm sets of trough cross-bedded medium to fine sands yielding a TL date of 115±15 ka 
(W808). This is overlain by plane-bedded medium to fine sand and some tabular cross-bedded 
planar sand sets each 3 cm thick. At 4.8 m convoluted trough sets of medium to fine sand 
grade up into less distorted sets of the same lithology. This coset TL dated at 115±18 ka 
(W807) at 3.8 m. From 3.1 m to 0.6 m the section consists of 10–20 cm trough cross-sets of 
clean white fine sand with an intervening 30 cm coset of 1–2 cm thick ripple sets between 1.5 
m and 1.2 m. A 3 cm thick gypcrete layer occurs at the top of the ripple beds. The uppermost 
60 cm consists of muddy fine sand, probably an overbank deposit, plane-bedded with few 
structures but some small carbonate nodules at the top. The base of an overlying aeolian dune 
dates at 32.5±3.0 ka (W806). 
 
A further 14 km upstream at Pirranna Waterhole (Fig. 3b), the north bank of Cooper Creek 
reveals an 8 m wide, 3 m high transverse section through a point bar with incipient scrolls 
(Fig.14). The base of the section at ~1.0 m AHD consists of white horizontally laminated 
medium fine sand, partly orange stained with scour features and fine mud drapes, The core of 
the point bar is medium sand TL dating at 101±13 ka (W814; Fig. 14) and is overlain by 
medium to fine sandy tabular dune cosets (weakly orange stained) migrating downstream 
towards the northeast. These structures have been scoured into linear ridges and form incipient 
scrolls over which interbedded fine sand and mud units lie, the entire sequence being covered 
by a fine sandy mud overbank deposit. A gully on the landward side of this bar provided a 
section perpendicular to the transverse face. Here basal orange sand beneath an erosional 
contact dated at 132±23 ka (W813) whereas at the overbank contact, U series analysis of a 
gypcrete and calcrete rhizomorph gave an age of 112 + 8–7 ka (LH0696), these uncertainties 
overlapping the TL age stratigraphically below. 
 
The Pirranna Waterhole location represents a point bar formed in a tightly curved bend in a 
relatively small channel. The steeper face is towards the channel and the gently sloping surface 
towards the bank. The secondary flow is directed obliquely towards this bank (Fig. 14). 
 
The incipient scroll bar is formed from three adjacent downstream oriented linear sand-ridges 
which form a topographic high along the mid point of the bar platform. The abundant mud 
drapes and tight curvature of the bend indicate the probability of muddy cohesive banks, as 



does the substantial unit of muddy overbank sediment. Scrolled features such as this one and 
that at Katipiri Waterhole were probably widespread at the time, as shown by the scroll-
patterned Cooper Creek palaeochannel surfaces visible in Fig. 10. 
 
The final site on lower Cooper Creek to be described is South Tilla Tilla Waterhole (Fig. 3b) 
where a nearly 6 m high section exposes three alluvial units of distinctly different age (Fig. 
15). The base consists of indurated fluvial cross-bedded medium sand that is dark orange 
stained and, based on the degree of weathering, is probably Tirari Formation. TL gives a 
minimum age of N400±98 ka (W805). Overlying this at an elevation of ~0.0 m AHD, but 
separated by a distinct mud unit, well-defined medium dark orange stained trough cross-
stratified medium to coarse sand that gave a TL age at 1.3 m of 220±27 ka (W804), with 5–10 
cm thick sets containing mud intraclasts and carbonate nodules. Mud drapes line the base of 
the troughs but decline in dominance upwards. A few centimetres of mud separates this unit 
from the overlying 15 cm thick trough cross-beds of clean grey fine sand with less orange 
staining. There is evidence that, at the time, large animals walked on and disturbed one of the 
muddy bounding surfaces. 
 
At 2.2 m AHD a 4–5 cm thick mud unit is overlain by inclined fine clean sand with sets of 
smaller trough cross-beds migrating up-slope, an indication of lateral accretion. Along with the 
cross-beds below, this could have been an upward fining sequence with darker orange staining 
due to groundwater at the base. TL yielded an age of at 2.5 m AHD of 117±14 ka (W803) 
indicating a phase of the Katipiri Formation, some 100 ka younger than that just 1.3 m below 
(Fig.15). This disconformity could not have been recognised without dating, indicating that the 
Katipiri Formation is made up of often indistinguishable multiple depositional episodes from 
the Middle to Late Pleistocene. 
 
From about 3.0 to 4.5 m AHD plane- and cross-bedded tabular sets of clean fine sand are 
interbedded with silty mud units, all weakly indurated with carbonate. These are 
primarilyfluvial but some aeolian reworking is possible. To the surface is a massive unit of 
overbank fine sand and silt with abundant carbonate and gypsum nodules and rhizomorphs. A 
section of the latter yielded a U/Th age of 97.0+7–6 ka (LH697) (Fig. 15), with uncertainties 
overlapping those of the TL age below. 
 
In summary, the exposures along lower Cooper Creek and at Lake Hydra reveal a corridor of 
meandering stream activity represented by Katipiri Formation dating from OIS 7 and 5, 
overlying and partly incised into less confined Late Tertiary and probably Early Pleistocene 
deposits of the Tirari and Kutjitara Formations, respectively. The latter two are probably 
representative of a larger Lake Eyre and more widespread alluvial activity (Tedford et al., 
1986). 
 

 
Fig. 12. Bank section at Katipiri Waterhole (Fig. 3 b) showing an exposure of scroll-pattern floodplain formed of 



sandy trough sets at the base and grading upwards to interbedded muddy and silty fine sands and mud. This location 
has not been accurately surveyed to AHD and therefore heights are given only to a relative datum. 
 

 
Fig.13. Stratigraphic section at Cuttapirra Waterhole (Fig. 3b). This location has not been accurately surveyed to 
AHD and therefore heights are given only to a relative datum. For key see Fig. 11. 
 
 
Interestingly, no Pleistocene deposits dating in the range between ~750 and ~300 ka as occur 
at depth beneath the Shire Road transect were found along lower Cooper Creek. Such deposits 
may exist elsewhere in the region, as for example along the southern meander branch which 
has so far not been investigated. Unfortunately, the luminescence dates from Kutjitara deposits 
at Lake Hydra, some 30 km south of the present course of Cooper Creek, were saturated at 
N400 ka, but they could conceivably be as young as Middle Pleistocene which would indicate 
that the extensive fan-delta and expanded lake system they represent is more recent than 
proposed by Tedford et al. (1986). 
 
6. Ages of alluvium in the Lake Eyre basin and northern Australia 
In order to assess the relative abundance of alluvium in different age classes in central and 
northern Australia, a sequence of histograms are presented in Fig. 16. They represent a total of 
221 TL samples collected from outcrops and auger holes over the past ~25 years. Mostly 
sandy alluvium representative of relatively high-energy bed-load transport (i.e., 
uncharacteristic of today's muddy rivers) has been sampled, hence the distributions represent 
an approximate index for the intensity and spatial extent over time of flows capable of moving 
bedload. In Fig. 16b for northern Australia, 22 plunge-pool beachridge samples (Nott and 
Price, 1994; Nott et al., 1996) have been included as representative of enhanced waterfall 
activity, as have 33 colluvial-sand samples indicative of the active formation sand aprons 
adjacent to escarpments in Arnhem Land (Roberts, 1991). No duplicate dates are included 
although where individual strata are especially thick or laterally extensive, the same strata may 
have been sampled more than once. In Fig. 16a the TL dates described in this study are 



combined with those from earlier work and presented as a distribution of 112 dates from the 
northeast quadrant of the Lake Eyre basin. They show pronounced fluvial conditions extending 
back to OIS 7 and 8 and a marked peak of activity in OIS 5 between about 120 and 75 ka. 
There is a smaller peak in late OIS 4 (65–60 ka) and another in mid OIS 3 (45– 40 ka). 
Throughout much of the Quaternary, the Lake Eyre Basin has been affected to varying degrees 
by tropical airmasses from seas north and northeast of Australia. A plot of 109 TL published 
(Nott and Price, 1994; Nott et al.,1996; Nanson et al., 2005) and previously unpublished dates 
for rivers in northern Australia, north of the Lake Eyre Basin (Fig. 16b), also show pronounced 
fluvial conditions extending back to at least OIS 7. 

 
Fig. 14. Pirranna Waterhole (Fig. 3 b), showing an exposure of scroll-pattern floodplain formed of sandy trough 
sets at the base and grading upwards to interbedded muddy and silty fine sands and an upper unit of massive muds. 
A Useries date was obtained from a carbonate and gypsum rhizomorphinthe gully perpendicular to the exposure and 
stratigraphically at the contact between the overbank unit of massive mud overlying the interbedded sands and 
muds. This location has not been accurately surveyed, however, the top of the section was measured with an 
Omnistar-based DGPS to be 4.5±1.5 m AHD and an approximate vertical scale is given. 
 
However, compared to the Lake Eyre basin, there appears to be limited fluvial activity in the 
north in OIS 5 and a marked increase in OIS 3. Interestingly, there appears to have been a 
sharp increase in runoff after the LGM, rising to a maximum in the early to mid Holocene and 
declining in the late Holocene. 
Combining both histograms provides an index of the average runoff characteristics for the 
northeastern quadrant of Australia (Fig. 16c). Despite the decreased probability of locating and 
dating alluvium from the older parts of this record, there appears to have been marked fluvial 
activity to from least OIS 8 and 7 (a glacial and interglacial, respectively). There is also 
evidence for fluvial activity in OIS 6 (a glacial) but increasing markedly in OIS 5 (an 
interglacial), followed by a drop and then a sharp rise in OIS 4 (a stadial) that continues into 
OIS 3 (an interstadial). There were declining flows towards the LGM. The sharp rise after the 
LGM and into the Holocene appears to have been restricted largely to northern Australia 
although is recognisable on Cooper Creek within the confinement of the Innamicka Dome 
(Fig. 6). 
 
While this record will only represent an approximation of flow regime changes, the magnitude 
of the changes appear to be substantial over a widespread area of the continent and reinforces 
the interpretation by Nanson et al. (1992) that Australia has experienced a marked oscillatory 
climate alternating between prolonged wet and dry episodes during the mid and late 
Quaternary. 
 
 
 
 



 
 
 
                       South Tilla Tilla Waterhole      
 

 
Fig. 15. Stratigraphic section South Tilla Tilla Waterhole (Fig. 3b). This location has not been accurately surveyed, 

however, the top of the section was measured with an Omnistar-based DGPS to be 5.5±1.5 m AHD and an 
approximate vertical scale is given. For key see Fig. 11. 

 
 
7. Summary and discussion 
 
Cooper Creek drains a large part of the eastern Lake Eyre basin and alluvium from the Late 
Tertiary to the Holocene has been deposited in a sequence of shallow neotectonic structures 
along the lower 500 km of its length. The older Quaternary and Tertiary deposits are beyond 
the range of absolute dating, however, luminescence has yielded a chronostratigraphy from 
~750 ka to late Holocene. Some of the region's neotectonic structures clearly remain active 
with Cooper Creek's dated alluvial record indicating that the Innamincka Dome is rising at a 
rate of ~36 m Ma-1, plus the rate of channel incision that is yet to be determined. 
 
Alluvial evidence suggests much higher precipitation and runoff in the eastern Lake Eyre basin 
during Late Tertiary and Early to Middle Pleistocene than later. These climate conditions must 
have fluctuated considerably during the Quaternary, with one of the oldest Pleistocene units 
described here, the Kutjitara Formation, showing signs of base level incision and accretion 
near Lake Eyre before 400 ka. During times of pronounced wetness and increased runoff, 
Cooper Creek has been able to laterally migrate and rework a vast store of sandy bedload now 



sealed in extensive floodplains capped by 2–6 m of alluvial mud (Nanson et al., 1988, 1992). 
However, superimposed on these intense variations appears to have been an overall drying 
trend from OIS 7 or possibly earlier. For example, during OIS 6 and earlier the entire Cooper 
Creek floodplain at the Shire Road was reworked, but in OIS 5 only about one third of it was 
replaced. Even less has happened since then. On lower Cooper Creek, the Tirari and Kutjitara 
Formations in the Tirari Desert reveal widespread fan-delta alluviation towards an expanded 
Lake Eyre in the Late Tertiary and Early Pleistocene. During or perhaps before OIS 7 to 5, 
Cooper Creek incised to a lower lake level (or series of lower lake levels) leaving deposits 
only along two relatively narrow meander tracts (Fig. 10). A progressive increase in aridity 
during the middle to late Quaternary has been noted in Australia from a variety of proxy 
climatic data (e.g. An et al., 1986; Chen and Barton, 1991; Chen et al., 1991; Nanson et al., 
1992), and is especially recognisable over the past ~350 ka (e.g. Hesse, 1994; Kershaw et al., 
2003). 
 
Bankfull discharges on Cooper Creek in OIS 7–6 are estimated at one location tohave been 
about 5to 7 times larger than those of today. A discharge estimate could not be obtained for 
OIS 5 but the stratigraphy from the Shire Road indicates that during that stage Cooper Creek 
was only able to rework about one third of a floodplain that it had entirely reworked in OIS 6 
and earlier. Furthermore, source-bordering dunes were supplied from what must have been 
strongly seasonal flows along Cooper Creek in mid to late OIS 5, and again in OIS 3. Clearly, 
increasing aridity had greatly diminished this major Australian inland river by about 40–35 ka. 
 
Only proximal to the Innamincka Dome, where local flow confinement and steepening 
amplified declining stream powers, has an alluvial signature of enhanced flows along Cooper 
Creek been preserved after ~35 ka. This location indicates larger discharges than today during 
or near the LGM, and again in the early to middle Holocene. Nanson et al. (1998) have 
evidence for possible short-lived high-stands in Lakes Frome and Eyre during or near the 
LGM, and Nanson et al. (1995) have shown that the Finke River on the western side of the 
Lake Eyre basin was fluvially active and able to rework its confined floodplain in the early to 
middle Holocene. Computations from palaeochannel dimensions in the Innamincka Dome 
indicate that bankfull flows on Cooper Creek at this time could have been a remarkable 8–9 
times greater than present. If this is the case, then a lack of reworking elsewhere on Cooper 
Creek floodplain at that time (e.g. Shire Road and Chookoo, and Nanson et al., 1988; 1992) 
suggests such Holocene flows were powerful but short lived, perhaps catastrophic rather than 
systematic in character. 
 
Confirmation of greatly enhanced runoff into waterfall plunge pools in northern Australia at 
about the time of the LGM, and again in the early to middle Holocene, has been obtained by 
Nott and Price (1994) and Nott et al. (1996). Such features could indicate relatively short-lived 
tropical cyclones or cluster of cyclones in northern and central Australia, rather than an overall 
upward shift in the flow regime. This suggests more erratic climate and flooding conditions 
during the temperature maxima and minima of the glacial-cycles compared to the more 
sustained periods of systematic perennial or seasonal runoff that reworked the extensive 
floodplains of Cooper Creek during the intervening periods. 
 
 



 
Fig. 16. Age histograms illustrating the frequency of TL samples dated in various age classes for: (a) the Lake Eyre 
basin; (b) Northern Australia; (c) the Lake Eyre basin and northern Australia, combined. Because age uncertainties 
increase with age, and the preservation of material and hence the probability of sampling material declines with age, 
class sizes have been adjusted as follows: 2 ka class size from 0 to 40 ka; 5 ka class size from 40 to 80 ka; 10 ka 
class size from 80 to 200 ka; 20 ka class size from 200 to 300 ka. Marine oxygen isotope stages after Martinson et 
al. (1987). 
 
Evidence for episodes characterised by huge river discharges on what is now the globe's 
largest arid ice-free continent begs two important questions; where did all the water come from 
and why has this supply varied so dramatically? Nanson et al. (1992) found that fluvial activity 
in the Channel Country during OIS 5 probably peaked at ~110 ka, with subsequent fluvial 
evidence, including that provided here, generally supporting the argument that the rivers in the 
Lake Eyre basin and northern Australia were most active in middle to late OIS 5 (Fig. 16c). It 
has subsequently been assumed that the climate driver must have been an enhanced monsoon, 
not just at the interglacial maximum (OIS 5e) but also later in OIS 5 when temperatures were 



cooler and sea levels lower (e.g. Magee et al., 1995, 2004; Croke et al., 1998). The problem 
with such a scenario is that it requires development of several complex models to explain 
firstly, the abundance of moisture reaching the arid central regions of the continent at times of 
both high and reduced global temperature and sea levels, and secondly, the perceived failure of 
the present interglacial (the Holocene) to return high levels of precipitation and runoff to the 
now-arid centre (Johnson et al., 1999; Miller et al., 1999, 2005a and b; Magee et al., 2004). 
 
It is beyond the scope of the present paper to evaluate the complex sequence of events these 
models require, however, data presented here may offer a simple alternative explanation. 
Evidence by Magee et al. (2004) for an OIS 5e maximum at ~10 m AHD is based essentially 
on a limited number of beach ridge OSL dates for that elevation at that time from Lake Eyre. 
However, the uncertainties around these dates suggests they may all lie outside the range of 
OIS 5e where most of their other beach ridge dates in fact lie. Evidence for high water levels at 
Lakes Woods and Gregory in northern central and northern western Australia (Bowler et al., 
1998, 2001), and the compendium of fluvial chronology from Fig. 16 supports an 
interpretation that prolonged precipitation maxima may not have occurred during but rather 
after OIS 5e. Very significantly, there is no evidence thus far for a substantial deposit of the 
Katipiri Formation commensurate with a 10 m AHD Lake Eyre on lower Cooper Creek; the 
extensive alluvial sequences here appear to be graded to a lake level well below this (e.g. Figs. 
14 and 15). It may be that the higher beach ridges are the result of shortlived and therefore 
exceptional lake level excursions above the elevation rivers entering the lake were graded to 
while they were building floodplains to lower lake levels over prolonged periods of time. 
 
The evidence from Australia's northern lakes by Bowler and co-workers, and the alluvial dates 
revealed in Fig. 16, suggest global conditions in OIS 5e more in keeping with those at times 
during OIS 4 and 3 when temperatures and sea levels were neither particularly high nor low. 
This removes the need for climatic conditions that led to increased moisture in Australia at 
various times when conditions were both warmer and cooler than the present. It also removes 
the need to speculate why the Holocene has failed to supply greatly enhanced precipitation 
(Magee et al., 2004); such conditions could follow the Holocene when, as in the past, 
temperatures and sea-levels achieve more intermediate levels. 
 
If maximum precipitation and runoff were achieved under conditions cooler than present, then 
Australia's northern monsoon is unlikely to have been a major source of the moisture. 
Alternatively, a western Pacific warm pool trapped close to eastern Australia by reduced sea 
levels and the abandonment or confinement of passage ways through Torres Straight and the 
Indonesian archipelago, may well have been sufficient. Such conditions could have created a 
semipermanent ‘La Nina’ with trade winds crossing the Coral Sea and Queensland and 
irrigating the Lake Eyre basin. Furthermore, increased warm water would have travelled down 
the east Australian current under conditions of greater ocean to atmosphere temperature 
gradients, providing greater atmospheric instability and an enhanced supply of moisture to the 
rivers of southeastern Australia. Indeed, thoroughly documented evidence shows southeastern 
Australia experienced greatly enhanced discharges at much the same time as the eastern Lake 
Eyre basin (Nanson et al., 1992; Page et al., 1996; Nanson et al., 2003), something that would 
be difficult to achieve with an enhancement of the monsoon alone. Nevertheless, resolution of 
the exact timing and cause of major changes in precipitation and runoff in Australia during the 
Quaternary will require additional data from diverse sources and improved chronological 
resolution. All three are gradually being achieved. 
 
 
Acknowledgments 
Particular gratitude is expressed to Roger Callen for his intellectual generosity. In the 1980s 
and 90s he introduced to the first author the extensive areas of the Lake Eyre Basin and its 
geology, freely discussing his evidence and ideas. Jacky Croke, Martin Gibling, David 
Knighton, Richard (Bert) Roberts and Stephen Short are sincerely appreciated for willingly 



assisting with fieldwork in often physically difficult conditions. We are especially grateful to 
Stephen Short (then at the Australian Nuclear Sciences and Technology Organisation, Lucus 
Heights, NSW) who provided the two U series dates of pedogenic minerals used here. Our 
thanks are extended to Richard Miller and Anthony Skinner for the production of illustrations. 
The research has been funded by several Australian Research Council grants to Nanson, Jones 
and Price. 
 
 
References 
Allan, R.J., 1990. Climate. In: Tyler, M.J., Twidale, C.R., Davies, M., Wells, C.B. (Eds.), 
Natural History of the North East Deserts. Royal Society of South Australia Inc., pp. 81-84.  
 
Alley, N.F., 1998. Cainozoic stratigraphy, palaeoenvironments and geological evolution of the 
Lake Eyre Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 144,239-263.  
 
An, Z.S., Bowler, J.M., Opdyke, N.D., Macumber, P.G., Firman, J.B., 1986. Palaeomagnetic 
stratigraphy of Lake Bungunnia: Plio-Pleistocene precursor of aridity in the Murray 
Basin, southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 
54, 219-239.  
 
Bowler, J.M., Duller, GAT, Perret, N., Prescott, J.R., Wyrwoll, K.H., 1998. Hydrologic 
changes in monsoonal climates of the last glacial cycle: stratigraphy and luminescence dating 
of Lake Woods, NT., Australia. Palaeoclimates 3 (1-3), 179-207.  
 
Bowler, J.M., Wyrwoll, K.-H., Yanchou, L, 2001. Variations of the northwest Australian 
summer monsoon over the last 300,000 years: the paleohydrological record of the Gregory 
(Mulan) Lakes system. Quaternary International 83-85, 63-80. 
 
Bowler, J.M., Johnston, H., Olley,J.M., Prescott, J.R., Roberts, R.G., Shawcross, W, Spooner, 
N.A., 2003. New ages for human occupation and climate change at Lake Mungo, Australia. 
Nature 421, 837-840.  
 
Bowman, H.H., 2003. The flow hydraulics of Cooper Creek through the Innamincka Dome. 
University of Wollongong. 134 pp.  
 
Callen, R.A., Nanson, G.C., 1992. Discussion — formation and age of dunes in the Lake 
Eyre depocentres. Geologische Rundschau 81 (2), 589-593.  
 
Chen, X.Y., Barton, C.E., 1991. Onset of aridity and dune-building in central Australia: 
sedimentological and magnetostratigraphic evidence from Lake Amadeus. Palaeogeography, 
Palaeoclimatology, Palaeoecology 84, 55-73.  
 
Chen, X.Y., Bowler, J.M., Magee, J.W, 1991. Aeolian landscapes in central Australia: 
gypsiferous and quartz dune environments from Lake Amadeus. Sedimentology 38,519-538.  
 
Coleman, M., 2002. Alluvial, Aeolian and Lacustrine Evidence for Climatic And Flow 
Regime Changes over the Past 250 ka, Cooper Creek near Innamincka, South 
Australia. Unpublished Ph.D. Thesis, University of Wollongong, Wollongong, 284 pp.  
 
Croke, J., Magee, J., Price, D., 1996. Major episodes of Quaternary activity in the lower 
Neales River, northwest of Lake Eyre, central Australia. Palaeogeography, Palaeoclimatology, 
Palaeoecology 124 (1-2), 1-15.  
 
Croke, J.C., Magee, J.M., Price, D.M., 1998. Stratigraphy and sedimentology of the lower 
Neales River, West Lake Eyre, Central Australia: from Palaeocene to Holocene. 



Palaeogeography, Palaeoclimatology, Palaeoecology 144 (3-4), 331-350.  
 
DeVogel, S.B., Magee, J.W., Manley, W.F., Miller, G.H., 2004. AGIS-based reconstruction 
of late Quaternary paleohydrology: Lake Eyre, arid central Australia. Palaeogeography, 
Palaeoclimatology, Palaeoecology 204 (1-2), 1-13.  
 
Fagan, S.D., Nanson, G.C., 2004. The morphology and formation of floodplain-surface 
channels, Cooper Creek, Australia. Geomorphology 60 (1-2), 107-126.  
 
Gregory, J.W., 1906. The Dead Heart of Australia. John Murray, London. 371 pp.  
 
Hesse, P.P., 1994. The record of continental dust from Australia inTasman Sea sediments. 
Quaternary Science Reviews 13, 257-272.  
 
Johnson, B.J., Miller, G.H., Fogel, M.L., Magee, J.W., Gagan, M.K., Chivas, A.R., 1999. 
65,000 years of vegetation change in central Australia and the Australian summer 
monsoon. Science 284,11501152.  
 
Kershaw, A.P., van der Kaars, S., Moss, P.T., 2003. Late Quaternary Milankovitch- scale 
climate change and variability and its impact on monsoonal Australia. Marine Geology 201, 
81-95.  
 
Kingsford, R.T., Curtin, A.L., Porter, J., 1999. Water flows on Cooper Creek in arid Australia 
determine ‘boom’ and ‘bust’ periods for waterbirds. Biological Conservation 88 (2), 
231 -248.  
 
Knighton, A.D., Nanson, G.C., 1994a. Flow transmission along an arid zone anastomosing 
river, Cooper Creek, Australia. Hydrological Processes 8,137-154.  
 
Knighton, A.D., Nanson, G.C., 1994b. Waterholes and their significance in the anastomosing 
channel system of Cooper Creek, Australia. Geomorphology 9,311-324.  
 
Knighton, A.D., Nanson, G.C., 2000. Waterhole form and process in the anastomosing 
channel system of Cooper Creek, Australia. Geomorphology 35,101-117.  
 
Knighton, A.D., Nanson, G.C., 2001. An event-based approach to the hydrology of arid 
zone rivers in the Channel Country of Australia. Journal of Hydrology 254 (1-4), 
102-123.  
 
Kotwicki, V., 1986. Floods of Lake Eyre. Engineering and Water Supply Department, 
Adelaide. 1-99 pp.  
 
Kotwicki, V., Isdale, P., 1991. Hydrology of Lake Eyre, Australia:  El Niño link. 
Palaeogeography, Palaeoclimatology, Palaeoecology 84, 87-98.  
 
Krieg, G.W, Callen, R.A., Gravestock, D.I., Gatehouse, C.G., 1990. In: Tyler, M.J., Twidale, 
C.R., Davies, M., Wells, C.B. (Eds.), Natural History of the Northeast Deserts. Royal Society 
of South Australia Inc., pp. 1-26. 
 
Madigan, C.T., 1946. Crossing the Dead Heart. Georgian House, Melbourne. 
 
Magee, J.W., 1997. Late Quaternary Environments and Palaeohydrology of Lake Eyre, arid 
central Australia. PhD Thesis, The Australian National University, 406 pp. 
 
Magee, J.W., Bowler, J.M., Miller, G.H., Williams, D.L.G., 1995. Stratigraphy, sedimentol-



ogy, chronology and palaeohydroloogy of Quaternary lacustrine deposits at Madigan gulf, 
Lake Eyre, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 113, 3–42. 
 
Magee, J.W., Miller, G.H., 1998. Lake Eyre palaeohydrology from 60 ka to the present: beach 
ridges and glacial maximum aridity. Palaeogeography, Palaeoclimatology, Palaeoecology 144 
(3–4), 307–329. 
 
Magee, J.W., Miller, G.H., Spooner, N.A., Questiaux, D., 2004. A continuous 150 k.y. 
monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected 
Holocene failure. Geology 32 (10), 885–888. 
 
Maroulis, J.C., 2000. Stratigraphy and Late Quaternary Chronology of Cooper Creek 
Floodplain, Southwestern Queensland. Unpublished Ph.D. Thesis, University of Wollongong, 
198 pp. 
 
Maroulis, J.C., Nanson, G.C., 1996. Bedload transport of aggregated muddy alluvium from 
Cooper Creek, central Australia: a flume study. Sedimentology 43, 771–790. 
 
Maroulis, J.C., Nanson, G.C., Price, D.M., Pietsch, T., 2007. Aeolian–fluvial interaction and 
climate change: source-bordering dune development over the past ~100 ka on Cooper Creek, 
central Australia. Quaternary Science Reviews 26 (3–4), 386–404. 
 
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, T.C., Shackelton, N.J., 1987. Age dating and 
the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year 
chronostratigraphy. Quaternary Research 27, 1–29. 
 
Mejdahl, V., 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. 
Archaeometry 21 (1), 61–72. 
 
Miller, G.H., Magee, J.W., Johnson, B.J., Fogel, M.L., Spooner, N.A., McCulloch, H.T., 
Ayliffe, L.K.,1999. Pleistocene extinction of Genyornis newtoni: human impact on Australian 
megafauna. Science 283, 205–208. 
 
Miller, G.H., Fogel, M.L., Magee, J.W., Gagan, M.K., Clarke, S.J., Johnson, B.J., 2005a. 
Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. 
Science 309, 287–290. 
 
Miller, G.H., Mangan, J., Pollard, D., Thompson, S., Felzer, B., Magee, J., 2005b. Sensitivity 
of the Australian monsoon to insolation and vegetation: implications for human impact on 
continental moisture balance. Geology 33, 65–68. 
 
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-
aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73. 
 
Murray, A.S., Marten, R., Johnson, A., Martin, P., 1987. Analysis for naturally occurring 
radionuclides at environmental concentrations by gamma spectrometry. Radio-analytical and 
Nuclear Chemistry Articles 115, 263–288. 
 
Nanson, G.C., Tooth, S., 1999. Arid-zone rivers as indicators of climate change. In: Singhvi, 
A.K., Derbyshire, E. (Eds.), Palaeoenvironmental Reconstruction in Arid Lands. Oxford and 
IBH Press, New Delhi, pp. 175–216. 
 
Nanson, G.C., Rust, B.R., Taylor, G., 1986. Coexistent mud braids and anastomosing channels 
in an arid-zone river: Cooper Creek, central Australia. Geology 14,175–178. 
 



Nanson, G.C., Young, R.W., Price, D.M., Rust, B.R., 1988. Stratigraphy, sedimentology and 
late-Quaternary chronology of the Channel Country of western Queensland. In: Warner, R.F. 
(Ed.), Fluvial Geomorphology of Australia. Academic Press, Sydney, pp. 151–175. 
 
Nanson, G.C., Price, D.M., Short, S.A., Young, R.W., Jones, B.G., 1991. Comparative 
uranium–thorium and thermoluminescence dating of weathered Quaternary alluvium in the 
tropics of northern Australia. Quaternary Research 35, 347–366. 
 
Nanson, G.C., Price, D.M., Short, S.A.,1992. Wetting and drying of Australia over the past 
300 ka. Geology 20, 791–794. 
 
Nanson, G.C., Chen, X.Y., Price, D.M., 1995. Aeolian and fluvial evidence of changing 
climate and wind patterns during the past 100 ka in the western Simpson Desert, Australia. 
Palaeogeography, Palaeoclimatology, Palaeoecology 113, 87–102. 
 
Nanson, G.C., Callen, R.A., Price, D.M., 1998. Hydroclimatic interpretation of Quaternary 
shorelines on South Australian playas. Palaeogeography, Palaeoclimatology, Palaeoecology 
144, 281–305. 
 
Nanson, G.C., Cohen, T.J., Doyle, C.J., Price, D.M., 2003. Alluvial evidence of major late-
Quaternary climate and flow-regime changes on the coastal rivers of New South Wales, 
Australia. In: Gregory, K., Benito, G. (Eds.), Palaeohydrology: Understanding Global Change. 
Wiley, Chichester, pp. 233–258. 
 
Nanson, G.C, Jones, B.G., Price, D.M., 2005. Rivers turned to rock: Late Quaternary 
alluvial induration influencing the behaviour and morphology of an anabranching 
river in the Australian monsoon tropics. Geomorphology 70, 398-420.  
 
Nott, J.F., Price, D.M., 1994. Plunge pools and paleoprecipitation. Geology 22,1047-1050.  
 
Nott, J.F., Price, D.M., Bryant, E.A., 1996. A 30,000 year record of extreme floods in tropical 
Australia from relict plunge-pool deposits: implications for future climate 
change. Geophysical Research Letters 23 (4), 379-382.  
 
Olley, J.M., Pietsch, T., Roberts, R.G., 2004. Optical dating of Holocene sediments from a 
variety of geomorphic settings using single grains of quartz. Geomorphology 60 (3^4), 
337-358.  
 
Page, K.J., Nanson, G.C, Price, D.M., 1996. Chronology of Murrumbidgee River 
palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary 
Science 11 (4), 311-326. 
 
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence 
and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497-
500.  
 
Puckridge, J.T., Sheldon, F., Walker, K.F., Boulton, A.J., 1998. Flow variability and the 
ecology of large rivers. Marine and Freshwater Research 49, 55-72.  
 
Puckridge, J.T., Walker, K.F., Costelloe, J.F., 2000. Hydrological persistence and the 
ecology of dryland rivers. Regulated Rivers: Research and Management 16 (5), 
385-402.  
 
Roberts, R.G. 1991. Sediment Budgets and Quaternary History of the Magela Creek 
Catchment; Tropical Northern Australia. Unpublished Ph.D. Thesis, University of 



Wollongong, Wollongong, 569 pp.  
 
Roberts, R.G., Flannery, T.F., Ayliffe, L.K., Yoshida, H., Olley, J.M., Prideaux, G.J., Laslett, 
G.M., Baynes, A., Smith, M.A., Jones, R., Smith, B., 2001. New Ages for the Last Australian 
megafauna: continent-wide extinction about 46,000 years ago. Science 292, 1888-1892.  
 
Rust, B.R., Nanson, G.C, 1986. Contemporary and palaeochannel patterns and the late 
Quaternary stratigraphy of Cooper Creek, southwest Queensland, Australia. Earth 
Surface Processes and Landforms 11, 581-590.  
 
Rust, B.R., Nanson, G.C, 1989. Bedload transport of mud as pedogenic aggregates in 
modern and ancient rivers. Sedimentology 36, 291-306.  
 
Sandiford, M., 2003. Neotectonics of southeastern Australia: linking the Quaternary 
faulting with seismicity and in situ stress. In: Hillis, R.R., Muller, D. (Eds.), Evolution 
and dynamics of the Australian Plate. Geological Society of Australia, pp. 101-113. 
Special Publication No 22.  
 
Senior, D., 1968. Durham Downs, Queensland. 1:250,000 Map Sheet SG/54-15, 
Explanatory Notes. Bureau of Mineral Resources. Geology and Geophysics, 18 pp.  
 
Senior, B.R., Mond, A., Harrison, P.L., 1978. Geology of the Eromanga Basin. Bureau of 
Mineral Resources Bulletin 167 102 pp.  
 
Stirton, R.A., Tedford, R.H., Miller, A.H., 1961. Cenozoic stratigraphy and vertebrate 
paleontology of the Tirari Desert, South Australia. Record of the South Australia 
Museum 14,19-61.  
 
Stokes, S., Ingram, S., Aitken, M.J., Sirocko, F., Anderson, R., Leuschner, D., 2003. 
Alternative chronologies for Late Quaternary (Late Interglacial-Holocene) deep sea 
sediment via optical dating of silt-size quartz. Quaternary Science Reviews 22, 925-940.  
 
Tedford, R.H., Wells, R.T., 1990. Pleistocene deposits from fossil vertebrates from the 
“dead heart of Australia”. Memo of Queensland Museum 28, 263-284.  
 
Tedford, R.H., Wells, R.T., Williams, D.L.G., 1986. Late Cainzoic sediments and fossil 
vertebrates. In: Wells, R.T., Callen, R.A. (Eds.), The Lake Eyre Basin Cainozoic 
Sediments, Fossils, Vertebrates and Plants, Landforms, Silcretes and Climatic 
Implications. Australian Sedimentologists Group Field Studies Series No 4. 
Geological Society of Australia, pp. 44-72.  
 
Tedford, R.H., Wells, R.T., Barghoorn, S.F., 1992. Tirari Formation and contained fossil 
faunas, Pliocene of the Lake Eyre Basin, South Australia. Records of the Northern 
Territory Museum of Arts and Sciences 9,173-194.  
 
Wells, R.T., Callen, R.A. (Eds.), 1986. The Lake Eyre Basin — Cainzoic Sediments, Fossil 
Vertebrates and plants, landforms. Silcretes and Climatic Implications. Australian 
Sedimentologists Group Field Guide Series No 4. Geological Society of Australia, 
Sydney. 176 pp.  
 
Wrecker, H.R.B., 1989. The Eromanga Basin. Australian Petroleum Exploration Association 
Journal 27, 379-397. 


