
Protecting Small Flows from Large Ones for Quality of Service

R. G. Addie, Oleksiy Yevdokimov, Stephen Braithwaite and David Millsom

Abstract

A simple strategy for improving Quality of Service is
to protect small flows from large ones, by finding a small
number of large flows, separating them from the remaining
traffic, and giving the small flow traffic priority over these
large flows. This is a very powerful technique because it
is known that a small proportion of all flows (e.g. 0.1%)
contain a large proportion of all bytes (e.g. 20%). Many
questions arise when this method of managing performance
is considered. These questions are investigated by means of
a mathematical model of traffic and of queueing in routers.
One particular question is particularly emphasized in this
paper: how should the size of flows be measured?

1 Introduction

Quality of service (QoS) in the Internet has been a topic
of ongoing interest since before the Internet was even im-
plemented. The QoS of the current Internet is remarkably
good. However it is still not good enough to sustain all
the services that we would like to provide via the Internet.
Voice over Internet protocol (VOIP) services are a good ex-
ample of this: although the Internet is used extensively to
provide VOIP communication, the performance provided in
this way is not always satisfactory. The technique consid-
ered in this paper addresses this problem in a simple man-
ner, not requiring changes to Internet protocols or architec-
ture.

It is likely that new services (video-conferencing, IP TV)
which require good performance and which place greater
demands for bandwidth on the Internet will become popu-
lar in the future. We therefore need a way to meet these
demands efficiently, while meeting a QoS target.

Many strategies have been put forward to address the
issue of QoS, notably the Integrated Services architecture
for the Internet (IntServ) [4] and the Differentiated Services
architecture (DiffServ) [12]. These strategies require the
deployment of mechanisms in routers for resource reserva-
tion, in the case of IntServ, or to classify and police traffic,
in the case of DiffServ. If DiffServ is used, traffic will be

separated into different classes, and users who want better
performance will be able to pay for it.

In this paper we explore a strategy – Large Flow Dis-
crimination (LFD) – which does not require reservation,
tagging of packets, or classification of traffic, or polic-
ing, because the only traffic which receives different per-
formance does so because of its statistical characteristics
(size). Instead of differentiating for service requests on the
basis of need, we differentiate against service requests on
the basis of greed.

Many questions arise: 1. Does this method provide suf-
ficient Quality of Service for the small flows? 2. How many
large flows need to be treated separately? 3. How frequently
do new large flows arrive and depart? 4. How should we
measure the size of a flow? 5. Will some small flows be
mixed up with large flows and receive bad performance? 6.
How bad is performance for small flows at present? 7. How
sensitive are the benefits of LFD to assumptions regarding
Internet traffic? 8. How quickly do we need to identify large
flows in order to manage their impact on small flows? 9.
What will happen to a large flow which needs high QoS; in
particular, a large continuous bit-rate flow which needs low
jitter? 10. Doesn’t DiffServ already solve the QoS prob-
lem?

Although we give tentative answers to most of these
questions in the concluding remarks, the question we focus
on is how to measure flow size.

The remainder of this paper is as follows: in Section 2
we review what is known about Internet traffic; in Section
3 we define the LFD strategy; in Section 4 we present a
new method for measuring the size of an Internet flow; in
Section 5 we estimate the complexity of the proposed algo-
rithms; in Section 6 we present an estimate of the perfor-
mance that will be experienced by small and large flows in
the Internet if LFD is used. In Section 7 we return to con-
sideration of the questions which were asked, concerning
the LFD method, in the previous paragraph.

2 Internet Traffic

Internet traffic has been found to be long-range depen-
dent and self-similar [9]. A simple explanation of this which
is widely accepted is that Internet traffic is made up of flows

1

and the byte counts of these flows have a heavy tailed dis-
tribution, such as the Pareto distribution [10, 3, 8].

It is common to assume that the arrival times of flows
forms a Poisson process, i.e. a process of arrival times
which is completely uncorrelated. Measurements have
shown that this is not the case, however it has been shown
in [7] that even if flow arrivals are correlated, this effect on
overall characteristics of traffic is secondary by comparison
with the heavy-tailed character of the individual flows. A
Poisson arrival process of heavy-tailed flows remains, there-
fore, a satisfactory basic model of Internet traffic.

If d is Pareto distributed:

Pr(d > x) =

{(x
δ

)−γ
, x≥ δ,

1, otherwise.
(1)

A typical choice for parameters is γ = 1.1, δ = 1. With
these settings, for example, 50% of flows will have their
size less than or equal to 0.5−

1
1.1 = 2

1
1.1 .

Counting bytes instead of flows reveals a much heavier
tail. Let D denote the length of the flow containing a byte
chosen at random. Then

Pr(D > y) =

{R y
δ

xd
(x

δ

)−γ
/

R
∞

δ
xd

(x
δ

)−γ
, y≥ δ,

1, otherwise,

=

{(y
δ

)1−γ
, y≥ δ,

1, otherwise.
(2)

As a consequence, a high proportion of bytes are trans-
ported in a very small proportion of flows. Denote by `1,
the length of a flow such that 20% of all bytes are in larger
flows. Then `1 = 510 = 9765625. From (1) the proportion
of flows larger than this is 9765625−1.1 ≈ 0.00000002 =
0.000002%. So 0.000002% of flows carry 20% of the bytes.
A similar calculation shows that 10−9% of flows contain
10% of all bytes. In general p proportion of bytes are car-
ried in

Propγ = p
γ

γ−1 (3)

of the largest flows. The feature that a small number of large
flows contain a remarkably large proportion of bytes is well
established [13, 6].

3 A Strategy for Providing QoS by Size Dif-
ferentiation

The proposed LFD strategy measures the aggregate flow
using a flow-size measure. If the aggregate flow is suffi-
ciently small we do nothing, and the traffic will receive good
performance. If the aggregate flow is large, we need to find
the specific flow, or flows, causing the aggregate flow to be
large so we divide the aggregate flow into two halves (or 32
32nds). At least one of the sub-aggregate flows must also

be large (our measure of flow-size must have this property
– this will be shown in Section 4). We continue in this way,
as described in [1], until we have found one or more in-
dividual flows which are large. We then treat these flows
separately, giving the bytes in them strictly lower priority
than the bytes in the remaining flows. This strategy relies
on some characteristics of the flow-size measure which will
be further discussed in the next section.

If LFD is used, instead of individually monitoring and
managing many flows, it is only necessary to monitor and
manage a small number of large flows, together with one
aggregate of the small flows. When a large flow arrives, but
before it has been specifically identified, aggregates made
up of small and large flows must be managed also.

If a large flow which is being treated separately ceases to
be a large flow, which we discover by applying the flow-size
measure, we will absorb this flow back into the aggregate of
small flows, and cease to monitor it.

The advantages of this strategy include:

(i) the small flows experience a lightly loaded link;

(ii) the large flows experience greater delay, and jitter,
however since these flows are large, and hence cannot
be serviced with great speed anyway, the extra delay
and jitter should be barely noticable.

A quantitative measure of the improvement in performance
experienced by the short flows will be provided in Section
6.

4 How to measure flow size

Neither the rate, nor the total bytes in a flow are a good
measure of its size. Even if the rate of a flow could be mea-
sured instantaneously, discriminating against a high rate
flow would change it into a low rate flow, rendering the
strategy unstable. Even if the total bytes in a flow was an-
nounced at the start of every flow, discriminating against
large flows would prevent continuous bit-rate (CBR) flows
from receiving good QoS.

So we need a measure in-between rate and byte-count. In
this measure, VOIP flows should be small and if the com-
plete aggregate is less than a certain size, 1 for example,
performance delivered by a router should be satisfactory.

A flow-size measure, ρt(·), at time t, for example, should
have the following characteristics (Φ, Ψ denote flows, a a
positive number):

(i) homogeneity:

ρt(a×Φ) = aρt(Φ); (4)

(ii) the triangle inequality:

ρt(Φ+Ψ)≤ ρt(Φ)+ρt(Ψ); (5)

2

(iii) performance: if ρt(Φ) < 1, Φ will experience no loss
and minimal delay at time t ;

(iv) VOIP: a flow aggregate, Ψ, made up of a VOIP service
has ρt(Ψ) small for all t;

(v) persistence: if ρt(Φ) = B, ρs(Φ)≈ B for s near t also.

Property (5) ensures when a large aggregate flow is di-
vided into parts, at least one of the parts is also large, ac-
cording to the flow-size measure. This property ensures that
the divide-and-rule method for identifying a large flow will
succeed.

4.1 Different Measures of Size

A candidate as a measure of flow size is the level of a vir-
tual buffer, or a token bucket, at a certain moment t, which
can be defined as Bt ,Φ = sups≤t Φ(t ,s)− (t − s)RB, where
RB is the rate of the buffer. The following inequality (a con-
vexity property) holds for the level of a virtual buffer:

Bt ,aΦ1+bΦ2 ≤ aBt ,Φ1 +bBt ,Φ2 , (6)

where Φ1, Φ2 are flow aggregates and a, b are real positive
numbers with a+b = 1, a ,b≥ 0. At the same time Bt ,Φ is
not a good measure of flow size since the characteristics (i)
and (ii) do not hold.

For example, it is not unlikely that an aggregate flow
which generates non-zero buffer levels in a buffer B,
might be decomposed into two aggregate flows which pass
through the same buffer without causing the buffer to fill at
any time.

The first flow-size measure we wish to consider, ρB,t(·),
relates closely to a buffer and the link into which it feeds,
of rate r. We define the size ρB,t(Φ) of a flow aggregate Φ

as the smallest number a > 0 such that the scaled flow Φ/a
can pass through the link and buffer without overflowing the
buffer at time t. This flow-size measure has the homogene-
ity property because when we rescale a flow, the smallest
number a > 0 which causes an overflow is simply rescaled
appropriately to cause an overflow. Using (6) and a basic
result from [14] we can show that the triangle inequality,
(5), is true for this measure ρB,t .

If a flow has size ρB,t(Φ) < 1 , it means that the flow will
pass through the buffer without overflowing at time t. This
shows Property (iii), although only at time t. Since a VOIP
flow has low bit-rate and very little random variation, it is
clear that Property (iv) holds.

The last property, (v), is difficult to evaluate definitively,
however, we can adjust the degree of persistence of the mea-
sure of flow size introduced in the next section, a pragmatic
implementation of a measure similar to ρB,t , to any desired
level.

B[0] = 0; x[0] = 0; r = 0; t = 0;

while(t<T) {
t = t + 1;
b[t] = bytes arriving in interval t;
r = phi*B[t];
B[t+1] = max(beta*B[t],x[t] + b[t] - r);
x[t+1] = max(0,x[t] + b[t] - r);

}

return B[T] / Actual_Buffer_size;

Figure 1. A Pragmatic Flow Size Algorithm

4.2 A pragmatic algorithm

In this section we define an algorithm for measuring flow
size similar to the one from the previous section but which
is easier to compute. It is shown in Figure 1. It may be inter-
preted as a virtual buffer in which the speed of the link and
the capacity of the buffer increase as needed and then sink
back exponentially when this extra capacity is not needed.
It has two parameters, φ, the ratio between buffer capacity
and link rate, and β, the decay-rate of buffer capacity when
it is not full.

Homogeneity of the flow size algorithm of Figure 1 is
easily verified by checking that if we replace b[t] by a×b[t]
for all t, the values of B[t] and x[t] will all be scaled by
the same factor, at all stages of the algorithm. The other
key property we need to verify is that B[t], considered as a
function on flows, satisfies the triangle inequality.

Convexity of B[t] and x[t] as functions of b
(b[0], . . . ,b[t]), can be shown by induction. Clearly
B[0] = 0 and x[0] = 0 are (trivially) convex functions of
b. Now, assuming B[t] and x[t] are convex functions of b,
observe that B[t +1] is the maximum of two other functions
which are, by the inductive hypothesis, convex functions of
b. So, B[t +1] is also a convex function on the same space.
The same argument applies to x[t + 1] as a function of b,
since it is also expressed as the maximum of two convex
functions of b.

5 Algorithmic Complexity

The processing required in LFD is made up of the fol-
lowing components:

(i) Per-packet processing, which may be confined to clas-
sification (by means of a routing table), and byte counting.
The complexity depends upon the number of large flows
which, should be quite small, e.g. less than 10.

(ii) Flow-size calculation, which can occur somewhat
less often than at the arrival of every packet. The algorithm
of Figure 1 requires 4 additions and 2 multiplications, and
two max operations, per iteration.

3

(iii) When a large flow arrives or departs, the routing ta-
bles for packet classification will be updated. The precise
source-destination address and port pair needs to be found.

6 Flow level performance

Three quite different examples are considered in this
section: a link with speed 128 kbits/s, a link with speed
10 Mbits/s, and a link with speed 10 Gbits/s. In each
case, the critical performance measure is the probability
that small flows are excessively delayed. We measure de-
lay of a flow by the ratio of flow completion time (FCT)
[5] to its minimal possible value, taking into account just
the one link. We refer to this ratio as Relative Response
Time (RRT) [11]. For the slow link, we consider, as our test
of good performance, P(RRT > 3), for the medium speed
link, P(RRT > 5), and for the fast link, P(RRT > 10).

The results are presented in Table 1. For each column
a target utilization level for the link is selected, then the
remaining entries in the column are derived using formu-
lae already derived together with the formulae for system
performance which are derived in Subsection 6.1. If the re-
sulting performance levels which result are not suitable, the
target utilization has been adjusted up or down until the de-
sired result is obtained. Table 1 shows the observed results
at the conclusion of this iterative procedure.

The rate of arrival of the large flows, which need to be
controlled in order to achieve LFD, has been calculated us-
ing (3). The average number of large flows has been calcu-
lated as − log(1−ρL), as justified in Subsection 6.1, where
ρL is the utilization due to large flows, relative to the ca-
pacity of the system after the short flows have been re-
moved (using a reduced load approximation). For exam-
ple, in the case of the 10 Mbit/s link, the utilization due to
large flows is 25%. If we treat the short flows as a con-
stant bit-rate load on the link, this large flow load repre-
sents a proportion 25/65 = 38.5% of the remaining capac-
ity of the link. The mean number of large flows is therefore
− log(0.615) = 0.486.

The probabilities of RRT exceeding satisfactory levels,
under either LFD or without LFD, has been calculated us-
ing the results of the following subsection. In summary, the
results show that using LFD provides satisfactory RRT for
short flows at utilization levels 20-30% higher than without
LFD. Large flow delays also will be improved under LFD
because for all flows, no matter how large, there is a yet
larger flow which can potentially damage performance. To
test the sensitivity of these results to our modeling assump-
tions, a second table, Table 2, of system performance esti-
mates has been calculated using the assumption that γ = 1.2
in place of the choice γ = 1.1.

The last rows of Tables 1 and 2 have been calculated by
means of (2). These sizes should be regarded as indicative

only since they have been calculated under the assumption
that flows have been ranked by total size and that this is
Pareto distributed. In operation, flows will be ranked ac-
cording to flow-size computed dynamically. If flows were
delivered in bulk, instantaneously, to the Internet, at the first
router the dynamic ranking would be very close to their
ranking by total bytes. However, at subsequent routers the
flows will be more spread out and the dynamic ranking will
diverge increasingly from their byte-count ranking.

Although it is reasonable to expect that the flow-sizes
computed dynamically will closely correlated with flow-
sizes measured in number of bytes, little more can be said
about computed flow-sizes in networks until measurements
in real networks have been undertaken.

6.1 Performance Model

The performance model we use to derive the results in
Table 1 has been constructed on the assumption that the
parameter γ ≈ 1. As γ −→ 1, the range of flow sizes be-
comes more and more diverse, and it becomes more and
more likely that adjacent or nearby flows will be of differ-
ent lengths. Another way to express this is that it becomes
less likely that a shorter flow will overlap with the beginning
or end of a larger one.

Let us assume that there are no overlaps of smaller flows
with the beginnings or endings of larger flows. This situ-
ation is depicted in Figure 2. The lines in this figure indi-
cate the periods of time during which flows are being served
by the outgoing link. We are interested in two alternatives:
the one where shorter flows receive strict priority over long
ones (Shortest Job First – SJF), and the other where all
flows receive an equal amount of bandwidth (Fair Queue-
ing – FQ).

Figure 2. Non-overlapping network flows

To see why overlaps can be ignored, choose a particular
flow length, ` and consider the larger flows which contain
the end point of this flow. These have a Pareto distribution
with minimum size δ and shape parameter γ−1. The mean
length of these flows is infinite, and therefore the proportion
of them in which the starting point occurs before the start of
the larger flow is zero and so the probability that an overlap
occurs between the short flow and the start of a long flow, is
zero.

Under these assumptions, the distribution of the number
of simultaneous flows under SJF will be close to Poisson.
The mean duration of a flow of length ` is not affected by
whether larger flows occur at the same time, and is not sig-

4

Link 1 Link 2 Link 3
Speed 128 kbps 2 Mbps 10 Gbits/s
Total Utilization (ρ) 50% 60% 70%
Large flow utilization 30% 25% 20%
Performance using LFD P(RRTs > 3)≈ 0.002 P(RRTs > 5)≈ 0.004 P(RRTs > 12)≈ 0.004
Performance not using LFD P(RRTs > 3)≈ 0.12 P(RRTs > 5)≈ 0.23 P(RRTs > 12)≈ 1
Rate of arrival of large flows 0.0006 0.0013 0.6
Mean number of large flows 0.47 0.49 0.51
Length of large flows 6 Mbytes 40 Mbytes 400 Mbytes

Table 1. Table showing performance of LFD, assuming γ = 1.1

Link 1 Link 2 Link 3
Speed 128 kbps 2 Mbps 10 Gbits/s
Total Utilization (ρ) 50% 60% 60%
Large flow utilization 30% 25% 10%
Using LFD P(RRTs > 3)≈ 0.002 P(RRTs > 5)≈ 0.004 P(RRTs > 12)≈ 0.004
No LFD P(RRTs > 3)≈ 0.12 P(RRTs > 5)≈ 0.23 P(RRTs > 12)≈ 0.14
Rate of arrival of large flows 0.348 14 29
Mean number of large flows 0.47 0.49 0.22
Length of large flows 16 kbytes 40 kbytes 4 Mbytes

Table 2. Table showing performance of LFD, assuming γ = 1.2

nificantly affected by whether, and how many, shorter flows
have occurred at the same time, because these shorter flows
will have only a minor impact on the duration of the longer
flow. Therefore, the total number of flows which intersect
this moment in time can be regarded as the outcome of an
infinite collection of independent events, and is therefore
Poisson distributed.

We know that the probability of zero simultaneous flows
must be 1− ρ, but in a Poisson distribution with mean µ,
the probability of zero is e−µ, so the mean number of the
Poisson distribution must be − log(1− ρ). It follows that
the probability of k simultaneous flows, assuming the queue
discipline is SJF, is:

PSJF(k) =
(− log(1−ρ))k (1−ρ)

k!
, k ≥ 0. (7)

As we switch between from SJF to FQ the flow lengths
as depicted in Figure 2 should increase, depending upon
how many flows overlap, and potentially an overlap be-
tween a flow and the end of a larger flow could be intro-
duced, but we will assume that this doesn’t happen for the
same reason as before. If two flows overlap, the overlap
interval should therefore increase by 2. This increase in
the duration of two flows at a time will decrease the pro-
portion of time occupied by only one flow at a time to
(− log(1−ρ))(1−ρ)− 1

2 (− log(1−ρ))2 (1−ρ).
If three flows overlap, the length of their overlap will

increase by a factor of 3. The number of overlaps be-

tween 3 simultaneous flows will already have been in-
creased by a factor of 2, because of the increase in length
of 2-overlaps caused by the switch from SJF to FQ, so the
combined effect, of switching from SJF to FQ will decrease
the proportion of time occupied by two flows at once, by
2×3×PSJF(3).

So, ignoring end-overlaps, PFQ(2) =

(− log(1−ρ))2 (1− ρ)−
(
1− 1

3!

)
(− log(1−ρ))3 (1− ρ),

and in general

PFQ(k) = k!PSJF(k)− (k +1)!PSJF(k +1)+PSJF(k +1),

k > 0. It follows that

PFQ(≥ k)= k!PSJF(k)+PSJF(≥ k +1)

=(− log(1−ρ))k(1−ρ)+PSJF(≥ k +1), (8)

k ≥ 1.
Equation (8) also gives us the distribution of RRT for the

shortest flows under FQ since during the lifetime of such
flows, the number of the other flows also active will most
likely stay the same. It is known that the mean RRT is the
same for flows of different lengths and simulations show
that the entire distribution of RRT is much the same for
long flows as for short ones. This model of the RRT of
flows passing through a system where the FQ discipline is
used has been used to estimate the tail probabilities of RRT
shown in Tables 1 and 2.

5

The entries in these tables for RRT experienced by the
short flows in the case where LFD is used have been cal-
culated by applying the above model to just the short-flow
traffic. Since the short-flow traffic has a lower variance than
traffic with a complete range of flow lengths, these are con-
servative estimates of the true probabilities of RRT excee-
dence.

Note that if ρ > 1− e−1 = 0.632, − log(1−ρ) > 1 and
(8) no longer defines a distribution function. This can be
explained by the failure of our assumption that under SJF
the duration of a long flow at a given time t is independent
from the number of shorter flows which overlap with this
moment.

6.2 Simulations

A special purpose simulator of a router with the FQ and
SJF disciplines has been implemented. This simulator treats
each flow, or burst, as a job with a Pareto distributed length.

Comparison of the theory of the performance of FQ from
Section 6 with simulations is shown in Figure 3. Since the
processes being simulated are long-range dependent, the ac-
curacy achievable by means of simulation is severely lim-
ited. Although hundreds of millions of flows have been
simulated, the discrepancy between theory and simulation
at k = 1 in this figure (where we know the theory is ex-
act) is already noticeable. The method used in [2] to im-
prove the accuracy of simulations of a long-range depen-
dent process could be used here, but has not so far been
undertaken. It is to be expected that the simulations will
provide answers somewhat lower than the correct values.
Consequently the discrepancy between theory and simula-
tions depicted in Figure 3 should be expected and is more
likely to be caused by the difficulty of simulation than inac-
curacy of the model.

7 Conclusion

Now that we have developed and validated a mathemat-
ical model of the way the FQ and SJF queueing disciplines
will work in practise, we are ready to return to the questions
raised in the introduction.

Q1: Does this method really provide sufficient Qual-
ity of Service for the small flows? Yes. By withdrawing a
very small proportion of very large flows from competition
with the small ones, they can get much better performance.

Q2: How many large flows need to be treated sepa-
rately? Rarely more than 10, although during transients,
when large flows are being identified, the need for fast re-
sponse might dictate that more aggregate flows are moni-
tored simultaneously.

Q3: How frequently do new large flows arrive and
depart? Less than 1 per second, except in the most extreme

case considered, the 10 Gbit/s link, with γ = 1.2, in which
case a rate of 1 large flow per millisecond is expected.

Q4: How should we measure the size of a flow? A
fast, simple algorithm for measuring flow-size was identi-
fied. Tests in a router are needed.

Q5: Will some small flows be mixed up with large
flows and receive bad performance? This question needs
further study.

Q6: How bad is performance for small flows anyway,
if we do nothing? The advantage of LFD over FQ appears
to be similar to a change of link speed by 10% – 30%, de-
pending upon the size of the link, and the type of traffic.

Q7: How sensitive are the supposed benefits of the
Large Flow Discrimination (LFD) to the assumptions re-
garding Internet traffic? The key assumption is that flows
have a heavy-tailed distribution. This is well-established in
the literature on traffic measurements [13, 6]. We have var-
ied the parameter γ to test the sensitivity to this assumption.
When γ = 1.2, the benefits of LFD are reduced for large
links. However, the benefits of LFD remain very significant
for small links.

Q8: How quickly do we need to identify large flows
in order to manage their impact on small flows? This
question requires further study.

Q9: What will happen to a large flow which needs
high QoS; in particular, a large continuous bit-rate flow
which needs low jitter? There is a certain size below which
flows can be guaranteed satisfactory QoS in all senses, in-
cluding jitter. Above this size, flows will still receive good
flow completion times, but guaranteeing jitter will be dif-
ficult. Sizes below which a flow can be regarded as small
vary depending on link capacity (See Table 1).

Q10: Doesn’t DiffServ already solve the QoS prob-
lem? It remains to be seen whether DiffServ can be
deployed sufficiently widely and thoroughly to achieve
a satisfactory approximation to guaranteed Quality of
Service. Also, LFD can be used for any DiffServ class to
provide better flow completion times for the flows within
a class, and to protect the short flows in each class from
accidental or inadvertent abuse by other users.

By discriminating against large flows we can achieve sig-
nificantly better performance than fair queueing, for all flow
sizes. The problem of allocating weights to different flows,
as in weighted fair queueing, has been bypassed. Since
the large flows identify themselves, we do not need tagging
of packets, or policing of flows. And since the number of
flows, and their arrival rate, are low, the algorithms to imple-
ment LFD in routers are fast and scalable. The LFD queue
discipline shows great promise for improving the flow level
performance of routers, which needs to be further investi-
gated by experiments, simulations, and mathematical mod-
eling.

6

Figure 3. Comparison of predicted concurrent flows distribution from theory and simulations for FQ
and SJF queue disciplines

References

[1] R. G. Addie, S. Braithwaite, J. das Gupta, and J. Leis. Ag-
gregate flows – for efficient management of large flows in
the internet. In Proceedings of the 5th Workshop on the In-
ternet, Telecommunications and Signal Processing, Decem-
ber 2006.

[2] R. G. Addie, T. M. Neame, and M. Zukerman. Performance
evaluation of a queue fed by a Poisson Pareto burst process.
Computer Networks, 40:377–397, October 2002.

[3] R. G. Addie, M. Zukerman, and T. M. Neame. Fractal traffic:
Measurements, modelling and performance evaluation. In
Proceedings, IEEE Infocom 1995. IEEE, April 1995.

[4] R. Braden, D. Clark, and S. Shenker. Integrated services
in the internet architecture: an overview. Technical Report
RFC 1633, IETF, June 1994.

[5] N. Dukkipati and N. McKeown. Why flow-completion time
is the right metric for congestion control. ACM SIGCOMM
Computer Communication Review, 36(1):59 – 62, January
2006.

[6] L. Guo and I. Matta. The war between mice and elephants.
In Proceedings of ICNP’2001: The 9th IEEE International
Conference on Network Protocols, pages 180–188, Novem-
ber 2001.

[7] N. Hohn, D. Veitch, and P. Abry. Cluster processes, a natural
language for network traffic. IEEE Transactions on Signal
Processing, Special Issue on Signal Processing in Network-
ing, 51(8):2222–2249, 2003.

[8] N. Hohn, D. Veitch, and P. Abry. The impact of the flow
arrival process in internet traffic. In Proc. IEEE ICASSP,
pages VI 37–40, 2003.

[9] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wil-
son. On the self-similar nature of ethernet traffic (extended
version). IEEE/ACM Transactions on Networking, 2:1–15,
1994.

[10] N. Likhanov and R. R. Mazumdar. Cell loss asymptotics in
buffers fed with a large number of independent stationary
sources. In Proceedings of IEEE Infocom ’98, 1998.

[11] D. McNickle and R. G. Addie. Comparing protocols for
differential service in the internet. In Proceedings of IEEE
TENCON 2005. IEEE, IEEE, December 2005.

[12] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differenti-
ated services architecture for the internet. Technical Report
RFC 2638, IETF, 1999.

[13] V. Paxson and S. Floyd. Wide-area traffic: The failure of
poisson modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, June 1995.

[14] A. P. Robertson and W. J. Robertson. Topological Vector
Spaces. Cambridge Univesity Press, 1966.

7

