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Abstract 20 

Reliable and timely prediction of robusta coffee (Coffea canephora Pierre ex A. Froehner) 21 

yield is pivotal to the profitability of the coffee industry worldwide. In this study we assess the 22 

performance of a simple process-based model for simulating and predicting robusta coffee 23 

yield at the regional scale in Vietnam. The model includes the key processes of coffee growth 24 

Revised manuscript (Clean version)



2 
 

and development and simulates its response to variation in climate and potential water 25 

requirements throughout the growing season. The model was built and evaluated for the major 26 

Vietnamese robusta coffee-producing provinces Dak Lak, Dak Nong, Gia Lai, Kon Tum, and 27 

Lam Dong, using official provincial coffee yield data and climate station data for the 2001-28 

2014 period, and field data collected during a 10-year (2008-2017) survey. Overall, good 29 

agreements were found between the observed and predicted coffee yields. Root mean square 30 

error (RMSE) and mean absolute percentage error (MAPE) values ranged from 0.24 to 0.33 t 31 

ha-1, and 9% to 14%, respectively. Willmott’s index of agreement (WI) was greater than or 32 

equal to 0.710 in model evaluation steps for three out of five provinces. The relatively low 33 

values of WI were found for provinces with relatively low inter-annual yield variability (i.e. 34 

Dak Lak and Dak Nong). Moreover, the model was successfully tested using remote sensing 35 

satellite and model-based gridded climate data: MAPE values were ≤ 12% and RMSE were ≤ 36 

0.29 t ha-1. Such evaluation is important for long-term coffee productivity studies in these 37 

regions where long-term climate stations data are not readily available. The simple process-38 

based model presented in this study could serve as a basis for developing an integrated seasonal 39 

climate-robusta coffee yield forecasting system, which would offer substantial benefits to 40 

coffee growers and industry through better supply chain management and preparedness for 41 

extreme climate events, and increased profitability. 42 

 43 

Keywords: Coffea canephora, biophysical model, climate variability, climate risk 44 

management 45 

 46 

1. Introduction 47 
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Coffee is one of the most important agricultural commodities in international trade, playing a 48 

crucial role in the economy of several African, American and Asian countries (Lewin et al., 49 

2004; AfDB, 2010; ICO, 2019). The total world production was estimated to more than 150 50 

million 60-kg bags of coffee beans over the past five years, of which 80 to 85% were exported 51 

(ICO, 2020). Current coffee bean production is dominated by arabica coffee (Coffea arabica 52 

L.), which represents roughly 60%; the remaining 40% being for robusta coffee (C. canephora 53 

Pierre ex A. Froehner) (ICO, 2020). Coffee production is strongly influenced by environmental 54 

conditions, and is thus threatened by the increasing variability and changes in climate patterns 55 

across several major producing regions worldwide (Bunn et al., 2015; DaMatta et al., 2019). 56 

Extreme weather events associated with the El Niño Southern Oscillation (ENSO) (e.g. 57 

droughts, frosts, etc.) can influence substantially both arabica and robusta coffee commodity 58 

markets (Ubilava, 2012; Cashin et al., 2017; Sephton, 2019). It is therefore vital to develop 59 

decision support tools for increasing the preparedness of the various stakeholders of the coffee 60 

industry, from smallholder farmers to agribusinesses to governments. 61 

 62 

Vietnam is the second largest producer of coffee beans worldwide, with a total coffee 63 

production of 1.2 million metric tons on average during 2010-2017 (FAO, 2018), and the first 64 

producer in robusta coffee (World Bank, 2004; Marsh, 2007), . The Central Highlands region 65 

of Vietnam, which encompasses the major robusta coffee-producing provinces, is among the 66 

most drought-prone Vietnamese regions, with considerable crop losses due to drought events 67 

being reported during the past two decades (Nguyen, 2005; Vu et al., 2015; ICO, 2019). 68 

Seasonal climate forecasts (SCF) have the potential to improve farmers’ overall operational 69 

management of agricultural production through better decision-making (Hammer et al., 2000; 70 

Stone and Meinke, 2005; Meza et al., 2008; Bruno Soares et al., 2018). Indeed, they provide 71 

farmers with opportunities to better match management decisions (e.g. sowing windows, 72 
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sowing area, fertiliser application, harvesting, marketing, etc.) to pending climatic conditions 73 

(Hammer et al., 2000; Meinke and Stone, 2005; Parton et al., 2019). A reliable process-based 74 

biophysical model, integrated into or coupled to SCF systems, could offer substantial benefits 75 

to coffee growers and industry through increased profitability, better supply chain management 76 

and preparedness for extreme events such as droughts and floods.  77 

 78 

Several studies have dealt with the modelling of the coffee crop, ranging from statistical to 79 

process-based approaches (Gutierrez et al., 1998; van Oijen et al., 2010b; Rodríguez et al., 80 

2011; Coltri et al., 2015; Ovalle-Rivera et al., 2020; Vezy et al., 2020). Process-based crop 81 

models are developed to understand the weather and nutrient-driven dynamics and constraints 82 

of the plant trophic level and facilitate the simulation of interactions between all the constituent 83 

processes (e.g. soil, water, plant, management practices, etc.) (Miglietta and Bindi, 1993; Boote 84 

et al., 1996; Batchelor et al., 2002; Jones et al., 2016). For example, Rodríguez et al. (2011) 85 

developed a model to simulate the growth and development of arabica coffee, which includes 86 

refined phenology and physiological processes of the distributed-maturation time tri-trophic 87 

population model of Gutierrez et al. (1998). Among the specificities of the Rodríguez et al. 88 

(2011)’s model are the incorporation of both the vegetative and the reproductive demands to 89 

predict the photosynthetic rate, and incorporation of the dynamics of cohorts of reproductive 90 

organs and reserve compartment. van Oijen et al. (2010b) proposed a plot-scale, dynamic 91 

model for coffee agroforestry systems (CAF2007) which simulates the processes underlying 92 

berry production under shaded or unshaded conditions. The model allows for investigating the 93 

impacts on coffee berry production of cultural practices such as pruning, spacing, thinning and 94 

fertilising, along with shade tree species management. The CAF2007 was recently modified to 95 

improve the calculation of flowering date and the modelling of biennial production patterns, 96 

and was tested successfully in in different coffee-growing regions of Nicaragua and Costa Rica 97 
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(van Oijen et al., 2010b; Ovalle-Rivera et al., 2020). It was also applied in East Africa to 98 

investigate the potential impacts of climate change on arabica coffee under various agro-99 

ecological settings and agricultural managements (Rahn et al., 2018). Vezy et al. (2020) 100 

incorporated key features of the Rodríguez et al. (2011)’s model (i.e. the plant-scale 101 

reproductive phenology formalism) and the CAF2007 model (i.e. canopy temperature-102 

dependent phenology, and the sub-modules for agroforestry system management), along with 103 

metamodels structure (Vezy et al., 2018), to develop a plot-scale model, the DynACof model, 104 

which simulates various processes, including net primary productivity, growth and yield, in 105 

coffee agroforestry systems according to shade tree species and management. 106 

 107 

All the aforementioned models were developed initially for arabica coffee and most often have 108 

been applied to studies at plant and farm scales. They also involved numerous parameters, 33 109 

in case of the Rodríguez et al. (2011)’s model and more than 100 for the CAF2007 and 110 

DynACof models, making their application at larger spatial scales (i.e. regional or provincial 111 

scale) very challenging. Furthermore, the few studies that dealt with robusta coffee focused 112 

mainly on the impacts of climate change and variability on coffee productivity and distribution 113 

(land suitability) (e.g. Davis et al., 2012; Bunn et al., 2015; Craparo et al., 2015). In this study, 114 

we aimed at building and evaluating the performance of a simple process-based biophysical 115 

model (hereafter referred to as a robusta model) for predicting robusta coffee yield at the 116 

regional scale in Vietnam. The model was built based on the main phenological processes 117 

represented in the more complex models cited previously (the CAF2007, Rodríguez et al. 118 

(2011)’s, and DynACof models), but in a much simpler manner. The model was calibrated and 119 

validated using field data collected during a 10-year (2008-2017) survey, and official provincial 120 

coffee yield and climate station data for the major robusta coffee-producing provinces in 121 

Vietnam. With an overarching goal of developing a process-based model for long-term studies 122 
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of the impacts of climate variability on coffee yield and productivity at the regional scale, the 123 

performance of the robusta model was further assessed using remote sensing satellite and 124 

model-based gridded climate data, which are typically used as alternative in these regions when 125 

long-term climate stations data are not available.  126 

 127 

2. Materials and methods 128 

2.1 Description of the robusta model 129 

The robusta model is a simplified, process-based biophysical model that simulates the potential 130 

growth and development of coffee plants on a daily time step based on weather data (minimum 131 

and maximum temperature, solar radiation, and rainfall) and information from the previous 132 

growing season (i.e. harvest date and yield). The model is inspired by a prior model by van 133 

Oijen et al. (2010b), which was developed to estimate the potential productivity of arabica 134 

coffee agroforestry systems. The main output of the robusta model at the end of the simulation 135 

period is the yield at the regional scale. 136 

 137 

Three main processes are involved during the simulation: (1) radiation interception by leaves 138 

according to the Beer-Lambert’s law (Swinehart, 1962); (2) conversion of the intercepted 139 

radiation into biomass based on the radiation use efficiency (RUE); and (3) accumulation of 140 

crop biomass and allocation to the different plant organs according to source-sink rules specific 141 

to coffee plants (DaMatta et al., 2007; van Oijen et al., 2010b). An overview of the model is 142 

illustrated in Fig. 1. No disease or pest impacts on yield are considered; as such, the predicted 143 

yield value corresponds to a potential value. In the following sub-sections, we describe the 144 

main equations used for simulating biomass production and assimilates partitioning into the 145 

different plant organs. 146 
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 147 

 148 

Fig. 1. Schematic representation of the main processes of the robusta coffee model. 149 

Abbreviations: GDD: growing degree days; DVS: Crop developmental stage. 150 

 151 

2.1.1 Biomass production (active growth) 152 

The phenology of robusta coffee trees includes two stages: the vegetative phase occurring 153 

before flowering and the reproductive phase or cherry development between flowering and 154 

harvest. Phenology is driven by the accumulation of growing degree-days. The daily biomass 155 

production is simulated in two steps. First, the light interception is calculated using the Beer-156 

Lambert law (Eq. 1). 157 

ܴܣܲ = ܧ × ܧ × ܴ × (1 − ݁ି×ூ)   (1) 158 
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where PARi is the intercepted photosynthetic active radiation on day i (MJ m-2 d-1); Rg is the 159 

daily solar radiation (MJ m-2 d-1); Ea, Ec and K refer to the maximum interception efficiency, 160 

photosynthetically active fraction of solar radiation, and extinction coefficient, respectively 161 

(unitless). 162 

 163 

Then, the intercepted solar radiation is converted into biomass, as follows. 164 

݉݅ܤ∆ = ܧ × ܴܣܲ × ൫ܿݐݏ௦ − ௩൯݉݅ܤ ×  165 (2)  ܵܵܧܴܶܵ

where ∆݉݅ܤ is the daily increment in biomass (g m-2); Eb is the light energy conversion 166 

efficiency (g MJ-1); ܿݐݏ௦ refers to the respiration cost of vegetative organs (unitless); 167 ݉݅ܤ௩ is the vegetative biomass (leaves + wood) already produced; and STRESS is a drought 168 

stress factor (unitless). 169 

 170 

The drought stress factor is applied to the daily biomass production based on water stress levels 171 

(details are provided in Sections 2.1.5 and 2.3). 172 

 173 

Prior to flowering, newly produced biomass is allocated as vegetative biomass (wood and 174 

leaves). A factor related to pruning is considered during this phase following van Oijen et al. 175 

(2010b). The equations are as follows. 176 ݉݅ܤ௪ௗ = ൫1 − .௪ௗ൯ܭ × ௩௦݉݅ܤ ௪ௗ   (3) 177݉݅ܤ = ൫1 − .௩௦൯ܭ ×  ௩௦   (4) 178݉݅ܤ

where Biomwood and Biomleaves are wood and leaves biomasses, respectively (both expressed in 179 

g m-2); Kprn.wood and Kprn.leaves are the average percentage of pruning of the wood biomass and 180 

leaves biomasses, set according to the average cultural practices of pruning (both are unitless). 181 

 182 



9 
 

2.1.2 Biomass partitioning 183 

The onset of flowering was modelled as the first day of the year exceeding a threshold of 184 

cumulative growing degree days since robusta coffee farmers in Vietnam do irrigate their crops 185 

to break buds’ dormancy and enable synchronous flowering events as much as possible. Given 186 

fruit production is the strongest carbohydrates sink in coffee (Cannell, 1976, 1985; Vaast et al., 187 

2005; DaMatta et al., 2007; DaMatta et al., 2008), from flowering onwards, the newly produced 188 

biomass is allocated in priority to cherry growth (i.e. fruit demand).  Fruit demand is related to 189 

the number of fruits and is assumed proportional to the wood biomass grown after the last 190 

flowering and the potential of fruit growth. It is calculated as follows. 191 ݐ݅ݑݎܨ݉݅ܤௗ = ௗݐ݅ݑݎܨݐܷ݅݊ ×  192 (5)   ܨܰ

where NF is the number of fruits (number per m2) and ܷ݊݅ݐ݅ݑݎܨݐௗ corresponds to the 193 

potential of fruit growth. ܷ݊݅ݐ݅ݑݎܨݐௗ follows a sigmoidal function according to Cannell 194 

(1985) (Eq. 6). UnitFruitdem and NF are calculated as follows. 195 

ௗݐ݅ݑݎܨݐܷ݅݊ = ∆(ௌ ்షభ;ௌ ்)×௨௧ଵାష(ೄష(ೃಶ/మ) ಷೝೠ⁄ )   (6) 196 

ܨܰ = ௧ݐ݅ݑݎܨ ×  ௌி    (7) 197ܹ݀݉݅ܤ

where Fruitpot is the maximum number of fruits per kg of newly produced wood (number per 198 

kg); BiomWoodSLF is the wood biomass grown after the last flowering (g m-2); ∆(ܵ ௧ܶିଵ;ܵ ௧ܶ) 199 

is the difference of degree days between time steps t-1 and t; Kfruit is the slope of the biomass 200 

accumulation in fruit (unitless); ST is sum of temperature above the base temperature (°C); 201 

TempREC is the sum of degree days between flowering and harvest (degree days); and cFruit 202 

is the maximum fruit biomass (unitless). 203 

 204 
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If the fruit demand is not satisfied by the newly produced biomass, we assumed that a 205 

proportion of leaf biomass is remobilized. Although we referred for the assumption to 206 

previously reported results on the decline of foliar non-structural carbohydrates and starch in 207 

arabica coffee (Chaves et al., 2012; Marias et al., 2017), future research would help elucidate 208 

such a remobilization process in case of robusta coffee. The formula of leaf biomass 209 

remobilization in the robusta model is as follows. 210 

ܴ݉݁ݐܲ = ܭ ×  ௩௦   (8) 211݉݅ܤ

where PotRemleaf is the potential remobilization of biomass from leaves (g m-2); and Krem is 212 

the maximum rate of remobilization (unitless). 213 

 214 

 215 

2.1.3 Biomass reallocation into leaves and woody parts of the tree (passive growth) 216 

The elaboration of bean yield is based primarily on the determination of the potential number 217 

of fruits according to the wood newly formed. Each coffee cherry acts as a priority sink of 218 

newly produced assimilates (Vaast et al., 2005; DaMatta et al., 2007). When the fruit demand 219 

is satisfied, the newly produced assimilates are reallocated to the vegetative growth. The daily 220 

proportion of assimilates (∆݉݅ܤ) is thus allocated to leaves (∆݉݅ܤ௩௦) and wood 221 

 as follows. 222 (௪ௗ݉݅ܤ∆)

௩௦݉݅ܤ∆ = ൫∆݉݅ܤ × ௧൯ܮ − ௩௦݉݅ܤ) × ௦ܶ) − ܴ݁݉ (9) 223 ∆݉݅ܤ௪ௗ = ൫1 − ௧൯ܮ ×     (10) 224݉݅ܤ∆

where ∆݉݅ܤ௩௦ and ∆݉݅ܤ௪ௗ refer to the biomass re-allocated to leaves and wood, 225 

respectively (both expressed in g m-2); Lpercent is a coefficient that accounts for the proportion 226 
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of leaves biomass in the newly formed biomass (unitless); Tsene is the senescence rate of leaves; 227 

and Remleaf is the biomass of leaves that was removed to supply the demand from fruits (g m-228 

2). 229 

 230 

2.1.4 Initialization of the wood and leaves biomass at the start of the simulation 231 

We assumed that the coffee tree has already started producing fruits. At the start of each 232 

simulation (i.e. date of the harvest in simulation year-1) the above-ground vegetative biomass 233 

(BiomVeg) is initialized based on the coffee bean yield from the previous season (Yieldref). 234 

݉݅ܤ = ௪ௗ݉݅ܤ +  ௩௦   (11) 235݉݅ܤ

with ݉݅ܤ௪ௗ = ܭ × ܻ݈݅݁݀ + ௩௦݉݅ܤ  andܫ = ܫܣܮ) ×  236 .ܣܮܵ/(ܲܣ

where Kbiom and Ibiom are two parameters related to the above-ground biomass after the previous 237 

harvest (both unitless); SLA is the specific leaf area (m2 kg-1); AP is the ground surface occupied 238 

by each plant (m-2); and LAI is the leaf area index (m2 m-2). 239 

 240 

Given LAI dynamics in coffee trees are strongly influenced by management practices on farms 241 

(DaMatta et al., 2007; Silva et al., 2009; Costa et al., 2019), we assumed that the initial wood 242 

biomass and LAI values are proportional to the bean yields from the previous season. Thus in 243 

this study, we estimated the initial LAI value as ܫܣܮ௧ = ூܭ × ܻ݈݅݁݀ +  ூ, where KLai 244ܫ

and ILai, are two coefficients related to the above-ground biomass and yield after the previous 245 

harvest (both unitless). 246 

 247 

2.1.5 Water stress factors based on crop water requirements 248 
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Water stress can affect coffee growth differently depending on the phenological stage; it is 249 

therefore important to consider water stress factors accordingly. To account for crop water 250 

requirement (CWR) according to the phenological stages, we considered three main periods 251 

(November-December, January-April, and May-October) for characterizing the coffee growth 252 

period across the study provinces. CWR is defined here as “the depth of water needed to meet 253 

the water loss through evapotranspiration (ETc) of a disease-free crop, growing in large fields 254 

under non-restricting soil conditions including soil water and fertility and achieving full 255 

production potential under the given growing environment” (Doorenbos and Pruitt, 1992). The 256 

details of the calculations are provided in Section 2.3. 257 

 258 

2.2 Study area and data 259 

Data for the five robusta coffee-producing provinces in the Central Highlands region of 260 

Vietnam (Dak Lak, Dak Nong, Gia Lai, Kon Tum, and Lam Dong) were used in this study. 261 

The Central Highlands is dominated by a humid tropical climate. The total annual rainfall 262 

varies between 1800 to 2900 mm. Maximum temperatures are normally above 24°C on 263 

average; the average monthly solar radiation across the provinces ranges from 430 to 700 MJ 264 

m-2. 265 

 266 

Official yield data (2001–2017) sourced from the General Statistics Office of Vietnam (GSOV, 267 

2017), as well as farm data collected during the 2008–2017 surveys (Byrareddy et al., 2019; 268 

Byrareddy et al., 2020) were used. Details about the methodology of data collection during the 269 

surveys can be found in Byrareddy et al. (2019) and Byrareddy et al. (2020). Coffee yield data 270 

from 2005 onwards were considered for Dak Lak and Dak Nong because Dak Nong was 271 

officially created in 2004. Thus, Dak Lak data over 2001–2004 used to include those of Dak 272 
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Nong. In the calibration and model testing steps, given the absence of official yield data in 273 

2006 for all the provinces, the corresponding missing yield data were replaced by the average 274 

of observed yields over the entire period. Note that robusta coffee accounts for 95-96% of the 275 

reported coffee production in Vietnam (arabica coffee representing the remaining proportion) 276 

(USDA, 2019). Since no detailed information about the annual production of the two coffee 277 

varieties were available at the provincial scale from the official statistics, and because robusta 278 

is dominant in the Central Highlands (arabica is mainly grown in the northern regions of the 279 

country), we attributed the reported yield value in each year to robusta coffee. 280 

 281 

Observed daily climate data for the 2000–2014 period and gridded daily climate data for the 282 

2000-2017 period were used in this study. These climate data included maximum and minimum 283 

temperatures, solar radiation, and rainfall. The spatial distribution of grids across the study 284 

regions is presented in Fig. 2. For each of the study provinces up to four grids were considered 285 

based upon the closeness of the centroid of the grid to the robusta cultivation areas (Table 1). 286 

 287 

Observed climate data were sourced from the National Centre for Hydro-Meteorological 288 

Forecasting of Vietnam (NCHMF, 2014). Gridded data were retrieved from the NASA 289 

POWER website (https://power.larc.nasa.gov/). The observed climate data for 2000–2014 290 

were available for Dak Lak, Gia Lai and Lam Dong. They were used for model calibration and 291 

first validation. The gridded data were used for further evaluation of the robusta model.  292 

 293 

 294 
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 295 

Fig. 2. Map of grid points falling within the boundaries of the study provinces Dak Lak, Dak 296 

Nong, Gia Lai, and Lam Dong. Green areas represent coffee crop mask (Source: Ecomtrading 297 

Vietnam). 298 

 299 

Table 1. Selected grids for each of the study provinces. 300 

 Dak Lak Dak Nong Gia Lai Kon Tum Lam Dong 
Grids  VN13, VN18, 

VN19, VN23 

VN11, VN12 VN27, VN28, 

VN33 

VN32 VN7, VN8 
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 301 

2.3 Calculations of coffee water requirements and determination of coefficients for water 302 

stress levels 303 

CWRs were calculated following the formula CWR = ET ×  Kୡ, where ET0 is the reference 304 

evapotranspiration, and Kc is the crop coefficient. The crop coefficients used for the 305 

calculations were retrieved from Amarasinghe et al. (2015) and Byrareddy et al. (2020) (Table 306 

2). CWRs were computed under standard conditions, i.e. disease-free, non-limiting nutrient 307 

and soil water conditions, and, as such, corresponds to the potential crop evapotranspiration. 308 

 309 

ET0 was calculated using the Hargreaves and Samani (HS) equation (Hargreaves and Samani, 310 

1985; Hargreaves and Allen, 2003): 311 

ܧ ܶ = 0.408 × 0.0023 × ܴ × ቀ ்ೌೣା்ଶ + 17.8ቁ × ( ܶ௫ − ܶ).ହ (12) 312 

where Ra is the extra-terrestrial radiation (MJ m-2 day-1); Tmax and Tmin are the daily maximum 313 

and minimum temperatures, respectively (°C). ET0 is expressed in mm day-1. 314 

 315 

The HS method was chosen because of its simplicity and the variables required. The extra-316 

terrestrial radiation can be calculated for any day and location. Only maximum and minimum 317 

temperatures are required. Nonetheless, it should be noted that the HS method can result in ET0 318 

overestimation in high humidity conditions or ET0 underestimation when high-speed winds 319 

conditions prevail (Allen et al., 1998; Droogers and Allen, 2002).  320 

 321 

 322 
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Table 2. Crop coefficients (Kc) used for the calculations of crop evapotranspiration ETc. 323 

(Source Amarasinghe et al., 2015 and Byrareddy et al., 2020). 324 

Growth period Month Kc (unitless) 
Harvest / Start of season November 0.95 
 December 0.90 
Flower-bud initiation / Blossoming January 0.90 
 February 0.93 
 March 0.93 
Fruit set April 0.93 
Cherry development May 0.95 

June 0.95 
July 0.95 
August 0.95 

Maturation / Ripening / Harvest September 0.95 
October 0.95 

 325 

Depending on the phenological stage and water stress levels (expressed through the number of 326 

days with daily rainfall below CWR), different coefficients of biomass reduction were applied 327 

(Table 3). The values of these coefficients were derived from information collected during the 328 

2008-2017 surveys (Byrareddy et al., 2020) and expert knowledge (i.e. experienced 329 

agronomists and crop physiologists). Expert knowledge was necessary for defining the 330 

percentage of daily biomass reduction according to the phenological stage and water stress 331 

level under the environmental conditions in Vietnam. We also checked the literature for such 332 

relationships in other coffee-producing regions (e.g. Carr, 2001; DaMatta, 2004; Nguyen, 333 

2005; Wang et al., 2015). 334 

 335 

 336 

  337 
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Table 3. Rules used for defining the percentage of daily biomass reduction according to the 338 

phenological stage and water stress level. The daily biomass reduction coefficient is applied to 339 

the newly produced biomass in the model. 340 

Condition Period Consecutive days with 
 rainfall < CWR a (days) 

Daily biomass 
reduction (%) 

A. Harvest and Start of the season 

Normal November - December 10 0 

Dry November - December 20 5 

Very dry November - December 30 10 

B. Flower-bud initiation, blossoming and fruit set 

Normal January - April 10 0 

Dry January - April 20 15 

Very dry January - April 30 30 

C. Cherry development and maturation/ripening 

Normal May - October 10 0 

Dry May - October 20 10 

Very dry May - October 30 15 

a : CWR: crop water requirement 341 

 342 

2.4 Calibration and validation of the robusta model 343 

2.4.1 Robusta coffee calendar in Vietnam 344 

The robusta coffee calendar in Vietnam can be divided into five periods: the flower-bud 345 

initiation and blossoming occurring during January to March; the fruit setting during April; the 346 

cherry development during May to August; the maturation stage during September and 347 

October; and the ripening/harvest occurring during October to December. These periods are 348 

indicative and were used for the modelling purpose. Thus, even though farmers applied 349 

irrigation for synchronous blossoming, the actual growth stages and durations may vary across 350 

a given province and from one province to another. 351 
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 352 

2.4.2 Model calibration 353 

Initial parameter values were derived from the CAF2007 model (van Oijen et al., 2010b; 354 

Ovalle-Rivera et al., 2020). For the model calibration, the majority of the parameters (Table 4) 355 

were varied individually within a range of plausible values. These ranges were based on 356 

published studies undertaken across the study regions in Vietnam (e.g. D’haeze et al., 2003; 357 

Marsh, 2007) or elsewhere in a robusta coffee-producing country (e.g. Marin et al., 2005; 358 

DaMatta et al., 2007; van Oijen et al., 2010b, 2010a; Rodríguez et al., 2011; Ovalle-Rivera et 359 

al., 2020), or from field experimental data from the Centro Agronómico Tropical de 360 

Investigación y Enseñanza (CATIE) research station, Costa Rica. Thus, the calibration was 361 

carried by adjusting model parameters so that the predicted yields satisfactorily compared with 362 

the official provincial yields. That is, at each variation of a given parameter value, the predicted 363 

yields were compared to the observed ones until the best combination, i.e. the model which 364 

outputs resulted in fewer errors, was found. The root mean square error (RMSE) and mean 365 

absolute percentage error (MAPE) were used as statistical indicators (their respective formulas 366 

are provided in Section 2.4.3). Additionally, a visual assessment was also carried out to verify 367 

how well the model simulates observed interannual yield variability. 368 

 369 

In this study, the calibration of the robusta model was performed using the observed climate 370 

and yield data for Lam Dong for the 2001–2014 period. To simulate coffee growth using the 371 

robusta model, the start date of each season was set at 1 November of the previous calendar 372 

year and the simulations were carried out up to 31 October of the following year. The list of 373 

model parameters and their values after calibration is presented in Table 4. 374 

 375 

Table 4. Parameters of the robusta model. 376 
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Parameter Description Unit Initial 
value 

Range for 
testing a 

Value after 
calibration 

Ea Maximum interception efficiency - 0.95 n.a. b 0.95 

Ec Photosynthetically active fraction of global radiation - 0.48 n.a. 0.48 

Eb Light energy conversion efficiency  g MJ-1 16.5 10-4 n.a. 16.5 10-4 

K Light extinction coefficient m2 m-2 0.76 n.a. 0.76 

Tsene Senescence rate of leaves - 6.4 10-4 n.a. 6.4 10-4 

costrespi Respiration cost of vegetative organs - 7.6 10-5 n.a. 7.6 10-5 

Kfruit Slope of the biomass accumulation in fruits - 6.9 10-4 n.a. 6.9 10-4 

Krem Potential of remobilization of assimilates from leaves 
to fruits - 20.8 10-4 n.a. 20.8 10-4 

Kprn.leaves Average percentage of pruning of leaves biomass - 1.7 n.a. 1.7 

cFruit Maximal fruit biomass - 327 300-500 400 

Fruitpot Maximal number of fruits per kg of newly produced 
wood nb kg-1 2000 1000-3000 1300 

Tmaxfruit Maximal rate of biomass allocated to fruits - 0.55 0.55-0.65 0.61 

SLA Specific leaf area m2 kg-1 18 18-27 18 

Kprn.wood Average percentage of pruning of wood biomass - 0.28 0.25-0.50 0.33 

KLai 
Parameter used to initialize LAI at the start of the 
growth season according to the yield from the 
previous season 

 4.5 1.5-7.5 6.20 

ILai 
Parameter used to initialize LAI at the start of the 
growth season according to the yield from the 
previous season 

 -4.5 -6.5 - -1.5 -2.75 

Kbiom 
Parameter used to initialize wood biomass at the 
start of the growth season according to the yield from 
the previous season 

- 4.5 2.5-7.5 4.00 

Ibiom Parameter used to initialize wood biomass at the 
start of the growth season  - -4.5 -6.5 - -1.5 -2.65 

Kwood Percentage of newly formed wood in biomass at 
initialization - 0.43 0.33-0.48 0.40 

Lpercent percentage of leaves in newly formed biomass - 0.24 0.20-0.35 0.30 

T0 Base temperature ° C 12 10-15 12 

TempREC Sum of degree-days between flowering and harvest °C.d 2000 2000-3200 2800 

TempFLO Cumulative degree-days to the onset of flowering °C.d 1600 1000-2500 1200 

a : Ranges were based on published studies undertaken across the study regions in Vietnam (e.g., 377 

D’haeze et al., 2003; Marsh, 2007) or elsewhere in other robusta coffee-producing countries (e.g., Marin 378 

et al., 2005; DaMatta et al., 2007; van Oijen et al., 2010b, 2010a; Rodríguez et al., 2011; Ovalle-Rivera 379 
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et al., 2020), or from field experiments from the Centro Agronómico Tropical de Investigación y 380 

Enseñanza (CATIE) research station. 381 
b : not applicable. The default values were from van Oijen et al. (2010b) or field experiments from the 382 

CATIE research centre. 383 

 384 

2.4.3 Model evaluations 385 

Two model evaluation steps were carried out in this study. First, the model was validated using 386 

the observed climate data and official provincial coffee yield data for the 2000–2014 period for 387 

Dak Lak and Gia Lai. These data were not used in the calibration step.  388 

 389 

The second model evaluation involved the use of gridded climate data. For this performance 390 

assessment we hypothesized that the robusta model can achieve a performance similar to that 391 

resulting from using climate station data. Since observed climate data are either scarce or not 392 

readily available in these coffee-producing regions, freely available satellite and model-based 393 

gridded climate data are used as an alternative. Such an evaluation is also justified given the 394 

increased reliance on these climate data for studies at larger spatial scales.  395 

 396 

Because up to four grids were selected among the grid falling within a given province (Table 397 

1; Fig. 2), we explored two options of gridded climate data aggregation and use within the 398 

robusta model. The first option consisted in simulating separately the coffee yield for all the 399 

selected grids falling within the province. In such cases the historical provincial yield was used 400 

as reference yield for each of the grids; the predicted yield at the province scale was calculated 401 

as the average of all grid-level predicted yields. The second option consisted in running the 402 

robusta model using the average values of grid-level climate data as inputs, resulting in a unique 403 

predicted yield for the province. 404 

 405 
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2.4.4 Assessment of model performance 406 

Predicted yields were compared against official reported yields to assess the performance of 407 

the robusta model. Three statistical indicators were used for this purpose: RMSE, MAPE and 408 

the Willmott’s index of agreement (WI) (Willmott et al., 2012). Their respective equations are 409 

as follows: 410 

ܧܵܯܴ = ටଵே ( ܻ − ܻ)ଶேୀଵ     (13) 411 

ܧܲܣܯ = ଵே ∑ ቚି ቚே௧ୀଵ      (14) 412 

ܫܹ = 1 − ∑ |ି|ಿసభ∑ (|ିത|ା|ିത|)మಿసభ      (15) 413 

where N is the number of sample years; ܻ is the ith observed value; തܻ is the mean observed 414 

value; and ܻis the ith predicted value. 415 

 416 

The RMSE gives the weighted variations in errors (residual) between the predicted and 417 

observed yields. MAPE is an accuracy measure of the forecast quality; it is a better index than 418 

absolute error measures in comparing model performance among different regions given the 419 

likely differences in their average historical yields (Chipanshi et al., 2015). The lesser value of 420 

MAPE or RMSE, the better the model performs. WI is a descriptive measure related to the ratio 421 

between the model error magnitudes and to the magnitudes of the perfect-model-deviation and 422 

observed-deviation (Willmott et al., 2012). WI ranges from -1 to 1. The closer the WI is to 1, 423 

the better the model predictions are. 424 

 425 

All data and statistical analyses were performed using R version 4.0.0 (R Core Team, 2020). 426 

NASA POWER climate data were retrieved using the R package ‘nasapower’ (Sparks, 2018). 427 

 428 
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3. Results 429 

3.1 Calibration and validation of the robusta model 430 

The calibration and validation of the robusta model using observed climate data for Lam Dong, 431 

Dak Lak and Gia Lai resulted in acceptable model performance overall. The MAPE in the 432 

calibration step was 10%, with a RMSE of 0.24 t ha-1 and WI = 0.740) (Fig. 3). The validation 433 

of the model using independent datasets from the provinces of Dak Lak and Gia Lai showed a 434 

slight increase in prediction errors compared to those obtained in the calibration step: RMSE = 435 

0.33 and 0.31 t ha-1, respectively, with corresponding MAPE of 14% and 13% (Fig. 3). The 436 

narrow variability of reported coffee yield in Dak Lak (observed yields during 2005–2014 437 

varied generally between 2.1 and 2.5 t ha-1; Fig. 3) could explain the relatively low value of 438 

WI (0.184) for this province. 439 

 440 

 441 

Fig. 3. Performance results of the robusta model during the calibration and validation phases. 442 

Data for Lam Dong province were used in the calibration step. 443 

 444 

An example of the simulation of wood, leaves and fruit dry matter using the robusta model, 445 

along with the daily variation of potential crop water stress for the province Gia Lai, is shown 446 
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in Fig. 4. In Gia Lai the period spanning mid-November 2009 to May 2010 was generally dry, 447 

with the first three months of 2010 recording no rain (Fig. 4B). Such dry weather conditions 448 

affected negatively the overall biomass production (wood and leaves), and in lesser proportion 449 

fruit setting (fruit setting was at its earlier stages) (Fig. 4A). 450 

 451 

 452 



24 
 

Fig. 4. Simulation of wood, leaves, and fruit dry matters using the robusta model (A) and 453 

variation of the potential crop water stress (B). The example is for the province Gia Lai during 454 

the 2009/2010 coffee season. 455 

 456 

3.2 Model performance according to the data aggregation methods 457 

Two options of climate data aggregation were tested with the robusta model to further assess 458 

the model performance when using gridded climate data. 459 

 460 

Running the model under two different options of data aggregation did not result in substantial 461 

differences in the outcomes. Overall, the robusta model performed well in both cases, with 462 

MAPE ≤ 12% (Table 5). For Dak Lak, Dak Nong, Gia Lai and Lam Dong, similar model 463 

performance was obtained for both aggregation methods: 10% (Dak Lak and Gia Lai) and 11% 464 

(Lam Dong) prediction errors in both cases of data aggregation, with corresponding RMSE of 465 

0.26 and 0.28 t ha-1 (Table 5), though the prediction errors slightly increased for Dak Nong 466 

when the average of climate data of the selected grids was considered as model inputs (MAPE 467 

from 9% to 10%; Table 5). The relatively highest prediction errors when using gridded climate 468 

data were found for Kon Tum where only one grid was considered: MAPE = 12% and RMSE 469 

= 0.29 t ha-1 (Table 5). In this province particularly, the robusta model tended to underestimate 470 

the reported coffee yields (Figs. 5 and 6). For the remainder of provinces, the scatterplots 471 

showed fairly good distribution around the 1:1 line (Figs. 5 and 6). The agreements between 472 

predicted and observed yields (based on WI values) were higher for Gia Lai, Kon Tum and 473 

Lam Dong (WI ≥ 0.700; Table 5), confirming the good capabilities of the robusta model for 474 

predicting coffee yield in these provinces. For provinces with relatively low inter-annual yield 475 

variability (Dak Lak and Dak Nong; Fig. S1), such agreements between predicted and observed 476 



25 
 

yields were less obvious. WI the error magnitudes in predictions did not capture very well 477 

deviations in observed yields (Figs. 5 and 6). 478 

 479 

Table 5. Summary of statistical performance indicators (mean absolute percentage error, 480 

MAPE, root mean square error, RMSE, and Willmott’s index of agreement, WI) of the robusta 481 

model run using two methods of gridded climate data aggregation (M.1, M.2). 482 

 M.1 a M.2 

 MAPE (%) RMSE (t ha-1) WI MAPE (%) RMSE (t ha-1) WI 
Dak Lak 10 0.26 0.410 10 0.26 0.407 

Dak Nong 9 0.24 0.579 10 0.25 0.558 
Gia Lai 10 0.25 0.779 10 0.26 0.771 

Kon Tum 12 0.29 0.734 12 0.29 0.734 
Lam Dong 11 0.28 0.715 11 0.28 0.709 

a: in M.1 simulations were performed using grid-level climate data separately. The predicted 483 

yield at provincial level is then calculated as the average predicted yield. In M.2 simulations 484 

were carried out using the average climate data for all the selected grids falling in the province, 485 

resulting in a unique value of predicted yield for the province. Only one grid was considered 486 

for Kon Tum (that is, no difference of results is expected). 487 

 488 
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 489 

Fig. 5. Scatterplots of observed versus predicted robusta coffee yields from simulations using 490 

as inputs the climate data of selected grids separately. The average of grid-level predicted yields 491 

for each year was considered as the predicted yield for the province. 492 

 493 
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 494 

Fig. 6. Scatterplots of observed versus predicted robusta coffee yields from simulations using 495 

as inputs the average of climate variables of all selected grids for the province. The simulation 496 

resulted in a single predicted value for the province for each season. 497 

 498 

4. Discussion 499 

4.1 The robusta model as a tool for investigating the impacts of climate variability on 500 

coffee production 501 

Coffee yields in Dak Lak, Dak Nong, Gia Lai, Kon Tum, and Lam Dong, have seen a sharp 502 

increase over the past 10 years, compared to their levels in the early 2000s (Fig. S1). Such 503 

change can be explained by a combination of factors including infrastructure investment in 504 

irrigation and strong reliance on irrigation in coffee farms, the affordability of fertilizer, and 505 
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the increasing adoption of new management techniques (i.e. grafting) in provinces such as Lam 506 

Dong (Marsh, 2007; Byrareddy et al., 2019; Byrareddy et al., 2020). The Central Highlands is 507 

a drought-prone region (Nguyen, 2005; Vu et al., 2015). Given the projected changes in climate 508 

patterns in Vietnam (IPCC, 2014), which could potentially affect negatively agricultural 509 

productions and the livelihoods of millions of farmers, it is important to investigate the impacts 510 

of climate variability on yield and production for crops like robusta coffee. The robusta model 511 

is specifically designed to simulate and predict robusta coffee potential yield at the regional 512 

scale. It involves the main growth and development processes altered by climate. In this study, 513 

results show that the model was able to predict satisfactorily the robusta coffee yield for Dak 514 

Lak, Dak Nong, Gia Lai, Kon Tum, and Lam Dong. Thus, the robusta model provides a solid 515 

basis for assessing the impacts of rainfall or temperature variability on coffee yields at the 516 

provincial level and can be an important tool for regional impacts studies in Vietnam or other 517 

coffee-growing regions or countries. 518 

 519 

With the characterization of water stress days throughout the coffee season and the likely 520 

impacts these stresses can have on biomass production and yield, one can simulate the potential 521 

water required to alleviate the stress and improve crop performance. Such a feature can be 522 

strengthened to explore the potential impact of irrigation on coffee yield; this will require, 523 

nevertheless, further research work to make the model suitable for such tasks. 524 

 525 

It is expected to develop a complete integrated SCF-robusta coffee yield forecasting system, 526 

which will use categorical indicators of climate drivers (e.g. Oceanic Niño index, Southern 527 

Oscillation Index, Tropical Pacific sea surface temperatures.) and simulated coffee yields to 528 

provide probabilistic yield forecasts. This will allow for examining probabilistic yield 529 
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anomalies (likelihood of exceeding the long-term median or average) associated with the 530 

prevailing climate pattern in the year of forecast throughout the coffee season at the provincial 531 

scale. 532 

 533 

4.3 Limitations and future directions 534 

In spite of the encouraging performance of the robusta model, some limitations were found in 535 

this study that indicates a need for further research. There were no detailed data about the 536 

annual productions of robusta coffee from the official statistics used in this study. The reported 537 

yields included production data of both robusta and arabica coffees. Even though robusta coffee 538 

production is largely dominant (approximately 95-96% of the total production; USDA, 2019), 539 

we did not derive its production from the reported statistics to avoid any additional 540 

uncertainties in the modelling approach. Detailed robusta coffee yield/production information 541 

could potentially be sourced from local coffee industry stakeholders such as agricultural 542 

commodities trading companies or the Vietnam Coffee and Cocoa Association (VICOFA). The 543 

availability of such data would help further assess the performance and improve the robusta 544 

model. 545 

 546 

The model does not simulate the response of coffee growth to fertilizer rates. Byrareddy et al. 547 

(2019) showed that fertilizer management practices were largely homogenous between years 548 

at each of the surveyed farms in Dak Lak, Dak Nong, Gia Lai and Lam Dong. One can assume 549 

that the reported official yield at the regional scale reflects, at least partly, such fertilizer use. 550 

Long-term experimental studies involving wider ranges of fertilizer rates across the study 551 

provinces are needed to provide further insights into the impacts of varying fertilizer rates on 552 

robusta coffee yields and enable the inclusion of such aspects in the model. With the aim of 553 

keeping the structure of the model as simple as possible, neither pests and diseases impacts, 554 
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nor soil nitrogen processes were considered. The integration of such aspects can also be 555 

explored further to reduce prediction errors and broaden the capabilities of the model, or to 556 

explore this model where fertilization practices are not so homogeneous. 557 

 558 

The alternation of years with high and low bean production, known as biennial growth, was 559 

not considered in our model. At the provincial scale such biennial pattern is masked since 560 

coffee-growing areas encompass a range of farms with different ages of trees and pruning 561 

practices. Moreover, the biennial production cycle could potentially be off-set by irrigation as 562 

this is a typical management practice in robusta coffee farms in Vietnam (Byrareddy et al., 563 

2020). Assessing the biennial production cycle at the regional scale in Vietnam using satellite 564 

remote sensing data (Bernardes et al., 2012) and implementing such patterns within the robusta 565 

model can be investigated in future research. 566 

 567 

Given the difficulty of determining accurate LAI values, we used modelled empirical 568 

coefficient values based on the yield of the previous season. Because of the exhaustiveness of 569 

methods proposed, and the fact destructive sampling of trees is often required (Costa et al., 570 

2019), the determination of LAI in coffee farms can be challenging. Coltri et al. (2015) 571 

proposed an empirical relationship for calculating the above-ground biomass and LAI in 572 

arabica coffee using simple field measurements and agrometeorological data in Brazil. 573 

Although substantial seasonal variations were found in their study, their approach can be 574 

investigated in the case of Vietnam and help define more accurately the initial values of the 575 

aboveground biomass and LAI in the model. Remotely sensed LAI data at the start of the 576 

season (or at critical phenological stages) can be explored as an alternative as well. 577 

 578 
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The effect of canopy architecture and heterogeneity on light interception and photosynthesis 579 

was not considered in the robusta model. Canopy architecture influences light interception and 580 

distribution, transpiration, and the whole-plant gas exchange in coffee (Melke and Fetene, 581 

2014; Rodrigues et al., 2016; Charbonnier et al., 2017). A good understanding of the 582 

relationships between canopy architecture and light interception or the effects of cultural 583 

practices on irradiance interception and canopy photosynthesis in robusta coffee farms in 584 

Vietnam would help improve the overall model accuracy. Given the variability of cropping 585 

techniques (e.g. pruning) and environmental conditions, which can affect coffee crown 586 

architecture and canopy photosynthesis (DaMatta, 2004; DaMatta et al., 2007), investigating 587 

such relationships remains an interesting open question for future research. 588 

 589 

In this study, the definition of parameter and coefficient values (Table 2) was based on expert 590 

knowledge and empirical relationships. Although the model parameters were varied within the 591 

reported plausible ranges, a reparameterization, along with updated coefficient values for water 592 

stress, may be required for using the robusta model in different environments (i.e. a different 593 

country). Nevertheless, the modelling approach used in this study could be readily adapted to 594 

a different robusta coffee-producing region, providing the relevant data are available. 595 

 596 

5. Conclusions 597 

We presented a dynamic, biophysical model – the robusta model – which processes climate 598 

data and information from the previous coffee season to simulate robusta coffee growth and 599 

predict yields at the regional scale. Evaluating the performance of the robusta model indicated 600 

good agreements between predicted and official reported coffee yields for the five major 601 

coffee-producing in Vietnam. The model presented in this paper is one of the first to deal with 602 

robusta coffee yield at the regional scale. It was kept simple because of the lack of quantitative 603 
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information at the regional scale to build a parameter-rich model. The simplicity of the model 604 

does not imply that it could not be responsive to the key climate factors driving coffee growth 605 

and development. The robusta model was designed as such to be ultimately used within a SCF-606 

crop production forecasting system to support decision making throughout the robusta coffee 607 

supply chain while managing climate risks. Despite the satisfactory model performance 608 

obtained for most of the Vietnamese coffee-producing provinces, there are aspects that need to 609 

be addressed for future improvements of the present robusta model for its application in 610 

different coffee-producing regions or countries, which will require long-term datasets on the 611 

phenological processes targeted. 612 

 613 
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