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Abstract
Small island populations are vulnerable to genetic decline via demographic and environmental stochasticity. In the absence 
of immigration, founder effects, inbreeding and genetic drift are likely to contribute to local extinction risk. Management 
actions may also have a greater impact on small, closed populations. The demographic and social characteristics of a species 
can, however, delay the impact of threats. K’gari, a ~ 1 660  km2 island off the Australian east coast and UNESCO World 
Heritage Site (Fraser Island 1842–2023), supports an isolated population of approximately 70–200 dingoes that represent 
an ideal opportunity to explore the small island paradigm. To examine temporal and spatial patterns of genetic diversity in 
this population we analysed single nucleotide polymorphism (SNP) genotype data (72 454 SNPS) for 112 K’gari dingoes 
collected over a 25-year period (1996 to 2020). Genetic diversity was lower in K’gari dingoes than mainland dingoes at the 
earliest time point in our study and declined significantly following a management cull in 2001. We did not find any spatial 
genetic patterns on the island, suggesting high levels of genetic connectivity between socially discrete packs. This connec-
tivity, combined with the social structure and behaviour of dingoes, may act in concert to buffer the population from the 
impacts of genetic drift in the short term. Nevertheless, a general decline in genetic variation via inbreeding and drift has 
occurred over the past 20 years which we suggest should be considered in any future management planning for the population. 
Monitoring patterns of genetic variation, together with a clearer understanding of the social ecology of K’gari dingoes, will 
aid in the development of measurable genetic targets set over ecologically meaningful timelines, and help ensure continued 
survival of this culturally important population.
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K’gari · Social structure

Introduction

Small populations of wildlife are generally more vulnerable 
to stochastic perturbations than larger ones (MacArthur and 
Wilson 1963; Caughley 1994). Endemic and island popula-
tions typify the increased extinction risk of the small and 
declining population paradigms (Pimm 1991; Frankham 
1998), while extinction risks are generally higher on smaller 
islands (MacArthur and Wilson 1963). Inbreeding depres-
sion may also be an important contributing risk factor, 
particularly in naturally outbreeding species where there is 
compelling evidence that loss of genetic diversity through 

inbreeding contributes significantly to local extinction risk 
through reduced population fitness (Brook et  al. 2002; 
Frankham 2005). But such effects are also likely to impact 
some species more than others (Elgar and Clode 2001). 
Increased inbreeding is also predicted in island populations 
when there are bottleneck effects at founding, together with 
subsequent low effective population sizes (Frankham 1996; 
Frankham and Ralls 1998). In the ongoing absence of migra-
tion, island populations are thus particularly susceptible to 
the negative effects of enhanced genetic drift (Vellend and 
Geber 2005).

While threshold effects associated with inbreeding 
depression may vary between populations and species 
(Frankham 1995; Hedrick 1999), Bouzat (2010) has argued 
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that this ‘detrimental paradigm’ of population bottlenecks, 
isolation, and inbreeding depression is far more nuanced, 
depending largely on elements of selection, chance, human 
impact, and population history to explain the range of 
observed outcomes (e.g. Arauco-Shapiro et al. 2020; Gooley 
et al. 2017; Meiring et al. 2022; Ørsted et al. 2019; Torres-
Florez et al. 2014). Moreover, genetic variation and fitness 
declines in small, isolated populations can also be tempered 
by their demographic characteristics (e.g., long generation 
time and overlapping generations, (Lippe et al. 2006; Bishop 
et al. 2009) and the social structure of species (Parreira and 
Chikhi 2015; Leach et al. 2020). Remnant populations may 
therefore retain genetic diversity for longer than expected 
for many reasons; but while the predicted effects of local 
inbreeding may be delayed, there is likely to be little fore-
warning of critical inbreeding risk thresholds in isolated 
populations (Frankham 1995).

Dingoes/wongari (hereafter dingoes) Canis familiaris 
(following Jackson et al. 2021, but also see Smith et al. 
2019) are highly adaptable generalists, functioning as top-
order predators across their range on the Australian main-
land and a few offshore islands (Letnic et al. 2012). Their 
social structure is characterised by high flexibility and com-
plex dynamics akin to other social canids, and centers on 
familial packs, each with a dominant male and female who 
account for most of the successful breeding (Corbett 1988). 
Across Australia dingoes have a long and divisive history, 
with conflicting opinions on (not exhaustively) what con-
stitutes a dingo, their conservation value, their ecological 
importance, and how they should be managed (see Archer-
Lean et al. 2015; Donfrancesco et al. 2023 for further discus-
sion). Irrespective, dingoes are the largest terrestrial predator 
across mainland Australia and have been both an ecological 
and human-commensal element of the landscape with signif-
icant cultural importance to Traditional Custodians (Corbett 
2001; Archer-Lean et al. 2015) for at least 3500 years based 
on archeological evidence, with genetic evidence suggesting 
7000–11 000 years (Smith 2015; Cairns and Wilton 2016; 
Balme et al. 2018; Zhang et al. 2020; Bergström et al. 2020; 
Cairns 2021). Recent molecular evidence supports dingoes 
as a unique differentiated lineage from both domestic dogs 
and wolves (Cairns et al. 2022; Ballard et al. 2023); while 
nuclear, mitochondrial, and genomic data reveal signatures 
of at least two, and potentially four, broadly distributed 
dingo clades across Australia (Cairns et al. 2017, 2018, 
2023; Stephens et al. 2022). Due to occasional hybridiza-
tion between dingoes and domestic dogs first introduced in 
the late 18th century under British colonial rule, some con-
temporary dingo populations reveal a degree of domestic 
dog ancestry. Even so, most populations maintain a dingo-
dominant genetic signature and large areas support ‘pure’ 
dingoes, particularly away from dense human settlements 
(Stephens et al. 2015, 2022; Cairns et al. 2022, 2023).

K’gari (previously known as Fraser Island between 1842 
and 2023) sits off Australia’s east coast, where it forms part 
of the Great Sandy National Park and is the world’s larg-
est sand island (~ 1 660  km2) with some sections only ~ 1 
km offshore. The island has a long history of Aboriginal 
presence and was permanently disconnected from the 
mainland ~ 6 000 years bp due to rising sea levels in the 
mid-Holocene (Gontz et al. 2015). Whilst K’gari’s island 
status coincides with the outer boundaries of when dingoes 
may have arrived in the region, 3500–11000 years bp; it is 
possible that some of the original founder population may 
have been in-situ as the island became separated from the 
mainland. However, the island’s Traditional Custodians, the 
Butchulla People, are likely the main source of the founding 
population of dingoes on K’gari (Conroy et al. 2021). The 
island was also settled in post-colonial times for cattle and 
sheep farming, together with extensive timber extraction that 
finally ceased in the late 20th century (Petrie 1995; Walker 
et al. 2022). K’gari was designated a UNESCO World Her-
itage Site in 1992 and is a popular tourist destination col-
laboratively managed by the Queensland Parks and Wildlife 
Service (QPWS) and the Butchulla Aboriginal Corporation 
(BAC), who represent the longstanding cultural and spiritual 
connections of the Butchulla people with the island and its 
dingoes (Carter et al. 2017).

In this study we explore the effects of historic isolation 
together with recent population management (2001–2020) 
on genetic variation in the small population of dingoes on 
K’gari. K’gari dingoes are low in genetic diversity and are 
differentiated from mainland dingoes (Cairns et al. 2018; 
Conroy et al. 2021); the island is also an important reservoir 
of ‘pure’ dingoes because of minimal introgression from 
modern domestic dog breeds (Cairns et al. 2022). Using a 
single nucleotide polymorphism (SNP) dataset represent-
ing 25 years of K’gari dingoes and associated individual 
information we determine the longer-term effects of historic 
isolation and management actions on (i) the spatial distribu-
tion of genetic clusters on K’gari, (ii) temporal changes in 
genetic clusters, and (iii) temporal patterns of allelic rich-
ness, inbreeding and relatedness across the sampling period. 
K’gari dingoes provide an excellent case study to explore the 
genetic consequences of both historical geographic isolation 
and contemporary management strategies in a social species 
of substantial cultural and ecological significance.

Methods

Ethics statement

All relevant procedures were approved under existing leg-
islation and/or authorised by the Queensland Department 
of Environment and Resource Management (DERM), 
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Department of Environment and Science (DES), and 
Department of Agriculture and Fisheries (DAF) Animal 
Ethics Committee (permit numbers: DERM/2009/04/03, 
DERM2011/09/04, DERM2011/12/06, SA2012/12/404, SA 
2015/11/532, SA 2018/12/672), and the study was conducted 
in accordance with these approvals.

Study site and management interventions

K’gari is situated within the Great Sandy National Park 
located off the south-east coast of Queensland, Australia 
(24°42′S, 153°15′E; Fig.  1). At 122 km long it is the 
world’s largest sand island, supporting half the world’s 
perched freshwater dune lakes, and characterised by exten-
sive subtropical vegetation and beaches on its east coast. 
The current population of dingoes on K’gari is estimated 
to be 70–197 individuals (Allen et al. 2015). They have 
shared mitochondrial ancestry with dingoes from southeast 
Australia (Cairns et al. 2016), however Y-chromosome and 

genome-wide SNP analysis suggests they are a genetically 
distinct lineage and more closely related to dingoes from 
northwest Australia (Cairns et al. 2017; 2018).

Currently, the island is divided into four spatial man-
agement units: Waddy Point, Dundubarra, Central and 
Eurong (Fig. 1). Historically, dingoes were occasionally 
removed from the island by managers (approximately 10 
individuals between 1990 and 2000), but a policy of lethal 
management of K’gari dingoes was implemented in 2001 
following the death of a nine-year-old child from an attack 
by dingoes. Between 2001 and 2013, 110 individuals were 
removed; approximately two thirds of these were young 
males (Allen et al. 2015), and occasional removals still 
occur in response to dingo aggression towards people 
(Behrendorff 2021). Ongoing management actions also 
include exclusion of dingoes from some human visitation 
sites such as some townships and campgrounds, and all 
rubbish disposal facilities using fencing and gates (Allen 
et al. 2015; Behrendorff 2021).

Fig. 1  Map of K’gari and adjacent mainland showing the location 
of dingo samples used in this study. The four QPWS management 
regions, or research ‘base-areas’, used in the analysis below are delin-

eated. Photos are of K’gari dingoes. Photo credit: top and bottom left 
are Linda Behrendorff and bottom right is Jacqueline Bishop
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Sample source, selection, and genotyping

Samples used in this study were collected during routine 
management activities by Queensland Parks and Wildlife 
Service (QPWS) and represent the period 1996 to 2020. 
Ear tissue samples were collected opportunistically across 
the island from dead and killed dingoes. Individuals were 
selected from the QPWS sample archive (n = 300 samples 
available) for genetic analysis to ensure broad temporal 
and spatial coverage of the island based on the available 
metadata (n = 137 samples chosen for genotyping based on 
location at death and management area frequented by the 
individual; Fig. 1; Table 1, Online Resource 1). An addi-
tional seven tissue samples were obtained from dingoes at 
Rainbow Beach (~ 10 km south of K’gari) in 2019–2020 
(Fig. 1) as representatives of adjacent mainland individuals.

DNA extraction and genotyping were performed by the 
Australian Genome Research Facility (AGRF, Adelaide, 
Australia) as follows: Genomic DNA was extracted using 
the DNeasy® Blood & Tissue kit (Qiagen, Germany) fol-
lowing manufacturer’s instructions. Quality assessment 
was performed by QantiFluor and samples normalised to 
approximately 200 ng in 4 µl. Samples were processed on 
the Illumina 170 K CanineHD Whole-Genome Genotyp-
ing BeadChip (Illumina Inc., San Diego, USA) following 
the Illumina Infinium HD Ultra Assay (AGRF NATA scope 
GGTMN00263). This SNP array includes 173 662 single 
nucleotide polymorphisms (SNPs) from across the domestic 
dog genome. Genotypes were called with Illumina’s Genom-
eStudio 2.0.4 with Genotyping module 2.0.4 software, using 
the default Illumina settings and Illumina CanineHD_B 
manifest and CanineHD_A cluster files were used for the 
analysis.

All analyses reported below were performed in R v4.1.2 
in RStudio 2022.07.2 (R Core Team 2022; RStudio Team 
2022) unless indicated otherwise. The tidyverse package 

was used extensively for data manipulation (Wickham et al. 
2019). Unless indicated otherwise, ggplot2 (Wickham 2016) 
was used for visualisations. PLINK v1.9 was implemented in 
R and analyses were followed as explained on the PLINK 1.9 
website (cog-genomics.org/plink/1.9) (Purcell et al. 2007; 
Purcell 2022). Relevant PLINK command flags have been 
included in each analysis.

Data processing ‑ quality control

The dataset of 137 K’gari and seven Rainbow Beach din-
goes was combined with data for 24 dingoes from Cairns 
et al. (2018) also analysed with the same SNP array. These 
24 dingoes originated from across mainland Australia 
(representing both the southeast and northwest lineages) 
together with four individuals from K’gari (Cairns et al. 
2018). All SNPs were aligned to the CanFam 3.1 genome 
(Lindblad-Toh et al. 2005) and quality control filtering was 
performed in PLINK v1.9. Individuals missing more than 
20% of SNPs were excluded (25 K’gari samples) together 
with SNP loci with 20% missing data and a minor allele 
frequency (MAF) of less than 1%. SNPs with evidence of 
deviation from Hardy–Weinberg equilibrium that exceeded 
p < 1 ×  10−6 were also excluded (Marees et al. 2018). This 
resulted in a dataset with 73 366 SNPs for 143 individu-
als (112 K’gari, 7 Rainbow Beach, 24 Cairns et al. (2018) 
with 4 from K’gari, Online Resource 2). SNPs on X and Y 
chromosomes and mitochondrial SNPs were then removed 
to avoid any bias caused by inheritance differences between 
males and females, resulting in 72 454 SNPs in the final 
dataset (PLINK commands and details in Online Resource 
3). This dataset was used for inbreeding and homozygosity 
analyses, detailed below.

Data processing ‑ linkage disequilibrium

Principal Coordinate Analysis (PCoA), clustering (Pop-
Cluster and TESS) and pairwise relatedness analyses are 
sensitive to linked markers (Abdellaoui et al. 2013) and thus 
the SNPs were pruned for these analyses to reduce linkage. 
The independent pairwise command in PLINK was imple-
mented with a step size of 1500 kb and an  r2 threshold of 0.2 
(--indep-pairwise 1500 kb 1 0.2) resulting in 12 678 SNPs.

Temporal partitioning of SNP data

To explore temporal patterns in the distribution of genetic 
variation, we divided the 25-year dataset into five-year time 
periods (Periods A to E). Five years was selected because 
it represents 2–3 dingo generations (Lord et al. 2013) and 
provides a snapshot of the likely number of generations pre-
sent in the population at any given time. The end of the first 
time period coincided with the management cull in 2001, 

Table 1  Selected time periods and number of sampled dingoes alive 
in each time period

Note: some individuals were included in more than one time period if 
their life spanned more than one period. Depending on the analysis, 
either the number of dingoes born in each time period or the number 
of dingoes alive in each time period were used as specified in each 
analysis

Time Period Number of dingoes born 
in the time period

Number of dingoes 
alive in the time 
period

A: 1996–2001 23 23
B: 2002–2006 9 13
C: 2007–2011 28 33
D: 2012–2017 31 45
E: 2018–2020 21 29



959Conservation Genetics (2024) 25:955–971 

allowing us to compare the population before and after this 
event. Given that all samples came from deceased animals, 
we had an accurate year of death. By combining this with 
known or estimated birth years, we were able to determine 
which dingoes were likely alive in each time period (Table 1; 
Online Resource 1).

Population structure ‑ K’gari vs. mainland

The relationship between the K’gari and mainland popula-
tions was explored using two complimentary genetic cluster-
ing approaches, PCoA and PopCluster. Both analyses used 
the pruned dataset (12 678 SNPs). PCoA analyses was per-
formed using the cmdscale command in base R (Meszaros 
2021). The distance matrix was created in PLINK using the 
--distance-matrix option. Population structure analysis was 
performed using PopCluster v1.2.0.0 with the admixture 
model and unequal prior allele frequencies (Wang 2022). 
PopCluster (Wang 2022) uses likelihood methods for fast 
and accurate population admixture inference to identify 
population clustering. Twenty runs each for K values from 
2 to 6 were performed. The best run, as identified by the 
program, was used for visualisations in R. The second order 
rate of change of the estimate log-likelihood (DLK2) and 
the mean of  FST/FIS  (FSTIS estimator) were used to assist in 
choosing the most representative value of K (Wang 2022).

K‘gari population ‑ allelic diversity over time

Allelic diversity with the K’gari population was assessed 
over time by calculating the minor allele frequency (maf) 
within each time period using the --freq command in 
PLINK. ANOVA and Tukey tests were performed in R (aov; 
TukeyHSD in base R) to test for any significant differences 
between the five time periods.

K’gari population ‑ inbreeding estimation over time

Inbreeding within the K’gari population over time was 
assessed using two complimentary methods, individual 
inbreeding coefficients and individual homozygosity. We 
calculated individual inbreeding coefficients (F; coances-
try inbreeding) using the --het command in PLINK (Purcell 
et al. 2007). This F value is a relative comparison between 
observed and expected homozygosity between the sample 
and the whole population. Individual homozygosity was 
also reported (H; observed homozygosity per individual) 
from the --het output (Purcell et al. 2007). These analyses 
used the larger dataset (72 454 SNPs). Data were clustered 
by the dingoes born in the five time periods (Table 1) and 
compared to the mainland samples using box and whisker 
plots. ANOVA and Tukey tests were performed in R to test 

for any significant differences between time periods and the 
mainland.

K’gari population ‑ spatial structure

Two complimentary analyses were used to look for any spa-
tial structure within the K’gari population, TESS and Pop-
Cluster by base area. Both analyses used the pruned dataset 
(12 678 SNPs). TESS (tessr3 package in R) is a spatially 
informed population structure analysis (Caye and Francois 
2016; Caye et al. 2016). This analysis was performed on the 
K’gari dataset with no separation into time periods to look 
for any genetic clustering across the island. K values from 2 
to 12 were examined. Cross validation scores were plotted 
for each value of K to determine which number of ancestral 
populations was most likely. Visualisation of K values from 
2 to 6 were prepared. PopCluster was run on the K’gari sam-
ples only as above (20 runs of each K from 2 to 10). Data 
were organised into the four management areas indicated in 
Fig. 1 to look for any broad spatial clustering.

K’gari population ‑ genetic isolation over time

Population structure of the K’gari population over time was 
investigated using two complimentary approaches, PCoA 
and PopCluster. All analyses used the K’gari individuals 
only (n = 112) in the pruned dataset (12 678 SNPs). PCoA 
was performed as above. To explore differences between 
time periods (e.g. before and after management interven-
tions), individuals were coded according to the time period 
in which they were born. A PERMANOVA was performed 
on the Eigenvalues from the PCoA (adonis2 in vegan pack-
age) followed by a Tukey test (pairwise.adonis2 in pair-
wiseAdonis package) to test for differences between time 
periods (Arbizu 2017; Oksanen et al. 2020).

PopCluster results from K’gari population - spatial struc-
ture above were rearranged to show the sampled animals 
alive in each of the five time-periods outlined in Table 1 and 
by birth year within each time period. Data were plotted for 
K = 2 to K = 4. Further analysis of the best run from K = 3 
was performed: individuals within each time period were 
sorted by ‘Q’ values and plotted using a box and whisker 
plot. MANOVA indicated significant differences and thus 
ANOVA, followed by Tukey tests of each cluster, was per-
formed to determine which time periods were significantly 
different from one another.

K’gari population ‑ fine scale temporal analysis 
of relatedness estimates

Pairwise relatedness estimates (Wang’s estimator) were cal-
culated for all K’gari individuals (n = 112) using the pruned 
dataset (12 678 SNPs) in Coancestry v1.0.1.9 (Wang 2011). 
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A box and whisker plot of all pairwise relatedness estimates 
was generated; relationships between individuals alive in 
each time period (Table 1) were included in each cluster. 
A heat map of all pairwise relatedness estimates was plot-
ted with individuals ordered based on birth year. ANOVA 
and Tukey tests were performed in R to determine whether 
relatedness levels varied significantly between time periods.

Results

Genotypes from 143 dingoes were received from AGRF 
(Online Resource 2). Filtering reduced the dataset to 119 
individuals (112 from K’gari and 7 from Rainbow Beach) 
with 72 454 SNPs. Removal of linked SNPs further reduced 
the dataset to 12 678 SNPs (Online Resource 3).

Population structure ‑ K’gari vs. mainland

The K’gari population was distinct from the mainland din-
goes according to both the PCoA and PopCluster analyses 
(Fig. 2; Online Resource 4). The first two axes of the PCoA 
explained 47.36% of the variation in the data, with PC1 
separating mainland dingoes from K’gari dingoes and PC2 
separating the mainland dingo populations from each other 

(Fig. 2). K’gari individuals separated from the mainland 
samples at K = 2, although there was evidence of minimal 
mainland representation in the K’gari individuals in the 
1996–2001 time period (Online Resource 4).

K‘gari population ‑ allelic diversity over time

Allelic richness declined from an average of 6.60% in time 
period A down to 5.22% in time period E (A: 6.60%, B: 
5.48%, C: 5.44%, D: 5.26%, E: 5.22%. ANOVA indicated 
the decline was significant (ANOVA: df = 4, F = 2.2 ×  10−16). 
Time period A was significantly higher than all other time 
periods and there was a significant decline between time 
period B and time period D (Tukey test Table 2).

K’gari population ‑ inbreeding estimation over time

Based on both analytical approaches used, K’gari individu-
als had significantly higher individual inbreeding (F) and 
homozygosity (H) values compared to mainland individu-
als. F values were significantly different (ANOVA: df = 5, 
F = 114.7, P < 2 ×  10−16; Fig. 3a) as were H values (ANOVA: 
df = 5, F = 91.08, P < 2 ×  10−16; Fig. 3c). Mean, standard 
error, minimum and maximum values per time period for 
both individual inbreeding (mean range: 0.30–0.46 on 

Fig. 2  Principal Coordinate Analysis of dingo SNP genotypes from 
K’gari (this study and Cairns et al.  2018) and mainland sites (Rain-
bow Beach – this study; others – Cairns et al.  2018 ). Plot of the first 

two axes explains 47% of the variation; inset shows the corresponding 
Eigenvalues
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K’gari; mainland: − 0.55) and H (mean range: 64 107–66 
781 on K’gari; mainland: 56 750) are reported in Online 
Resource 5.

Within the K’gari dingo population, individual-level 
genetic diversity decreased over time. F values were signifi-
cantly lower (less inbred) in time period A compared to time 
period D (Tukey test; Fig. 3b). H values were significantly 
lower (i.e., more diverse) in time period A compared to time 
periods C, D and E (Tukey test; Fig. 3d).

K’gari population ‑ spatial structure

No genetic clustering across the island was detected by the 
TESS analysis (Online Resource 6). The cross-validation 
scores did not plateau, indicating that there was no detect-
able structure in the data (Online Resource 6). Furthermore, 
maps of K = 2 up to K = 6 did not reveal any meaningful pat-
terns to suggest spatial clustering of genetic variation across 
the island (Online Resource 6). PopCluster results (described 
below) sorted by management areas (‘base areas’) also did 
not reveal any meaningful patterns (Online Resource 7).

K’gari population ‑ genetic isolation over time

Evidence of change in the ancestral composition of K’gari 
dingoes between time periods was detected by both the Pop-
Cluster and PCoA analyses (Fig. 4, Online Resource 8). In 
the PopCluster analysis, K = 2 or 3 was supported by the 
 DLK2 and/or  FSTIS values in PopCluster (Online Resource 
9). The relative ancestral proporitions between time periods 
were significantly different from one another (MANOVA; 
 F(1,4) = 8.44, P = 2.8 ×  10−10). Specifically, time period A was 
significantly different from all other time periods for cluster 
I (yellow) and significantly different from time periods C 
through E for cluster III (dark green; Fig. 4c and d).

In the PCoA, time period A was significantly different 
from time periods C, D and E and time period B was sig-
nificantly different from time periods D and E based on the 
PERMANOVA  (F(1,4) = 7.94, P = 0.001) and post hoc testing 
(Fig. 5).

K’gari population ‑ fine scale temporal analysis 
of relatedness estimates

Within K’gari average relatedness (r) increased significantly 
over time (ANOVA: df = 4, F = 235, P < 2 ×  10−16), with all 
time periods significantly different from one another apart 
from time periods B and C; D and E (Tukey test; Fig. 6a: 
Mean, standard error, minimum and maximum values per 
time period are reported in Online Resource 10). The relat-
edness heat map of individuals based on birth year also 
supports a steady increase in pairwise relatedness estimates 
over time: the warmer the colour, the higher the pairwise 
relatedness. Thus, a greater number of individuals in later 
time periods were more closely related (higher concentration 
of warmer colours) compared to earlier time periods (higher 
concentration of cooler colours; Fig. 6b).

Discussion

Our study reveals key roles for both historical geographic 
isolation and recent management actions in determining con-
temporary patterns of genetic variation in K’gari dingoes. 
Analysis of genome-wide SNPs representing ~ 25 years of 
population sampling demonstrates the genetic isolation of 
K’gari dingoes from those on the mainland. The popula-
tion is characterised by reduced genetic variation relative to 
mainland dingoes and likely experienced considerable drift 
both before and during the study period. Moreover, despite 
the social organization of dingoes (Corbett and Newsome 
1975; Catling et al. 1992; Thomson et al. 1992), we did not 
find any evidence for spatial genetic clustering at the level of 
social groups (pack) across the island, suggesting high levels 
of genetic connectivity characterise the dispersal ecology of 
K’gari dingoes.

K’gari dingoes are, on average, more related across the 
population today than in the recent past and have signifi-
cantly higher inbreeding coefficients than their mainland 
counterparts. However, limited observations in K’gari din-
goes of abnormal physical and demographic characteristics, 
typically associated with inbreeding depression in mammals, 
suggests that they may have not exceeded their genomic 
tolerance for inbreeding. Similarly high inbreeding coeffi-
cients without associated fitness effects have been observed 
in California island dwarf grey foxes (Urocyon littoralis) 
when compared with mainland grey fox counterparts (Uro-
cyon cinereoargenteus), where lack of inbreeding depression 

Table 2  Tukey test results for minor allele frequency (maf) compari-
sons between K’gari dingoes alive in five time periods (A: 1996–
2001; B: 2002–2006; C: 2007–2011; D: 2012–2017; E: 2018–2020)

*Indicates a significant difference between time periods (p > 0.05)

Adjusted p values

mafA-mafB* 0.0
mafA-mafC* 0.0
mafA-mafD* 0.0
mafA-mafE* 0.0
mafB-mafC 9.6 ×  10−1

mafB-mafD* 4.4 ×  10−3

mafB-mafE* 2.0 ×  10−4

mafC-mafD 3.9 ×  10−1

mafC-mafE* 3.1 ×  10−3

mafD-mafE 9.4 ×  10−1
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is associated with purging of deleterious alleles (Robinson 
et al. 2018). However, the effects of negative demographic 
influences on extinction probability of very small popula-
tions, such as the grey wolves (Canis lupus) on Isle Royale 
(Hedrick et al. 2019), must also be considered. Therefore, to 
better understand extinction probability in the K’gari dingo 
population, future research should focus on quantifying fer-
tility, reproductive success and survivorship, in addition to 
post-mortem assessments of general condition and disease 
status.

K’gari dingoes ‑ a classic example of the ‘small 
and isolated’ population paradigm?

Multiple lines of genetic evidence collectively support the 
ecological and evolutionary isolation of K’gari dingoes from 
their mainland counterparts, despite the island’s proximity 
to the mainland (this study; Cairns et al. 2018; Conroy et al. 
2021). Here, both PCoA and PopCluster analysis of SNP 
data indicate clear differentiation of K’gari and mainland 
individuals (Fig. 2 and Online Resource 4), including dif-
ferentiation from the geographically closest dingoes just a 
few kilometers away across the Great Sandy Strait (Kor-
rawinga) at Rainbow Beach (Fig. 1). Dingoes likely arrived 
in the K’gari region within the last 3500–11 000 years bp; 

Fig. 3  Measures of inbreeding within the K’gari population and in 
comparison to mainland dingo individuals (based on 72 454 SNPs); 
“main” includes the mainland genotypes reported in Cairns et  al. 
(2018) and the Rainbow Beach genotypes from this study as a com-
parison; A–E represent the time periods as per Table  1; a  F values 
over time as calculated in PLINK; b  Tukey test results for statisti-
cally significant differences between the mainland and K’gari time 

periods and between time periods on K’gari (F); c H over time – a 
higher number indicates a higher level of homozygosity; d Tukey test 
results for statistically significant differences between the mainland 
and K’gari time periods and between time periods on K’gari (H). 
(Time periods are A: 1996–2001; B: 2002–2006; C:2007–2011; D: 
2012–2017; E: 2018–2020)



963Conservation Genetics (2024) 25:955–971 

therefore, dingoes may have already established on K’gari 
before it was fully separated from the mainland. After 
K’gari’s isolation, assisted migration of dingoes with the 
Butchulla People, the island’s Traditional Custodians, may 
have also occurred (Dooley and Clode 2019). While con-
temporary natural immigration events and assisted (illegal) 
migration of individuals might theoretically occur on occa-
sion, (Conroy et al. 2021), strong founder effects and genetic 
drift have likely led to differentiation of K’gari dingoes, 
despite the potential for connectivity with nearby mainland 
groups.

Given recent population size estimates (Appleby and 
Jones 2011; Allen et al. 2015; Conroy et al. 2017), together 
with low effective population size (Ne) suggested by both 
the species’ hierarchical social structure with alpha breeding 
pairs (Catling et al. 1992) and estimates from microsatel-
lite loci (Conroy et al. 2021), we were also interested in 
the role of ongoing genetic drift in the population. Relative 
to the mainland, K’gari dingoes are characterised by both 
reduced SNP (this study; Fig. 3c) and microsatellite (Conroy 
et al. 2021) genetic variation. That an island population sup-
ports reduced variation is not unexpected (Frankham 1996, 
1997). Repeated periods of intensified genetic drift during 
the original arrival(s) of dingoes to Australia, subsequent 
local founder events, and anecdotal population declines via 
19th century baiting/culling events, all likely contribute to 
both broad and fine-scale patterns of variation in contem-
porary populations (Petrie 1995; Cairns et al. 2018, 2023; 
Conroy et al. 2021; Stephens et al. 2022; Kumar et al. 2023). 
Observed changes in ancestry proportions i.e. the presence 
of ancestral genetic clusters in the data on K’gari over the 
period of our study (Fig. 4.), also suggests that as an eco-
logically closed population it remains highly susceptible to 
the chance effects of drift. Ancestry proportions varied over 
the sampling periods demonstrating a pattern of sequential 
change over the past ~ 25 years (K = 3; Fig. 4). Demographic 
parameters that influence Ne, like population size and mating 
system, are important in determining the strength of genetic 
drift in small populations (Allendorf et al. 2013). However, 
drift can also outweigh the relative strength of selection in 
small populations, reducing its efficacy when selection is 
weak (Wright 1931); under this scenario, increased loss and 
fixation of alleles via drift may have important consequences 
for adaptive potential in an island population like K’gari 
(Bijlsma and Loeschcke 2012; James et al. 2016; Willi et al. 
2022). Indeed, Kumar et al. (2023) argue that despite their 
ecological success across Australia, mainland dingoes them-
selves may carry a substantial genomic load from repeated 
bottlenecks and founder effects; dingoes sustain a larger 
deleterious mutational load than breed dogs, village dogs 
and wolves, and have the lowest genomic diversity of all 
canids studied (Freedman et al. 2014; Zhang et al. 2020; 
Kumar et al. 2023). A well-sampled genomic perspective 

of K’gari dingoes would be a valuable addition to existing 
studies and has the potential to provide informative genetic 
markers associated with fitness for future monitoring.

Both mean pairwise relatedness (Fig. 6, Online Resource 
10) and mean inbreeding (Fig. 3, Online Resource 5) in 
Kgari’s dingoes are characteristic of a population experi-
encing minimal immigration of genetically divergent indi-
viduals. Mean pairwise relatedness within the population 
has increased over time (Fig. 6a, Online Resource 10), and 
this trend is very clear in our heat map analysis of individu-
als (Fig. 6b); based on birth year, K’gari dingoes are, on 
average, more closely related across the population today 
than in the recent past, suggesting ongoing, albeit gradual, 
erosion of genetic diversity. While mean inbreeding has not 
changed significantly over time, the population is charac-
terised by moderate-high inbreeding values for the entirety 
of our study period relative to the mainland values (Fig. 3a, 
Online Resource 5). Together, these population genetic 
parameters are informative risk factors for the probability 
of inbreeding depression in naturally outbred populations 
(Hedrick and Garcia-Dorado 2016); in the absence of geneti-
cally variable migrants, K’gari’s dingoes are likely at risk 
of inbreeding depression. Inbreeding depression in canids 
can present physically as reductions in adult body size and 
as direct fitness declines in reproductive success, and adult 
and pup survival (e.g. red wolf Canis rufus (Brzeski et al. 
2014), arctic fox Vulpes lagopus (Norén et al. 2016)). While 
no unusual physical abnormalities have been observed in 
Kgari’s dingoes (L Behrendorff pers. obs.), suggesting no 
substantive evidence of inbreeding depression overall, we 
have not tested here whether variation in individual inbreed-
ing levels is correlated with variation in fitness traits. While 
data on some indicators of fitness such as lifespan (Behren-
dorff and Allen 2016) and litter sizes (Allen et al. 2015) are 
available, the lack of long-term pedigree data represents a 
key knowledge gap to understanding how inbreeding may 
impact the population.

While social grouping can structure genetic variation 
in space (Chesser 1991a, b; Parreira and Chikhi 2015), we 
found K’gari dingoes did not exhibit any detectable spatial 
genetic structure across the island, neither at a fine scale 
that could be representative of social groups nor at a spa-
tially broader scale, consistent with Conroy et al. (2021). 
Using PCoA together with both spatially informed and 
non-spatial ancestry estimation, we did not detect any sig-
natures of genetic structure across the island (Fig. 2, Online 
Resource 6). The most likely explanation for our finding 
is that ecological and genetic connectivity is sufficient to 
prevent discrete spatial structure of the island’s gene pool. 
As a result, inter-pack breeding appears common enough 
that packs cannot be distinguished genetically across the 
island. While most dingoes maintain a core stable home 
range, they do still have substantial capacity for movement. 
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On any one day, individuals can travel 5–20 km whilst for-
aging, and dispersal beyond natal pack territories by both 
males and females often exceeds 100 km (and sometimes 
500 km) on the mainland (Thomson et al. 1992; Allen 2009; 
McNeill et al. 2016). Limited by the confines of the island, 
most K’gari dingoes spend their time within discrete pack 
boundaries (Allen et al. 2015), but frequent foraging and 
dispersal movements at sexual maturity across the island 
are not uncommon for a substantial proportion of animals 
(Baxter and Davies 2018; Behrendorff et al. 2018; White 
2021). Ear-tagged and individually recognisable dingoes are 
often seen outside their natal home range (L Behrendorff 
pers. obs.). In the absence of new migrants, and despite the 
presence of discrete social territories, the mating behaviour 
and spatial ecology of dingoes on the island promotes per-
sistent genetic mixing of social units. This potentially influ-
ences the rate of genetic erosion in the population, delaying 

its entry into the classic ‘small population paradigm’ of 
inbreeding and population decline (Caughley 1994). While 
it is possible that the opportunistic sampling of individuals 
in our study might have influenced the detectability of social 
groups within our data to some extent, i.e. we may have 
under sampled related individuals, life history traits, espe-
cially those affecting population growth such as longer and 
overlapping generation times in age-structured species like 
dingoes, are known to buffer the effects of drift on genetic 
diversity (Ellner and Hairston 1994; Bishop et al. 2009). On 
K’gari, longevity of breeders and the frequent movement of 
both males and females across the island may be important 
mechanisms by which spatial differentiation and loss of vari-
ation via drift is limited.

Effects of past population management 
on contemporary genetic variation in K’gari dingoes

While contemporary management on K’gari aims to balance 
the ecological roles, and cultural and conservation aspects of 
the island’s dingoes with those of tourism, while also mini-
mising human-wildlife conflict (Allen et al. 2015; Tapply 
2018), past population management was less focused on pop-
ulation genetic targets. Undoubtedly, the deeper history of the 
population, characterised by bottlenecks and founder effects, 
contributes to reduced variation on K’gari today relative to 

Fig. 4  PopCluster Admixture analysis of K’gari samples from this 
study in the five time periods used in other analysis (e.g. some indi-
viduals are included more than once if they were alive in more than 
one time period); a  K = 2 through K = 4, sorted by Q value; b  Box 
and whisker plot of relative ancestry proportions (K = 3) over time; 
ancestral cluster I (yellow), ancestral cluster II (pale green), ancestral 
cluster III (dark green); c Tukey test outcome: cluster I; d Tukey test 
outcome: cluster III. (A: 1996–2001; B: 2002–2006; C: 2007–2011; 
D: 2012–2017; E: 2018–2020)

◂

Fig. 5  Principal Component Analysis of dingo SNP genotypes from K’gari (this study) over time. Plot of the first two axes explaining 30.8% of 
the variation; inset shows the corresponding Eigenvalues
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Fig. 6  Pairwise relatedness 
(Wang estimator) between 
individuals on K’gari a Box 
and whisker plot of individuals 
alive in five time periods with 
ANOVA and Tukey testing 
(inset) to show which groups 
were significantly different. 
b Relatedness heatmap with 
individuals in order of birth 
year divided into the time peri-
ods defined in Table 1; colours 
indicate the level of pairwise 
relatedness with warmer colours 
indicating higher pairwise 
relatedness. (Time periods (A: 
1996–2001; B: 2002–2006; C: 
2007–2011; D: 2012–2017; E: 
2018–2020)



967Conservation Genetics (2024) 25:955–971 

mainland populations. Furthermore, even though K’gari 
dingoes are recognised as ‘iconic’ and culturally important 
through their deep-time associations with the Butchulla peo-
ple (Daniels and Corbett 2003; Smith and Litchfield 2009), 
they have a long history of demographic flux. Reports sug-
gest that dingoes were sometimes killed (and eaten) prior to 
European presence on the island (Eastwood 2012). The popu-
lation experienced repeated offtake both before and after the 
island was gazetted as Great Sandy National Park in 1971 and 
achieved World Heritage status in 1992. Population reduc-
tions include offtake from the culling ‘bounty system’ in the 
19th and early 20th century as a way of limiting sheep and 
cattle depredation (Anon 1902; Petrie 1995), and present-
day selective removal of dangerous individuals as part of 
an adaptive management strategy (Tapply 2018; Brink et al. 
2019; Behrendorff 2021). We were interested in whether the 
introduction of lethal management interventions on the popu-
lation from 2001 had left signatures in the broader genetic 
composition of K’gari dingoes; noting that the population 
was already characterised by reduced variation and higher 
mean relatedness relative to the mainland at the beginning of 
our study period prior to these management actions (period 
A, Fig. 3). Between 2001 and 2013 a total of 110 dingoes 
were humanely destroyed (average of 6.6 dingoes per year; 
Allen et al. 2015), with 31 individuals killed in 2001. Rela-
tive to period A (1996–2001) we observed significant differ-
ences in estimates of homozygosity, inbreeding, and related-
ness in subsequent time periods (Figs. 3 and 5). Although 
the demographic offtake of K’gari dingoes, skewed towards 
young males (Allen et al. 2015), may have been countered by 
compensatory increases in recruitment and survival (Frank 
and Woodroffe 2001), the killing of such a proportionately 
large number of individuals in the early 2000s nevertheless 
produced a detectable decrease in overall genetic diversity 
in the population. Given the isolation and limited effective 
population size (Ne) of K’gari dingoes relative to mainland 
populations (Conroy et al. 2021), the initial observed loss of 
genetic diversity is not altogether unexpected. Fortunately, 
this loss appears to have slowed down through time (Figs. 3 
and 5) despite ongoing removals of small numbers of animals 
that still occur in response to dingo aggression towards peo-
ple (Behrendorff 2021).

Conclusions

Contemporary patterns of genetic variation in K’gari din-
goes are most likely explained by several interacting factors 
including small population size, isolation, and past man-
agement actions, together with historic population events 
such as bottlenecks and founder effects. At the starting 
point of our study genetic variation in the population was 
already significantly reduced relative to the mainland, and 

while management actions in the early 2000s likely reduced 
diversity at that time, continuing loss appears to have since 
slowed down; accordingly, ongoing genetic monitoring is 
recommended. While the population is characterised by (a) 
high inbreeding and reduced diversity relative to the main-
land, and (b) increasing relatedness over the time periods 
analysed here, we hypothesise that the social structure and 
dispersal ecology of the species might provide a mechanism 
for widespread genetic connectivity across the island that 
buffers the intensity with which genetic drift might act on 
a similar population. This may delay the predicted effects 
of inbreeding in the population, however, such effects are 
inevitable in the ongoing absence of migrants.

Our findings should be considered in any management plan-
ning that incorporates measurable genetic targets set over eco-
logically meaningful timeframes in this population. Uninhibited 
movement of dingoes around the island is important for mini-
mising the effects of both localised inbreeding and genetic drift 
and needs to be maintained. If maintaining or increasing genetic 
diversity of K’gari dingoes is identified as a management pri-
ority, intentional immigration is an option; however, strategies 
to minimise negative human-dingo interactions, and thereby 
lethal management interventions, also remain important. The 
social ecology of dingoes is a key contributor to their ecologi-
cal success and persistence. Moving forward, a more detailed 
understanding of the island’s dispersal dynamics will provide 
a valuable scaffold for interpreting population genetic and 
genomic metrics within an associated management framework.
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