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Abstract
Drought is a dominant climatic feature in arid and semiarid regions. Climate change, temperature variability, and anthropo-
genic activities caused an increase in agricultural droughts in many regions. Investigation of drought dynamics is important 
for innovative planning and management of natural resources in drought-prone areas. Remote sensing indices and earth 
observational datasets were used in this study to investigate droughts in the Bikaner city of Rajasthan, India. Vegetation 
condition index (VCI), temperature condition index (TCI), and vegetation health index (VHI), estimated from multitemporal 
Landsat datasets, were used for monitoring the drought-prone areas. Land use land cover (LULC) map, normalized differ-
ence vegetation index (NDVI), and surface temperature were also calculated for monitoring the decadal changes in surface 
features. The results showed that barren lands decreased from around 162.75 to 79.59  km2. The annual average temperature 
increased by 0.72 °C, while agricultural land increased by 33.83  km2 during 1990‒2020. There was a gradual increase in 
droughts, but the increase was more in recent years than in the early period. The climatic condition revealed from VCI, TCI, 
and NDVI maps indicated most of the Bikaner city is prone to moderate and extreme droughts. The study indicates the need 
for VCI-based real-time drought monitoring for drought management.

Keywords Drought monitoring · Vegetation condition index (VCI) · Temperature condition index (TCI) · Land alteration · 
Disaster management

1 Introduction

Global climatic conditions and environmental disturbances 
influence the Earth’s surface processes, trigger land deg-
radation, water shortage, vegetated land losses, thermal 
variation, drought, and many other ecological phenomena. 
Among them, droughts are the most devastating natural 
phenomena that affect all other processes (Liu and Kogan 

1996; Mutowo and Chikodzi 2014; Sanikhani et al. 2019; 
Armanuos et al. 2021; Danandeh Mehr and Akdegirmen 
2021; Hadri et al. 2021; Halder et al. 2021a, b; Mehr and 
Akdegirmen 2021). The droughts can be categorized into 
four classes, agronomic, hydrological, socioeconomic, and 
meteorological (Shahabfar et al. 2012; Ji et al. 2018; Aitken-
head et al. 2021). Agricultural droughts happen due to low 
precipitation, soil moisture deficiency, and vegetation losses 
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(Quiring and Ganesh 2010; Rhee et al. 2010; Jiao et al. 2019; 
Kulkarni et al. 2020; Aitkenhead et al. 2021). The previ-
ous studies were noted that the agricultural droughts are the 
consequence of longer meteorological droughts (Quiring 
and Ganesh 2010; Strzepek et al. 2010; Hazaymeh and Has-
san 2016; Liu et al. 2016; Sur et al. 2019; Jiao et al. 2019; 
Kulkarni et al. 2020; Szewczak et al. 2020; Aitkenhead et al. 
2021; Hadri et al. 2021; Han et al. 2021). The remote sens-
ing and ground observational datasets are generally used to 
monitor agricultural droughts. Vegetation and temperature 
indices derived from remote sensing data are more useful for 
investigating the agricultural drought-prone area (Mutowo & 
Chikodzi 2014; Shen et al. 2019; West et al. 2019; Qutbudin 
et al. 2019). Monitoring agricultural droughts using remote 
sensing data becomes important for mitigating droughts 
impacts, particularly in climate change (Liu & Kogan 1996; 
Voogt and Oke 2003; Mallick et al. 2020). Such assessment 
is especially important for countries where the economy 
largely depends on agriculture (Wang et al. 2001; Quiring 
and Ganesh 2010). Water area and rainfall of the location 
is also indicates the ecological condition of Earth’s surface 
(Abduallah et al. 2021; Khaleefa and Kamel 2021; Akdegir-
men and Mehr 2022).

Agriculture is the backbone of the Indian economy. A 
major portion of the land in the country is used for agricul-
tural purposes. The country experiences frequent drought 
due to large precipitation and temperature variability and 
loss of soil moisture. A study showed that nearly 50% of 
the Indian land is prone to severe drought (http:// www. dsc. 
nrsc. gov. in/). Several droughts have affected the Indian sub-
continent in recent history, which damaged crop production 
and forced conversation crop cultivation to livestock farm-
ing. Bikaner city and surrounding areas in India’s semiarid 
northwest Rajasthan state have a long history of agricultural 
disturbances due to severe droughts. The agricultural land 
development and meteorological conditions have ampli-
fied the drought calamities in Bikaner city in recent years. 
Besides, the climate changes in the desert areas have further 
aggravated the situation.

Various vegetation indices have been proposed for 
drought monitoring like vegetation condition index (Kogan 
1995a; Liu and Kogan 1996; Quiring and Ganesh 2010), 
temperature condition index (Wang et al. 2001, 2018; Patel 
et al. 2009; Zhou et al. 2020), vegetation health index 
(Karnieli et al. 2006; Bento et al. 2018), mapping forest 
area, crop sowing dates, drought and vegetation stress, and 
dynamics of vegetation alteration (Beyaztas and Yaseen 
2019). Among them, vegetation condition assessment 
based on the satellite-based normalized difference veg-
etation index (NDVI) is most widely used to track long-
term or short-term spatiotemporal droughts (Singh et al. 
2003; Kulkarni et al. 2020, Mallick et al. 2021). The NDVI 
indicates the short and long-term fluctuation of ecological 

disturbances, and thus, it is more useful for drought moni-
toring (Li et al. 2011; Lu et al. 2012; Ramachandra et al. 
2013; Hassan et al. 2016). Among the satellite data, the 
Landsat data are most widely used to monitor land altera-
tion (Amiri et al. 2009; Hassan et al. 2016; Xu et al. 2016; 
Falah et al. 2020; Joorabian Shooshtari et al. 2020). The 
NDVI and land surface temperature (LST) maps derived 
from Landsat have been found very useful for monitor-
ings the drought-prone area (Pramanik and Punia 2019; 
Joorabian Shooshtari et al. 2020).

This study is directed to land alteration and drought-prone 
area identification of Bikaner city using remote sensing data. 
The Landsat LST, NDVI, and normalized difference built-
up index (NDBI) maps are employed for assessing spati-
otemporal variation of agriculture drought-prone areas. The 
vegetation condition index (VCI) and temperature condition 
index (TCI) were investigated for the temporal and spatial 
variation of the drought. The ERDAS IMAGINE (v2014), 
a geospatial data authoring system and ArcGIS (v10.8), a 
geographical information system, were used for investigating 
the land alteration, vegetation condition, and visualization 
of the drought-prone area. The study is important for future 
disaster management, agricultural planning, development, 
water shortage analysis, planning for droughts disaster moni-
toring, and climate change impact assessment in Bikaner 
city, Rajasthan.

2  Study area

Global climate change is influencing thermal variation, 
vegetation conditions, and increasing the drought in arid 
and semiarid regions (Tolba and Najib 2009; Ahmed 2018; 
Zhang et al. 2021). Many parts of the Indian subcontinent 
are affected by several droughts, where agricultural drought 
is most devastating (Tabari et al. 2011; Novotná et al. 2015). 
Generally, the western parts of India, Rajasthan and Madhya 
Pradesh, are mostly affected by several droughts in a decade. 
Due to erratic rainfall and stumpy vegetated land, the desert 
state Rajasthan is widely affected by drought. In this study, 
the 5th largest city of Rajasthan is taken for studying drought 
monitoring and land alteration from 1990 to 2020.

Bikaner city is located in northwest part of the Rajasthan 
state, India. The Bikaner is a desert area where the average 
temperature in summer is around 48 °C (Fig. 1). As per the 
records, the average rainfall is 6.2 to 92.5 mm in July, which 
receives the highest rainfall. Similarly, the recorded average 
relative humidity is highest in month of July and August i.e., 
between17 to 45%. Bikaner, the 5th major populated city 
of Rajasthan, has inhabitants of 644,406, with a male and 
female ratio of 904/1000 as per https:// censu sindia. gov. in, 
2011. The average elevation of the city is 242 m (794 ft.). 
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It is the most temperate zone of Rajasthan (https:// bikan er. 
rajas than. gov. in/ home/ dptHo me/ 29). The total area of the 
study is 706.43  km2, bounded by longitudes 73° 12′ E to 73° 
31′ E and latitudes 27° 50′ N to 28° 8′ N. The study area is 
mostly covered by developing agricultural land in the south, 
south-east, and south-western.

3  Materials and method

3.1  Data used and image pre‑processing

Earth observational satellite datasets were used for observ-
ing the drought and thermal deviation at Bikaner city. 
The four decades of data such as 1990, 2000, 2010, and 
2020 were taken from Landsat 5 TM and 8 OLI/TIRS data 
for monitoring LULC, LST, NDVI, NDBI, and drought 

monitoring indices like VCI, TVI, and VHI. The data were 
derived from USGS earth explorer (https:// earth explo rer. 
usgs. gov/) with 0% cloud cover (see Table 1). The chosen 
months were March to April since the temperature is maxi-
mum during this period. The path and row of the satellite 
images are 149, and 041, respectively. Table 1 shows the 
data acquisition and other necessary information about sat-
ellite datasets.

The satellite datasets need some geometric, atmospheric, 
and radiometric corrections before their processing or clas-
sification of LULC (Corner et al. 2013; Hassan et al. 2016; 
Somvanshi et al. 2020). FLAASH was used for atmospheric 
correction for a more accurate interpretation (Gao & Zhang 
2009; Sejati et al. 2019). Subsequently, histogram equaliza-
tion and geo-referencing were conducted for better image 
visualization (Meshesha et al. 2016). This follows mask-
ing, mosaic, and finally, subsetting area of interest (AOI) for 

Fig. 1  Locational area of Bikaner city, Rajasthan

Table 1  Details of data 
acquisition and satellite sensors

Satellite Sensor Date Path and row Data source Cloud cover

Landsat 5 TM 16–03-1990 149, 041 https:// earth explo rer. usgs. gov/ 0.00
11–03-2000 149, 041 0.00
24–04-2010 149, 041 0.00

Landsat 8 OLI/TIRS 18–03-2020 149, 041 0.00
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image classification (Fig. 2). The satellite data is affected by 
cloud cover, and therefore, minimum cloud cover data were 
derived for classification, LST calculation, and other neces-
sary data analysis (Sobrino et al. 2004; Liu & Zhang 2011; 
Das et al. 2020).

3.2  Image classification and accuracy assessment 

Visual interpretation is more important for land classifica-
tion (Hassan et al. 2016). Therefore, the true color com-
posite (TCC) and false-color composite (FCC) were used 
for monitoring the different LUCL classes of the study area 
(Owojori and Xie 2005; Hassan et al. 2016). After visual 
interpretation, different signatures were taken from the sat-
ellite datasets. The red color indicates vegetation area, and 

the dark black color indicates water bodies, where 10 to 55 
signatures of each LULC class are obtained for classifica-
tion. The supervised classification method with a maximum 
likelihood algorithm was used for investigating the LULC 
classification. The EARDAS Imagine v2014 and ArcGIS 
10.8 were used for pre-processing and image classification.

The change detection, accuracy assessment, and kappa 
coefficient are important for post-classification techniques ( 
Lambin and Geist 2008; Han et al. 2015; Meshesha et al. 
2016). The area was calculated using count number or raster 
to vector conversion of each class. The formula of area cal-
culates using count values is Area =

(

Count∗900

1000000

)

 where 900 
is used as the Landsat data resolution is 30 m. The monitor-
ing LULC classes were built-up land, agricultural land, 

NDVI

NDBI

Landsat data (1990, 
2000, 2010, 2020)

Image Pre-processingLU/LC classification Spectral Indicators

Accuracy Assessment 

Land Surface Temperature

Ground References

Inter-relationship

TCI

Effected Area Investigation

Drought 

Monitoring 

VCI

VHI

Fig. 2  Adopted methodology of this study
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vegetation, barren land, and water body. The classification 
accuracy assessment and kappa coefficient calculation are 
important for investigating the clarity of the classification 
image (Falah et al. 2020) (Table 2). Google Earth data or 
field survey data were used for accuracy assessment. The 
kappa coefficient was used to idealize the classified image 
(Cohen 1968). The accuracy assessment and kappa coeffi-
cient are calculated using Eqs. 1 and 2.

where nij is the oblique essentials of the error matrix, the 
total number of LULC classes is depicted by k, and n is the 
total sum of samples in the error matrix.

3.3  Investigation of geospatial indices

3.3.1  NDVI

Vegetation is the most important feature of the Earth’s sur-
face, which maintains the thermal variation, surface runoff, 
infiltration rate, soil erosion losses, control drought, and 
water level over the land surface (Li et al. 2011; Zoungrana 
et al. 2018). Due to urbanization, many regions are losing 
the vegetated land and causing thermal variations, droughts, 
and high evapotranspiration ( Lu & Weng 2006; Jin et al. 
2021). The land alteration also influences the vegetation con-
dition. Landsat TM and OLI/TIRS datasets are widely used 
for monitoring the vegetation state (Sobrino et al. 2001; Li 
et al. 2011; Guha et al. 2018). For analyzing the vegetation 
health condition in Bikaner city, Rajasthan, the current study 
used NDVI, which can be expressed using Eq. 3.

where NIR demonstrates the near-infrared band of Landsat 
images and R is the red band of satellite data. The NDVI 

(1)OA =

�
∑k

i=1
nij

n

�

(2)Ki =
(Observed accuracy − Change accuracy)

(1 − Change accuracy)

(3)NDVI =

(

�NIR − �R
)

(

�NIR + �R
)

values vary from − 1 to + 1, where 0 to − 1 indicates other 
LULC classes and 0 to + 1 indicates the healthy vegetation 
of an area.

3.3.2  Introduction to NDBI

Urban expansion influences environmental degradation and 
localized climate change (Singh et al. 2017; Kedia et al. 
2021). Population pressure has played a vital role in urban 
expansion and development of built-up land in Bikaner city. 
Urban planning is important for sustainable urban develop-
ment, but overwhelming population pressure destroys the 
conditions (Chandler 1976; Estoque & Murayama 2017). 
Bikaner city has observed a vast infrastructure expansion in 
past decades. The NDBI is used for monitoring such urban 
development using Eq. 4.

where SWIR denotes shortwave infrared bands of satellite 
data and NIR indicates near-infrared bands of satellite data. 
The NDBI value varies between − 1 and + 1. Built-up lands 
are the positive values, whereas negative values indicate the 
other land classes.

3.3.3  Retrieval of LST

The thermal variation and heat alteration of an area is influ-
enced by land surface temperature (Sobrino et al. 2004). The 
Landsat 5 TM (band 6) and Landsat 8 OLI/TIRS (band 10) 
were utilized for monitoring the LST of Bikaner city. The 
Landsat TM data for 1990, 2000, 2010, and Landsat OLI/
TIRS for 2020 were utilized for monitoring the LST. Landsat 
8 have two thermal bands, like 10 and 11. However, due to 
the improbability of the band 11 for LST estimation ascend-
ing caused by the tilt of the satellite orbit (Barsi et al. 2014), 
it was not measured in this study. Therefore, only Landsat 
band 10 was used to estimate LST images in the Bikaner 
city.

3.3.4  LST assessment from Landsat 5 TM

For the initial stage of the LST estimation, change in the 
digital numbers (DN) of the thermal band of the Landsat 
5 TM sensor into radiance luminance ( RTM6 ) is estimated 
using Eq. 5 (Sobrino et al. 2004).

where V presents the computerized number (DN) of the 
warm band 6 of Landsat 5 TM and Rmax indicating 1.896 
(mW  cm−2  sr−1) and Rmin donates 0.1534 (mW  cm−2  sr−1).

(4)NDBI =

(

�
SWIR1 − �

NIR

)

(

�
SWIR1 + �

NIR

)

(5)RTM6 =
V

255
(R

max
− Rmin) + Rmin

Table 2  Scale of kappa coefficient and strength if agreement

Sl. no Value of K Strength of agreement

1  < 0.20 Poor
2 0.21–0.40 Fair
3 0.41–0.60 Moderate
4 0.61–0.80 Good
5 0.81–1.00 Very good
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The further step is to convert the radiance luminance into 
land surface temperature and unit of Kelvin ( Rajeshwari 
and Mani 2014; Guha et al. 2018; Halder et al. 2021a, b) 
using Eq. 6.

where K1 and K2 represents the pre-calibration constant 
obtained from the satellite metadata files ( K1 = 1260.56K 
and K2 = 607.66 mW  cm−2  sr−1 µm−1); b is the spectral 
range (b = 1.239 µm).

Finally, the LST in kelvin is converted to degree Celsius 
utilizing Eq. 7.

3.3.5  LST estimation from Landsat 8 OLI/TIRS

For preparing LST maps from Landsat 8 TIRS data, the pro-
gression in the change of DNs of ground objects to spectral 
radiance was estimated using Eq. 8 (Rajeshwari and Mani 
2014; Roy et al. 2014; Yu et al. 2014).

where L� addresses the top-of-atmosphere (TOA) spec-
tral radiance in W/(m2 sr µm), Qcal denotes the quantized 
adjusted pixel value in digital number (DN), Lmin and Lmax 
are the minimum and maximum spectral radiance scaled to 
Qcalmin and Qcalmax correspondingly, described in W/(m2 sr 
µm), where Qcalmin and Qcalmax denote the minimum and 
maximum quantized calibrated pixel value (corresponding 
to Lmax ) in digital number (DN) = 255.

The brightness temperature (BT) was estimated from the 
perception of black body radiation as shown in Eq. 9 (Barsi 
et al. 2014; Roy et al. 2014).

where TB demonstrates the employable satellite bright-
ness temperature (BT) in degree Celsius, L� is the spectral 
radiance, and K1 and K2 are the pre-calibration consistent 
achieved from the satellite metadata documents.

The subsequent stage is to precise the BT using surface 
emissivity alteration before estimating LST (Li et al. 2011; 
Tepanosyanet al. 2021). Sobrino et  al. (2004) technique 
was utilized for this purpose, which incorporates the assess-
ment of standard deviation (m), joined soil and vegetation 

(6)T
k
=

K1

ln
(

K2

RTM6∕ b

+ 1

)

(7)LST = Tk − 273.15

(8)L� =
Lmax − Lmin

Qcalmax − Qcalmin
∗
(

DN − Qcalmin
)

+ Lmin

(9)TB =
K2

ln
(

K1

L�
+ 1

) − 273.15

emissivity (n), and extent of vegetation (P_V) as determined 
from Eqs. 10–12. These three parameters are used to acquire 
the concluding surface emissivity from Eq. 13.

where �v and �S are the vegetation and soil emissivity, and F 
is the figure factor (= 0.55), located in various mathemati-
cal conveyance (Sobrino et al. 2004). The worth of m and 
n are estimated as 0.004 and 0.986 individually (Sobrino 
et al. 2004). The NDVI map is coordinated using Eq. 3 as 
mentioned in Sect. 3.4.

The final LST map is prepared from BT and � using Eq. 14 
(Weng et al. 2004; Li et al. 2011; Estoque and Murayama 
2017).

where � specifies the wavelength of emitted radiance 
( � = 10.8μm), � = h ∗ c∕� (1.438 ×  10−2  m  K), c is the 
velocity of light (2.998 × 108 m/s), � is the Stefan Boltzmann 
constant (1.38 ×  10−23 J/K), and h is the Planck’s constant 
(6.625 ×  10−34 J s).

3.4  Drought monitoring indices

3.4.1  VCI

The vegetation condition index (VCI), developed by Kogan 
(1995b), is a controlling factor of provincial dissimilar eco-
system productivities (AghaKouchak et al. 2015; Jiao et al. 
2019; Aitkenhead et al. 2021). The normalization factor of 
VCI is calculated from the pixel-based short-term climato-
logical and long-term ecological signal of NDVI (West et al. 
2019; Han et al. 2021). The VCI index is used for monitoring 
the drought using climate variables. Satellite-based indices 
are more useful for monitoring spatial variations of droughts, 
whereas climatic data is used to monitor the drought’s tempo-
ral distribution (Ford and Quiring 2019; Zhang et al. 2021). 
The drought-prone areas are indicated by the weak vegetation 
growth and low NDVI values, whereas less drought-prone 
areas are indicated by the healthy vegetation and positive 
NDVI values. The VCI is calculated using Eq. 15.

(10)m = (�v−�S) − (1 − �S)F�v

(11)n = �S + (1 − �S)F�v

(12)PV =

(

NDVI − NDVImin

NDVImax − NDVImin

)2

(13)� = mPV + n

(14)LST(◦C) =
TB

1 +
(

� ∗ TB∕�
)

ln�
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where NDVImin and NDVImax are calculated from long term 
satellite data using NIR and Red bands. The healthy vegeta-
tions indicate a low drought-prone area, and less vegetation 
areas denote a high drought area. The VCI values are calcu-
lated in %, where 0 to 100% indicates no drought.

3.4.2  TCI

Climate change is the most important factor for thermal vari-
ation and methodological conditions. The thermal variation 
is also influenced by the vegetation of an area, where arid 
and semiarid regions are mostly affected by heat variation 
due to desert locations (Masoudi 2021). Kogan (1995a) 
established TCI for monitoring the spatial variation of 
droughts using satellite images. The TCI is almost the same 
as VCI, where maximum and minimum values of LST are 
used. The TCI is calculated following Eq. 16.

where LSTmin and LSTmax are determined from long haul 
satellite information utilizing thermal bands (band 6 for 
Landsat 5 TM and 10 for Landsat 8 OLI/TIRS). The TCI 
is calculated in %, where 0 to 100% indicates no drought.

3.4.3  VHI

Vegetation plays a vital role in environmental conditions 
and in controlling the soil’s thermal variation and moisture 
content (Potter et al. 2001; Kamoutsis et al. 2018; Lozano-
Parra et al. 2018; Rita et al 2021). The healthy vegetation 
enhances infiltration rate and soil moisture content. The VHI 
is calculated from VCI and TCI using Eq. 17.

The VHI ranges between 0 and 100. VHI higher than 50 
indicates healthy vegetation.

(15)VCI =

(

NDVI − NDVImin

NDVImax − NDVImin

)

× 100

(16)TCI =

(

LSTmax − LST

LSTmax − LSTmin

)

× 100

(17)VHI = 0.5 × (VCI + TCI)

4  Results and discussion

4.1  Land alteration investigation

Earth surface change analysis is vital for investigating cli-
matic, anthropogenic, and meteorological disturbances. 
Extreme weather conditions and population pressure influ-
ence local environmental conditions and disrupt the ecosys-
tem. In recent decades, many parts of India have observed 
a huge land alteration due to population pressure, where 
forests were converted into agricultural land, built-up land, 
and industrial works. Therefore, a land alteration study is 
important for investigating the actual scenarios of the Earth’s 
surface changes. The four Landsat data (5 TM and 8 OLI/
TIRS) information were utilized for observing the LULC 
maps over Bikaner city.

The results showed that the developed land was progres-
sively expanded because of populace pressure and devel-
oped regions, 48.06  km2 (1990), 74.86  km2 (2000), 81.04 
 km2 (2010), and 127.65  km2 (2020) (Table 3). The average 
annual growth of built-up land was 2.65  km2 due to popula-
tion pressure and anthropogenic activities in Bikaner city. 
Vegetation areas also expanded, but they cannot be consid-
ered healthy vegetation. Figure 3 shows the LULC change 
and spatiotemporal variation of each LULC class. The veg-
etation areas were 18.98  km2 in 1990, 12.73  km2 in 2000, 
29.44  km2 in 2010, and 67.14  km2 in 2020. This indicates 
the vegetation increased in the study area. However, healthy 
vegetation was not developed due to anthropogenic activities 
and thermal variation. The agricultural lands were increased 
due to food scarcity and the necessity of cropland. The agri-
cultural land development was more in the south and south-
eastern parts of the study area. The spread of agricultural 
lands was 0.19  km2 in 1990, 0.62  km2 in 2000, 13.91  km2 
in 2010, and 34.02  km2 in 2020, where most agricultural 
land expansions occurred during 2010‒2020. The water 
bodies also increased in the core area of the Bikaner city 
as some lakes were developed to mitigate water scarcity. 
The located water areas were 0.48  km2 in 1990, 0.46  km2 
in 2000, 1.09  km2 in 2010, and 1.65  km2 in 2020. The ther-
mal variation was high in the city, but built-up expansion 

Table 3  Area calculation of 
LULC classes in different time 
periods

Sl. no Class name Area  (km2) Area (%)

1990 2000 2010 2020 1990 2000 2010 2020

1 Built-up land 48.06 74.86 81.04 127.65 6.80 10.60 11.47 18.07
2 Vegetation 18.98 12.73 29.44 67.14 2.69 1.80 4.17 9.50
3 Agricultural land 0.19 0.62 13.91 34.02 0.03 0.09 1.97 4.82
4 Water body 0.48 0.46 1.09 1.65 0.07 0.07 0.15 0.23
5 Barren land 638.72 617.76 580.95 475.97 90.42 87.45 82.24 67.38

Total area 706.43 706.43 706.43 706.43
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reduced the total barren lands, 638.72  km2 in 1990, 617.76 
 km2 in 2000, 580.95  km2 in 2010, and 475.97  km2 in 2020. 
Around 162.75  km2 of barren land was reduced due to urban 
expansion, agricultural land development, and expansion of 
vegetated lands.

Table 4 shows the changes in each LULC class of Bikaner 
city. The results showed that the built-up land, agricul-
tural land, and vegetation area were increased, whereas 
barren land was decreased due to urban expansion and 

anthropogenic activities in this area. The decadal built-up 
land expansions were 26.8  km2 during 1990–2000, 74.86 
 km2 during 2000–2010, 46.61  km2 during 2010–2020, 
and 79.59  km2 during 1990–2020. The vegetation areas 
increased during 2000‒2020 but decreased during 
1990–2000. Figure 4 shows the total areas of classifica-
tion maps and fluctuation of LULC classes in different 
periods. The barren lands decreased by about 20.96  km2 
during 1990–2000, 36.81  km2 during 2000–2010, 104.98 

Fig. 3  LULC classes of Bikaner city of different time periods
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 km2 during 2010–2020, and 162.75  km2 during 1990–2020. 
The accuracy assessment and kappa coefficient values were 
within the acceptable limits. The overall accuracy was 85.75, 
82.99, 84.06, and 86.86%, where kappa coefficients were 
0.82, 0.79, 0.80, and 0.82 for the years 1990, 2000, 2010, 
and 2020, respectively. A 23.04% decrease was observed 
in barren land over 30 years, but that does not mean that 
the difference was added to forestation, rather 11.27% was 
added to built-up land, 6.81% to vegetation land, 4.79% to 
agricultural land, and 0.16% to water bodies (Table 3). There 

was an exponential increase in build-up land. In contrast, 
the increase in agricultural and water areas was rather less. 
This shows that authorities were less concern over the last 
30 years on sustainable growth and environment-friendly 
development.

4.2  Topographical distribution of LST

Temperature disparity is a crucial perspective for examin-
ing the worldwide environmental change and its impacts on 

Table 4  LULC classes loss and 
gain of the Bikaner city

Sl. no Class name Area  (km2)

(1990–2000) (2000–2010) (2010–2020) (1990–2020)

1 Built-up land 26.8 74.86 46.61 79.59
2 Vegetation  − 6.25 16.71 37.7 48.16
3 Agricultural land 0.43 13.29 20.11 33.83
4 Water body  − 0.02 0.63 0.56 1.17
5 Barren land  − 20.96  − 36.81  − 104.98  − 162.75

Fig. 4  Area of different LULC 
classes. a Total areas of differ-
ent LULC classes. b Loss and 
gain areas of Bikaner city
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the world’s surface (Das et al. 2020). The high temperature 
influences evapotranspiration rate, vegetation health, water 
shortage, and declined soil moisture in the desert areas. The 
increasing LSTs were noticed over the years, i.e., LST was 
only 32.86 °C in 1990, and the populated area was rather 
cold with a minimum LST of 24.54 °C, whereas the LST 
increased to 41.45 °C during 2000 and the cooler zone was 
considerably decreased with increased minimum tempera-
ture to 27.93 °C. However, from 2000 to 2010, the increase 

in the cooler zone was observed as in Fig. 5c, where the 
highest temperature reached 51.49 °C, and similarly, the 
highest temperature reached 54.50 °C by 2020 (see Fig. 5 c 
and d). Moreover, LST increased over the year, but in 2010, 
most of the zone showed mixed temperature variation, while 
in 2020, only the build-up land remained cool. These con-
ditions indicated a gradual increase in thermal discomfort. 
The LST was high in barren land and near agricultural lands. 
The annual average temperature rise was 0.86 °C during 

Fig. 5  LST maps of different time: a 1990; b 2000; c 2010; d 2020
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1990–2000, 1.004 °C during 2000–2010, 0.30 °C during 
2010–2020, and 0.72 °C during 1990–2020, whereas the 
most affected years were 2000 to 2010. The results indi-
cate the topographical variation of LST in Bikaner city and 
surrounding areas. The red color indicates the high tem-
perature, whereas the blue color indicates the low tempera-
ture. Table 5 shows the maximum, minimum, and average 
variations in LST in Bikaner city. The built-up land, vegeta-
tion, and water bodies had low temperatures, whereas bar-
ren land had more temperate. Moreover, the LST measure 
showed localized climate change where the maximum LST 
increase was 21.64 °C, whereas the minimum LST increase 
was 24.54‒30.39 °C (see Table 5). Figure 5 shows that the 
build-up area in 2020 was cooler though the minimum LST 
increased by 5.85 °C. This indicates that required preventive 
measures and increased green coverage were neglected dur-
ing urban development. The results presented in this section 
can help generate the TCI and VHI maps for estimating the 
drought-related information in Bikaner city.

4.3  Urban expansion study

The normalized difference built-up index was utilized for 
assessing the extension of Bikaner city. Figure 6 indicates 
the built-up area expansion in Bikaner city. The urban area 
was extended towards the north, south, and south-eastern of 
the city. Besides, the urbanization within the city became 
denser. The most noteworthy increase in NDBI were 0.04 
(1990), 0.08 (2000), 0.11 (2010), and 0.30 (2020). These 
indicate that the built-up land expanded gradually, whereas 
agricultural lands also increased. The average annual NDBI 
value was increased by 0.008 during 1990–2020, whereas 
0.019 during 2010–2020. These scenarios indicate that the 
expansion of the built-up lands was high during 2010‒2020.

4.4  Vegetation condition examination

Vegetation is more important for regional thermal comfort 
and for maintaining the moisture content of the Earth’s sur-
face (Zhou et al. 2020; Halder and Bandyopadhyay 2022). 
NDVI was used for monitoring the vegetation health of 
Bikaner city for over three decades. The results showed that 
the vegetation of many parts of the city was affected during 

different periods (Fig. 7). The green color on the map indi-
cates the healthy vegetation, whereas the blue indicates the 
barren land. The highest NDVI was 0.33 in 1990, 0.26 in 
2000, 0.22 in 2010, and 0.16 in 2020. The NDVI maps indi-
cate a gradual decrease in vegetation health. The areas with 
agricultural lands were more vegetated. The average annual 
vegetation health was 0.007 during 1990–200, 0.004 dur-
ing 2000–2010, 0.006 during 2010–2020, and 0.006 during 
1990–2020. Figure 6 shows that most of the vegetation con-
centration was in the middle western part, and it was further 
increasing towards the north in 1990 but started to expand 
towards the northeast in 2000. By 2020, expansion was scat-
tered and occupied mostly barren lands. This observation 
can be compared with LULC class distribution, presented in 
Fig. 3, where yellow dots are the agricultural land and green 
dots are the vegetation. The comparison of LULC and NDVI 
maps helped to understand that agricultural land increased 
considerably and mostly towards west and south barren-land 
areas. However, it should be noted that NDVI categorizes 
agricultural land as vegetation, and thus, it is important for 
the domain expert to analyze both.

4.5  Drought analysis using VCI and TCI

The vegetation indices are more important for drought 
and ecological disturbances analysis. Therefore, NDVI, 
VCI, and VHI were used to monitor the spatiotemporal 
variations of the drought indices. The NDVI (Fig. 7) 
was less than 0.45, indicating low vegetation almost 
every year and high drought frequently. The spatiotem-
poral changes in VCI are presented in Fig. 8, where the 
area is classified into five regions, no dry spell, light 
dry spell, moderate dry spell, serious dry season, and 
extreme dry season. The blue color in the figure indi-
cates no drought, whereas the brown color indicates 
extreme droughts. The minimum and maximum NDVI 
values were used for monitoring the VCI values. The 
results showed fewer extreme droughts between 1990 
and 2000, whereas more extreme droughts between 
2010 and 2020. This indicates the deterioration of veg-
etation health and more ecological disturbances in this 
area over time. No drought was observed in the central 
part due to urban areas, but the rest of the areas are 
prone to moderate to extreme droughts. These maps can 
be helpful for planners, disaster management, and poli-
cymaking for future planning.

Figure 9 shows the TCI calculated from LST. The March 
and April of every year were considered for estimating 
drought variability. The red color in the figure indicates 
extreme drought, whereas the green color indicates no 
drought. The figure shows that most of the parts are prone 
to severe to extreme droughts. The decades 2000, 2010, 
and 2020 were mostly drought-prone, whereas 1990 was 

Table 5  LST variation of different time periods

Sl. no Year LST (°C)

Maximum Minimum Average

1 1990 32.86 24.54 28.7
2 2000 41.45 27.93 34.69
3 2010 51.49 29.25 40.37
4 2020 54.5 30.39 42.44
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Fig. 6  NDBI maps of different time: a 1990; b 2000; c 2010; d 2020
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Fig. 7  NDVI maps of different time: a 1990; b 2000; c 2010; d 2020
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less drought-prone. Figures 8 and 9 indicate the worsen-
ing drought condition in the study area. In 2020, there was 
hardly any point without extreme drought. The results indi-
cate severe implications not only for humans but also for 
animals and ecology. The condition can deteriorate in the 
near future if no measures are taken.

4.6  Investigating the vegetation health index

Vegetation health is another useful metric for investigating 
drought-prone areas. The VHI was estimated from VCI 
and TCI using Eq. 17. The VHI of more than 50 indicates 
normal to low drought, and below 50 indicates normal 
to high drought. Figure 10 indicates the variation of the 
VHI in different periods, where the most affected year was 
2010 and 2020. The most affected areas were agricultural 
land and barren land, where built-up land, vegetation, and 
water bodies were low drought-prone areas.

This study is more helpful for the future planning, devel-
opment, and management of Bikaner city. However, a more 
detailed study is necessary for awareness, planning, and 
future development of the study area. The land alteration, 
LST variation, geospatial indicates, VCI, TCI, and VHI val-
ues are useful for investigating the earth surface changes and 
environmental issues in Bikaner city, but some limitations 
are there, like the necessity of ground-level detail investiga-
tion, hydrological and meteorological drought analysis using 
standardized precipitation index, effective drought index, 
and monthly drought analysis.

5  Conclusions

Drought frequency is increasing in many parts of India, 
causing crop damage, soil fertility losses, water short-
age, and environmental degradation. These have severely 

Fig. 8  Vegetation condition 
index (VCI) of different time 
periods
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affected socioeconomic development and people’s healthy 
life. The desert area of Bikaner is mostly affected by ther-
mal variations, water scarcity, and low rainfall. The annual 
average rainfall is around 45–50 mm, whereas in July, the 
highest rainfall month, it is around 90.2 mm. In the arid 
and semiarid regions, lands have been gradually converted 
to drylands due to climate change and ecological distur-
bances. This study assessed the land modification, ther-
mal variability, vegetated land change, and metropolitan 
development in Bikaner city. The NDVI and LST-based 
VCI, TCI, and VHI indices were used. The study showed 
that the developed land, rural land, vegetation, and water 
bodies were expanded by 79.59, 48.16, 33.83, and 1.17 
 km2, respectively. The infertile land diminished by 20.96 
 km2 during 1990‒2000, 36.81  km2 during 2000‒2010, 
and 104.98  km2 during 2010‒2020.

Drought monitoring is a vital research aspect for assess-
ing agricultural productivities, water shortage, and local 
climatic conditions. Bikaner city is mostly affected by 
meteorological droughts due to erratic rainfall, high-
temperature variations, and high evapotranspiration. The 
future works needed for sustainable development in the 
area like the future drought projections, water shortage 
analysis, agricultural productivities analysis, urban sprawl 
estimation, urban planning investigation, and thermal 
comfort estimation. The results presented in this paper 
can benefit planners and developers for drought monitor-
ing and management, agricultural productivities investiga-
tion, and other stakeholders for sustainable development 
planning of the area. Likewise, the techniques presented in 
this study are valuable for other relevant exploration with 
and without reasonable adjustment.

Fig. 9  Temperature condition 
index (TCI) of different time 
periods
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