
Language Trends in Introductory Programming Courses

Michael de Raadt, Richard Watson and Mark Toleman

Department of Mathematics and Computing

University of Southern Queensland, Australia

{deraadt, rwatson, markt}@usq.edu.au

Abstract
Deciding what to teach novice programmers about programming and, in particular, which programming lan-
guage to teach to novice programmers, and how to teach it, is a common topic for debate within universities.
Should an industry relevant programming language be taught, or should a language designed for teaching
novices be used? In order to design tools and methodologies for the teaching of novice programmers it is im-
portant to uncover what is being taught, and in turn, what will be taught in the future. A census of introductory
programming courses administered within all Australian universities has been undertaken. The census aimed
to reveal not only what computer programming languages are being taught, but also how they are being
taught. From the results of this census two key factors emerged: perceived industry pressure for graduates
with certain language skills versus academic training for generic programming skills.

Keywords: novice programming, teaching programming languages

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

Introduction
Since the inception of introductory programming
courses, there has been significant debate about how
to teach programming to novices. When constructing
an introductory programming course, instructors
must consider what language to teach, how their
course will benefit their students’ programming skills
for later study or employment, what paradigm should
be used and what tools, if any, could assist in the
teaching of their students. The intention of this paper
is to examine how these issues are being dealt with in
universities.

Pham (Pham, 1996) discussed the pressures on
universities that affect the ‘purpose’ of computing
courses. These included advancing technology,
demand for industry relevant skills and govern-
ment pressure through funding of universities to
“cater for a mass clientele”. Many papers express
experiences of conducting a single introductory
programming course, (eg. Clark, MacNish &
Royal, 1998, Hagan, 1997), but these do not re-
flect the population of introductory programming
courses, and do not allow for analysis of trends in
this academic endeavour.

Prior to 1970, languages that could be taught to
novices were limited to those available, including
FORTRAN and Cobol. In 1971 Niklaus Wirth
introduced the language Pascal (Wirth, 1971) spe-
cifically for teaching novices programmers. At
various times between 1971 and 1997, 92% of
universities in Australian taught Pascal. In 1995,
Levy (Levy, 1995) reported a movement away
from Pascal claiming it was no longer capable of
demonstrating all necessary concepts and was not
a commercial language, this while Java was just
being released. In 1997, Pascal was taught in an
Australian university for the last time.

In the wake of the decline of Pascal, the current
study was conceived to discover exactly what has
filled the vacuum created in introductory pro-
gramming.

Courses investigated by this study assume no
prior programming experience and run for one
semester (usually the first semester within a first
year undergraduate program). The courses cover
the basics of programming, including algorithms
and problem solving, sequence, selection, repeti-

tion and data types. These are typical courses
worldwide so the results of this study are widely
applicable.

Surveys have been conducted involving introductory
programming courses within Australian universities
(McDonald, 1999, Robins, 1998). While fulfilling
their goals of revealing language choice decisions,
these studies did not cover trends in language choice,
types of students taught, paradigms taught, and did
not provide a context for examining these choices.
These surveys covered only a small part of the popu-
lation of Australian universities.

Because of the number of Australian universities
(thirty-nine) it was possible to carry out a com-
prehensive census rather than a more common,
less reliable survey. The census sought to address
the following questions.

• What programming languages are being
taught?

• Are universities teaching industry relevant
languages or are they using teaching lan-
guages?

• Does language choice depend on the kind of
university? In particular, do older, more re-
search-oriented universities differ from their
younger counterparts on this choice?

• Is there a distinction in the languages taught
to students studying for different disci-
plines?

• How long do universities use an introduc-
tory language before it is updated?

• Do Object Oriented languages dominate in-
troductory programming, and are they
taught using an ‘Object Early’ approach
(where objects and classes are presented
from the beginning of the course)?

• What tools are being used when teach nov-
ices in introductory programming courses?

This paper is organised as follows: the construc-
tion of the census and how it was undertaken is
described in the next section; results from the cen-
sus are presented and analysed in the following
section; and finally, conclusions and possible fu-
ture work are suggested.

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

Census: Trends in Novice Pro-
gramming

The census covered all thirty-seven of the thirty-
nine universities that offered introductory pro-
gramming courses. The census was undertaken
during the first half of 2001.

Construction of the Census
A list of questions was drafted, refined and pi-
loted. In an attempt to answer the research ques-
tions posed in the introduction, the questions
asked in the census were as follows.

1. What programming language is being used?
2. Why was this language chosen?
3. Are there plans to change the language?
4. Which languages were taught previously in

the course and when did use of the current
language start?

5. For what type of student is your first
programming course designed?

6. How many students are currently undertak-
ing this course?

7. Are environments and/or tools beyond sim-
ple editors and command-line compilers
used to support teaching of the language in
practical sessions?

8. What paradigm is being taught using the
language (regardless of what is traditionally
thought to apply to this language)?

Method of Data Collection
In order to determine who should be asked to par-
ticipate, a list of universities that offer degrees
accredited by the Australian Computer Society
(Australian Computer Society, 2000) was used.
An attempt was made to cover all introductory
programming courses within each university, not
just those taught in computer science
schools/departments.

To maximise the participation rate, the census was
conducted by telephone. All people who were
asked agreed to participate.

Results and Discussion
A summary of the results is shown in Table 1. In
terms of student participation, 19,900 implies ap-
proximately 4% of all undergraduates were study-
ing an introductory programming course during
the first half of 2001. Participants were asked
when they had started using the current language
in their teaching. The figure for ‘average years of
using current language’ is a measure of this.

Languages Currently Taught
Nine different languages are being taught in Aus-
tralian universities. Participants were asked to
indicate what language was taught prior to these
current languages. The number of ‘dropped’ lan-
guages was eighteen (double the current number).
Language diversity has reduced; analysis of the
census data shows that 18 languages were taught
in 1996, 17 in 1997, 16 in 1998, 14 in 1999, 11 in
2000 and 9 in 2001. Table 2 shows the number of
courses using particular languages currently, and
the number of courses that used particular lan-

Courses 57

Universities 37

Students (Approx) 19,900

Average Students per Course 349

Average Years of Using Current Language 4.13

Table 1 General results.

Language Currently
Used

Dropped

Java 23 1
Visual Basic 14 2
C++ 8 6
C 4 8
Haskell 3 1
Eiffel 2
Ada 1 4
Delphi 1 1
JBase 1
Pascal 13
Modula 2 3
Smalltalk 3
Miranda 2
Others (Basic, Blue, Cobol,
DBase, Gopher, Turing) (6)

Table 2 Languages currently and previously taught.

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

guages prior to their current language. Six of
these nine current languages (Java, VB, C++, C,
Eiffel, Delphi and Jbase) are widely used in indus-
try. By student numbers 86% of students are be-
ing taught an industry relevant language.

 Pascal is no longer taught in any Australian uni-
versity, nor are its descendants (Modula, Oberon
or Component Pascal). One course uses Delphi,
however the participant responsible for this course
indicated that they would be moving to C++ at the
end of the current run of the course.

Use of languages, weighted by the number of stu-
dents taught these languages, is shown in Figure
1. The most widely taught language is Java, fol-
lowed by Visual Basic, although, if C and C++ are
combined (as they are often taught interchangea-
bly), then this surpasses VB.

 Worthy of note is the fact that four of the six
courses teaching ‘non-commercial’ languages
(Ada, Eiffel and Haskell) are run within the
‘Sandstone’ universities (Australian universities
established before 1950 (Ashenden & Milligan,
1999)). If these universities are excluded, the use
of non-commercial languages, weighted by stu-
dent numbers, falls from 14% to 4%. There is a
clear distinction between the Sandstone universi-
ties and other universities in the languages they
teach. These Sandstone universities are ranked in
(Ashenden & Milligan, 1999) as the highest for
‘Prestige’ and ‘Student Demand’. This suggests
that universities not competing for students are
more confident in choosing non-commercial lan-
guages.

Participants were asked to indicate why they had

chosen their particular language. The responses
are summarised in Table 3. The reasons given by
participants for choosing the language they are
currently teaching was dominated by a willingness
to satisfy the perceived need to teach a language
that will provide their graduates with marketable
skills. To most participants this was more impor-
tant than the pedagogical benefits available in the
language they had chosen to teach.

As well as choosing different languages, Sand-
stone universities made their choices using differ-
ent criteria, as shown in Table 4. This distinction
reinforces the difference between Sandstone and
non-sandstone universities.

Industry relevance/Marketable/Student demand 33
Pedagogical benefits of language 19
Structure of degree/Department politics 16
OOP language wanted 15
GUI interface 6
Availability/Cost to students 5
Easy to find appropriate texts 2
Table 3 Count of reasons given for language choice in all

universities.

Pedagogical benefits of language 6
Industry relevance/Marketable/Student demand 4
Structure of degree/Department politics 2
Availability/Cost to students 2
OOP language wanted 2
Easy to find appropriate texts 1
Table 4 Count of reasons given for language choice by

participants from ‘Sandstone’ universities.

Languages Taught Weighted by Student Numbers Taught

Figure 1 Use of languages weighted by student numbers

VB
19%

Java
43%

Eiffel
3%

C++
15%

Ada
2% Jbase

1%

C
6%

Haskell
9%

Delphi
2%

All Universities Sandstone Universities

Java

C
5%

C++
20%

VB
25%

42%

Delphi
3%

Eiffel
2%

JBase
1%

Ada
2%

Non-Sandstone Universities

C
6%

Eiffel
9%

Haskell
36%

Java
49%

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

Types of Students Taught
Introductory programming courses target students
from a range of disciplines. Census participants
nominated student discipline groups for which
their course was designed. The disciplines re-
corded were Computer Science/Information
Technology, Engineering, Business, and Other.
Many courses were designed for a range of disci-
plines. The proportion of students undertaking the
courses based on kind of course are as follows:

• Computer Science/IT only 26.5%
• Computer Science/IT & Engineering 20.7%
• All disciplines 16.5%
• Business and Other 8.5%
• Engineering only 4.7%
• Other combinations 20.1%

An examination of the types of languages being
taught within courses designed with specific types
of students in mind shows why these languages
may have been chosen.

• The popularity of Java is uniform across all
disciplines.

• Visual Basic is taught widely within courses
designed exclusively for business or other
(non-engineering/non-computer-
science/non-IT) students; Visual Basic is
taught in 78% of such courses.

• Courses for Computer Science and Engi-
neering students show a higher use of C++
and Haskell.

Trends in Language Use
Participants were asked if they had definite plans
to change the language they were teaching. Only
five of the fifty-seven participants indicated that
they had definite plans to change, although many
participants stated that the language taught was
constantly under review. Those who did indicate
they had definite plans to change the language
taught were not consistent in the language to
which they were switching. For example, one
participant indicated they were planning to change
from VB to Java, while another indicated the op-
posite. Efforts to predict future trends are there-
fore limited to a study of the past.

There appears to be very little correlation between
language previously taught and language currently

taught. Although it might be expected that in-
structors would chose new languages with the
same paradigm or similar language features, this
is not the case. Instead, these decisions appear to
be more motivated by reasons shown in Table 3
and Table 4.

When courses are grouped by language and meas-
ured by the average length that courses have used
a particular language then the results are as shown
in Figure 2.

In this figure the average length that each lan-
guage has been taught, measured in years, is indi-
cated by the horizontal width of each bar and the
value next to each bar. The number of courses
teaching this language is indicated by the vertical
height of each bar and the value in parentheses
next to each bar.

Of note is that Java is the most widely taught lan-
guage, and it has been taught, on average, for only
a short period of time.

Figure 2 Average length of language use and number of
units teaching that language

Average Length of Course in Years

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Ada

JBase
Eiffel

VB

C++

Delphi

Java

Haskell

Years
C

7.50 (1) 7.00 (4) 5.50 (1) 5.50 (2)
4.79 (14)

4.56 (8)
3.50 (1)

2.91 (23)

2.50 (3)

(N
um

be
r o

f U
ni

ts
 T

ea
ch

in
g

La
ng

ua
ge

)

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

Paradigm Taught
Participants were also asked what paradigm they
were employing in their teaching. In many cases,
paradigm was restricted by language taught, but of
great interest is the distinction between OOP lan-
guages that are taught initially using an Object
Early approach or a Procedural approach. Over
half of all students are initially taught using a Pro-
cedural approach, 40% using an Object Early ap-
proach, and 9% using a functional paradigm.
However, 81% of students are being taught OOP
languages. Courses teaching OOP languages, and
the paradigms initially used within these courses,
are broken down by language as show in Figure 3.

Early calls for a transition to teaching the Object
Paradigm caused much debate (Decker &
Hirshfield, 1992, Wallingford, 1996) which con-
tinues today. Some authors acclaim the benefits
of teaching OOP languages, but express disap-
pointment at the less than adequate suitability of
commercial OOP languages for teaching (Andreae
et al, 1999, Kölling, Koch & Rosenberg, 1995).
OOP languages have become widespread in in-
dustry and these languages are taught widely in
Australian universities. Teaching methods, how-
ever, have not changed as rapidly. Some 86% of
languages taught are OOP languages, but less than
half are taught using an Object Early approach.
An exception to this is the teaching of Java, which
is taught with an early introduction of objects and
classes in 70% of courses that teach it. Teaching

non-OO Java may seem impossible to some, but
means that 30% of instructors are asking their stu-
dents to ignore class declarations in Java until
later.

Environments and/or Tools Used
Participants were asked to indicate what tools they
used to assist teaching in practical sessions, other
than simple editors and command-line compilers.
Figure 4 indicates the environments/tools being
used. Some languages are limited to environ-
ments in which they can be taught, but the greatest
number of participants answered they were avoid-
ing using such technologies, indicating the follow-
ing reasons:

• cost for students,
• time required to familiarise students with

environments, and
• the blurring of distinct steps in the pro-

gramming process.

Courses not teaching a language that force the use
of an integrated environment, continue to use fa-
cilities such as text editors and command-line
compilers, that have been available since the in-
ception of the introductory programming course.
This is despite the existence of many more sophis-
ticated programming tools and environments used
by professional programmers. Clearly there is a

Environments or Tools Used
Weighted by Student Numbers Taught

VB IDE
19%

No Tool
45%

BlueJ
4%

Other IDE
13%

Other Tool
10%

Functional Env
9%

Figure 4 Environments and/or tools used for teaching in

practical sessions.

C++

Eiffel

Java

VB

Taught OO

Taught Procedural

How OO Languages are Taught

Figure 3 Paradigm used to teach OO languages

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

lack of tools that are designed specifically for
novice programmers, are freely available, easy to
use, do not obscure the details of the program-
ming process, and in which instructors can be
confident in teaching.

Conclusions and Future Work
In conclusion, the questions raised in the introduc-
tion are addressed and future research directions
are considered.

What languages are being taught?

The main languages being taught are Java,
Visual Basic, C/C++ and Haskell. A trend
in the reduction of the number of languages
being taught was noted. Perceived industry
pressure and pedagogical reasons are direct-
ing universities towards a smaller pool of
languages. It would be reasonable to con-
cede that this trend will continue, perhaps
until only the four languages above remain.
A study is planned within two years to fol-
low this trend.

Are universities teaching industry relevant
languages?

In most cases, universities are making com-
promises that they feel will produce the
greatest benefits for their graduates. The
proportion of students being taught an ‘in-
dustry relevant’ language is 86%. The first
reason given by most participants for choos-
ing a language was perceived industry de-
mand, or pressure from students for a com-
mercial language. This does not indicate
that participants actively surveyed industry
demand for particular languages. A study of
how the programming languages perceived
as demanded by industry differ from actual
demand is a possible future direction.

Is there a distinction between Sandstone uni-
versities and other universities?

Different languages are being taught in
Sandstone universities when compared to
non-sandstone universities. Sandstone uni-
versities also have different priorities for
choosing a language. Courses within these

universities are in great demand from stu-
dents, which permits a focus on what will
benefit them best pedagogically rather than
what will attract students. In the future
other universities may take the lead of the
sandstone universities and teach academic
languages, or the sandstone universities may
take on more commercial languages. A
planned study within two years will reveal if
either of these possibilities has occurred.

Is there a distinction between languages taught
to students of different disciplines?

Java is popular across all disciplines. Java
is a popular language seen as relevant to in-
dustry. Visual Basic is popular within
courses designed for students of non-
technical disciplines. The GUI/event-driven
features of VB allow interesting solutions to
be created quickly. Some participants in-
volved in courses from non-technical disci-
plines stated that this was important, as stu-
dents in these courses are not likely to at-
tempt any further programming courses.
C/C++ and Haskell are popular within
courses designed for students of technical
disciplines. These languages allow a focus
on computing principles necessary for later
programming.

Introductory programming is no longer
taught exclusively within computer science
settings. Future studies may examine the
growth of introductory programming
courses outside computer science, and what
distinguishes these courses.

How long do universities use an introductory
language?

From examining the use of current lan-
guages, at least four years is the average life
of a language used in a course. Repetition
of this study will provide longitudinal trends
of this factor. At this stage however, there
seems to be no new languages on the hori-
zon capable of overthrowing the current
most popular languages.

Does an Object Paradigm dominate?

Over eighty percent of students are being
taught OOP languages. This may be be-

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

cause of perceived popularity of these lan-
guages or perhaps simply a need to teach
object oriented languages. With this in
mind, however, over half of the courses us-
ing these languages are not using an Object
Early approach. One possible reason for
this is the experience of instructors who
previously taught using a procedural para-
digm and, while accepting an OO language,
are reluctant to adopt an Object Early ap-
proach. A future study may discover ex-
actly why this is the case.

What tools are being used?

Of participants who were not restricted to an
environment by the language they teach, the
majority indicated that they chose to use
simple text editors and command-line com-
pilers. Participants reasoned that complex
environments require additional instruction,
which consumes valuable teaching time.
Future research into programming tools de-
signed specifically for novices would be
wise to consider the reasons given by par-
ticipants for not choosing a tool, before cre-
ating such tools.

A future study, planned within two years, will re-
veal further trends, and add more longitudinal data
to this study. Additional questions may be added
to reveal:

• Is there a distinction in the instruction pro-
vided to non-technical students?

• What methods of assessment are being
used?

• How many hours are dedicated to teaching
of algorithms and problem solving within
the course?

Industry, it seems, can influence languages taught
within tertiary institutions, and the languages
taught in tertiary institutions in turn influence the
languages used within industry. But which comes
first? Is it the chicken or the egg? Who is making
the decisions that will guide the future of pro-
gramming? Some suggest that we are driven to-
ward debate over technological issues of introduc-
tory programming when we should be focussing
on teaching algorithms and problem solving.
Should universities teach generic skills that can be
applied to many languages, or should they teach

specific languages in a technology-based manner?
Is it even necessary to introduce any specific lan-
guage at all in an introductory course (Lister,
2000)?

References
Ashenden, D. & Milligan, S (1999). The good
universities guide: Universities, TAFE and private
colleges in 2000. Hobsons Australia.

Andreae, P., Biddle, R., Dobbie. G., Gale. A.,
Miller, L. & Tempero, E (1999). Surprises in
teaching CS1 with Java (Technical report).
Online. Internet. [1999]. Retrieved September 5,
2001 via FTP: ftp://ftp.mcs.vuw.ac.nz/doc/vuw-
publications/CS-TR-98/CS-TR-98-9.ps.gz

Australian Computer Society (2000). Accredited
courses. Retrieved August 29, 2001 on the World
Wide Web: http://203.58.197.209/acs/events_
admin/course20_6.htm

Clark, D., MacNish, C. & Royle, G.F (1998).
Java as a teaching language--opportunities, pitfalls
and solutions. The proceedings of the third Aus-
tralasian conference on computer science educa-
tion (July 1998), ACM Press, 173-179.

Decker, R. & Hirshfield, S (1992). A case for,
and an instance of, objects in CS1. Addendum to
the proceedings on Object-oriented programming
systems, languages, and applications (Addendum)
(October 1992), ACM Press, 309-312.

Hagan, D. Monitoring and evaluating a redes-
igned first year programming course. Proceedings
of the conference on Integrating technology into
computer science education (June 1997), ACM
Press, 37-39.

Kölling M., Koch, B. & Rosenberg, J. (1995). Re-
quirements for a first year object-oriented teach-
ing language. Papers of the 26th SIGCSE techni-
cal symposium on computer science education
(March 1995), ACM Press, 173-177.

Levy, S.P. (1995). Computer language usage in
CS1: Survey results. SIGCSE Bulletin, 27, 21-26.

Lister, R. (2000). On blooming first year pro-
gramming, and its blooming assessment. Pro-
ceedings of the Australasian computing education
conference. (December 2000), ACM Press, 158-
162.

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

McDonald, C. (1999). 1st year programming lan-
guages in Australian and New Zealand universi-
ties. Retrieved June 26, 2001 on the World Wide
Web: http://www.cs.uwa.edu.au/~chris/java-in-
cs1/anzacs.html

Pham, B. (1996). The changing curriculum of
computing and information technology in Austra-
lia. Proceedings of the second Australasian con-
ference on computer science education (July
1996), ACM Press, 149-154.

Robins, A. (1998). First language survey. Re-
trieved June 15, 2001 on the World Wide Web:
http://www.cs.otago.ac.nz/survey/surveyhome.ht
ml

Wallingford, E. (1996). Toward a first course
based on object-oriented patterns. Proceedings of
the twenty-seventh SIGCSE technical symposium
on Computer science education (February 1996),
ACM Press, 27-31.

Wirth, N. (1971). The Programming Language
Pascal. Acta Informatica, 1, 35-63.

Biographies
Michael de Raadt is a PhD student and instructor of
programming at the University of Southern Queen-
sland. Michael undertook undergraduate study at the
University of Western Sydney and achieved his
Bachelor of Applied Science Degree with Distinction
in 1998, and achieved First Class Honours and was
awarded the UWS University Medal in 1999. Mi-
chael is also a recipient of the ACS prize for Highest
Achievement.

Dr Richard Watson is a lecturer in the Department of
Mathematics and Computing at the University of
Southern Queensland. He has taught programming to
undergraduates at all levels for the past 12 years. He
conducts research into functional programming lan-
guages.

Dr Mark Toleman is an Associate Professor of In-
formation Systems at the University of Southern
Queensland where he has taught computing subjects
to engineers, scientists and business students for 15
years. He has a PhD in computer science from the
University of Queensland and is an Associated Aca-
demic of the Software Verification Research Centre
there.

Fa
cu

lty
 o

f
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s

SC
-M

C
-0

20
5

