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Abstract
The solar ultraviolet index (UVI) is a key public health indicator to mitigate the ultraviolet-exposure related diseases. This

study aimed to develop and compare the performances of different hybridised deep learning approaches with a convo-

lutional neural network and long short-term memory referred to as CLSTM to forecast the daily UVI of Perth station,

Western Australia. A complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is incorporated

coupled with four feature selection algorithms (i.e., genetic algorithm (GA), ant colony optimization (ACO), particle

swarm optimization (PSO), and differential evolution (DEV)) to understand the diverse combinations of the predictor

variables acquired from three distinct datasets (i.e., satellite data, ground-based SILO data, and synoptic mode climate

indices). The CEEMDAN-CLSTM model coupled with GA appeared to be an accurate forecasting system in capturing the

UVI. Compared to the counterpart benchmark models, the results demonstrated the excellent forecasting capability (i.e.,

low error and high efficiency) of the recommended hybrid CEEMDAN-CLSTM model in apprehending the complex and

non-linear relationships between predictor variables and the daily UVI. The study inference can considerably enhance real-

time exposure advice for the public and help mitigate the potential for solar UV-exposure-related diseases such as

melanoma.
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CEEMDAN Complete ensemble empirical

mode decomposition with adaptive

noise
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CEEMDAN-CLSTM Hybrid model integrating the

CEEMDAN and CNN algorithm

with LSTM

CEEMDAN-CGRU Hybrid model integrating the

CEEMDAN and CNN algorithm

with GRU

CEEMDAN-GRU Hybrid model integrating the

CEEMDAN algorithm with GRU

CNN-LSTM (or

CLSTM)

Hybrid model integrating the CNN

algorithm with LSTM

CNN-GRU (or

CGRU)

Hybrid model integrating the CNN

algorithm with GRU

CEEMDAN Complete ensemble empirical

mode decomposition with Adap-

tive Noise

CEEMDAN-DT Hybrid model integrating the

CEEMDAN algorithm with DT

CEEMDAN-MLP Hybrid model integrating the

CEEMDAN algorithm with MLP

CEEMDAN-SVR Hybrid model integrating the

CEEMDAN algorithm with SVR

CNN Convolutional neural network

COVID-19 Coronavirus disease 2019

CCF Cross-correlation function

EEMD Ensemble empirical mode

decomposition

EMD Empirical mode decomposition

DEV Differential evolution

DL Deep learning

DT Decision tree

DWT Discrete wavelet transformation

ECDF Empirical cumulative distribution

function

ELM Extreme learning machine

EMI El-Nino southern oscillation Mod-

oki indices

ENSO El Niño Southern Oscillation

FE Forecasting error

GA Genetic algorithm

GB Giga bite

GIOVANNI Geospatial online interactive visu-

alization and analysis

infrastructure

GRU Gated recurrent unit

GLDAS Global land data assimilation

system

GSFC Goddard space flight centre

IMF Intrinsic mode functions

LM Legates-McCabe’s index

LSTM Long- short term memory

MAE Mean absolute error

MAPE Mean absolute percentage error

MARS Multivariate adaptive regression

splines

MDB Murray–Darling basin

MJO Madden–Julian oscillation

ML Machine learning

MLP Multi-layer perceptron

MODWT Maximum overlap discrete wave-

let transformation

MODIS Moderate resolution imaging

spectroradiometer

MRA Multi-resolution analysis

MSE Mean squared error

NAO North Atlantic oscillation

NASA National aeronautics and space

administration

NCEP National centers for environmental

prediction

NO Nitrogen oxide

NOAA National oceanic and atmospheric

administration

NMSC Non-melanoma skin cancer

NSE Nash–Sutcliffe efficiency

PACF Partial autocorrelation function

PDO Pacific decadal oscillation

PNA Pacific North American

PSO Particle swarm optimization

r Correlation coefficient

RMM Real-time multivariate MJO series

GA Genetic algorithm

BRF Boruta random forest

RMSE Root-mean-square-error

RNN Recurrent neural network

RRMSE Relative root-mean-square error

SAM Southern annular mode

SARS-CoV-2 Severe acute respiratory syndrome

Coronavirus 2

SCC Squamous cell carcinoma

SILO Scientific information for

landowners

SOI Southern oscillation index

SST Sea surface temperature

SVR Support vector regression

US United States

UV Ultraviolet

UVI Ultraviolet index

WHO World Health Organization

WI Willmott’s index of agreement
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1 Introduction

Solar ultraviolet (UV) radiation is an essential component

in the sustenance of life on Earth (Norval et al. 2007). The

UV irradiance consists of a small fraction (e.g., 5–7%) of

the total radiation and produces numerous beneficial effects

on human health. It has been in use since ancient times for

improving body’s immune systems, such as strengthening

bones and muscles (Juzeniene and Moan 2012) as well as

treating various hard-to-treat skin diseases such as atopic

dermatitis, psoriasis, phototherapy of localised scleroderma

(Furuhashi et al. 2020; Kroft et al. 2008), and vitiligo

(Roshan et al. 2020). UV-stimulated tanning has a positive

mood changing and relaxing effect on many (Sivamani

et al. 2009). Further, UV-induced nitrogen oxide (NO)

plays a vital role in reducing human blood pressure

(Juzeniene and Moan 2012; Opländer Christian et al.

2009).

UV light has also been widely used as an effective

disinfectant in the food and water industries to inactivate

disease-producing microorganisms (Gray 2014). Because

of its effectiveness against protozoa contamination, the use

of UV light as a drinking water disinfectant has achieved

increased acceptance (Timmermann et al. 2015). To date,

most of the UV-installed public water supplies are in

Europe. In the United States (US), its application is mainly

limited to groundwater treatment (Chen et al. 2006).

However, its use is expected to increase in the future for

the disinfection of different wastewater systems. Devel-

oping countries worldwide find it useful as it offers a

simple, low-cost, and effective disinfection technique in

water treatment compared to the traditional chlorination

method (Mäusezahl et al. 2009; Pooi and Ng 2018).

The application of UV light has also shown potency in

fighting airborne-mediated diseases for a long time (Hol-

laender et al. 1944; Wells and Fair 1935). For instance, a

recent study demonstrated that a small dose (i.e., 2 mJ/cm2

of 222-nm) of UV-C light could efficiently inactivate

aerosolized H1N1 influenza viruses (Welch et al. 2018).

The far UV-C light can also be used to sterilize surgical

equipment. Recently, the use of UV-C light as the surface

disinfectant has been significantly increased to combat the

global pandemic (COVID-19) caused by coronavirus

SARS-CoV2. A recent study also highlighted the efficacy

of UV light application in the disinfection of COVID-19

surface contamination (Heilingloh et al. 2020).

However, the research on UV radiation has also been a

serious concern due to its dichotomous nature. UV irradi-

ance can also have detrimental biological effects on human

health, such as skin cancer and eye disease (Lucas et al.

2008; Turner et al. 2017). Chronic exposure to UV light

has been reported as a significant risk factor responsible for

melanoma and non-melanoma cancers (Saraiya et al. 2004;

Sivamani et al. 2009) and is associated with 50–90% of

these diseases. In a recent study, the highest global inci-

dence rates of melanoma were observed in the Australasia

region compared to other North American and European

parts (Karimkhani et al. 2017). Therefore, it is crucial to

provide correct information about the intensity of UV

irradiance to the people at risk to protect their health. This

information would also help people in different sectors

(e.g., agriculture, medical sector, water management, etc.).

The World Health Organization (WHO) formulated the

global UV index (UVI) as a numerical public health indi-

cator to convey the associated risk when exposed to UV

radiation (Fernández-Delgado et al. 2014; WHO 2002).

However, UV irradiance estimation in practice requires

ground-based physical models (Raksasat et al. 2021) and

satellite-derived observing systems with advanced techni-

cal expertise (Kazantzidis et al. 2015). The installation of

required equipment (i.e., spectroradiometers, radiometers,

and sky images) is expensive (Deo et al. 2017) and difficult

for remote regions, primarily mountainous areas. Further-

more, the solar irradiance is also highly impacted by many

hydro-climatic factors, e.g., clouds and aerosol (Li et al.

2018; Staiger et al. 2008) and ozone (Baumgaertner et al.

2011; Tartaglione et al. 2020) that can insert considerable

uncertainties into the available process-based and empirical

models (details also given in the method section). There-

fore, the analysis of sky images may also require extensive

bias corrections, i.e., cloud modification (Krzyścin et al.

2015; Sudhibrabha et al. 2006), which creates further

technical as well as computational burdens. An application

of data-driven models can be helpful to minimize these

formidable challenges. Specifically, the non-linearity into

the data matrix can easily be handled using data-driven

models that traditional process-based and semi-process-

based models fail. Further, the data-driven models are easy

to implement, do not demand high process-based cogni-

tions (Qing and Niu 2018; Wang et al. 2018), and are

computationally less burdensome.

As an alternative to conventional process-based and

empirical models, applying different machine learning

(ML) algorithms as data-driven models have proven

tremendously successful because of the powerful compu-

tational efficiency. With technological advancement,

computational efficiency has been significantly increased,

and researchers have developed many ML tools. Artificial

neural networks (ANNs) are the most common and

extensively employed in solar energy applications (Yadav

and Chandel 2014). However, many studies, such as the

multiple layer perceptron (MLP) neural networks (Alados

et al. 2007; Alfadda et al. 2018), support vector regression

(SVR) (Fan et al. 2020; Kaba et al. 2017), decision tree

(Jiménez-Pérez and Mora-López 2016), and random forest
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(Fouilloy et al. 2018) have also been extensively applied in

estimating the UV erythemal irradiance. The multivariate

adaptive regression splines (MARS) and M5 algorithms

were applied in a separate study for forecasting solar

radiation (Srivastava et al. 2019). Further, the deep learning

network such as the convolutional neural network (CNN)

(Szenicer et al. 2019) and the long short-term memory

(LSTM) (Ahmed et al. 2021b, c; Huang et al. 2020; Qing

and Niu 2018; Raksasat et al. 2021) are recent additions in

this domain.

However, the UVI indicator is more explicit to common

people than UV irradiance values. Further, only a few data-

driven models have been applied for UVI forecasting. For

example, an ANN was used in modeling UVI on a global

scale (Latosińska et al. 2015). An extreme learning method

(ELM) was applied in forecasting UVI in the Australian

context (Deo et al. 2017). There have not been many

studies that used ML methods to forecast UVI. Albeit the

successful predictions of these standalone ML algorithms,

they have architectural flaws and predominantly suffer

from overfitting efficiency (Ahmed and Lin 2021). There-

fore, the hybrid deep learning models receive increased

interest and are extremely useful in predictions with higher

efficiency than the standalone machine learning models.

Hybrid models such as particle swarm optimization (PSO)-

ANN, wavelet-ANN (Zhang et al. 2019), genetic algorithm

(GA)-ANN (Antanasijević et al. 2014), Boruta random

forest (BRF)-LSTM (Ahmed et al. 2021a, b, c, d),

ensemble empirical mode decomposition (EEMD) (Liu

et al. 2015), adaptive neuro-fuzzy inference system

(ANFIS)-ant colony optimization (ACO) (Pruthi and

Bhardwaj 2021) and (ACO)-CNN-GRU have been applied

across disciplines and attained substantial tractions. How-

ever, a CNN-LSTM (i.e., CLSTM) hybrid model can

efficiently extract inherent features from the data matrix

than other machine learning models and has successfully

predicted time series air quality and meteorological data

(Pak et al. 2018). This study incorporates four feature

selection algorithms (i.c., GA, PSO, ACO, and DEV) to

optimize the training procedure and try different predictor

variables selected by the feature selection algorithms.

Adapting different feature selection approaches would give

a diverse understanding of the predictors and effectively

quantify the features of UVI. Moreover, integration of

convolutional neural network as a feature extraction

method gives a further improvement of UVI forecasting, as

confirmed by numerous researchers (c 2021a; Ghimire

et al. 2019; Huang and Kuo 2018; Wu et al. 2021). The

application of such a hybrid model for predicting sequence

data, i.e., the UVI for consecutive days, can be an effective

tool with excellent predictive power. However, the fore-

casting of UVI with a CLSTM hybrid machine learning

model is yet to be explored and was a key motivation for

conducting this present study.

In this study, we employed a new model of EMD called

complete ensemble empirical mode decomposition with

adaptive noise (CEEMDAN) (Ahmed et al. 2021b; Prasad

et al. 2018). In CEEMDAN-based decomposition, Gaus-

sian white noise with a unit variance is added consecutively

at each stage to reduce the forecasting procedure’s com-

plexity (Di et al. 2014). Over the last few years, CEEM-

DAN techniques have been successfully implemented in

forecasting soil moisture (Ahmed et al. 2021b; Prasad et al.

2018, 2019a, b), draught (Liu and Wang 2021), precipita-

tion (Wang et al. 2022), and wind energy (Liang et al.

2020; Zhang et al. 2017). However, a previous version (i.e.,

EEMD) was used in forecasting streamflow (Seo and Kim

2016) and rainfall (Beltrán-Castro et al. 2013; Jiao et al.

2016; Ouyang et al. 2016). The machine learning algorithm

used in the study is CLSTM, which has not been coupled

with the EEMD or CEEMDAN to produce a UVI forecast

system.

This study aims to apply a CLSTM hybrid machine

learning model, which can exploit the benefits of both

convolutional layers (i.e., feature extraction) and LSTM

layers (i.e., storing sequence data for an extended period)

and evaluate its ability to forecast the UVI for the next day

efficiently. The model was constructed and fed with hydro-

climatic data associated with UV irradiance in the Aus-

tralian context. The model was optimized using ant colony

optimization, genetic algorithms, particle swarm opti-

mization, and differential evolutional algorithms. The

model accuracy (i.e., efficiency and errors involved in UVI

estimations) was assessed with the conventional standalone

data-driven models’ (e.g., SVR, decision tree, MLP, CNN,

LSTM, gated recurrent unit (GRU), etc.) performance

statistics. The inference obtained from the modeling results

was also tremendously valuable for building expert judg-

ment to protect public health in the Australian region and

beyond.

2 Materials and methods

2.1 Study area and UVI data

The study assessed the solar ultraviolet index of Perth

(Latitude: - 31.93� E and Longitude: 115.10� S), Western

Australia. The Australian Radiation Protection and Nuclear

Safety Agency (ARPANSA) provided the UVI data for

Australia from https://www.arpansa.gov.au (ARPANSA

2021). Figure 1 shows the monthly UVI data, the location

of Perth, and the assessed station. The figure shows that

Perth has had low to extreme UV concentrations between

1979 and 2007. The summer season (December to
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February) had the most extreme UV concentration. In

contrast, autumn (March to May) has a moderate to high

UVI value, and winter (June to August) demonstrates a

lower to moderate, and spring (September to November)

has a higher to extreme UVI value in Perth.

Malignant melanoma rates in Western Australia are

second only to those in Queensland, Australia’s most

populated state (Slevin et al. 2000). Australia has the

highest incidence of NMSC (Non-melanoma skin cancer)

globally (Anderiesz et al. 2006; Staples et al. 1998).

Approximately three-quarters of the cancer cases have

basal cell carcinoma (BCC) and squamous cell carcinoma

(SCC) types. These are attributed to the fair-skinned pop-

ulation’s high exposure to ambient solar radiation (Boniol

2016; McCarthy 2004). As a result, Australia is seen as a

world leader in public health initiatives to prevent and

detect skin cancer. Programs that have brought awareness

of prevention strategies and skin cancer diagnoses have

data to show that people act on their knowledge (Stanton

et al. 2004). Several studies have found that decreasing sun

protection measures are associated with a reduction in the

rates of BCC and SCC in younger populations. They might

have received cancer prevention messages as children

(Staples et al. 2006). Considering the diversified concen-

tration of UVI concentration, this study considers Perth an

ideal study area (Fig. 2).

2.2 Datasets of predictor variables

Three distinct data sources were used to collect the pre-

dictor variables in this analysis. The Moderate Resolution

Imaging Spectroradiometer (MODIS) satellite datasets

capture land surface status and flow parameters at regular

temporal resolutions. These are supplemented by ground-

based Scientific Information for Landowners (SILO)

repository meteorological data for biophysical modeling

and climate mode indices to help achieve Sea Surface

Temperature (SST) over Australia. Geospatial Online

Interactive Visualization and Analysis Infrastructure

(GIOVANNI) is a geoscience data repository that provides

a robust online visualization and analysis platform for

geoscience datasets. It collects data from over 2000 satel-

lite variables (Chen et al. 2010). The MODIS- aqua yielded

8 predictor variables for our study: a high-temporal ter-

restrial modeling system consisting of a surface state and

providing daily products with a high resolution (250 m at

nadir). A list of predictors of the MODIS Satellite can be

obtained from the National Aeronautics and Space

Administration (NASA) database (Giovanni 2021).

The surface UVI is influenced by atmospheric attenua-

tion of incident solar radiation (Deo et al. 2017). The angle

subtended from the zenith (hs) to the solar disc is another

factor that affects the intensity of solar UV radiation

(Allaart et al. 2004). The ultraviolet attenuation of clear-

sky solar radiation is dependent on ozone and atmospheric

aerosol concentrations, along with cloud cover (Deo et al.

2017). This implies that the measurements of biologically

effective UV wavelengths are affected by total ozone col-

umn concentration. Incident radiation at the Earth’s surface

is reduced by aerosols such as dust, smoke, and vehicle

exhausts (Downs et al. 2016; Román et al. 2013). More-

over, Lee et al. (2009) found a significant correlation

between UV solar radiation and geopotential height. Con-

sidering the direct influence of the predictors over ultra-

violet radiation and UV index, this study collected ozone

total column, aerosol optical depth (550 nm and 342.5 nm),

geopotential height, cloud fraction, and combined cloud

optical thickness data from the Geospatial Online Interac-

tive Visualization and Analysis Infrastructure (GIO-

VANNI) repository.

Therefore, meteorological predictor variables (i.e.,

temperature, u- and v-winds) were significant while mod-

eling UVI (Lee et al. 2009). Moreover, the cloud amount

and diurnal temperature range have a strong positive cor-

relation, while rainfall and cloud amount show a strong

negative correlation (Jovanovic et al. 2011). Although

overall cloud patterns agree with rainfall patterns across

Australia, the higher-quality cloud network is too coarse to

represent topographic influences accurately. Changes in the

amount of cloud cover caused by climate change can result

in long-term changes in maximum and minimum temper-

ature. Owing to the relations of hydro-meteorological

variables with UVI and their interconnections with cloud

cover, the study selected nine meteorological variables

from the Scientific Knowledge for Land-Owners (SILO)

database to expand the pool of predictor variables, allowing

for more practical application and model efficiency. SILO

data are managed by Queensland’s Department of Envi-

ronment and Research and can be obtained from https://

www.longpaddock.qld.gov.au/silo.

Aerosol-rainfall relationships are also likely to be arti-

facts of cloud and cloud-clearing procedures. During the

Madden–Julian Oscillation (MJO) wet phase, the high

cloud’s value increases, the cloud tops rise, and increased

precipitation enhances wet deposition, which reduces

aerosol mass loading in the troposphere (Tian et al. 2008).

The MJO (Lau and Waliser 2011; Madden and Julian

1971, 1994) dominates the intra-seasonal variability in the

tropical atmosphere. A relatively slow-moving, large-scale

oscillation in the deep tropical convection and baroclinic

winds exists in the warmer tropical waters in the Indian and

western Pacific Oceans (Hendon and Salby 1994; Kiladis

et al. 2001; Tian et al. 2008). The study used the Real-time

Multivariate MJO series 1 (RMM1) and 2 (RMM2)

obtained from the Bureau of Meteorology, Australia (BOM

2020). Though RMM1 and RMM2 indicate an evolution of
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the MJO independent of season, the coherent off-equatorial

behavior is strongly seasonal (Wheeler and Hendon 2004).

Pavlakis et al. (2007, 2008) studied the spatial and tem-

poral variation of long surface and short wave radiation. A

high correlation was found between the longwave radiation

anomaly and the Niño3.4 index time series over the

Niño3.4 region located in the central Pacific.

Moreover, Pinker et al. (2017) investigated the effect of

El Niño and La Nina cycles on surface radiative fluxes and

the correlations between their anomalies and a variety of El

Niño indices. The maximum variance of anomalous

Fig. 1 Study site (Perth, Australia) of the work and monthly average noon clear-sky UV index based on gridded analysis from the Bureau of

Meteorology’s UV forecast model using NASA/GFSC TOMS OMI monthly ozone data sets between 1979 and 2007

3016 Stochastic Environmental Research and Risk Assessment (2022) 36:3011–3039
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incoming solar radiation is located just west of the dateline.

It coincides with anomalous SST (Sea surface temperature)

gradient in the traditional eastern Pacific El Niño Southern

Oscillation (ENSO). However, we derive the Southern

Oscillation Index highly correlated with solar irradiance

and mean Northern Hemisphere temperature fluctuations

reconstructions (Yan et al. 2011). In North America and the

North Pacific, land and sea surface temperatures, precipi-

tation, and storm tracks are determined mainly by atmo-

spheric variability associated with the Pacific North

American (PNA) pattern. The modern instrumental record

indicates a recent trend towards a positive PNA phase,

which has resulted in increased warming and snowpack

loss in northwest North America (Liu et al. 2017). This

study used fifteen climate mode indices to increase the

diversity. Table 1 shows the list of predictor variables used

in this study.

2.3 Standalone models

2.3.1 Multilayer perceptron (MLP)

The MLP is a simple feedforward neural network with

three layers and is commonly used as a reference model for

comparison in machine learning application research

(Ahmed and Lin 2021). The three layers are the input layer,

a hidden layer with n-nodes, and the output layer. The input

data are fed into the input layer, transformed into the

hidden layer via a non-linear activation function (i.e., a

logistic function). The target output is estimated, Eq. (1).

y ¼ f
X

wTxþ b
� �

ð1Þ

where w = the vector of weights, xi = the vector of inputs,

b = the bias term; f = the non-linear sigmoidal activation

function, i.e., f zð Þ ¼ 1
1þe�z.

The computed output is then compared with the mea-

sured output, and the corresponding loss, i.e., the mean

squared error (MSE), is estimated. The model parameters

Fig. 2 The developed model architecture of (Convolutional Neural Network, CNN) with the 4 layered long short term memory for a hybrid

CNN-LSTM model to forecast a week daily maximum UV Index with Genetic Algorithm
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(i.e., initial weights and bias) are updated using a back-

propagation method until the minimum MSE is obtained.

The model is trained for several iterations and tested for

new data sets for prediction accuracy.

2.3.2 Support vector regression (SVR)

The SVR is constructed based on the statistical learning

theory. In SVR, a kernel trick is applied that transfers the

input features into the higher dimension to construct an

optimal separating hyperplane as follows (Ji et al. 2017):

f xð Þ ¼ w:u xð Þ þ b ð2Þ

where w is the weight vector, b is the bias, and u xð Þ
indicates the high-dimensional feature space. The coeffi-

cients w and b, which define the location of the hyperplane,

can be estimated by minimizing the following regularized

risk function:

Minimize :
1

2
jjw2jj þ C

Xn

1

ei þ e�i
� �

ð3Þ

Subject to yi � w � u xð Þ � b� eþ ei; w � u xð Þ þ b
� yi � eþ e�i ; ei � 0; e�i � 0

where C is the regularization parameter, ei and e�i are slack

variables. Equation (7) can be solved in a dual form using

the Lagrangian multipliers as follows:

Maximize : � 1

2

Xn

i¼1

Xn

j¼1

ai � a�i
� �

aj � a�j

� �
K xi; xj
� �

�
Xn

i¼1

ai � a�i
� �

þ
Xi¼n

1

ai � a�i
� �

yi ð4Þ

Subject to
Xn

i¼1

ai � a�i
� �

¼ 0; ai; a
�
i 2 0;C½ �

where K xi; xð Þ is the non-linear kernel function. In this

present study, we used a radial basis function (RBF) as the

kernel, which is represented as follows:

K xi; xð Þ ¼ exp
� x� xij jj j2

2r2

 !

where r is the bandwidth of the RBF.

2.3.3 Decision tree (DT)

A decision tree is a predictive model used for classification

and regression analysis (Jiménez-Pérez and Mora-López

2016). As our data is continuous, we used it for the

regression predictions. It is a simple tree-like structure that

uses the input observations (i.e., x1, x2, x3, …, xn) to predict

the target output (i.e., Y). The tree contains many nodes,

and at each node, a test to one of the inputs (e.g., x1) is

applied, and the outcome is estimated. The left/right sub-

branch of the decision tree is selected based on the esti-

mated outcome. After a specific node, the prediction is

made, and the corresponding node is termed the leaf node.

The prediction averages out all the training points for the

leaf node. The model is trained using all input variables

and corresponding loss; the mean squared error (MSE) is

calculated to determine the best split of the data. The

maximum features are set as the total input features during

the partition.

2.3.4 Convolutional neural network (CNN)

The CNN model was developed initially for document

recognition (Lecun et al. 1998) and used for predictions.

Aside from the input and output layer, the CNN architec-

ture has three hidden layers: convolutional, pooling, and

fully connected. The convolutional layers abstract the local

information from the data matrix using a kernel. The pri-

mary advantage of this layer is the implementation of

weight sharing and spatial correlation among neighbors

(Guo et al. 2016). The pooling layers are the subsampling

layers that reduce the size of the data matrix. A fully

connected layer is similar to the traditional neural network

added at the final pooling layer after completing an alter-

nate stack of convolutional and pooling layers.

2.3.5 Long short-term memory (LSTM)

An LSTM network is a unique form of recurrent neural

network that stores sequence data for an extended period

(Hochreiter and Schmidhuber 1997). The LSTM structure

has three gates: an input gate, an output gate, and a forget

gate. The model regulates all these three gates and deter-

mines how much data must be stored and transferred to the

next steps from previous time steps. The input gate controls

the input data at the current time as follows:

atl ¼
XI

i¼1

wilx
t
i þ
XH

h¼1

whlb
t�1
h þ

XC

c¼1

wcls
t�1
c ; btl ¼ f atl

� �
ð5Þ

where xti = the input received from the ith node at time t;

bt�1
h = the result of the hth node at time t - 1; st�1

c = the

cell state (i.e., memory) of the cth node at time t - 1. The

symbol ‘w’ represents the weight between nodes, and the f

is the activation function. The output gate transfers the

current value from Eq. (5) to the output node, Eq. (6).

Then, at the final stage, the current value is stored as the

cell state in the forget gate, Eq. (7).
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atw ¼
XI

i¼1

wiwx
t
i þ
XH

h¼1

whwb
t�1
h þ

XC

c¼1

wcws
t�1
c ; btw ¼ f atw

� �

ð6Þ

at; ¼
XI

i¼1

wi;x
t
i þ
XH

h¼1

wh;b
t�1
h þ

XC

c¼1

wc;s
t�1
c ; bt; ¼ f at;

� �

ð7Þ

2.3.6 Gated recurrent unit (GRU) network

The GRU network is an LSTM variant having only two

gates, such as reset and update gates (Dey and Salem

2017). The implementation of this network can be repre-

sented by the following equations, Eqs. (14–17):

z ¼ r Wzxt þ Uzht�1 þ bzð Þ ð8Þ
r ¼ r Wrxt þ Urht�1 þ brð Þ ð9Þ
m ¼ ; Wmxt þ Um ht�1:rð Þ þ bmð Þ ð10Þ
ht ¼ 1 � zð Þht�1 þ z � m ð11Þ

where r = the sigmoidal activation function; xt = the input

value at time t; ht�1 = the output value at time t-1; and the

Wz, Uz,Wr, Ur,Wm, Um are the weight matrices for each

gate and cell state. The symbols r and z represent the reset

and update gates, respectively. ; is the activation function,

and the dot [.] represents the element-wise dot product.

2.4 The proposed hybrid model

2.4.1 CLSTM (or CNN-LSTM) hybrid model

In this paper, a deep learning method using optimization

techniques is constructed on top of a forecast model

framework. This study demonstrates how the CNN-LSTM

(CLSTM) model, comprised of four-layered CNN, can be

effectively used for UVI forecasting. The CNN is

employed to integrate extracted features to forecast the

target variable (i.e., UVI) with minimal training and testing

error. Likewise, the CNN-GRU (CGRU) hybrid model is

prepared for the same purpose.

2.5 Optimization techniques

2.5.1 Ant colony optimization

Ant colony optimization (ACO) algorithm model is the

graphical representation of the real ants’ behavior. In

general, ants live in colonies, and they forage for food as a

whole by communicating with each other using a chemical

substance, the pheromones (Mucherino et al. 2015). An

isolated ant cannot move randomly; they always optimize

their way towards the food deposit to their nests by inter-

acting with previously laid pheromones marks on the way.

The entire colony optimizes their routes with this com-

munication process and establishes the shortest path to

their nests from feeding sources (Silva et al. 2009). In

ACO, the artificial ants find a solution by moving on the

problem graph. They deposit synthetic hormone pher-

omones on the graph so that upcoming artificial ants can

follow the pattern to build a better solution. The artificial

ants calculate the model’s intrinsic mode functions (IMFs)

anticipation by testing artificial pheromone values against

the target data. The probability of finding the best IMFs

increases for every ant because of changing pheromones

value throughout the IMFs. The whole process is just like

an ant’s finding the optimal option to reach the target. The

probability pfi dð Þ of selecting the shortest distance between

the target and the IMFs of the input variable can be

mathematically expressed as follows (Prasad 2019a, b):

pfi dð Þ ¼
di þ Dfi dð Þ
� �2

di þ Dfi dð Þ
� �2þ di þ Dft dð Þ

� �2
ð12Þ

where f 2 1; 2f g denotes decision point, i and t express as

short and long distance to the target at an instant d is the

total amount of pheromone Dft dð Þ. The probability of the

longest path can be determined where pfi dð Þ þ pft dð Þ ¼ 1.

The testing update on the two branches is described as

follows:

Dfi dð Þ ¼ Dfi d � 1ð Þ þ pfi d � 1ð Þaf d � 1ð Þ
þ pki d � 1ð Þak d � 1ð Þ ð13Þ

Dft dð Þ ¼ Dft d � 1ð Þ þ pft d � 1ð Þaf d � 1ð Þ
þ pkt d � rð Þak d � rð Þ ð14Þ

where f ; k 2 1; 2f g and the value of r represent the

remainder in the model. af dð Þ denotes the number of ants

in the node f at a certain period d is given by:

af dð Þ ¼ pki d � 1ð Þak d � 1ð Þ þ pkt d � rð Þak d � rð Þ ð15Þ

The ACO algorithm is the most used simulation opti-

mization algorithm where myriad artificial ants work in a

simulated mathematical space to search for optimal solu-

tions for a given problem. The ant colony algorithm is

dominant in multi-objective optimization as it follows the

natural distribution and self-evolved simple process.

However, with the increase of network information, the

ACO algorithm faces various constraints such as local

optimization and feature redundancy for selecting optimal

pathways (Peng et al. 2018).
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2.5.2 Differential evaluation optimization

The differential evolution (DEV) algorithm is renowned

for its simplicity and powerful stochastic direct search

method. Besides, DEV has proven an efficient and effec-

tive method for searching global optimal solutions for the

multimodal objective function, utilizing N-D-dimensional

parameter vectors (Seme and Štumberger 2011). It does not

require a specific starting point, and it operates effectively

on a population candidate solution. The constant value N

denotes the population; in every module, a new generation

solution is determined and compared with the previous

generation of the population member. It is a repetition

process and runs until it reaches the maximum number of

generations (i.e., Gmax). The G defines the generation

number of populations which can be written in mathe-

matical proportional order. If the initial population vector

is SG, then SG ¼ i1;G;i2;G. . .. . .; iNP;G; and G ¼ 0; . . .;Gmax

in;G; n ¼ 1; 2; . . .. . .::;N

The initial population SG¼0 is generated using random

within given boundaries, which can be written in the fol-

lowing equation:

inj;0 ¼ randj 0; 1½ � i
Uð Þ
j � i

Lð Þ
j

� �
þ i

Lð Þ
j ; n ¼ 1; 2; . . .;NP; j

¼ 1; 2; . . .;D

ð16Þ

where randj[0, 1] is the uniformly distributed number at the

interval [0,1], which is chosen a new for each j. D repre-

sents the boundary condition. In contrast, Uð Þ and Lð Þ
represents the upper and lower limit of the boundary vector

parameters. For every generation, a new random vector is

randomly created, selecting vectors from the previous

generation from the following manner:

cnj;G ¼ irj;G�1 þ F irj;G�1 � irj;G�1

� �
if randj 0; 1½ � �

inj;G�1 otherwise

( )

ð17Þ

where r is the number of optimizations, c is the candidate

vector, CR 2 0; 1½ � and F 2 0; 2½ � control parameter. k is

the randomly selected index that ensures the difference

between the candidate vector and the generation vector.

The population for new the new generation SG will be

assembled from the vector of the previous generation SG�1

and the candidate vectors cnj;G the following equation can

describe selection:

G ¼ 0; . . .;Gmax; n ¼ 1; 2; . . .. . .::;NP

InG ¼ cnG iff cnG
� �

� f ðInG�1Þ
InG�1 otherwise

( )
ð18Þ

The process repeats with the following generation pop-

ulation number until it satisfies the pre-defined objective

function.

2.5.3 Particle swarm optimization

The particle swarm optimization (PSO) method was

developed for continuous non-linear functions optimization

having roots in artificial life and evolutionary computation

(Kennedy and Eberhart 1995). The method was constructed

using a simple concept that tracks each particle’s current

position in the swarm by implementing a velocity vector

for particle’s previous to the new position. However, the

movement of the particles in the swarm depends on the

individuals’ external behavior. Therefore, the process is

very speculative, uses each particle’s memory to calculate

a new position and gain knowledge by the swarm as a

whole. Nearest neighbor velocity matching and craziness,

eliminating ancillary variables, and incorporating multidi-

mensional search and acceleration by distance were the

precursor of PSO algorithm simulation (Eberhart and Shi

2001). Each particle in the simulation coordinates in the

n-dimensional space calculation and responds to the two

quality factors called ‘gbest’ and ‘pbest’. gbest represents

the best location and value of particle in the population

globally, and pbest represents the best-fitted solution

achieved by the particle so far in the population swarm.

Thus, at each step in the swarm, the PSO concept stands,

each particle changing its acceleration towards its two best

quality factor locations. The acceleration process begins by

separating random numbers and presenting the optimal

‘gbest’ and ‘pbest’ locations. The basic steps for the PSO

algorithm are given below, according to (Eberhart and Shi

2001):

1. The process starts with initializing sample random

particles with random velocities and locations on

n-dimensions in the design space.

2. The velocity vector for each particle in the swarm is

carried out in the next step as the initial velocity vector

value.

3. Plot the velocity vector value and compare particle

fitness evaluation with particle’s pbest. If the new

value is better than the initial value, update the new

velocity vector value as pbest and previous location

equal to the current location in the design space.

4. This step compares the fitness evaluation with the

particles’ overall previous global best. If the current

value is better than gbest, update it to a new gbest value

and location.

5. The velocity and position of the particle can be

changed according to the equations:
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vnd ¼ vnd þ m1 � rand xð Þ � pnd � zndð Þ þ m2

� Rand xð Þ � pgd � znd
� �

ð19Þ

znd ¼ znd þ vnd ð20Þ

6. Repeat step 2 and continue until the sufficiently fitted

value and position are achieved.

Particle swarm optimization is well known for its simple

operative steps and performance for optimizing a wide

range of functions. PSO algorithm can successfully solve

the design problem with many local minima and deal with

regular and irregular design space problems locally and

globally. Although PSO can solve problems more accu-

rately than other traditional gradient-based optimizers, the

computational cost is higher in PSO (Ventor and

Sobieszczanski-Sobieski 2003).

2.5.4 Genetic algorithm

The genetic algorithm (GA) is a heuristic search method

based on natural selection and evolution principles and

concepts. This method was introduced by John Holland in

the mid-seventies, inspired by Darwin’s theory of descent

with modification by natural selection. To determine the

optimal set of parameters, GA mimics the reproduction

behavior of the biological populations in nature. It has been

proven effective for solving cutting-edge optimization

problems in the selection process. It can also handle regular

and irregular variables, non-traditional data partitioning,

and non-linear objective functions without requiring gra-

dient information (Hassan et al. 2004). The basic steps for

the PSO algorithm are given below:

The determination of the maximum outcomes from an

objective function, the genetic algorithm uses the

following function:

f ¼ f y1 þ y2ð Þ; . . .: yn þ ynþ1ð Þn
� �

ð21Þ

where n is the number of decision variables yi 2
ymini ; ymaxi

� �
with a discretization step dyi. The initial

boundary conditions ymini ; ymaxi determined at the begin-

ning of the simulation. dyi is the determines the physical

parameters yi performances in the experiment. These

decision variables are represented by a sequence of

binary digits (GENESÞ.
The decisions variables are given within initial boundary

conditions yi ¼ ymini þ GENEið Þ � dyi, where GENEi 2
0; 2ni � 1½ � refers to the value of GENES. ni is the bit

length of each GENE, which is the first integer where

ymini þ 2ni � 1 � dyi � ymaxi . The total number of bits in

each DNA refers nsum ¼
Pn

i¼1 ni. The algorithm process

starts with a random selection of objectives. After

evaluation of each objective in the fitness function

f ¼ f y1 þ y2ð Þ; . . .: yn þ ynþ1ð Þn
� �

, and rank them from

best to worst.

The genetic similarity determines the selection progress

indicator. These random individual objectives with rank are

transferred to the next generation. The remaining individ-

uals participate in the steps of selection, crossover, and

mutation. The individual objective parent selection process

can happen several times, and this can be achieved by

many different schemes, such as the roulette-wheel ranked

method. For any pair of objective parents’ selection,

crossover, and mutation process of next generation is

defined. After that, the fitness f of all individuals scheduled

for the next generation is evaluated. This process repeats

from generation to generation until a termination criterion

is met.

GA methodology is quite like another stochastic

searching algorithm PSO. Both methods begin their search

from a randomly generated population of designs that

evolve over successive generations. They do not require

any specific starting point for the simulation. The first

operator is the ‘‘selection’’ procedure similar to the ‘‘Sur-

vival for the Fittest’’ principle. The second operator is the

‘‘Crossover’’ operator, mimicking mating in a biological

population. Both methods use the same convergence cri-

teria for selecting the optimal solution in the problem space

(Hassan et al. 2004). However, GA differs in two ways

from the most traditional optimization methods. First, GA

does not operate directly on the design parameter vector,

but a symbolic parameter known as a chromosome. Sec-

ond, it optimizes the whole design chromosomes at once,

unlike other optimization methods single chromosome at a

time (Weile and Michielssen 1997).

2.5.5 Complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN)

The complete ensemble empirical mode decomposition

with adaptive noise (CEEMDAN) decomposition approach

is initiated by discretizing the n-length predictors of any

model v(t) into IMFs (intrinsic model functions) and resi-

dues to conform with tolerability. However, to ensure no

information leakage in the IMFs and residues, the

decomposition is performed separately by training and

testing subsets. The actual IMF is produced by taking the

empirical mode decomposition (EMD)-grounded IMFs

across a trial and combining white noise to model the

predictor-target variables. The CEEMDAN is used in

machinery, electricity, and medicine such as impact signal

denoising, daily peak load forecasting, health degradation

monitoring for rolling bearings, friction signal denoising

combined with mutual information (Li et al. 2019).

The CEEMDAN process is as follows:
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Step 1 The decomposition of p-realizations of v n½ � ¼
e1xp n½ � using EMD to develop their first intrinsic approach,

as explained according to the equation:

dIMF1 n½ � ¼ 1

p

XP

p¼1

IMFp
1 n½ � ¼ IMF1 n½ � ð23Þ

Step 2 Putting k = 1, the 1st residue is computed fol-

lowing Eq. (1).

Res1 n½ � ¼ v n½ � � dIMF1 n½ � ð24Þ

Step 3 Putting k = 2, the 2nd residual is obtained as

dIMF2 n½ � ¼ 1

p

XP

p¼1

E1ðr1 n½ � þ e1E1 xp n½ �ð ÞÞ ð25Þ

Step 4 Setting k = 2… K calculates the kth residue as.

Resk n½ � ¼ Resk�1 n½ � � dIMFk n½ � ð26Þ

Step 5 Now, we decompose the realizations Resk n½ � þ
e1E1 xp n½ �ð Þ;Here; k ¼ 1; . . .K until their first model of

EMD is reached; Here the (k ? 1) is

dIMF kþ1ð Þ n½ � ¼ 1

p

XP

p¼1

E1ðrk n½ � þ ekEk xp n½ �ð ÞÞ ð27Þ

Step 6 Now, the k value is incremented, and steps 4–6

are repeated. Consequently, the final residue is achieved:

RESk n½ � ¼ v n½ � �
XK

k¼1

dIMFk ð28Þ

Here, K is the limiting case (i.e., the highest number of

modes). To comply with the replicability of the earliest

input, v n½ �:; the following is performed for the CEEMDAN

approach.

v n½ � ¼
XK

k¼1

dIMFk þ RESk n½ � ð29Þ

2.6 Model implementation procedure

It is crucial to optimize the objective model’s architecture

to incorporate the relationship between predictors and

model. A multi-phase CNN-GRU and GRU model is built

using Python-based deep learning packages such as Ten-

sorFlow and Keras. A total of nine statistical metrics was

used to investigate the forecasting robustness of the models

that have been integrated. An Intel i7 powered the model

with a 3.6 GHz processor and 16 GB of memory. Deep

learning libraries like Keras (Brownlee 2016; Ketkar 2017)

and TensorFlow (Abadi et al. 2016) were used to demon-

strate algorithms for the proposed models. In addition,

packages like matplotlib (Barrett et al. 2005) and seaborn

(Waskom 2021) were used for visualization.

The determination of the model’s valid predictors does

not have any precise formula. However, the literature

suggests three methods, i.e., trial-and-error, the autocorre-

lation function (ACF), partial autocorrelation function

(PACF), and the cross-correlation function (CCF) approa-

ches, for selecting lagged UVI memories and predictors to

make an optimal model. In this study, the PACF was used

to determine significant antecedent behavior in terms of the

lag of UVI (Tiwari and Adamowski 2013; Tiwari and

Chatterjee 2010). Figures 3f and 4b demonstrated the

PACF for UVI time series showing the antecedent behavior

in terms of the lag of UVI and decomposed UVI (i.e.,

IMFn) where antecedent daily delays are apparent. Gener-

ally, the CCF selects the input signal pattern based on the

predictors’ antecedent lag (Adamowski et al. 2012). The

CCF determined the predictors’ statistical similarity to the

target variable (Figs. 3a–e, 4a). A set of significant input

combinations was selected after evaluating each predictor’s

rcross with UVI. The figure shows that the highest corre-

lation between predictor variables and UVI was found for

all stations at lag zero (i.e., rcross = 0.22 – 0.75). AOD and

GBI demonstrated significant rcross from 0.65 to 0.80 and

0.68 to 0.75, respectively. Some predictors with insignifi-

cant lags such as AO, CT, and OTC were also considered

to increase the predictors’ diversity. The CCF with UVI

with predictors significantly varied for all other stations.

However, selecting lags from the cross-correlation function

is identical to the objective stations.

As mentioned, the CEEMDAN method was used to

decompose the data sets. The daily time series of UVI data

and predictor variables were decomposed into respective

daily IMFs and a residual component using CEEMDAN

procedures. The example of the IMFs and the residual

component of the respective CEEMDAN is shown in

Fig. 5. PACF was applied to the daily IMFs and residual

component time series generated above. An individual

input matrix was created for each IMF, and the residual

component was made up based on the significant lagged

memory with that of IMF of target UVI. These separate

input matrices were used to forecast future IMFs and

residual components. Next, the anticipated IMFs and

residuals were combined to produce daily forecasts of UVI

values. Note that the CEEMDAN transformations are

completely self-adaptive and data-dependent multi-resolu-

tion techniques. As such, the number of IMFs and the

residual component generated are contingent on the nature

of the data.

The predictor variables were used to forecast the UVI

were normalized between 0 and 1 to minimize the scaling

effect of different variables as follows:

3022 Stochastic Environmental Research and Risk Assessment (2022) 36:3011–3039

123



Unorm ¼ U � Umin

Umax � Umin
ð30Þ

In Eq. (30), U is the respective predictors, Umin is the

minimum value for the predictors, Umax is the maximum

value of the data and Unorm is the normalized value of the

data. After normalizing the predictor variables, the data

sets were partitioned. To build predictive models, input

data must be divided into training, testing, and validation

sets. The training set is used to train the model, then used to

learn more about the data over time. This validation tech-

nique tries to provide information for modifying model

hyperparameters. Separate from training sets, validation

sets are used to examine and validate models. After train-

ing a model, the test set is frequently used to evaluate it.

This study uses the first 70% of the data sets for training,

the middle 15% were used for testing, and the remaining

15% of the data sets were considered validation data.

The CLSTM model was followed by developing a

hybrid LSTM model with 3-layered CNN and 4-layered

LSTM, as illustrated in Fig. 2. The traditional antecedent

lagged matrix of the daily predictors’ variables was applied

using the conventional models. The prior application of the

optimization algorithm was made before using CCF and

PACF and before significant predictors were removed from

the model. The theoretical details of CNN and LSTM are

already given in Sect. 2. Based on a trial-and-error

approach, the hyper-parameters (as stated in Table 4

located in the ‘‘Appendix’’) for all respective models. The

computational complexity cost associated with the learning

Table 1 Description of global

pool of 24 predictor variables

used to design and evaluate

hybrid CEEMDAN-CLSTM

predictive model for the daily

maximum UV Index forecasting

MODIS-satellite

OTC Ozone total column DU

GH Geopotential height (daytime) –

AO Aerosol optical depth 550 nm –

AOD2 Aerosol optical depth 342.5 nm –

TCW Total column water vapour (daytime) kg/m2

CF Cloud fraction (daytime) –

CP Cloud pressure (daytime) hPa

CCO Combined cloud optical thickness (mean) –

SILO (ground-based observations)

T.Max Maximum temperature �C
T.Min Minimum temperature �C
Rain Rainfall mm

Evap Evaporation mm

Radn Radiation MJ m-2

VP Vapour pressure hPa

RHmaxT Relative humidity at Temperature T.Max %

RHminT Relative Humidity at Temperature T.Min %

FAO56 Morton potential evapotranspiration overland mm

SYNOPTIC-SCALE (climate mode indices)

Nino3.0 Average SSTA over 150�–90� W and 5� N–5� S NONE

Nino3.4 Average SSTA over 170� E–120� W and 5� N–5� S

Nino4.0 Average SSTA over 160� E–150� W and 5� N–5� S

Nino1 ? 2 Average SSTA over 90� W–80� W and 0�–10� S

AON Arctic oscillation

AAO Antarctic oscillation

EPO East Pacific oscillation

GBI Greenland blocking index (GBI)

WPO Western Pacific Oscillation (WPO.)

PNA Pacific North American Index

NAO North Atlantic oscillation

SAM Southern annular mode index

SOI Southern oscillation Index, as per Troup (1965)

RMM1 Real-time multivariate MJO indices 1

RMM2 Real-time multivariate MJO indices 1
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procedure of ML models is a significant concern; this cost

is inversely proportional to the size of the dataset used for

training and the algorithm used for hyperparameter selec-

tion, and it is directly related to the dataset size used for

training (Ghimire et al. 2019). This time-consuming pro-

cess requires a grid search for the optimal parameters for

each model. For example, the search for each model takes

approximately 10–11 h. After finding the optimal param-

eters, the computational time for training and testing

becomes significantly less (\ 10 min), as shown in Fig. 2.

Using a pooling layer to control overfitting issues in the

training phase, the CLSTM hybrid predictive model may

be made smaller and more controlled, reducing the number

of parameters and computation required the network. All

the flattening layer outputs are routed to the respective

inputs of the LSTM recurrent layer, which is routed to the

final output of the flattening layer. Table 2 shows the

selected predictors using four optimization techniques

associated with the UVI, and the optimal parameters of

four feature selection algorithms are tabulated in Table 5

from the ‘‘Appendix’’.

2.7 Model performance assessment

In this study, the effectiveness of the deep learning hybrid

model was assessed using a variety of performance eval-

uation criteria, e.g., Pearson’s Correlation Coefficient (r),

root mean square error (RMSE), Nash–Sutcliffe efficiency

(NSE) (Nash and Sutcliffe 1970), and mean absolute error

(MAE). The relative RMSE (denoted as RRMSE) and rel-

ative MAE (denoted as RMAE) were used to explore the

geographic differences between the study stations.

The exactness of the relationship between predicted and

observed values were used to evaluate a predictive model’s

effectiveness. When the error distribution in the tested data

is Gaussian, the root means square error (RMSE) is a more

appropriate measure of model performance than the mean

absolute error (MAE) (Chai and Draxler 2014), but for an

improved model evaluation, the Legates-McCabe’s (LM)

Index is used as a more sophisticated and compelling

measure (Legates and McCabe 2013; Willmott et al. 2012).

Mathematically, the metrics are as follows:

Fig. 3 a–e Correlogram

showing the covariance between

the objective variable (UVI) and

the predictor variables in terms

of the Cross-correlation

coefficient (rcross) and f Partial

autocorrelation function (PACF)

plot of the UVI time series

exploring the antecedent

behavior in terms of the lag of

UVI every day
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1. Correlation coefficient (r):

r ¼
PN

i¼1 UVIobs � UVIobs
� �

UVIfor � UVIfor
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 UVIobs � UVIobs
� �2PN

i¼1 UVIfor � UVIfor
� �2

q

8
><

>:

9
>=

>;

2

ð31Þ

2. Mean absolute error (MAE):

MAE ¼ 1

N

XN

i¼1

UVIfor�UVIobsj j ð32Þ

3. Root mean squared error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

UVIfor�UVIobsð Þ2

vuut ð33Þ

4. Nash–Sutcliffe Efficiency (NS):

NSE ¼ 1 � 1 �
PN

i¼1ðUVIforÞ
2

PN
i¼1 UVIobs � UVIfor
� �2

" #
Þ ð34Þ

5. Legates–McCabe’s Index (LM):

LM ¼ 1 �
PN

i¼1 UVIfor�UVIobsj j
PN

i¼1 UVIobs�UVIobs

		 				 		

" #
ð35Þ

6. Relative Root Mean Squared Error (RRMSE, %):

RRMSE %ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 UVIfor�UVIobsð Þ2

q

1
N

PN
i¼1ðUVIobsÞ

� 100

ð36Þ

7. Relative Mean Absolute Error (RMAE, %):

RMAE %ð Þ ¼
1

N

PN
i¼1 UVIfor�UVIobsj j

1
N

PN
i¼1ðUVIobsÞ

� 100 ð37Þ

In Eqs. (31–37), UVIobs and UVIfor represents the

observed and forecasted values for ith test value; UVIobs
and UVIfor refer to their averages, accordingly, and N is

defined as the number of observations, while the CV stands

for the coefficient of variation.

3 Results

This section describes results obtained from the proposed

hybrid deep learning model (i.e., CEEMDAN-CLSTM)

and other hybrid models (i.e., CEEMDAN-CGRU,

CEEMDAN-LSTM, CEEMDAN-GRU, CEEMDAN-DT,

CGRU, and CLSTM), and the standalone LSTM, GRU,

DT, MLP, and SVR models. Four feature selection algo-

rithms (i.e., ACO, DEV, GA, and PSO) were incorporated

to obtain the optimum features in model building. Seven

statistical metrics from Eqs. (31)–(37) were used to analyze

the models in the testing dataset and visual plots to justify

the forecasted results’ justification.

The hybrid deep learning model (i.e., CEEMDAN-

CLSTM) demonstrated high r and NS values and low

RMSE and MAE compared to their standalone models

(Table 3). The best overall performance was recorded using

Table 2 List of selected input variables prior applying in the pro-

posed model using four optimization techniques (i.e., ACO, DEV,

GA and PSO)

ACO DEV GA PSO
OTC √ X √ X
GH X √ X √
AOD √ √ √ X
AOD2 X √ X X
TCW √ X √ X
CF X X √ √
CP √ X X X
CCO X √ X √
T.Max √ X X X
T.Min X X X √
Rain X √ X √
Evap X X √ X
Radn X X X √
VP X X X X
RHmaxT X X X X
RHminT X X √ X
FAO56 X X X X
SOI X X √ X
EPO √ X X X
GBI √ X √ X
AAO X X √ √
AO √ X √ X
NAO X √ √ X
PNA √ X X √
Nino3 √ X X X
NINO4 X √ √ X
NINO12 X √ √ X
NINO34 X √ X X
RMM1 √ √ √ √
RMM2 √ √ √ √
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the CEEMDAN-CLSTM model with the Genetic Algo-

rithm with the highest correlation (i.e., r = 0.996), the

highest data variance explained (i.e., NS = 0.997), and the

lowest errors (i.e., RMSE = 0.162 and MAE = 0.119). The

performance was followed by the same model with PSO

(i.e., r & 0.996; NS & 0.992; RMSE & 0.216; MAE &

Fig. 4 a Correlogram showing the covariance between the objective

variable (UVI) and the CEEMDAN decomposed T.Max (IMF1T.Max

to ResidualsT.Max) in terms of the Cross-correlation coefficient (rcross)

and b Partial autocorrelation function (PACF) plot of the CEEMDAN

decomposed UVI time series exploring the antecedent behavior in

terms of the lag of UVI every day
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0.163) and ACO (i.e., r & 0.996; NS & 0.993; RMSE &
0.220; MAE & 0.165). The single deep learning models

(i.e., LSTM and GRU) performed better than the single

machine learning models (i.e., DT, SVR, and MLP).

Moreover, the hybrid deep learning models without a CNN

(i.e., CEEMDAN-GRU and CEEMDAN-GRU) also

demonstrated higher forecasting accuracy (i.e.,

r = 0.973 – 0.993; RMSE = 0.387 – 0.796) in comparison

with standalone deep learning models (i.e., r & 0.959 –

0.981; RMSE & 0.690 – 0.986). The following models’

performance is then predicted by the CNN-GRU, CEEM-

DAN-GRU, and GRU models in that order.

RRMSE and LM for all tested models were used to

assess the robustness of the proposed hybrid models and for

comparisons. The magnitude of RRMSE (%) and LM for

the objective model (CEEMDAN-CLSTM) shown in Fig. 6

indicates that the proposed hybrid model performed sig-

nificantly better than other benchmark models. The

RRMSE and LM values ranged between 2 and 3.5% and

between 0.982 and 0.991, respectively. The performance

indices (i.e., RRMSE and LM) using four optimization

algorithms were higher for the CEEMDAN-CGRU model.

Overall, the CEEMDAN-CLSTM model with the GA

optimization methods provided the best performance (i.e.,

RRMSE = * 2.0%; LM = 0.991), indicating its high

efficiency in forecasting the future UV-Index a higher

degree of accuracy.

A precise comparison of forecasted and observed UVI

can also be seen by examining the scatterplot of forecasted

(UVIfor) and observed (UVIobs) UVI for four optimization

algorithms (i.e., ACO, PSO, DEV, and GA) (Fig. 7). Here,

scatter plots showed the coefficient of determination (r2)

and a least-square fitting line, along with the equation for

UVI and an observed UVI close to the forecasted UVI. As

demonstrated in Fig. 7, it also appears that the proposed

hybrid model performed better when compared with other

applied models. However, among the four optimization

techniques applied, the hybrid deep learning model (i.e.,

CEEMDAN-CLSTM) optimized with the GA outper-

formed the other models in forecasting the UVI. The hybrid

CEEMDAN-CLSTM model calculated magnitudes from

the GA, which came the closest to unity, with an m|r2 of

Fig. 5 An example time-series

showing data features in IMFs

and residuals produced by the

CEEMDAN transformation of

daily maximum UV Index for

the case of Perth study site
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0.976|0.995 in pairs. The performance is followed by ACO

and DEV algorithms with a potential pair (ACO:

0.975|0.995; DEV: 0.966|0.994). The outliers (i.e., the

extremes) are closer to the fitted line, while the y-intercept

(i.e., the starting point) is approximately 0.05 units away

from zero (0) using the GA method. The other models had

outliers, resulting in their intercepts deviating from the

ideal value. In conclusion, the CEEMDAN-CLSTM model

performed the best for the GA.

The proposed hybrid deep learning model (i.e.,

CEEMDAN-CLSTM) was further assessed employing the

ECDFs of absolute forecast error (|FE|) (Fig. 8). Total 95%

forecasted values using the CEEMDAN-CLSTM model

with GA demonstrated a small error ranging between 0.01

and 0.299, with a substantially larger error for the CCGRU

model (i.e., 0.477), followed by the CLSTM model (i.e.,

0.626) and CGRU (i.e., 1.104). For the other optimization

algorithms, nearly the same level of performance was

observed. Predictions ranging between the 95th and 98th

percentile were preferred over objective models, which

performed best in the current forecast. However, Fig. 9

showed the effect of applying CEEMDAN as a feature

extraction method on the percent change in RMAE values

within the testing phase of UVI forecast incrementally. The

contribution of the data decomposition method (i.e.,

CEEMDAN) was significant in the model implementation.

The increment of RMAE in percent using GA was found

between 17 to 63%, whereas the CLSTM showed the

highest percentage of decrement (i.e., 63%). Moreover, the

PSO optimized model showed that the RMAE (%) values

with the deep learning model appeared to decrease by * 2

to 60%, and the lowest decreasing RMAE was found for

the ACO algorithm with a reduction of * 3% to 36%.

However, the CLSTM model using four optimization

methods showed the highest improvement among all the

deep learning approaches that reduced the RMSE from 36

to 63%. It is worth mentioning that the percent increase in

RMAE was * 83% for the DEV algorithm using the SVR

method. Overall, the CEEMDAN, as a data decomposition

algorithm for UVI forecasting with four optimization

algorithms, showed significant improvement over the

testing phase.

After additional analysis, the forecasted-to-observed

UVI and absolute forecasting errors are displayed in

Fig. 10. The absolute forecasted error has a maximum

dispersion of (|FE| =|UVIfor – UVIobs|). The box plot

demonstrated the data dispersal of the observed and fore-

casted UVI from the proposed deep learning approaches

and other comparing models. Figure 10 provides a clear

visualization of the data concerning quartiles distinctly

outliers. The lower end of the plot lies between the lower

quartile (25th percentile) and upper quartile (75th per-

centile). It is evident that the median of the forecasted and

the observed UVI for the CEEMDAN-CLSTM model with

the GA optimization. Moreover, the DEV-based CEEM-

DAN-CLSTM model showed identical forecasting to the

GA-based CEEMDAN-CLSTM model with a slight vari-

ation. A more in-depth inspection of the absolute

Table 3 Evaluation of hybrid CEEMDAN-CLSTM vs. benchmark (CNN-GRU, CNN-LSTM, CEEMDAN-GRU, CEEMDAN-LSTM, GRU and

LSTM) models for Perth observation sites

ACO DEV GA PSO
r NS RMSE MAE r NS RMSE MAE r NS RMSE MAE r NS RMSE MAE

CEEMDAN-
CGRU 0.995 0.991 0.317 0.261 0.994 0.981 0.460 0.392 0.994 0.994 0.260 0.198 0.995 0.990 0.343 0.281
CEEMDAN-
CLSTM 0.996 0.992 0.216 0.163 0.995 0.986 0.258 0.148 0.996 0.997 0.162 0.119 0.996 0.993 0.220 0.165
CEEMDAN-GRU 0.973 0.945 0.796 0.598 0.993 0.987 0.387 0.300 0.974 0.948 0.768 0.579 0.993 0.985 0.413 0.312
CEEMDAN-LSTM 0.982 0.963 0.648 0.483 0.983 0.967 0.615 0.447 0.992 0.981 0.463 0.354 0.978 0.949 0.766 0.563
CEEMDAN-DT 0.960 0.920 0.952 0.672 0.986 0.971 0.575 0.420 0.959 0.918 0.968 0.685 0.984 0.968 0.599 0.425
CEEMDAN-MLP 0.945 0.890 1.117 0.846 0.969 0.938 0.839 0.576 0.957 0.914 0.987 0.705 0.964 0.927 0.911 0.688
CEEMDAN-SVR 0.988 0.974 0.541 0.384 0.993 0.987 0.387 0.300 0.990 0.978 0.504 0.370 0.991 0.991 0.385 0.223
CNN-GRU 0.987 0.987 0.317 0.361 0.988 0.974 0.541 0.384 0.988 0.968 0.601 0.453 0.981 0.962 0.663 0.457
CNN-LSTM 0.986 0.982 0.307 0.334 0.977 0.950 0.758 0.548 0.986 0.979 0.556 0.292 0.991 0.972 0.567 0.458
GRU 0.973 0.945 0.796 0.598 0.959 0.913 0.986 0.767 0.968 0.933 0.875 0.644 0.975 0.948 0.771 0.559
LSTM 0.977 0.950 0.758 0.548 0.980 0.954 0.721 0.508 0.975 0.945 0.793 0.537 0.981 0.958 0.690 0.485
DT 0.884 0.766 1.631 1.112 0.878 0.753 1.675 1.161 0.877 0.752 1.678 1.148 0.950 0.897 1.082 0.752
MLP 0.935 0.872 1.207 0.905 0.933 0.838 1.359 1.072 0.943 0.889 1.124 0.814 0.957 0.907 1.030 0.773
SVR 0.957 0.914 0.990 0.655 0.939 0.878 1.178 0.809 0.948 0.896 1.090 0.733 0.970 0.940 0.826 0.557

The correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe coefficient (NS) are computed

between forecasted and observed UVI for 7 Day ahead periods in testing phase. The optimal model is boldfaced (blue)
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Fig. 6 Comparison of the

forecasting skill for all proposed

models in terms of the relative

error: RRMSE (%) and Legate

McCabe Index (LM) within the

testing period

Fig. 7 Scatter plot of forecasted

with observed UVI (UVI) of

Perth station CEEMDAN-

CLSTM model. A least square

regression line and coefficient

of determination (R2) with a

linear fit equation are shown in

each sub-panel
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forecasted error (|FE|) from the hybrid CEEMDAN-

CLSTM model for two optimizations (i.e., GA and DEV)

further strengthens the suitability of the hybrid CLSTM

approach in forecasting the UVI of Perth station of Aus-

tralia with the narrowest distribution in comparison with

other models. A significant percentage (98%) of the |FE| in

the first error brackets (0\|FE|\ 0.15) was observed for

the GA-based CEEMDAN-CLSTM model, while for the

DEV-based model, the percentage is 95%.

With the help of a time series plot, we can better

understand forecasting ability and refine the proposed

model, taking it from standalone to hybrid model. The time

series plot of forecasted and observed UVI using CEEM-

DAN-CLSTM optimized by four optimization methods is

depicted in Fig. 11. The results showed that the proposed

GA-based CEEMDAN-CLSTM model is close to the

observed UVI, indicating that the model has high predic-

tive accuracy. The application of the GA in the model

optimization resulted in a significant improvement in

forecasted UVI. For other algorithms that use the CEEM-

DAN-CLSTM model, it is discovered that the forecasted

UVI is accurate when compared to the other optimization

methods.

Finally, Fig. 12 presents a comprehensive interpretation

by illustrating the absolute forecasting error frequency

Fig. 8 Empirical cumulative distribution function (CDF) in forecasting error |FE| for CEEMDAN-CGRU, CEEMDAN-CLSTM, CNN-GRU, and

CNN-LSTM model, shown for the 95 percentile on ECDF

Fig. 9 Effect on percent change (%) of RMAE using CEEMDAN as a

feature extraction approach in forecasting UVI at Perth station using

Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO), and Differential Evolution (DEV)
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distributions (|FE|) using all GA-based models for Perth

stations of Australia. It is apparent from Fig. 12 that the

CEEMDAN-CLSTM model provided significantly

improved distributions with the maximum 98% forecasting

error (|FE|) within the first error brackets (0\|FE|\ 0.10).

It is also noteworthy that the CEEMDAN-CGRU model

showed a higher percentage of |FE| between 0 and 0.25 of

all forecasting yielded a considerably small error and the

remaining 15% of simultaneously produced forecasting

error between 0.25 and 1.0. The highest forecasted error

was found for machine learning models when all models’

|FE| value (i.e., SVR, MLP, and DT) was considered.

4 Discussion

The establishment of robust predictive modelling of the

UV index and physical interpretation is critical for various

practical applications, such as helping policymakers in

their daily health impact assessment. These systems emu-

late how a human expert would solve a complex fore-

casting problem by reasoning through a set of UVI-related

predictors rather than through conventional or procedural

methods. These methods warrant continuous irradiance

measurement or radiative transfer models, which are

tedious (as discussed in the introduction) and often inac-

curate. This study demonstrated the efficacy of hybrid deep

learning methods in forecasting UVI on a near real-time

horizon. The study site was in Perth, Western Australia,

Australia, where skin cancer is significantly high. An

accurate forecasting system in this region is therefore

essential.

To function effectively, alert systems must generate

accurate irradiance forecasts. Still, UVI is generally

determined by many factors (i.e., the solar zenith, altitude,

cloud fraction, aerosol and optical properties, albedo, and

vertical ozone profile) (Deo et al. 2017). The study

extensively utilized four optimization techniques (i.e., GA,

ACO, DEV, and PSO) to have optimum predictors used in

UVI forecasting as tabulated in Table 2. The incorporated

predictors from three distinct data sets (i.e., SILO, MODIS,

and CI) were optimized. The optimization techniques

selected a diversified list of variables except for RMM1

and RMM2, as four algorithms selected them both. The

predictors like ozone total column, AOD, and cloud frac-

tion were significant using the GA algorithm. In most

cases, the hydro-meteorological variables were insignifi-

cant by all four algorithms that agree with UV concentra-

tion’s general concept. The objective algorithm (i.e., GA)

selected SOI, GBI, AAO, Nino4, Nino12, RMM1, and

RMM2 as potential predictors as well. The ground-based

measurements and modelling studies are essential (Alados

et al. 2004, 2007) but are challenging to implement in

practice. Furthermore, secondary factors affecting UV

levels (i.e., clouds or aerosols) are rarely known with suf-

ficient precision. Considering the practical feasibility, an

algorithm that is data-efficient, simple to develop, flexible,

and user-friendly should be considered a viable alternative

Fig. 10 Evaluation of the

performance of the proposed

hybrid deep learning,

CEEMDAN-CLSTM model

with the comparative

benchmark models based on the

absolute forecasted error |FE|

using four optimization

techniques
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for information (Igoe et al. 2013a, b; Parisi et al. 2016).

Therefore, our developed forecasting model will play a

vital role in adopting prompt measures without difficulties.

This study shows significant improvement from the

previous studies in forecasting UVI in Australia. Deo et al.

(2017) applied machine learning techniques to predict the

UVI in Australia, demonstrating a substantial performance.

However, this study found improved forecasting in a 7-day

ahead time horizon by integrating three distinct types of

datasets. The study can be further extended to other parts of

Australia and around the world to develop an early warning

framework of solar radiation UV index for better man-

agement and mitigation of UV-related health hazards.

The proposed hybrid deep learning network (i.e.,

CEEMDAN-CLSTM) for predicting surface UV radiation

also demonstrated low errors in forecasting, i.e., showing

around 10% error for the next-day forecast and 13–16%

error for 7-day up to the 4-week forecast. This further

affirms that the quantitative UV forecast is appropriate for

heliotherapy applications, which tolerates up to 10–25%

error levels. The CEEMDAN-CLSTM’s performance is

competitive on UV data from multiple regions. Thus, the

CEEMDAN-CLTSM model can be adapted to forecast

other beneficial UV action spectra, such as vitamin D

production and erythemal UV index. A fundamental limi-

tation of machine learning is its overfitting tendency on the

training dataset and often does not generalize well to other

datasets from different distributions. In the context of UV

forecasting, this dictates that the model must be retrained

with data from the weather station to be used for that

geographic region. In a geographical region with the highly

variable weather condition, such as London in 2019, arti-

ficial neural network models’ performance dropped sig-

nificantly (Raksasat et al. 2021). This capability of the

Fig. 11 Time series of daily maximum UV index (UVI) for observed UVI and forecasted UVI for the objective model, CEEMDAN-CLSTM

using four optimization approaches
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model to extract seasonal patterns may also explain why

the addition of ozone, cloud fraction, and AOD information

significantly improved the performance of CEEMDAN-

CLSTM, particularly when the GA algorithm was applied.

5 Conclusion

This study conducted a daily UV Index forecasting at Perth

station using aggregated significant antecedent satellite-

driven variables associated with UV irradiance. The fore-

casting was made using a novel hybrid deep learning model

(i.e., CEEMDAN-CLSTM) and compared with other

benchmark models such as LSTM, GRU, DT, SVR, etc.

Four optimization methods were employed to extract the

crucial features of the response variable (i.e., the UVI).

After applying the proposed model and benchmarked

models, the model’s merits were evaluated using different

statistical metrics, graphical plots, and relevant discussions.

The key findings are summarized as follows:

• The CEEMDAN-CLSTM hybrid model demonstrated

excellent forecasting ability compared to its counterpart

models.

• The GA optimization algorithm is appeared to be an

attractive option for selecting mechanistically mean-

ingful features of the dependable variable compared to

the other three optimization techniques.

• The performance metrics showed that the GA and

CEEMDAN-optimized models had better performance

and higher efficiency metrics (i.e., r, NS, and LM) and

lower error metrics (i.e., MSE and RMSE).

• However, in UVI forecasting, the standalone models’

(i.e., LSTM, GRU, DT, and SVR) performances were

poor compared to the proposed hybrid model.

Adapted to an Australian climate in the sub-tropics

during peak summer-time conditions, applying a CLSTM

model to forecast the UVI is a novel deep learning

approach. The forecasts derived from our data were within

one UVI unit of the actual measured values indicating the

remarkable forecasting capability. Therefore, this data-

Fig. 12 Illustration of the

frequency of absolute value of

estimation errors (|EE|) of the

proposed hybrid deep learning

CEEMDAN-CLSTM model and

comparing models using

Genetic Algorithm (GA)
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driven model would be of tremendous help for the deci-

sion-makers to promptly protect public health without

delay. It has the tremendous potential to be adopted by a

more significant segment of the community, particularly

children and the elderly facing a greater risk of developing

skin cancer (i.e., melanoma) in the Australian region and

worldwide.

Appendix

See Tables 4 and 5.

Table 4 The optimum hyper-

parameter of the CLSTM model
Model Model hyper-parameter Names Search space for optimal hyper-parameters

Optimally selected hyper-parameters

CLSTM Convolution Layer 1 (C1) 40

C1- Activation function Relu

C1-Pooling Size 1

Convolution Layer 2 (C2) 20

C2- Activation function Tanh

C2-Pooling Size 1

Convolution Layer 3 (C3) 50

C3- Activation function Relu

C3-Pooling Size 1

LSTM Layer 1 (L1) 100

L1- Activation function Relu

LSTM Layer 2 (L2) 80

L2- Activation function ReLU

LSTM Layer 3 (L4) 100

L3- Activation function Relu

LSTM Layer 4 (L4) 50

L4- Activation function ReLU

Drop-out rate 0.2

Optimiser SDG

Learning Rate 0.001

Padding Same

Batch Size 5

Epochs 1000
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Domı́nguez G, Travieso-González CM (2013) Rainfall forecast-

ing based on ensemble empirical mode decomposition and

neural networks. In: International work-conference on artificial

neural networks. Springer, pp 471–480

BOM (2020) Australia’s official weather forecasts & weather radar:

Bureau of Meteorology [WWW Document]. http://www.bom.

gov.au/. Accessed 9 July 2021

Boniol M (2016) Descriptive epidemiology of skin cancer incidence

and mortality. Skin cancer prevention. CRC Press, Boca Raton,

pp 221–242

Brownlee J (2016) Deep learning with python: develop deep learning

models on Theano and tensor flow using Keras. Machine

Learning Mastery

Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean

absolute error (MAE)? Arguments against avoiding RMSE in the

literature. Geosc Model Dev 7:1247–1250. https://doi.org/10.

5194/gmd-7-1247-2014

Chen JP, Yang L, Wang LK, Zhang B (2006) Ultraviolet radiation for

disinfection. In: Wang LK, Hung Y-T, Shammas NK (eds)

Advanced physicochemical treatment processes, handbook of

environmental engineering. Humana Press, Totowa, pp 317–366.

https://doi.org/10.1007/978-1-59745-029-4_10

Chen C, Jiang H, Zhang Y, Wang Y (2010) Investigating spatial and

temporal characteristics of harmful Algal Bloom areas in the

East China Sea using a fast and flexible method. In: 2010 18th

international conference on geoinformatics. Presented at the

2010 18th international conference on geoinformatics, pp 1–4.

https://doi.org/10.1109/GEOINFORMATICS.2010.5567490

Christian O, Volkmar CM, Adnana P-G, van Faassen Ernst E,

Christian H, Malte K, Daniel H, Manfred M, Norbert P, Suschek

CV (2009) Whole body UVA irradiation lowers systemic blood

pressure by release of nitric oxide from intracutaneous photo-

labile nitric oxide derivates. Circ Res 105:1031–1040. https://

doi.org/10.1161/CIRCRESAHA.109.207019

Deo RC, Downs N, Parisi AV, Adamowski JF, Quilty JM (2017) Very

short-term reactive forecasting of the solar ultraviolet index

using an extreme learning machine integrated with the solar

zenith angle. Environ Res 155:141–166. https://doi.org/10.1016/

j.envres.2017.01.035

Dey R, Salem FM (2017) Gate-variants of Gated Recurrent Unit

(GRU) neural networks. In: 2017 IEEE 60th international

midwest symposium on circuits and systems (MWSCAS).

Presented at the 2017 IEEE 60th international midwest sympo-

sium on circuits and systems (MWSCAS), pp 1597–1600.

https://doi.org/10.1109/MWSCAS.2017.8053243

Di C, Yang X, Wang X (2014) A four-stage hybrid model for

hydrological time series forecasting. PLoS ONE 9(8):e104663

Downs N, Butler H, Parisi A (2016) Solar ultraviolet attenuation

during the Australian (Red Dawn) dust event of 23 September

2009. Bull Am Meteorol Soc 97:2039–2050. https://doi.org/10.

1175/BAMS-D-15-00053.1

Eberhart, Shi Y (2001) Particle swarm optimization: developments,

applications and resources. In: Proceedings of the 2001 congress

on evolutionary computation (IEEE Cat. No.01TH8546). Pre-

sented at the proceedings of the 2001 congress on evolutionary

computation (IEEE Cat. No.01TH8546), vol 1, pp 81–86. https://

doi.org/10.1109/CEC.2001.934374

Fan J, Wu L, Ma X, Zhou H, Zhang F (2020) Hybrid support vector

machines with heuristic algorithms for prediction of daily diffuse

solar radiation in air-polluted regions. Renew Energy

145:2034–2045. https://doi.org/10.1016/j.renene.2019.07.104

Fernández-Delgado M, Cernadas E, Barro S, Ribeiro J, Neves J

(2014) Direct Kernel Perceptron (DKP): Ultra-fast kernel ELM-

based classification with non-iterative closed-form weight cal-

culation. Neural Netw 50:60–71. https://doi.org/10.1016/j.neu

net.2013.11.002

Fouilloy A, Voyant C, Notton G, Motte F, Paoli C, Nivet M-L, Guillot

E, Duchaud J-L (2018) Solar irradiation prediction with machine

learning: forecasting models selection method depending on

weather variability. Energy 165:620–629. https://doi.org/10.

1016/j.energy.2018.09.116

Furuhashi T, Torii K, Ikumi K, Kato H, Nishida E, Morita A (2020)

Ultraviolet al phototherapy for the treatment of localized

scleroderma. J Dermatol 47:792–795. https://doi.org/10.1111/

1346-8138.15368

Ghimire S, Deo RC, Downs NJ, Raj N (2019) Global solar radiation

prediction by ANN integrated with European Centre for medium

range weather forecast fields in solar rich cities of Queensland

Australia. J Clean Prod 216:288–310

Giovanni [WWW Document] (2021) https://giovanni.gsfc.nasa.gov/

giovanni/. Accessed 9 July 2021

Gray NF (2014) Chapter thirty-four: ultraviolet disinfection. In:

Percival SL, Yates MV, Williams DW, Chalmers RM, Gray NF

(eds) Microbiology of waterborne diseases, 2nd edn. Academic

Press, London, pp 617–630. https://doi.org/10.1016/B978-0-12-

415846-7.00034-2

Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep

learning for visual understanding: a review. Neurocomput

Recent Dev Deep Big Vis 187:27–48. https://doi.org/10.1016/j.

neucom.2015.09.116

Hassan R, Cohanim B, de Weck O, Venter G (2004) A comparison of

particle swarm optimization and the genetic algorithm. In: 46th

AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics

and materials conference. American Institute of Aeronautics and

Astronautics. https://doi.org/10.2514/6.2005-1897

Heilingloh CS, Aufderhorst UW, Schipper L, Dittmer U, Witzke O,

Yang D, Zheng X, Sutter K, Trilling M, Alt M, Steinmann E,

Krawczyk A (2020) Susceptibility of SARS-CoV-2 to UV

irradiation. Am J Infect Control 48:1273–1275. https://doi.org/

10.1016/j.ajic.2020.07.031

Hendon H, Salby M (1994) The life cycle of the Madden–Julian

oscillation. J Atmos Sci. https://doi.org/10.1175/1520-

0469(1994)051%3c2225:TLCOTM%3e2.0.CO;2

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural

Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.

1735

Hollaender A, Buy HGD, Ingraham HS, Wheeler SM (1944) Control

of air-borne microorganisms by ultraviolet floor irradiation.

Science 99:130–131. https://doi.org/10.1126/science.99.2563.

130

Huang CJ, Kuo PH (2018) A deep CNN-LSTM model for particulate

matter (PM25) forecasting in smart cities. Sensors (Basel)

18(7):2220

Huang X, Zhang C, Li Q, Tai Y, Gao B, Shi J (2020) A comparison of

hour-ahead solar irradiance forecasting models based on LSTM

3036 Stochastic Environmental Research and Risk Assessment (2022) 36:3011–3039

123

https://doi.org/10.1016/j.jhydrol.2014.10.009
https://doi.org/10.1016/j.jhydrol.2014.10.009
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radiation-index
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radiation-index
https://doi.org/10.5194/acp-11-4521-2011
http://www.bom.gov.au/
http://www.bom.gov.au/
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1007/978-1-59745-029-4_10
https://doi.org/10.1109/GEOINFORMATICS.2010.5567490
https://doi.org/10.1161/CIRCRESAHA.109.207019
https://doi.org/10.1161/CIRCRESAHA.109.207019
https://doi.org/10.1016/j.envres.2017.01.035
https://doi.org/10.1016/j.envres.2017.01.035
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1175/BAMS-D-15-00053.1
https://doi.org/10.1175/BAMS-D-15-00053.1
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1016/j.renene.2019.07.104
https://doi.org/10.1016/j.neunet.2013.11.002
https://doi.org/10.1016/j.neunet.2013.11.002
https://doi.org/10.1016/j.energy.2018.09.116
https://doi.org/10.1016/j.energy.2018.09.116
https://doi.org/10.1111/1346-8138.15368
https://doi.org/10.1111/1346-8138.15368
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://doi.org/10.1016/B978-0-12-415846-7.00034-2
https://doi.org/10.1016/B978-0-12-415846-7.00034-2
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.2514/6.2005-1897
https://doi.org/10.1016/j.ajic.2020.07.031
https://doi.org/10.1016/j.ajic.2020.07.031
https://doi.org/10.1175/1520-0469(1994)051%3c2225:TLCOTM%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1994)051%3c2225:TLCOTM%3e2.0.CO;2
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1126/science.99.2563.130
https://doi.org/10.1126/science.99.2563.130


network [WWW document]. Math Probl Eng. https://doi.org/10.

1155/2020/4251517

Igoe D, Parisi A, Carter B (2013a) Smartphones as tools for delivering

sun-smart education to students. Teach Sci 59:36–38

Igoe D, Parisi A, Carter B (2013b) Characterization of a smartphone

camera’s response to ultraviolet A radiation. Photochem Photo-

biol 89:215–218. https://doi.org/10.1111/j.1751-1097.2012.

01216.x

Ji X, Shang X, Dahlgren RA, Zhang M (2017) Prediction of dissolved

oxygen concentration in hypoxic river systems using support

vector machine: a case study of Wen-Rui Tang River, China.

Environ Sci Pollut Res 24:16062–16076. https://doi.org/10.1007/

s11356-017-9243-7

Jiao G, Guo T, Ding Y (2016) A new hybrid forecasting approach

applied to hydrological data: a case study on precipitation in

Northwestern China. Water 8(9):367
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