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Earth  observation  data,  owing  to their  synoptic,  timely  and  repetitive  coverage,  have  been  recognized  as
a valuable  tool  for crop  monitoring  at different  levels.  At  the  field  level,  the  close  correlation  between
green  leaf  area  (GLA)  during  maturation  and  grain  yield  in  wheat  revealed  that  the  onset  and  rate  of
senescence  appeared  to be  important  factors  for determining  wheat  grain  yield.  Our  study  sought  to
explore  a simple  approach  for  wheat  yield  forecasting  at  the  regional  level,  based  on  metrics  derived
from  the  senescence  phase  of  the green  area  index  (GAI)  retrieved  from  remote  sensing  data.  This  study
took advantage  of  recent  methodological  improvements  in  which  imagery  with  high revisit  frequency  but
coarse  spatial  resolution  can  be  exploited  to  derive  crop-specific  GAI  time  series  by  selecting  pixels  whose
ground-projected  instantaneous  field  of view  is  dominated  by the target  crop:  winter  wheat.  A  logistic
function  was  used  to characterize  the  GAI  senescence  phase  and  derive  the  metrics  of  this  phase.  Four

regression-based  models  involving  these  metrics  (i.e.,  the  maximum  GAI value,  the  senescence  rate  and
the thermal  time  taken  to reach  50%  of the  green  surface  in the  senescent  phase)  were  related  to official
wheat  yield  data.  The  performances  of  such  models  at this  regional  scale  showed  that  final  yield could
be estimated  with  an  RMSE  of 0.57  ton  ha−1, representing  about  7% as  relative  RMSE.  Such  an  approach
may  be  considered  as a first yield  estimate  that could  be performed  in  order  to  provide  better  integrated
yield  assessments  in  operational  systems.
. Introduction

An early prediction of wheat yield prior to harvest at regional,
ational or international scales can play a crucial role in global mar-
ets and in policy and decision making. Many models for yield
orecasting are available with varying levels of complexity and
mpiricism. One example is the Crop Growth Monitoring System
CGMS), currently used operationally at the Joint Research Centre
f the European Union (EU) for predicting the total production of
arious crops in all EU Member States and neighbouring countries
Supit, 2000). However, uncertainty about the effect of drought due
o limited weather station density and poorly known soil param-
ters, the lack of information about irrigation and the weighting

f individual simulation results for administrative regions (Vossen
nd Rijks, 1995) have not been taken into account appropriately in
his system. Remote sensing has often been mentioned as a way
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of resolving some of these uncertainties, by retrieving biophysi-
cal variables from remote sensing observations and coupling them
with mechanistic growth models (Delécolle et al., 1992; Moulin
et al., 1998; Dorigo et al., 2007). Another option for yield forecast-
ing at the regional level is to use simple algorithms that can deal
with a strong spatial heterogeneity compared with more complex
models that treat the surface as homogeneous (Franks et al., 1997).

Leaf area index (LAI) is a key variable that relates to both the
structure and functioning of a vegetation canopy. Chen and Black
(1992) defined LAI as half the total developed area of green leaves
per unit of ground horizontal surface area. There are several meth-
ods for measuring LAI on the ground, using direct or indirect
approaches (Gower et al., 1999; Jonckheere et al., 2004; Weiss et al.,
2004). Ground measurements are time-consuming, rendering large
geographic coverage almost impossible. Therefore, more attention
has been paid to retrieving land surface variables, such as LAI, from
satellite imagery. Retrieving LAI at the local level from high spa-
tial resolution data has been done successfully in many studies

(e.g., Launay and Guerif, 2005; Hadria et al., 2010; Duveiller et al.,
2011b). But the types of images generally used in these studies
cannot be acquired cloud-free with both a high revisit frequency
(e.g., every 1–7 days) and over a large geographic area, which are

dx.doi.org/10.1016/j.jag.2012.01.009
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:al.kouadio@doct.ulg.ac.be
dx.doi.org/10.1016/j.jag.2012.01.009


1 arth Observation and Geoinformation 18 (2012) 111–118

t
C
R
s
a
e
1
i
p
s
t
i
o
c
s
t
p
w
u
v
n
s

m
o
s
l
2
2
a
g
e
d
f
i
t
r
o

2

2

a
g
S
t
a
u
t
w
r
a
b
N
a
l
T
f
i
r
a
o
(

cells, the necessary information for retrieving GAI (reflectance in
the red and near-infra-red band, plus the viewing geometry) was
compiled from level-2 MODIS Aqua and Terra collection 5 products

2 Available at http://epp.eurostat.ec.europa.eu/portal/page/portal/agriculture/
12 L. Kouadio et al. / International Journal of Applied E

wo requisites for crop growth monitoring at the regional scale.
urrent instruments meeting these criteria, such as the Moderate
esolution Imaging Spectroradiometer (MODIS), generally have a
patial resolution of about 250 m.  Some LAI products are available
t the global scale based on these types of instruments (e.g., Myneni
t al., 2002; Baret et al., 2007), but they have a spatial resolution of

 km,  which is too coarse to be crop specific over many landscapes
n the world (Duveiller and Defourny, 2010). To overcome this
roblem, Duveiller (2011) proposed a method for selecting coarse
patial resolution pixels whose observation footprint matched the
arget land cover. By using high spatial resolution masks delineat-
ng the fields covered with a target crop combined with a model
f the MODIS spatial response, crop specific pixel purity can be
alculated and used to select pixels from which a reliable crop
pecific time series of biophysical variables can be derived. When
he biophysical variable of interest is LAI, and all the main aerial
lant organs (leaves, stems and ears) photosynthesize (as in winter
heat), Duveiller et al. (2011b) argue that it is more appropriate to
se the concept of green area index (GAI) to refer to the biophysical
ariable retrieved through remote sensing because the electromag-
etic radiation reflected from the crop canopy that is encoded in a
atellite image is contributed by all the aerial plant organs.

The onset and rate of senescence are important factors for deter-
ining grain yield in winter wheat (Triticum aestivum L.). Studies

ver the past decade have shown that there is a close relation-
hip between the maintenance of the photosynthetic life of flag
eaves during grain filling and grain yield in wheat (Gooding et al.,
000; Reynolds et al., 2000; Richards, 2000; Dimmock and Gooding,
002; Blandino and Reyneri, 2009; El Jarroudi et al., 2010). In
ddition, modelling approaches estimate that at least 45% of the
rain carbohydrate content is derived from the flag leaf (El Jarroudi
t al., 2009). Because only flag leaves are considered, it might be
ifficult to implement these methods in a large-area monitoring
ramework. Indeed, few studies directly link parameters quantify-
ng GLA decrease to winter wheat yield. The aim of this study was
o explore an approach for forecasting winter wheat yield at the
egional scale, based on metrics derived from the senescence phase
f crop-specific GAI time series retrieved from remote sensing data.

. Materials and methods

.1. Study area and target spatial administrative units

The EU has subdivided its territory into a harmonised set of
dministrative units with different hierarchical levels. These geo-
raphical regions are called Nomenclatures des Unités Territoriales
tatistiques (NUTS), with NUTS0 being the entire national terri-
ory, NUTS1 the first division level of Member States and NUTS2
nd NUTS3 being smaller territorial units, respectively. The level
sed for agricultural statistics produced by the Statistical Office of
he European Communities (EUROSTAT) is the NUTS2 level, which
as therefore the level most appropriate for this study. The NUTS

egions, however, were designed to have comparable populations
t the same NUTS level. The surface of the region, which would
e appropriate for this study, is seen as a secondary criterion. The
UTS classification is also based on the administrative divisions
pplied in the Member States and therefore NUTS of the same
evel can have important differences in populations and surfaces.
he method presented in this paper was applied to winter wheat
or two crop seasons (2007 and 2009) over a study site compris-
ng Belgium and northern France. In northern France, the NUTS2

egions are much larger than Belgian NUTS2 regions: the aver-
ge area of French NUTS2 is 24,940 km2 (standard deviation, �,
f 11,375 km2), whereas the average Belgian NUTS2 is 2800 km2

� = 1200 km2). With regard to spatial extent, the French NUTS3
Fig. 1. Official statistics for wheat yield from 1999 to 2007. EU 25: European Union
25  countries.

(source: EUROSTAT)

regions (average area 5800 km2, � = 1800 km2) are more compara-
ble with Belgian NUTS2 and therefore it was these spatial entities
that were considered in this paper. In these units, the area covered
by winter wheat in 2000–2006 period ranged from 1% to 30% of the
NUTS surface: between 1% and 20% for Belgian NUTS2 (EUROSTAT2)
and between 11% and 30% for French NUTS3.3 The average yield in
these regions is high compared with the average yield at the EU
level (Fig. 1).

2.2. GAI retrieval from MODIS time series

Crop-specific GAI time series can be retrieved from MODIS
imagery over a fragmented agricultural landscape over several
growing seasons using a combination of radiative transfer mod-
elling, neural network inversion and thermal time interpolation
(Duveiller et al., 2011a).  To do this, a crop-specific mask is nec-
essary to identify which cells in the MODIS grid should be used to
provide adequate winter wheat time series. For this study, a win-
ter wheat mask based on Landsat data at a 30 m spatial resolution
was available from the GLOBAM4 project. The overall accuracy of
this crop-specific mask creation was  close to 90%. As described by
Duveiller et al. (2011a), a spatial response model for the MODIS
imaging instrument was then convolved over the mask to provide
a purity pixel map. This map  indicated the proportion of the signal
encoded in a MODIS pixel, which effectively comes from the target
surface (in this case, this surface consisted of fields under winter
wheat). The reflectance encoded in a pixel comes from a ground sur-
face that is often larger than that desired (Cracknell, 1998). Since
the size of the MODIS grid over the studied regions was close to the
winter wheat fields (Duveiller and Defourny, 2010), “pure” pixels
(i.e., whose signal comes 100% from winter wheat) are hard to find.
Instead, the purity map  was  used to select the MODIS cells with
at least 75% of pixel purity for winter wheat. For these selected
data/database.
3 Available at http://agreste.maapar.lbn.fr/ReportFolders/ReportFolders.aspx.
4 GLOBAM (GLObal Agricultural Monitoring systems by integration of earth obser-

vation and modelling techniques) project was financed by the Belgian Science Policy
(BELSPO) through the STEREO II programme.

http://epp.eurostat.ec.europa.eu/portal/page/portal/agriculture/data/database
http://epp.eurostat.ec.europa.eu/portal/page/portal/agriculture/data/database
http://agreste.maapar.lbn.fr/ReportFolders/ReportFolders.aspx
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Fig. 2. Examples of interpolation using the canopy structural dynamic model
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data interpolation was applied in CGMS (Supit, 2000). Weather
CSDM).

available at https://lpdaac.usgs.gov/). The neural network proce-
ure to extract GAI from these data is described by Duveiller et al.
2011a).

.3. Characterizing the GAI dynamic

The GAI estimated from remote sensing can be affected by
arious sources of error. These include inaccurate atmospheric cor-
ection, contamination of the reflectance from non-wheat land
over when pixel purity is low and shortcomings in the retrieval
ethod. The high temporal frequency of observations, however,

s enough to characterize the overall GAI dynamic. Mathematical
xpressions have long been used to interpolate ground LAI esti-
ations (Baret, 1986; Olesen et al., 2000). In our study, a canopy

tructural dynamic model (CSDM) was used to interpolate GAI in
ime and to describe the biophysical variable’s time course contin-
ously (Fig. 2). This semi-mechanistic model, developed by Baret
1986) and improved by Lauvernet (2005),  is expressed as follows:

AI(T) = A

[
1

[1 + exp(−a(T − T0 − Ta))]c − exp(b(T − T0 − Tb))

]

(1)

here a and b define the rates of growth and senescence, respec-
ively; c is a parameter allowing some plasticity for the shape of the
urve; A is a scaling coefficient; and T0, Ta and Tb are the thermal
imes of plant emergence, mid-growth and end of senescence. The
SDM is further parameterized so as to yield zero GAI once senes-
ence is over. The senescent phase of the curve follows a simple
1 − ebx) function. Fig. 2 shows an example of GAI curves fitted by
he CSDM function. As described in the next section, this CSDM was
sed to filter out the GAI time series that did not have a temporally

onsistent dynamic.

Our main interest was in the senescent part of the curve which,
ccording to Gooding et al. (2000),  could be described using a
bservation and Geoinformation 18 (2012) 111–118 113

modified logistic model (Eq. (2)). The following model was there-
fore also fitted on the GAI estimations:

GAI(T) = A

1 + [exp(−k(T − m))]
(2)

where A refers to the maximum value of GAI; m is the position of
the inflection point in the decreasing part of the GAI curve; k is the
relative senescence rate; and T is the thermal time expressed in
growing degree-days.

The modified logistic function describes a response that is sym-
metrical around the inflection point. When A is fixed at 100%, the
inflection point appears when GAI = 50% (i.e., m is the thermal time
taken to reach 50% green area).

The quality of curve fitting was  measured by the vari-
ance that accounted for (VAF): VAF(%) = 100 × (1 − (residual mean
square/total mean square)). The VAF using the modified logistic
function was compared with that using a modified Gompertz func-
tion in an equivalent way, expressed as follows:

GAI(T) = A · exp[− exp(−k(T − m))] (3)

The shape of the modified Gompertz model was similar to that of
the modified logistic function. The main difference was that in Eq.
(3) the inflection point m corresponded to the thermal time taken
to reach 37% of the green area.

2.4. Filtering out sub-optimal GAI profiles

The temporal GAI profiles could be sub-optimal for regional
yield characterization for several reasons. Some precautions were
therefore taken to filter out those that did not have the expected
shape of winter wheat or those with insufficient observations. The
following criteria were used to retain GAI profiles: (i) the num-
ber of observations in the growing season had to be above 10; (ii)
the temporal consistency: relative root mean square error (RRMSE)
between CSDM fit and observations < 15% (for time-series type
comparisons, RRMSE is sensitive to large deviations and relatively
insensitive to small deviations); (iii) the day of the year when max-
imum GAI was reached by the CSDM had to be above 135; (iv) the
pre-season remote sensing GAI had to be below 1.5 and the post-
harvest remote sensing GAI below 1.0. During these periods, winter
wheat GAI should be zero. If it is not, it might be an indication that
the pixel is actually not (only) representing winter wheat. How-
ever, some tolerance is necessary since there might be some other
vegetation influencing the signal, and the retrieval algorithm also
posed difficulties for assessing low GAI values (often resulting in an
erroneous residual GAI).

Fig. 3 presents the spatial distribution of pixels used in the pro-
cess before and after filtering at the study site. For the two crop
seasons 2007 and 2009, about 12% of pixels were efficiently used
in this approach: before filtering, the number of pixels was 16,630
in 2007 and 34,936 in 2009; after applying filters the selected pix-
els dropped considerably (1820 in 2007 and 4076 in 2009). These
pixels were globally distributed in 10 NUTS2 in Belgium and six
NUTS3 in northern France for the 2009 crop growing season, and
in 2007 crop season they were distributed in six NUTS2 and seven
NUTS3 (Fig. 3).

2.5. Climatic variables and calculation of thermal time

Meteorological input for the thermal time calculation was
based on 10 × 10 km grid cells. The methodology used for
data from weather stations were obtained from the Belgium
CGMS system for the Belgian territory and from the European
CGMS for areas outside Belgium. The spatial distribution of

https://lpdaac.usgs.gov/
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Fig. 3. Spatial selected pixels distribution at a northern European site. (A) Crop season 2007. (B) Crop season 2009. On the left: before applying filters (16,630 pixels in 2007
a and 40

s
s
t
t

nd  34,936 pixels in 2009). On the right: after applying filters (1820 pixels in 2007 
elected pixels was intersected with the grid cells. This inter-
ection was then used to derive the minimum and maximum
emperatures for the calculation of the corresponding thermal
ime.
76 pixels in 2009).
The thermal time, defined as the cumulative daily average tem-
perature (above a crop specific temperature threshold) between
two development stages (Masle et al., 1989), was used to express
crop development. In our study, thermal time was counted from the
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Table  1
Summary statistics and t tests for the VAF (%) using the modified Gompertz function and the modified logistic function.

VAF (%) N Method Mean 95% CL Mean SD 95% CL Std. dev.

VAF1 5896 72.25 71.61 72.90 25.27 – –
VAF2 5896 72.65 72.00 73.31 25.56 – –

Pooled −0.40  −1.32 0.52 25.42 25.09 25.75
Satterthwaite −0.40 −1.32 0.52

Method Variances DF t Value Pr > |t|
Pooled Equal 11,790 −0.86 0.3925
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Satterthwaite Unequal 1

AF1 refers to the modified Gompertz function and VAF2 to the modified logistic fu

ate of maximum GAI value and then cumulated for the following
ays.

.6. Yield forecasting modelling

The models were calculated by multi-linear regression. The
nputs were the derived metrics m, k, and GAImax (the max-
mum GAI value). The aggregation of these values at the
UTS level was done by taking the mean value of param-
ters for each NUTS. For the mean calculation, only pixel
rofiles with a VAF above a given threshold (corresponding
o the VAF of at least two-thirds of the total pixel profiles)
ere taken into account in the aggregation process at the
UTS level. Official statistical yield data were the reference for

he calibration phase. French NUTS3 yield data are available
t http://agreste.maapar.lbn.fr/ReportFolders/ReportFolders.aspx;
elgian NUTS2 yield data are available at http://statbel.fgov.be/

r/statistiques/chiffres/economie/agriculture/exploitations/.
Models selected for validation were those with at least two vari-

bles (variables were not correlated). Validation was  performed
sing a bootstrap method because of the small number of NUTS
sed in the analysis. The program used to test the robustness of
elected models is detailed in Appendix A. The use of the boot-
trap method allows one to approximate the distribution of test
tatistics in settings where analytic calculations are intractable or
n small samples where large-scale asymptotic results might not
old (Austin and Tu, 2004). The bootstrap method also provides

ess biased and more consistent results than the Jack-knife method
Fan and Wang, 1996).

Statistical indicators (RMSE and adjusted R2 Radj
2) were used to

uantify the performances of models expressing the relationship
etween observed yields and metrics. The RMSE gave the weighted
ariations in errors (residual) between the predicted and observed
ields. It is one of the most widely used error measures and can be
onverted in relative RMSE by dividing by the mean of observed
ield. The RMSE is calculated as follows:

MSE =
√

SSE
n − p

here SSE indicates the sum of squared errors; n is the number of
bservations; and p is the number of parameters in the model.

The R2 value for a regression can be made arbitrarily high sim-
ly by including more and more predictors in the model. The Radj

2

alue, however, is one of several statistics that attempts to com-
ensate for this artificial increase in accuracy. It is calculated as
ollows:

adj
2 = 1 − (n − 1)(1 − R2)
n − p

tatistical analyses relating to curve-fitting and modelling (gener-
lized linear regression for calibration and the bootstrap method
or validation) were carried out using the Proc NLIN and Proc
 −0.86 0.3925

n.

GENMOD procedures, respectively, of SAS® software (version 9.1,
SAS Institute Inc., Cary, NC, USA).

3. ResultsGAI decreasing curve fitting

By grouping the percentages of VAF after curve-fitting, the class
with a high percentage was  the one with a VAF greater than 67%.
There were 68% of “pure” pixels profiles where the variances were
better explained by the modified logistic function. The percentages
of VAF for the other classes were 11% and 21%, respectively, for
a VAF less than 33% and a VAF between 33% and 67%. For yield
forecasting modelling, the threshold of 67% was taken into account
in the aggregation of model inputs at the NUTS level.

A comparison with the VAF by a modified Gompertz function
showed that there was  no significant difference (  ̨ = 0.05) with the
VAF by the modified logistic function (Table 1).

A group test statistic for the equality of means was reported
for both equal and unequal variances. Both tests indicated the lack
of evidence of a significant difference between different VAF values
(t = −0.86 and p = 0.3925 for the pooled test, t = −0.86 and p = 0.3925
for the Satterthwaite test).

3.1. Regression-based models

Correlation analyses between explanatory variables showed
that there was  no significant correlation between them. Therefore,
four models were tested:

- Mod1: Yield = f(m,  GAImax)
- Mod2: Yield = f(k, GAImax)
- Mod3: Yield = f(m,  k)
- Mod4: Yield = f(m,  k, GAImax)

The generalized linear regression generated multiple tables that
allowed the quality of regression to be assessed. Table 2 presents
a summary of the regression-based models. Globally, the mod-
els were highly significant (P < 0.001), except for model Mod3.
The Radj

2 varied between 0.47 and 0.57, with no difference in
the RMSE (RMSE = 0.57 ton ha−1). Converted in relative RMSE, this
value represented about 7%. The scale parameter (Table 2) char-
acterized the statistical dispersion of the probability distribution
of the parameter of the model (Efron and Tibshirani, 1986). It was
estimated according to maximum likelihood. The smaller was, the
better the model prediction. Mod1 and Mod2 had similar per-
formances in terms of Radj

2, scale parameter and RMSE. These
two models involved either metric m or metric k and GAImax as
explanatory variables. Only Mod3, which took metrics m and k into
account, presented poor results relating to its small Radj

2 and high

mean of residuals and scale parameter (Table 3). When metrics m
and k were used only as explanatory variables, wheat yield could
not be adequately estimated. Comparing the four models, model
Mod4 gave the best estimations for wheat yield: low value of the

http://agreste.maapar.lbn.fr/ReportFolders/ReportFolders.aspx
http://statbel.fgov.be/fr/statistiques/chiffres/economie/agriculture/exploitations/
http://statbel.fgov.be/fr/statistiques/chiffres/economie/agriculture/exploitations/
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Table  2
Statistical results of regression-based models.

Radj
2 RMSE (ton ha−1) Model significance (P > F)a Scale parameter

Mod1 0.47 0.57 *** 0.78
Mod2 0.47 0.57 *** 0.78
Mod3 0.03 1.08 ns 1.06
Mod4 0.51 0.57 *** 0.76

Significance levels: *** = P < 0.001; ns = P > 0.05.
a P value associated with F value (this ratio compares variability explained by the regression line with variability not explained by the regression line).

Table  3
Performances of selected models after bootstrapping (n = 11,000).

RMSE (ton ha−1) Mean residuals SD of residuals Lower 95% CL for Mean residuals Upper 95% CL for Mean residuals

m
(
v
w

F
(

Mod1 0.56 0.59 0.45 

Mod2  0.57 0.59 0.44 

Mod4  0.55 0.56 0.42 

ean of residuals and scale parameter, good RMSE, and good Radj
2

Tables 2 and 3). Fig. 4 is a graphical representation of official yields
ersus predicted yields by models. This figure shows the worst
heat yield estimation given by Mod3. All the other three models
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presented a satisfactory distribution in the same range of yield

(6.5–11.0 ton ha−1) around the line 1:1, whereas the range of pre-
dicted values with model Mod3 was about 8–9 ton ha−1 (Fig. 4) and
inadequately distributed around this line.
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The maximum GAI value seemed to be one key variable in the
stimation. A simple model between official yields and this met-
ic gave no significant results (Radj

2 0.34 and RMSE 0.90 ton ha−1).
he use of other parameters, such as metrics derived from the
ecreasing curves, however, significantly increased (in addition to
he GAImax) the accuracy of the final yield estimation.

. Discussion

The aim of this study was to explore an approach for wheat
ield estimation at the regional level, based on the senescence
hase of crop-specific GAI retrieved from remote sensing data. The
rst hypothesis tested concerned the description of the senescence
hase. Large scale studies of crop growth monitoring by remote
ensing showed that a negative exponential model based on a sim-
le combination of two  parameters for leaf senescence modelling
ould be used to describe the senescence part of wheat growth
Baret and Guyot, 1986). At the field level, the decrease part of GAI
as adequately described by a modified logistic function like the

ne used for flag leaves (Gooding et al., 2000; Kouadio et al., in
ress). The study therefore sought to verify the potential of such a
odified logistic function in crop yield forecasting at the regional

evel by developing a regression-based model that relied on met-
ics of decreasing curves and the maximum GAI value extracted
rom remote sensing over a large geographic area. The results pre-
ented here show that final yield could be adequately estimated
rom these parameters. This conclusion partly reflects that reached
y Baret and Guyot (1986),  who showed that wheat production
ould be estimated from the senescence rate and other parameters.
hese preliminary results suggest that a simple but reliable yield
rediction models could be developed. Wheat yield can be esti-
ated from metrics derived from the GAI decreasing curve and its
aximum value, based on an empirical approach. One of the main

rawbacks of empirically based models for estimating crop yield
as been that their application is valid only for the area for which
hey have been calibrated. Nonetheless, they are often the preferred
pproach because they are easy to implement and have limited
ata requirements (Doraiswamy et al., 2005; Moriondo et al., 2007;
ecker-Reshef et al., 2010). By extending the senescence-based
pproach developed here, further studies will show the degree of
recision that can be achieved compared with existing operational
ystems at the regional scale.

As has been well documented, for many empirical remote sens-
ng based yield models it is assumed that the canopy vigour of

inter wheat estimated by spectral measurements (e.g., NDVI) is
irectly related to final winter wheat yields (Ferencz et al., 2004).
he fact that the maximum GAI value was listed as an explana-
ory variable for all three best models in this study also follows this
ssumption. As Becker-Reshef et al. (2010) noted in their study,
ne of the limitations of an empirical and remote sensing based
egression model that relies on the maximum spectral NDVI mea-
urements to estimate yields is that it cannot capture the impact
f events that reduce yield but do not reduce the peak of green
iomass. Metrics describing the senescence part of wheat GAI
ere calculated using the thermal time concept, which is more

losely related to crop development stages. The factors that can
ead to a loss of final yield after the peak GAI value could be taken
nto account through the shape of the decreasing curve. The good
ccuracy of models developed using this approach is therefore
onsistent with the concept that remote sensing data are a direct
easurement of vegetation conditions that integrates the effect of
ll major environmental factors (Moriondo et al., 2007).
The lack of close correlation between the GAImax and observed

ields on the one hand, and the results in terms of final yield esti-
ation accuracy by adding metrics from the senescence part on
bservation and Geoinformation 18 (2012) 111–118 117

the other hand, suggest that a regression-based model that relies
on metrics derived from this part of the growth cycle could serve
as a good indicator of yield prior to harvest. The relative simplicity
of this approach gives it fundamental advantages for regional-scale
operational applications.

Wheat (common and durum wheat) is by far the most important
crop in Europe in terms of production. Its production represents
almost half of all cereal production: in 2008 and 2009, wheat
accounted for 48% and 47%, respectively, of EU cereal produc-
tion (EUROSTAT, 2010). Our study sites were located in regions
where average yields vary slightly (see Fig. 1). Based on the results
obtained for two  crop seasons, studies are being undertaken to
assess the uses of this approach to help explain the inter-annual
variability of wheat yields in these regions.

5. Conclusion

With the recent developments in earth observation data acqui-
sition, the accurate and timely estimation of crop yields on regional,
national and international scales has become increasingly pos-
sible in developing and developed countries. In this study, an
approach for wheat yield estimates at regional level was explored.
This approach was  based on metrics derived from the decrease
part of GAI temporal profiles. Wheat-specific GAI time series
were retrieved from MODIS daily reflectance using a methodol-
ogy that could be used in an operational monitoring context. A
modified logistic function was then fitted to the decreasing GAI
curves to calculate the metrics characterizing these shapes. Finally,
regression-based models were developed using these metrics and
the maximum GAI value. The results of this preliminary study show
that the final yield could be estimated using this approach. Further
research on applying the approach to other areas and years of GAI
measurements is expected to confirm these results.
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Appendix A. Example of program used to test the
robustness of selected model

/* Macro used for the validation phase. The model assessed here involves
metrics mgomp and GAImax as explanatory variables */

%macro bootstrap (Nsamples);

/* Bootstrap with case resampling. This step involves sampling with a
replacement from our original dataset to generate a new dataset
three-quarters the size of our original dataset. The bootstrapped datasets are
stored together as one big dataset called boot */
out=boot;
run;

/* Perform regression on the new dataset */
proc genmod data=boot;
class Country;
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model  Yield=Country Mgomp GAImax/type3;
freq numberhits;
by replicate;
output out=Estimation p=yhat resdev=residu; run;
data estimation;
set estimation;
rest=abs(residu); run;
proc means data=estimation n mean std clm;
var rest;
title ‘bootstrap results’; run;

mend;
bootstrap(500);
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