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ABSTRACT 

 The bubble-particle (BP) detachment is a significant factor in controlling the recovery of 

coarse particles in mechanical flotation cells. It has been quantified by balancing the restoring force 

of surface tension and the centrifugal force exerted on the particle-bubble aggregate by the turbulent 

flow field using a “machine acceleration”. The concept of machine acceleration is useful because it 

links the mean energy dissipation rate of turbulence with the condition of the BP detachment. Here 

we further examine the concept of machine acceleration by applying the theory of isotropic 

turbulence. We confirm the known results of the first approximation for the inertial subrange. We 

also show that the turbulence acceleration has two principal components, i.e., the longitudinal and 

transverse components measured relatively to the BP centre-line. Significantly, the longitudinal 

component corresponds to the centrifugal force of turbulence against the restoring force of surface 

tension. The transverse component can be significant to quantifying the BP detachment if the 

turbulence shear is strong. We also extend the theory to cover the full range of isotropic turbulence, 

from the viscous to inertial subranges. Our estimation of the transition from the viscous to inertial 

subrange shows that the viscous effect can critically affect the BP detachment. Finally, our 

assessment of the contributions of the longitudinal and transverse components to the machine 

acceleration reveals the importance of the transverse component which can lead to a rather poor 

approximation for the machine acceleration as currently used. This paper shows that the effect of 

turbulence on the BP detachment should be better quantified using both the longitudinal and 

transverse components of turbulence acceleration rather than their modulus as the first 

approximation being termed the machine acceleration. 
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1. INTRODUCTION 

In the operation of mechanical flotation cells, the ore is ground to a given degree of a fineness 

sufficient to liberate valuable particles from gangue particles (Jameson, 2010; Nguyen and Schulze, 

2004; Wang et al., 2016b). The rate of recovery of minerals from flotation pulps reduces with 

increasing particle size due to the detachment of coarse particles from bubbles in the region of high 

rate of energy dissipation (Goel and Jameson, 2012; Schulze, 1977, 1982). It is highly desired to 

establish a suitable particle size to maximise the flotation recovery and minimise the unnecessary 

consumption of energy spent on overgrinding. However, this task of optimisation remains unsolved 

since our understanding of the BP detachment is still limited due to the complex (multiphase and 

multiscale) dynamics of turbulence involved in flotation. 

During the past decades, many researchers have investigated the bubble-particle detachment 

phenomenon in flotation both experimentally and theoretically. It is established that except for the 

region far away from the impeller, the turbulent flow is isotropic and can be described by the 

Kolmogorov theory of isotropic turbulence. Schulze (Schulze, 1977, 1982) developed a model based 

on the isotropic turbulence theory to quantify the BP detachment. The key assumption of the theory 

is that the bubble-particle aggregate is trapped inside a rotating eddy of the scale of isotropic 

turbulence. In his theory, Schulze introduced and used the Bond number ( Bo ) which is defined by 

the ratio of the centrifugal to surface tension force. The particle detaches from the bubble if the 

centrifugal force on the particle exceeds the surface tension force, i.e., >1Bo . The centrifugal force 

is a known detaching force and is a function of the machine acceleration which is denoted by mb . 

Schulze’s theory of detachment has been followed by many researchers (Goel and Jameson, 2012; 

Nguyen and Schulze, 2004; Wang et al., 2016a, 2017). In Schulze’s theory (Schulze, 1977, 1982), 

it is assumed that the radius of rotation is equal to the bubble diameter. Recently, it is considered by 

Jameson et al. (Goel and Jameson, 2012; Jameson et al., 2007) that the diameter of rotation is equal 

to the diameter of the bubble. Nothing is wrong with these two hypotheses since the first hypothesis 

is true if the centre of the eddy rotation is at the bubble surface while the second one is valid if the 

rotation is centred at the bubble centre. Unfortunately, direct experiments to provide data for 

validating the assumptions are limited. Based on their experimental results, Goel and Jameson 

(2012) found that the detachment occurs over a range of their modified Bond numbers ( mBo ), even 
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when the Bond numbers are quite small ( 0.45, 0.4mBo Bo  ). Wang et al. (2016a) conducted a 

novel experiment with a BP aggregate introducing into a cavity flow to study the BP detachment in 

a rotating eddy and verify Schulze’s theory of detachment (Schulze, 1977, 1982). Their results 

showed that the averaged centrifugal acceleration is nearly 23 times gravitational acceleration at 

detachment, i.e. the gravity effect on detachment is negligible compared to the effect of turbulence. 

The authors also developed a BP detachment model using the computational fluid dynamic (CFD) 

approach with several turbulence models, neglecting the effect of bubble and particle motion on the 

surrounding fluid (Wang et al., 2017). In their model, the centrifugal acceleration mb  and the 

probability of particle detachment 
dP  are determined as a function of the turbulence vorticity,  . 

The particle detachment ( 1dP  ) occurs in the regions on the top and bottom of the wall cavity near 

the downstream wall where the vorticity, the shear rate and the energy dissipation rate are high. 

In this article, we examine and extend the concept of machine acceleration used to model the 

BP detachment in flotation. The correlation of bubble and particle accelerations is calculated by 

using the correlation method in conjunction with the theory of isotropic turbulence. The bubbles and 

solid particles are represented by the fluid particles at their locations whose motion is governed by 

the Navier-Stokes equations (NSEs). The bubble-particle acceleration correlation is approximated 

by the fluid-fluid particle acceleration correlation having two principal components, i.e., the 

longitudinal and transverse components measured relatively to the BP centre-line. Their modulus 

for the inertial subrange is the known machine acceleration. Then we investigate the influence of 

bubble and particle sizes, and dissipation rate of turbulence energy on the machine acceleration and 

the longitudinal and transverse components of the BP acceleration correlation. We also extend the 

theory to cover the full range of isotropic turbulence, from the viscous to inertial subranges, and 

compare the obtained results with those for the inertial subrange. 

2. CORRELATION OF FLUCTUATING ACCELERATION OF TWO LIQUID 
PARTICLES 

As the first approximation, the bubbles and solid particles are represented by the fluid particles 

at their locations whose motion is governed by NSEs with the Lagrangian frame of reference and is 

described as follows:  
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Applying the Reynolds decomposition where the instantaneous quantities are decomposed into their 

time-averaged and fluctuating components (i.e. '
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Hereafter, we only deal with the fluctuating terms (i.e., fluctuating velocity, acceleration and 

pressure) and the prime denoting fluctuations is neglected for simplicity. Therefore, Eq. (2) is 

rewritten as follows: 
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Figure 1. A bubble-particle detachment model (not to scale), designed relative to an origin O. 

The correlation of the fluctuating acceleration of fluid particles at positions x  (bubble 

position) and *x  (particle position) is determined by 
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Eq. (4) can be expanded, giving: 
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Two terms on the right hand side of Eq. (5) are the correlations of acceleration due to the pressure 

and velocity fields, respectively. They are defined by the following equations: 
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The transverse and longitudinal components of 
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Eqs. (6) and (7). The detailed derivations can be found in the Appendix. The results are given as 

follows:  
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where the functions f and 
nf are defined by 

   

2

V V

ll nnB B
f

r


   (12) 

  2

3

V

n nnf D B   (13) 

The structure function of pressure fluctuations    p
D r  in Eq. (13) can be determined from 

the theory of isotropic turbulence (Panchev and Haar, 1971) and can be described as follows: 
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It is noted that Eq. (14) is applicable for the entire range of distance r  between the particles. 

If the structure function of pressure fluctuations 
   p

D r  is known, then the correlation 

function of pressure fluctuations can then be determined (Panchev and Haar, 1971) and gives 

           
1

0
2

p p p
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where 
   0

p
B  is a constant. The following Sections focus on modelling the machine acceleration.   

2.1  General prediction of the machine acceleration, 
 a

mb  

The potential vector field 
   1/ /

p

i ia p x      and the solenoidal vector field 
 V

ia V   are 

stochastically homogeneous and isotropic, and hence they are stochastically uncorrelated. 

Therefore, we have 
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 are determined by Eqs. (8)-(11). The magnitude of the 

correlation of the fluctuating accelerations is calculated as follows: 
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where the vertical bars denote the modulus (i.e., the magnitude) of vector-like variables – in the case 

of numbers they describe the absolute values. Note that the force associated with the correlation of 

the fluctuating accelerations (  a

bpB
F ) is a detaching force, causing the particle detachment from the 

bubble surface. This force has two principal components, i.e., the longitudinal and transverse 

components measured relatively to the BP centre-line, i.e.,  a

bpllB
F  and  a

bpnnB
F ,  as shown in Figure 1. 

In the present study, the bubble and particle are represented by two fluid particles as per the first 

principle employed in the current modelling of BP detachment interaction. Thus,  a

bpllB
F  and  a

bpnnB
F are 

the functions of 
 a

llB  and 
 a

nnB , respectively. 

The angle between the total force  a

bpB
F and the BP centre-line can also be calculated as shown 

by Eq. (19). 
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2.2  Modelling of   a

mb  in the inertial subrange 

2.2.1  Determination of        
, , ,

V V V V

ll nn ll nnD D B B  in the inertial subrange 

In the inertial subrange, the second-order longitudinal structure function is given by the 

following equation (Alipchenkov and Zaichik, 2003; Panchev and Haar, 1971): 

    2/3 2/3V

llD r C r   (20) 

where 2.0C   is a numerical constant. Substituting Eq. (20) into Eq. (14) yields 
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Substituting Eqs. (24) and (25) into Eq. (12) gives 

  2/3 4/31

6
f r C r    (26) 

Substituting Eq. (25) into Eq. (13) also gives 

2/3 10/380
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n

C
f r     (27) 

2.2.2  Determination of 
 a

mb  in the inertial subrange 

Substituting Eq. (22) into Eqs. (8) and (9), the correlation functions 
  
 

p
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p
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Substituting Eqs. (26) and (27) into Eqs. (10) and (11) yields 
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Making use of Eqs. (18), (28), (29), (30), and (31), the magnitude of the correlation of the fluctuating 

accelerations mb  is obtained as follows: 
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Neglecting the viscous effect, Eq. (18) reduces to 
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which is identical to the mean machine acceleration introduced by Schulze (1982). 

2.3  Modelling of  
 a

mb  in the entire range of isotropic turbulence length scale 

2.3.1  Determination of         
, , ,

V V V V

ll nn ll nnD D B B  in the entire range  

A continuous description of the longitudinal structure function of velocity fluctuations for the 

entire range of distances r  can be approximated as follows (Zaichik et al., 2008): 
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where / Kr r  . Upon expanding the terms of Eq. (34),  we obtain  
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The model parameters in Eq. (35) are defined as follows:  
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Taking the derivative and arranging the results yield 
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For the solenoidal velocity field of water flow, in three-dimensional space, the transverse component 

of the structure function is calculated from the longitudinal component as follows (Panchev and 

Haar, 1971): 
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It is recalled that in Eqs. (36) and (37), 2C   and the Reynolds number Re  calculated for 

the Taylor microscale is given by 
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Substituting Eq. (38) into Eq. (14) and calculating the integrals in Eq. (14) approximately using the 

trapezoidal method, we get the structure function of pressure fluctuations in the entire range of r . 

The correlation function of pressure    p
B r  is then obtained by Eq. (15). The first and second 

derivatives of the function    p
B r  are approximately calculated using the central-finite difference 

schemes. In addition, the longitudinal and transverse components of the velocity correlation (
 V

llB  

and 
 V

nnB ) for the entire range are determined as follows: 
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Finally, we obtain the following useful predictions for calculating the machine acceleration: 
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2.3.2  Determination of  a

mb  in the entire range  

The value of 
 a

mb  for the entire range of r  can be numerically calculated employing Eqs. (8)-

(18). The numerical results are presented and discussed below. 

3. RESULTS AND DISCUSSION 

3.1  Verification of the numerical model using the results for the inertial subrange 
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Figure 2. Comparison of the mean machine acceleration 
mb  w.r.t. 

pR  between Schulze’s model and 

Model 1, for 1 mmbR   and 5.0 W/kg  . 

As mentioned above, our present model takes into account both the pressure and viscous 

effects while Schulze (1982)’s model neglects the viscous effect. The results obtained by both the 

models for the inertial subrange are indistinguishable as shown in Figure 2, indicating that the 

machine acceleration mainly depends on the local gradient of pressure, not on the viscous force. 

Since the structure function for the full range of isotropic turbulence (Eq. (35)) is much more 

complicated than that for the inertial subrange as described by Eq. (20), it is very difficult to obtain 

the analytic expression of the machine acceleration 
 a

mb  for the full range. Therefore, we use a 

numerical approach based on the finite difference method for approximating the derivatives in the 

process of calculating  
 a

mb  and the trapezoidal method for the integrals.  

Firstly, we verify our numerical approach through the solution of 
  p

a

mb  for the inertial 

subrange. The obtained numerical result is compared with the analytic solution of 
  p

a

mb  given by 

Eq. (33). We determine the structure function of pressure fluctuations    p
D r  by Eq. (14) where 

the integrals are approximated using the trapezoidal method. Since the upper limit of the second 

integral (called max ) is infinite, we need to choose max  large enough to obtain the converged result 

of the integrals. The dependence of the solution on max  is investigated below. The correlation 

function of pressure 
   p

B r  is then obtained by Eq. (15). The first and second derivatives of the 

function 
   p

B r  (  
/

p
B r   and 

 2 2/
p

B r  ) are approximately calculated using the central-finite 

difference schemes. Since the values of  
/

p
B r   and 

 2 2/
p

B r   are determined numerically, we 

need to conduct the grid convergence study of  
/

p
B r   and 

 2 2/
p

B r   to determine a grid size 

r  which is fine enough to get accurate results. 

The relative error norm  Ne u  is calculated as follows: 
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where the subscript a  represents the analytic solution; and N  the total number of grid points in the 

computational domain. If the numerical solution is convergent, the relative error norm Ne  reduces 

with respect to the grid refinement and the increase of 
max .  

Figure 3 shows the dependence of the results of 
  p

a

mb ,    p
D r ,  

/
p

B r   and 
 2 2/

p
B r   on 

the values of max  and r . As expected, the larger  max  and the smaller r , the more accurate the 

solution is. The approximate and analytic results of 
  p

a

mb  as well as    p
D r ,  

/
p

B r   and 

 2 2/
p

B r   are in good agreement as shown in Figure 4 for max 1.0 , / 5 4.2Km r m      . 

Therefore, we choose max 1.0 , / 5 4.2Km r m       for the following numerical calculations.  

 

Figure 3. The inertial subrange case: grid convergence study of 
      ,

p
a p

mb D r ,  
/

p
B r   and 

 2 2/
p

B r   versus the grid size r  for different values of  max 0.1,1.0, 2.0,10.0 m  . 
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Figure 4. The inertial subrange case: comparison of 
      ,

p
a p

mb D r ,  
/

p
B r   and 

 2 2/
p

B r   

profiles between the approximate and analytic results for max =1.0 m, /5=4.2μmKr   . 

3.2  Comparison of results between the inertial subrange and the entire range of 
isotropic turbulence 

Figure 5 presents the comparison of results between the inertial subrange 
   V

llD r  profile 

(Eq. (20)) and the entire range 
   V

llD r  profile (Eq. (35)) for max =1.0 m, /5=4.2μmKr    and 

2 2 2

0 =0.0033 m /su . Note that the former profile is just valid in the inertial subrange ( K r  , 

  is the macro-turbulence length scale (Nguyen et al., 2016)). Here, the bubble size is 

K=1mm=47.2bR  . The entire range 
   V

llD r  profile is suitable for a wide range of turbulent length 

scales. It can be seen in Figure 5 that the results of 
  p

a

mb  and 
 a

mb  associated with the entire range 

profile are much smaller than those associated with the inertial range profile. The corresponding 
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results for 2 2 2

0 =1m /su  are presented in Figure 6 showing that the results of 
  p

a

mb  and 
 a

mb  associated 

with the entire range profile are also smaller than those associated with the inertial range profile. It 

appears that the results of the present model (
 a

mb ) and those of Schulze (1982) (
  p

a

mb ) almost 

coincide for both the cases of inertial subrange and entire range. 

For the entire range, the magnitude of 
 a

nnB  is smaller than that of 
 a

llB  thus  
45

a
   for 

2 2 2

0 =0.0033 m /su  (Figure 7) while the magnitude of 
 a

nnB  is larger than that of 
 a

llB  thus  
45

a
   

for 2 2 2

0 =1m /su  (Figure 8). This indicates that the transverse component of turbulence acceleration 

  a

nnB  becomes more important as the turbulence intensity ( 2

0u ) is stronger. The influence of 2

0u  on 

the turbulence acceleration is further investigated in the following section. 
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(a) 

(b) 

Figure 5. Comparison of 
 a

mb  and 
  p

a

mb results between the inertial subrange and the entire range 

for max =1.0 m, /5=4.2μmKr    and 2 2 2

0 =0.0033 m /su . 
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(a) 

 (b) 

Figure 6. Comparison of 
 a

mb  and 
  p

a

mb results between the inertial subrange and the entire range 

for max =1.0 m, /5=4.2μmKr   and 2 2 2

0 =1m /su . 
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(a)  

(b) 

Figure 7. Numerical results of  
     

, ,
a a a

nn llB B   for the entire range for 

max =1.0 m, /5=4.2μmKr     and 2 2 2

0 =0.0033 m /su . 



 
20 

(a) 

(b) 

Figure 8. Numerical results of  
     

, ,
a a a

nn llB B   for the entire range for 

max =1.0 m, /5=4.2μmKr    and 2 2 2

0 =1m /su . 
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3.3  Influence of , ,b pR R   and 2

0u  on  a

mb and  a
 for the entire range 

 (a) 

 (b) 

Figure 9. The entire range case: influence of bR  and pR  on (a) 
 a

mb  and (b)  a
  for 2 2 2

0 =1m /su  and 

=5 W/kg . 
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 (a) 

 (b) 

Figure 10. The entire range case: influence of   and pR  on (a) 
 a

mb  and (b)  a
  for 2 2 2

0 =1m /su  

and =1mmbR . 
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 (a) 

 (b) 

Figure 11. The entire range case: influence of 2

0u  and pR  on (a) 
 a

mb  and (b)  a
  for =5 W/kg  

and =1mmbR . 

 Figure 9 shows the influence of bR  and pR  on 
 a

mb  and  a
  for 2 2 2

0 =1m /su  and =5 W/kg

. Figure 10 presents the influence of   and pR  on 
 a

mb  and  a
  for 2 2 2

0 =1m /su  and =1mmbR . 



 
24 

Figure 11 describes the influence of 2

0u  and 
pR  on 

 a

mb  and  a
  for =5 W/kg  and =1mmbR . 

These figures show that  
 a

mb  reduces with increasing 
pR  and bR , and increases with increasing   

and 2

0u . The magnitude of  a
 increases with increasing 2

0u , indicating that the transverse 

component of turbulence acceleration become more important as increasing the turbulence intensity. 

 

3.4  General discussion 

The machine acceleration is determined based on the correlation of the turbulence acceleration 

due to both the pressure and velocity fields as described by Eqs. (16)-(18), in relation with the 

longitudinal structure function of velocity fluctuations 
 V

llD  for the entire range of isotropic 

turbulence. As shown by Eq. (34), 
 V

llD  is a function of turbulence intensity (represented by 2

0u ) and 

the Reynolds number Re
 which is a function of   and 2

0u  - see Eq. (40). In a mechanical flotation 

cell, the turbulence intensity  2

0u  as well as the dissipation rate of kinetic energy    vary with 

respect to the position relative to the impeller. Specifically, in the region near the impeller, the values 

of 2

0u  and   are high (the transverse component of turbulence acceleration is high) while they are 

lower in the upper regions of the flotation cell (the transverse component of turbulence acceleration 

is lower). Therefore, the machine acceleration also varies with the turbulence intensity and the 

dissipation rate throughout the flotation cell. The information of 2

0u  and   in the flotation cell can 

be obtained by using measurement techniques or CFD simulations with an appropriate turbulence 

model. It is noted that CFD simulation results must be validated by comparison with the 

experimental data. Therefore, it is highly necessary to develop an accurate measurement technique 

to determine 2

0u  and   in the abrasive opaque and multiphase environment in a flotation cell, which 

is crucial for calculating the machine acceleration. 

 

4. CONCLUSIONS 

In this article, we have applied the isotropic turbulence theory in conjunction with the 

correlation method to examine and extend the concept of machine acceleration. The present model 

of BP detachment is derived under an assumption that the motion of bubble and particle is the same 

as that of the liquid particles at their positions, i.e., the density of particles and bubbles is not taken 
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into account. Our present model of BP detachment (taking into account the viscous effect) and 

Schulze (1980)’s model (neglecting the viscous effect) yield almost the same results, indicating that 

the viscous effect is negligible compared to the pressure effect. We have also extended the present 

model to cover the full range of isotropic turbulence. Since the structure function for the entire range 

is more complicated than that for the inertial subrange, we have developed a numerical model based 

on the trapezoidal method and the central-finite difference schemes to calculate the correlation of 

turbulence acceleration, including its longitudinal and transverse components, and modulus (i.e., the 

machine acceleration). The numerical model has been successfully verified through the solution for 

the inertial subrange. Then, the numerical model has been applied for the entire range of isotropic 

turbulence to investigate the influence of the bubble and particle radii ( bR and 
pR ), dissipation rate 

  , and mean square of turbulence intensity  2

0u  on the correlation of turbulence acceleration. 

Numerical results show that the machine acceleration reduces with increasing 
pR  and bR , and 

increases with increasing   and 2

0u . Importantly, the transverse component of turbulence 

acceleration becomes more important as the turbulence intensity increases. Therefore, both the 

longitudinal and transverse components of the turbulence acceleration should be considered when 

quantifying the BP detachment in flotation. 
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APPENDIX: DETERMINATION THE TRANSVERSE AND LONGITUDINAL 

COMPONENTS OF 
  
 

p
a

ijB r  AND 
  

 
V

a

ijB r  

The correlation of the acceleration due to the pressure field 
  
 

p
a

ijB r  given by Eq. (6) can be 

re-written as follows: 

  
 

     2 2

2 * 2 2

1 1 1p p p p
a j

ij

i j i j i

rB B B
B r

x x r r r r r  

    
      

      
  (A.1) 
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2

1 1 1 1p

p p
a

ij i j ij

B B
B rr

r r r r r r




    
           

r   (A.2) 

It is noted that 
  
 

p
a

ijB r  is the correlation of a random potential vector field. Therefore, the second-

order tensor 
   pa

ijB r  in homogeneous isotropic turbulence can be described by 

   
   

 
2

p p

p p

a a
a all nn

ij i j nn ij

B B
B rr B

r



 r   (A.3) 

Making use of Eqs. (A.2) and (A.3) results in the following simplified expressions: 

  
 

 

2

1 1p p
a

nn

B
B r

r r


 


  (A.4) 

  
 

 2

2 2

1p p
a

ll

B
B r

r


 


  (A.5) 

The correlation of the acceleration due to the velocity field 
  

 
V

a

ijB r  is defined by Eq. (7), 

where the tensor term can be described as follows: 

   
   

   
2

V V
V V Vll nn

ij i j nn ij i j nn ij

B B
B r rr B frr B

r
 


      (A.6) 

where the function f is defined by Eq. (12). Substituting Eq. (A.6) into Eq. (7) gives 

  
  2 2 2

3

V
a

ij i j n ijB r D frr f      (A.7) 

where nf  is defined by Eq. (13). Making use of the expression 

2 2 4 3
2

3 2 2 4 3

2 2 4
D

r r r r r r r r r

       
      

       
, the term  2

3 i jD frr  in Eq. (A.7) can be expanded as 

follows: 
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4 3 4 3

2

3 4 3 4 3

4 4
i j i j i j i jD frr frr frr frr

r r r r r r

    
    

    
  (A.8) 

 
3 4 2 3

2

3 3 4 2 3

4 24
36 8i j i j ij

f f f f f
D frr rr r

r r r r r r r


       
        

       
  (A.9) 

Substituting Eq. (A.9) into Eq. (A.7) yields 

  
 

3 4 2 3
2 2

3 4 2 3

4 24
36 8

V
a

ij i j n ij

f f f f f
B r rr r f

r r r r r r r
  

       
        

       
  (A.10) 

The second-order tensor 
  

 
V

a

ijB r  is described as follows: 

  
 

        
2

V V

V V
a a

a a
ll nn

ij i j nn ij

B B
B r rr B

r



    (A.11) 

Combining Eqs. (A.10) and (A.11), we obtain the following predictions: 

   2 3
2

2 3

24
36 8

V
a

nn n

f f f
B r f

r r r r


   
    

   
  (A.12) 

   2 3 4
2 2

2 3 4

24
36 12

V
a

ll n

f f f f
B r r f

r r r r r


    
     

    
  (A.13) 

NOMENCLATURE 

Small alphabet letters 

ia  Flow acceleration in the i  direction 

 p

ia  A potential vector field defined as   1p

i

i

p
a

x


 


   

 V

ia  A solenoidal vector field defined as 
 V

ia V   
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mb  Machine acceleration 

bd  Bubble diameter 

pd  Particle diameter 

f  A function defined as 
   

2

V V

ll nnB B
f

r


  

mf  A function defined as 
 

3

V

m nnf D B  

nf  A function defined as   2

3

V

n nnf D B  

g  Gravitational acceleration 

p  Flow pressure 

r  The sum of bubble and particle radii 

t  Time 

2

0u  Mean square intensity of turbulence 

Capitalised alphabet letters 

 *

llB   Longitudinal component of a correlation function 

 *

nnB   Transverse component of a correlation function 

 a

ijB   Correlation function of fluctuating acceleration of two liquid particles 

  p
a

ijB   Correlation function of fluctuating acceleration of two liquid particles due to pressure 

  V
a

ijB   Correlation function of fluctuating acceleration of two liquid particles  

 p
B   Correlation function of pressure at two positions 

 V

ijB   Correlation function of fluctuating velocity of two liquid particles 

C   A constant, 2.0C   

3D   
2

*

3 2

2
rD

r r r

  
        

  
 

2

3D  
4 3

2 * 2

3 4 3

4
D

r r r

 
     

 
 

 *

llD   Longitudinal component of a structure function 
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 *

nnD   Transverse component of a structure function 

 p
D   A structure function of flow pressure 

 V
D   A structure function of flow velocity 

 a

bpB
F   A detachment force associated with 

 a

bpB  

 a

bpllB
F   The longitudinal component of  a

bpB
F  

 a

bpnnB
F   The transverse component of  a

bpB
F  

N   The total number of grid points in the computational domain 

Ne   The relative error norm defined by (44) 

bR   Bubble radius 

pR   Particle radius 

Re   Reynolds number defined as 

1/2
4

015
Re

u




 
  
 

 

V   Flow velocity 

iV   Flow velocity in the i  direction 

Greek letters 

  The angle between the total force  a

bpB
F  and the BP center-line 

  Turbulence dissipation rate 

K  Kolmogorov length scale 

  Macro-turbulence length scale 

r  Grid size  

  A coordinate variable in Eq. (14) 

max  The maximum value of   

  Dynamic viscosity of a fluid 

  Kinematic viscosity of a fluid 

  Fluid density 

b  Bubble density 

p  Particle density 
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K   Kolmogorov time scale 
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