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Abstract

There are more than 5000 confirmed and validated planets beyond the solar system to date, more than half of which
were discovered by NASA’s Kepler mission. The catalog of Kepler’s exoplanet candidates has only been
extensively analyzed under the assumption of white noise (i.i.d. Gaussian), which breaks down on timescales
longer than a day due to correlated noise (point-to-point correlation) from stellar variability and instrumental
effects. Statistical validation of candidate transit events becomes increasingly difficult when they are contaminated
by this form of correlated noise, especially in the low-signal-to-noise (S/N) regimes occupied by Earth–Sun and
Venus–Sun analogs. To diagnose small long-period, low-S/N putative transit signatures with few (roughly 3–9)
observed transit-like events (e.g., Earth–Sun analogs), we model Keplerʼs photometric data as noise, treated as a
Gaussian process, with and without the inclusion of a transit model. Nested sampling algorithms from the Python
UltraNest package recover model evidences and maximum a posteriori parameter sets, allowing us to
disposition transit signatures as either planet candidates or false alarms within a Bayesian framework.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Exoplanets (498); Transit photometry
(1709); Nested sampling (1894); Bayesian statistics (1900); Gaussian Processes regression (1930)

1. Introduction

The NASA Kepler space telescope (Borucki et al. 2010;
Koch et al. 2010; Borucki 2016) launched in 2009 and
observed ∼200,000 stars within its primary field of view over
the course of roughly 4 yr. With instrumental error budgets
capable of detecting Earth-sized planets in year-long orbits
around Sun-like stars, Kepler aimed to directly measure the
occurrence rate of such objects, otherwise known as eta-Earth
(η⊕; Borucki et al. 2010). Although the fulfillment of this
objective was impeded by greater noise contamination from
both stellar and instrumental effects than initially anticipated
(Gilliland et al. 2011, 2015), significant progress has still been
made. To aid in this effort, our work debuts a novel Bayesian
framework employing nested sampling (Skilling 2004, 2006)
alongside simultaneous correlated noise modeling with Gaus-
sian processes (GPs; Stein 1999; Rasmussen & Williams 2006)
to more accurately conduct dispositioning and characterization
between planet candidates (PCs) and false alarms (FAs). As an
aside, this study distinguishes FAs, being instrumental or
astrophysical variability which mimic transit events, from
astrophysical false positives (FPs), being transit-like events
produced by eclipsing binary stars (EBs) and blends.

Currently, no potential Earth–Sun or Venus–Sun analog
system from the Kepler sample has been shown to be reliable.
Moreover, the occurrence rates for planets with 0.5<
Rp< 1.75 R⊕ and 64< P< 500 days, as shown in Figure 2
of Hsu et al. (2019), are either upper bounds or detections with
statistical significance less than 2 standard deviations, so
extrapolation to regions of parameter space with fewer
candidates would incur large statistical uncertainties. Thus,
the estimate of η⊕ (and η♀) can be improved via more robust
reliability estimates not only in the Earth–Sun and Venus–Sun
analog bins but also in adjacent bins containing few verified
planets. FAs, not astrophysical FPs such as EBs, become the
primary issue for Kepler Object of Interest (KOI; Thompson
et al. 2018a) discrimination in these regions (see Figure 6 of
Thompson et al. 2018a). Note that published KOI catalogs do
not distinguish between FAs and FPs, dispositioning both
classes of objects as FPs, because their purpose is to distinguish
planet candidates from noncandidates.
Having undergone thorough preconditioning via the Pre-

search Data Conditioning (PDC; Twicken et al. 2010; Smith
et al. 2012; Stumpe et al. 2012) module of the Kepler Science
Operations Center (SOC) Science Processing Pipeline (Jenkins
et al. 2010a) in an attempt to mitigate instrumental trends
common among all stars on the detector, the data products of
KOIs should ideally only contain intrinsic stellar variability
(granulation, spots, flares, oscillations, etc.) and transiting
exoplanet/eclipsing stellar binary signatures; however, instru-
mental systematics (sudden pixel sensitivity dropout, rolling
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band, bad pixels, cosmic rays, etc.)—which impact lightcurves
nonuniformly—can also persist (Caldwell et al. 2010; Gilliland
et al. 2011, 2015; Clarke et al. 2014; Van Cleve &
Caldwell 2016; Kawahara & Masuda 2019).

As previous studies, such as Data Release 25 (DR25;
Twicken et al. 2016; Mathur et al. 2017; Thompson et al.
2018a), do not model the transit event and correlated noise
simultaneously or compute the individual reliability for any
single target, their results are left susceptible to FA mis-
identification (Foreman-Mackey et al. 2015); instead, inter-
polation is performed across orbital period and multiple event
statistic (MES) using population-level injection results (Chris-
tiansen 2017; Bryson et al. 2020). Another example, Caceres
et al. (2019), statistically classifies Earth-sized Kepler PCs in
the presence of correlated noise. However, their approach is
frequentist, does not reveal any long-period PCs, and does not
robustly estimate transit parameters. By analyzing individual
lightcurves on a per-target basis, our work better safeguards
against FAs while also improving the accuracy and robustness
of PC characterization in comparison to previous population-
level approaches.

Accordingly, the data of any given KOI can be interpreted as
having originated from a transiting PC with some noise
contamination or as a purely noise FA. To assess the
probability that small long-period, low-signal-to-noise ratio
(S/N) patterns of photometric dips with few (roughly 3–9)
observed transit-like events (i.e., the regime that includes
Earth–Sun and Venus–Sun analogs) are of astrophysical origin
(i.e., represent true PCs or background/hierarchical EBs which
induce transit-like dips), we model Keplerʼs photometric data
as noise, treated as a GP, with and without the inclusion of a
transit model. These are hereby denoted as the transit plus
Gaussian process (TGP) and GP models, representing PC and
FA interpretations, respectively; model parameters are
described in Table 1. Here, two qualitatively different models
are being compared: one with a pattern of transit-shaped dips
(TGP) and the other without (GP). The former wields more
degrees of freedom and accordingly will fit the data more
closely, but we must ask whether these additional parameters
are justified. To provide a principled answer, we employ
Bayesian model comparison.

Rooted in Bayes’s theorem, nested sampling algorithms from the
Python (Van Rossum 1995a, 1995b, 1995c, 1995d; Dubois et al.
1996; Oliphant 2007)UltraNest (Buchner 2016, 2019, 2021)

package recover maximum a posteriori (MAP) parameter sets and
evidences of each model, allowing for transit signatures to be
dispositioned in terms of PC and FA probabilities within a
Bayesian framework. It is important to clarify that this work does
not attempt to qualify KOIs beyond PC or FA status; this is in sharp
contrast to Kepler planet catalogs, which disposition FAs together
with FPs.
The simultaneous modeling of correlated noise additionally

provides more robust constraints on transit model parameters.
Thus, the analysis that we present herein also improves the
characterization of PCs, most significantly in terms of their
radii.
We describe our proposed methodology herein and apply it

to select Kepler targets, including potential Earth–Sun and
Venus–Sun analogs (see Figure 1). In Section 2, we lay the
statistical foundation for Bayesian model comparison, GPs, and
nested sampling (Section 2.1) before proceeding with the
construction of our TGP and GP models (Section 2.2), an
overview of the software architecture (Section 2.3), and ending
with a summary of how we obtain derived parameters from
fitted solutions (Section 2.4). We identify a sample population
of small long-period, low-S/N KOIs—including Kepler’s most
Earth–Sun-like exoplanet systems, Kepler-62f (KOI-701.04;
Borucki et al. 2013), Kepler-442b (KOI-4742.01; Torres et al.
2015), and Kepler-452b (KOI-7016.01; Jenkins et al. 2015)—
whose preceding Markov Chain Monte-Carlo (MCMC;
Metropolis et al. 1953; Hastings 1970) solutions indicate
potential for Earth–Sun and/or Venus–Sun analog candidacy
in Section 3. The subsections of Section 4 present and analyze
TGP and GP UltraNest solutions relative to each other in
the context of Bayesian evidences and potential biases. In
Section 4.1, we interpret UltraNest solutions of Kepler-62f
and KOI-5227.01 to establish expected behavior from strong/
weak PCs. The widths of phased photometric data windows
and priors have the potential to influence the recovered logged
Bayes factor between models; the effects of this are explored
throughout Section 4.2. This section is closed with a
comparison of the Bayesian evidence against the standard
metrics of MES and S/N in Section 4.3. We conclude with a
summary of this paper’s leading results in Section 5, and
outline future work in Section 6. A list of terminology and
acronyms can be found in Appendix A.

2. Methodology

In this section, we introduce the reader to fundamental
methodology upon which we base our analysis, beginning with
a summary of Bayesian statistics and evidence-based model
comparison in Section 2.1. Our combined treatment of white
and correlated noise by use of a Gaussian distribution and
Matérn 3/2 kernel GP is established next. Following this,
Section 2.2 provides a breakdown of each model (TGP and GP)
in terms of their parameters. A step-by-step outline of
our UltraNest software architecture and model-fitting pro-
cess for any given KOI can be read in Section 2.3. Derived
parameter calculations are detailed in Section 2.4.

2.1. Model Comparison

Bayes’s theorem (Bayes & Price 1763; Laplace 1774), which
forms the basis of Bayesian statistics and probability theory,
describes the process by which our knowledge of an event
(posterior) is probabilistically updated according to existing

Table 1
Model Parameter Descriptions

Transit Model Parameters

• ρå: Mean stellar density gcm 3( )- .
• q1: Kipping (2013) limb darkening (unitless).
• q2: Kipping (2013) limb darkening (unitless).
• T0: Transit time-series epicenter days( ).
• P: Orbital period of the exoplanet days( ).
• b: Impact parameter (unitless).
• Rp/Rå: Ratio of planetary and stellar radii (unitless).
• F0: Relative photometric zero-point offset (unitless).
Noise Model Parameters

• σw: Multiplicative factor applied to the photometric errors reported by DR25
(white noise; unitless).

• σc: Amplitude scale of Equation (6) (unitless).
• lc: Length scale of Equation (6) (unitless).
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information (prior) and new observations (likelihood). In other
words, it allows us to adjust our understanding of the world in
order to make better informed decisions/predictions. From a
statistical perspective, we can model observed data, , via the
inference of model parameters, θ, using Bayes’s theorem:

, 1( ) ( ) ( ) ( )q
q p q

=









where the posteriors, ( )q , are represented in terms of the
likelihood, ( )q , priors, ( )p q , and Bayesian evidence
(marginal likelihood integral), . Here,  gives the
probability associated with observing this realization of 
and is defined as

d . 2( ) ( ) ( )ò q p q qº  

The  encodes both ( )q and ( )p q information, so it is
often employed as a metric of model suitability. Should one
know the most suitable model for a given problem, the
computationally expensive  can be readily discarded in
favor of obtaining only ( )q of modeled θ (e.g., likelihood-
driven techniques such as MCMC). However, it is uncommon
in real-world problems to possess the most suitable model with
which is described in totality. As such,, and by extension
the Bayes factor of any two models, A and B,

, 3A B
A

B
,

,

,
( )º








play a crucial role in determining the most suitable model for
. This statistically robust process of model selection is known as
Bayesian model comparison (Jeffreys 1939; Kass & Raftery 1995;
Mackay 2003; Dunstan et al. 2020, 2022). Our study applies the

logged form of the Bayes factor:

log log log ; 4A B A B, , ,( ) ( ) ( ) ( )= -   

this quantity is defined such that positive values favor model
A and negative values model B. We replace A by the TGP
(PC hypothesis) model and B by the GP (FA hypothesis)
model to obtain log TGP,GP( ) , whose notation we condense
to :

log . 5TGP,GP( ) ( )º 

Accordingly, increasingly positive values of  promote the
existence of the transiting PC while their negative counterparts
suggest a FA signal originating purely from noise. Values of 
near zero indicate no statistically significant improvement
given by the addition of transit parameters to the fit with respect
to the null (noise) hypothesis; that is not to say that these are
definitively PCs or FAs or that either fit is necessarily less
robust, but that no statistically significant difference exists
between hypotheses.
Given an informed choice of kernel (covariance function; see

Rasmussen & Williams 2006), a GP may target specific
behavior or systematics within a given data set—this is
particularly useful when attempting to fit correlated noise
present in photometric time-series observations. The squared-
exponential (radial basis function; Cheney 1966; Davis 1975;
Powell 1981) and Matérn (Matèrn 1960) kernel families have
become popular for the treatment of systematics in astronomy
(Gibson et al. 2012; Roberts et al. 2012; Aigrain et al.
2015, 2016; Barclay et al. 2015; Czekala et al. 2015; Evans
et al. 2015; Foreman-Mackey et al. 2017; Littlefair et al. 2017;
Angus et al. 2018; Livingston et al. 2019; Brahm et al. 2023;
Aigrain & Foreman-Mackey 2023; etc.); while both are

Figure 1. Our sample population of KOIs (big colored circles with black outlines) and the remaining KOI background population (small black dots), distributed
according to planetary radius, Rp, orbital period, P (left), and insolation flux, S0 (right). Note that our sample uses the newly fitted/derived results of this work, whereas
background KOIs draw from the preceding MCMC solutions of Lissauer et al. (2023). Our KOIs are colored by their logged Bayes factor, —as recovered by the
modeling of each individual KOI under PC (transit plus Gaussian process, TGP) and FA (Gaussian process only, GP) hypotheses—such that greater positive values
indicate strong planet candidacy and vice versa for FAs, while those near zero can be interpreted as possessing inconclusive/weak significance either way (see
Section 2.1). The  values corresponding to our solutions are also used to outline associated Lissauer et al. (2023) results (small black dots with colored outlines) in
order to facilitate a visual comparison of the physical parameters recovered for each KOI analyzed by both studies. Green lines outline the range within which a KOI
may be deemed sufficiently “Earth–Sun-like”; these are defined according to nominal Earth values for Rp, and either P or S0 as x x1 2 1[ ( )]Î  - Å. Note that all
KOIs were also uniformly filtered by Rå with respect to solar values according to these same bounds. We are complete in both boxes drawn by these lines. For ease of
reference, Earth ( )Å and Venus (♀) are also plotted.
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generally well suited to smooth signal applications (e.g., stellar
variability), the latter is also capable of handling rougher
interference (e.g., sudden pixel sensitivity dropout, as illu-
strated by Figure 19 of Thompson et al. 2018a). Given the
known characteristics of stellar and instrumental FA sources
which contaminate Kepler photometry (Gilliland et al.
2011, 2015; Van Cleve & Caldwell 2016; Van Cleve et al.
2016; Thompson et al. 2018a), we adopt the Matérn 3/2
kernel:

k
t t

l

t t

l
1

3
exp

3
. 6

c c
c

2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ ( )sº +
- ¢

-
- ¢

Here, σc and lc describe the amplitude and length scales of the
correlated noise with which every pair of data points, t and t¢, is
conditioned. White noise is incorporated as a scaling factor to
the error bars belonging to each photometric observation and is
obtained by fitting the standard deviation, σw, of a zero-mean
Gaussian.

Nested sampling is a popular class of algorithm which
approximates Equation (2) and provides posterior inference(s)
as byproducts given , ( )q , and ( )p q . Our current
infrastructure makes use of UltraNest, which requires
user-defined ( )q , and prior transforms or quantile functions
mapping between physical parameter and unit hypercube
sampling spaces. Uniform priors are used for all TGP/GP
parameters excluding limb-darkening parameters, q1 and q2,
which instead use Gaussian priors (Kipping 2013).

2.2. Summary of Models

Photometric exoplanet transits were modeled using tran-
sitfit5 (Rowe 2016). The lightcurve model uses the analytic
limb-darkening transit from Mandel & Agol (2002) and assumes
noninteracting Keplerian orbits. The model is parameterized with
ρå, q1, q2, T0, P, b, Rp/Rå, F0, e cos ( )w , e sin ( )w , and a
photometric dilution factor (see Table 1). The model can
additionally include the effects of geometric albedo, ellipsoidal
variations, and secondary eclipses. The calculation of Keplerian
orbits derives the scaled semimajor axis, a/Rå, based on ρå; this
calculation assumes that the planetary mass,Mp, is much less than
the mass of the host star, Må. For all presented models in this
paper, we assume (i) circular orbits (i.e., zero eccentricity, e) such
that e ecos sin 0( ) ( )w w= = , (ii) no dilution (unresolved
binaries),9 (iii) no star–planet interactions, and (iv) that the
planet is completely dark (no reflection or emission). Limb-
darkening parameters are from the tables of Claret & Bloemen
(2011) for the Kepler bandpass. The shape information of low-
S/N putative transit signatures within our regime of interest (i)
leaves e and ω very weakly constrained, and (ii) makes
uninformative limb-darkening priors superfluous. These
assumptions and inputs to the modeling approach are similar
to transit model results presented in DR25.

2.3. Software Architecture

The general step-by-step outline for the fitting of an
individual KOI is detailed in this section.

1. Since the preceding MCMC architecture of Lissauer et al.
(2023) modeled the transit events of pre-whitened data

rather than simultaneously fitting correlated noise and
transit events as performed in this study, we treat their
transit solutions as initial guesses to define focused prior
widths for our transit model in UltraNest; this
mitigates computationally wasteful exploration of unin-
formative/unlikely parameter space.

2. For noise model hyperparameters, we define physically
motivated prior widths accordingly:
(a) While Kepler photometry typically falls within 10%–

20% of the predicted white-noise budget (Gilliland
et al. 2011, 2015; Van Cleve & Caldwell 2016; Van
Cleve et al. 2016; Thompson et al. 2018a), we err on
the side of caution with a wide uninformative prior on
the scaled photometric error of 0.2, 3.8w [ ]s Î .

(b) The amplitude scale of the correlated noise has prior
width set as F F0, 2 ;c max min[ ( ) ]s Î - this should
not exceed the maximum flux semi-amplitude,
F F 2max min( )- , observed in a given KOIʼs data set.

(c) The length scale of the correlated noise has prior
width set as l t t2 , 2 ;c d T[ ]sÎ D this should not fall
below the measurement cadence, Δ t, or exceed the
phased photometric data window’s timescale, 2σd tT.

3. Define likelihood and prior cube transformation functions
for UltraNest.

4. Set free parameters σd and σp.
5. Initialize and precompute all relevant values (i.e., GP

kernel).
6. Conduct photometric time-series data preprocessing/

reduction, including the following:
(a) Removal of other threshold-crossing events (TCEs)/

KOIs associated with the same host star.
(b) σd phased photometric data window width

specification.
(c) Linear regression removal of ramps/slopes.
(d) Median-based zero-point correction.
(e) Removal of data ±5σ beyond the MCMC data-

residual median value to deal with uncorrected cosmic
rays, flares, or uncorrected instrumental effects
following Thompson et al. (2018a).

7. RunUltraNestʼs ReactiveNestedSampler with
RegionSliceSampler enabled once per model (TGP
and GP).

To solve for the Matérn 3/2 GPʼs hyperparameters prior to
each iteration’s likelihood evaluation, matrix inversion must be
performed. Since the transit events are effectively isolated in
time, their correlated noise components can be approximated to
share negligible covariance; we represent this by means of a
block-diagonal approximation to the kernel, drastically
decreasing the computational burden of matrix inversions.
Naturally, benefits in performance scale with the number of
transit events in a given KOIʼs data set. For the task
of inversion, we use Cholesky decomposition—a method
roughly twice as efficient as lower–upper (LU) decomposition
(Cholesky 1924; Banachiewicz 1942; Press et al. 1986;
Schwarzenberg-Czerny 1995). Nonetheless, each iteration is
still expensive.

2.4. Derived Parameters

Formulas for derived parameters can be found within this
section. We compute transit duration according to Equation
(16) of Seager & Mallén-Ornelas (2003), rewritten here using

9 DR25 lightcurves already include a crowding correction for other stars that
contribute to the photometric aperture.

4

The Astronomical Journal, 167:68 (15pp), 2024 February Matesic et al.



Kepler’s third law (Kepler 1619) as
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The insolation flux, S0≡ L/4πa2, can be combined with
Kepler’s third law to yield
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Isochrone-derived stellar luminosity and mass from Berger
et al. (2020) are used alongside our fitted orbital period to
compute insolation flux via Equation (8).

Although we do not model eccentricity directly (e.g., Van
Eylen et al. 2019), a minimum eccentricity may be estimated
following Kipping (2014) and Torres et al. (2015) via the
comparison of stellar density recovered by our model against
independent estimates:

e
1

1
. 9min

,model ,indep
2 3

,model ,indep
2 3

∣ ( ) ∣
( )

( )
r r
r r

º
-

+
 

 

To obtain distributions of independent parameters, we use
the reported value and lower/upper uncertainties to sample
from a two-piece normal distribution (Wallis 2014). For
example, the Rp distribution is derived via a convolution
between the fitted Rp/Rå posterior distribution and a two-piece
Gaussian distribution of Rå constructed from Berger et al.
(2020).

3. Candidates Modeled Herein

Targets were selected from a comprehensive catalog of
Kepler candidates with revised lightcurve analyses (Lissauer
et al. 2023). Included within our sample are 12 PCs whose
planetary and host stellar radii, Rp and Rå, plus either orbital
period, P, or insolation flux, S0, nominally (neglecting
uncertainties) lie within 2 1( ) - of Earth and solar values

R Re.g ., 1 2 1p( [ ( )] )Î  - Å . There are just 13 KOIs
identified by these criteria: 2719.02, 4742.01, 4878.01,
5554.01, 5755.01, 5971.01, 6971.01, 7179.01, 7470.01,
7591.01, 7923.01, 8107.01, and 8174.01; we have not yet
analyzed KOI-5755.01 because it lacks a converged preceding
MCMC solution.

The nature of this regime places candidates at significant risk
of being FAs; MES 8 and S/N 10 are predominantly
exhibited within our sample. Furthermore, KOIs-5044.01,
5971.01, 7621.01, and 7923.01 yield suspect derived transit
durations, tT, which diverge significantly from those expected
for equatorial transits of planets on circular orbits, tT,c;
regardless, similar performance here between TGP and GP
models (or PC and FA hypotheses) has resulted in none of
these KOIs possessing high .

In addition to those candidates listed above, we also included
other small long-period PCs; among these are three of Kepler’s
validated exoplanets whose characteristics most closely
approach the Earth–Sun analog regime—excellent targets
against which we may baseline our framework: Kepler-62f
(KOI-701.04), Kepler-442b (KOI-4742.01), and Kepler-452b
(KOI-7016.01). The comprehensive target list is given in
Table 2 alongside fitted and derived parameters, as well as
Berger et al. (2020) stellar property inputs for the free
parameter choice of σd= 8 and σp= 5.

4. Numerical Results

There are three leading results to be discussed in this section,
beginning with an overview of recovered TGP and GP
solutions for cases of strong and weak PC evidence in
Section 4.1. Here, the former is demonstrated by the baseline
target, Kepler-62f, and the latter by a member of our sample
KOI population, KOI-5227.01. This is followed by Section 4.2,
which investigates the influence that varying the free model
parameters, σd and σp, has on the ; these control phased
photometric data window and prior widths, respectively. We
conclude with a heuristic evaluation of the fitted  against
reported DR25 (or Q1–16) MES and derived S/N scores for
our target population in Section 4.3. A summary of results for
the complete KOI sample can be found in Figure 1 and Table 2.

4.1. Strong and Weak Cases

For the demonstration of strong and weak PC evidence, we
compare the recovered UltraNest TGP and GP solutions
given free parameter choices of σd= 8 and σp= 5 for Kepler-
62f and KOI-5227.01. Figure 2 shows the photometric data—
preprocessed according to Section 2.3—overlaid by TGP and
GP solutions in unfolded original and folded GP-corrected
states. Although we know Kepler-62f to be a bona fide
exoplanet, both the phase (Figure 2) and corner (Figure 7) plots
demonstrate competitive performance between PC and FA
hypotheses; similar model performance is shown for KOI-
5227.01 (see Figures 8 and 9). While it is nontrivial to
individually discriminate or relatively rank Kepler-62f and
KOI-5227.01 by eye, our statistical analysis places them among
the strongest and weakest PCs of the σd= 8 and σp= 5 subset,
with recovered  values of 35.8 1.1

1.2
-
+ and 0.1 1.2

1.1- -
+ , respectively.

This translates to strong favor for the former’s PC status,
whereas the latter can be said to fall within the range of values
which we deem indistinguishable, in that sufficiently strong
evidence supporting either hypothesis is lacking. Our example
also serves to highlight the importance of both joint-transit-
noise modeling and robust Bayesian model comparison
techniques—especially when working within lower-S/N
regimes such as these, without which we would be more
susceptible to target misclassification.
Generally, we have seen (Figures 4 and 5) two subpopula-

tions reflective of the above comparison emerge from our
analysis (strong PCs and inconclusive/weak PCs and/or FAs).
Included in the strong PC group are reassuringly three known
exoplanets, Kepler-62f, Kepler-442b, and Kepler-452b, in
addition to two more promising but less potentially Earth–
Sun-like PCs, KOI-2719.02 and KOI-6971.01. The remainder
of Table 2ʼs candidates fall within the currently indistinguish-
able range of ∼± 10 ; further observations and/or deeper
probabilistic analyses are likely required before more definitive
conclusions may be made.
It should be noted that we do not yet observe candidates

whose  strongly favors the FA hypothesis. We suspect this to
be the result of (i) survivor bias potentially introduced by our
lack of targets with MES or S/N below ∼7 (i.e., we have yet to
analyze sufficiently poor photometry) and/or (ii) a miscali-
brated  scale (i.e., the magnitude of the  penalty incurred
by the TGP model’s additional parameters and, by extension,
the  floor are currently unknown). To obtain statistically
robust conclusions to these hypotheses, future work will
implement large-scale injection-recovery testing.
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4.2. Varying Free Parameters

There are two free parameters required to initialize our
modeling pipeline, these being σd and σp. Of concern to us is
their influence on the recovered posteriors and . We begin
with σd, which acts as a multiplicative factor to the width of the
phased photometric data window, defined as 2σdtT, where tT is
the transit duration as found in the preceding MCMC solution
of Lissauer et al. (2023). In order to better model the correlated
noise present within each transit event, we may leverage out-of-
transit observations, which locally share noise characteristics
with those in transit. Naturally, the question then arises as to
how much out-of-transit data should be included when defining
the phased photometric data window of any given fit? While
there exists an abundance of available out-of-transit data, two
constraining factors must be considered: (i) computational cost
and (ii) information gain. While only so much can be done in
terms of computing power and software optimization, we can
more deeply consider the notion that correlation between in-
transit and out-of-transit noise decreases with increasing
distance from the transit midpoint. To simplify things, the
upper bound on the GP’s lc prior can be set as the width of the
phased photometric data window. It follows that a suitable
choice of phased photometric data window width then
preserves the GP’s ability to accurately model timescales
relevant to the transit event(s) and subsequent statistical
meaning of TGP-GP model comparison; in other words, the
possibility of solutions preferring longer-timescale fluctuations
with little in-transit information is mitigated.

Core to the Bayesian approach of statistical model
comparison is the consideration of a priori knowledge, as seen
in Equation (2). While intended to be used with informative
(nonuniform) priors, it is not uncommon to lack the
independent parameter constraints and distributions necessary
for this. Such is the case in this study for all transit and noise
model parameters, excluding q1 and q2, whose prior distribu-
tions are precalculated with well-defined support according to
Kipping (2013). Varying searchable parameter space does not
pose much of an issue apart from sampling inefficiencies when
employing informative priors, as exploration beyond their
regions of significant probability density with naturally well-
defined support returns little to no information. The same
cannot be said for uniform priors, whose normalization biases
measurements of the  via Equation (2) (for a detailed study
regarding priors and caveats such as this within the context of
Bayesian inference and model selection, see Llorente et al.
2022).
To explore this implication, we propose a two-step method

of quantile standardization to assess the potential bias induced
by choices of σp with fixed σd= 2. First, overly wide priors are
cast using σp= 25 in an attempt to fully capture the desired
empirical posteriors. Once recovered, these can be used to
provide accurate quantiles as

q
1

2
1 erf

2
100%, 10p

p
⎜ ⎟

⎡
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⎛
⎝

⎞
⎠

⎤
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Table 2
Key Parameters Summary

KOI P tT tT,c S0 Rp Rp¢ Rå Teff MES S N¢ S/N 
days( ) hr( ) hr( ) S0,( )Å R( )Å R( )Å R( ) K( )

701.04 267.282 7 8. 0.3
0.3

-
+ 7 7. 1.7

4.1
-
+ 0.51 1 50. 0.07

0.10
-
+ 1.52 0.11

0.22
-
+ 0.70 4967 14.3 19 19 2

2
-
+ 35.8

2719.02 106.261 6 6. 0.3
0.3

-
+ 7 6. 0.2

0.2
-
+ 1.25 1 50. 0.10

0.10
-
+ 1.29 0.13

0.16
-
+ 0.69 4601 10.0 7.7 15 2

2
-
+ 29.4

4742.01 112.303 5 9. 0.3
0.3

-
+ 7 2. 0.1

0.1
-
+ 1.01 1 39. 0.08

0.09
-
+ 1.35 0.10

0.12
-
+ 0.62 4602 12.9 13 14 1

1
-
+ 47.1

4878.01 449.016 13 4. 1.4
2.1

-
+ 16 6. 0.6

0.6
-
+ 0.93 0 98. 0.12

0.12
-
+ 1.01 0.10

0.11
-
+ 1.05 5906 7.5

*
8.3 8 0. 1.9

1.8
-
+ 2.1

5044.01 161.533 2 1. 0.5
0.4

-
+ 12 7. 0.4

0.5
-
+ 5.55 1 14. 0.12

0.13
-
+ 1.16 0.15

0.16
-
+ 1.11 6344 8.4

*
6.9 5 9. 1.1

1.1
-
+ 6.4

5227.01 371.653 11 2. 1.8
3.1

-
+ 12 9. 0.3

0.4
-
+ 0.61 1 29. 0.20

0.17
-
+ 1.45 0.11

0.15
-
+ 0.83 5486 8.4

*
11 8 2. 2.6

2.5
-
+ −0.1

5554.01 362.181 18 7. 2.6
3.5

-
+ 15 5. 0.5

0.6
-
+ 1.28 0 88. 0.10

0.09
-
+ 0.91 0.07

0.07
-
+ 1.04 5945 7.3

*
12 13 3

3
-
+ 4.1

5704.01 96.167 2 7. 0.3
0.3

-
+ 7 9. 0.2

0.2
-
+ 2.51 1 18. 0.11

0.11
-
+ 1.23 0.17

0.15
-
+ 0.75 5075 7.6

*
7.7 6 9. 1.2

1.1
-
+ 9.8

5971.01 493.328 3 1. 0.8
0.9

-
+ 12 0. 0.4

0.5
-
+ 0.23 1 35. 0.17

0.18
-
+ 1.36 0.15

0.22
-
+ 0.76 4847 7.6

*

7.8 5 9. 1.1
1.1

-
+ 6.3

6971.01 129.222 6 9. 0.4
0.4

-
+ 8 0. 0.2

0.2
-
+ 1.23 1 44. 0.09

0.10
-
+ 1.42 0.11

0.13
-
+ 0.68 4921 8.1 12 14 2

2
-
+ 22.6

7016.01 384.847 10 2. 0.5
0.5

-
+ 15 7. 0.4

0.5
-
+ 1.11 1 46. 0.09

0.09
-
+ 1.46 0.09

0.13
-
+ 1.07 5900 7.6 12 12 1

1
-
+ 24.9

7179.01 407.093 13 9. 5.1
2.6

-
+ 16 1. 0.5

0.6
-
+ 1.09 1 01. 0.11

0.13
-
+ 1.02 0.11

0.11
-
+ 1.06 5946 7.8 8.4 7 4. 1.8

1.7
-
+ 5.2

7330.01 198.141 12 2. 3.1
3.6

-
+ 14 7. 0.5

0.5
-
+ 2.85 0 75. 0.12

0.12
-
+ 0.84 0.09

0.08
-
+ 1.19 5490 8.0 7.2 6 0. 1.7

1.9
-
+ 0.2

7470.01 392.553 8 2. 1.4
1.4

-
+ 13 3. 0.4

0.4
-
+ 0.40 1 23. 0.15

0.14
-
+ 1.20 0.15

0.16
-
+ 0.82 5016 7.2 7.2 6 9. 1.5

1.6
-
+ 3.0

7591.01 328.339 15 7. 4.3
6.1

-
+ 10 6. 0.2

0.2
-
+ 0.30 1 13. 0.14

0.13
-
+ 1.24 0.16

0.12
-
+ 0.65 4786 7.4 8.5 7 5. 1.9

2.1
-
+ 1.9

7621.01 275.075 2 9. 0.2
0.2

-
+ 13 4. 0.4

0.5
-
+ 1.35 1 27. 0.11

0.10
-
+ 1.47 0.22

0.18
-
+ 0.97 5662 8.0 7.5 18 3

3
-
+ 5.7

7716.01 483.346 15 8. 1.9
2.6

-
+ 14 5. 0.6

0.8
-
+ 0.44 1 39. 0.17

0.16
-
+ 1.42 0.15

0.19
-
+ 0.85 5451 7.1 8.3 7 7. 1.8

1.7
-
+ 3.5

7923.01 395.122 21 4. 0.8
0.9

-
+ 13 5. 0.2

0.2
-
+ 0.43 0 97. 0.10

0.10
-
+ 0.90 0.07

0.12
-
+ 0.82 5064 10.0 14 19 4

3
-
+ 5.6

8107.01 578.916 18 8. 0.9
1.5

-
+ 22 8. 0.8

0.9
-
+ 1.00 1 15. 0.12

0.12
-
+ 1.20 0.07

0.09
-
+ 1.35 5832 7.6 15 14 3

3
-
+ 3.5

8174.01 295.061 16 5. 1.5
1.3

-
+ 14 9. 0.4

0.4
-
+ 1.12 0 86. 0.09

0.10
-
+ 0.88 0.07

0.09
-
+ 1.04 5284 7.4 10 11 2

2
-
+ 5.7

Note. Key parameters summary for our KOI sample. From left to right, are KOI numbers (KOI-701.04, KOI-4742.01, and KOI-7016.01 correspond to Kepler-62f,
Kepler-442b, and Kepler-452b, respectively; none of the other KOIs are validated Kepler planets), orbital period, P, transit duration, tT, central transit duration, tT,c,
insolation flux, S0, planetary and stellar radii, Rp and Rå, stellar effective temperature, Teff, multiple event statistic, MES, signal-to-noise, S/N, and logged Bayes
factor,  . Of these, the P and  are fitted (inputs), tT, tT,c, S0, Rp, and S/N are derived (outputs), Rå and Teff are given by Berger et al. (2020), Rp¢ and S N¢ are given by
Lissauer et al. (2023), and MES is given by DR25 where available; those KOIs not found by DR25 were also missed in Data Release 24, so their MES are instead
taken from Q1–16 (Mullally et al. 2015) and identified using “

*.” All fitted/derived parameters are in bold. These values are reported for the free parameter choice of
σd = 8 and σp = 5.
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with which the prior widths of subsequent runs can be defined;
this notation is not to be confused with the limb-darkening
parameters, q1 and q2. In our code, these quantiles are set by the
corner quantile (x, q, weights) function, with x and
weights arguments given by σd= 2, σp= 25 UltraNest
empirical posteriors and q by q1 p( )s- or q p( )s for lower and
upper bounds, respectively. A detailed example of this process
with accompanying visuals can be found in Figure 3.

To assess correlation between the  and σd, the sample
population of KOIs was fit for 2, 4, 8, 16d [ ]s Î and fixed
σp= 5. The resulting emergence of two KOI subpopulations
was immediately apparent (see Figure 4), these being strong
PCs with promising follow-up potential (red) and inconclu-
sive/weak PCs and/or FAs (blue). Generally, the PC group
demonstrates positive trajectory with respect to σd across all
metrics, whereas the latter group evolves in a relatively flat
fashion. Here, the  exhibits a clearly defined subpopulation
boundary at a value of approximately 10. Overall, this behavior
suggests that the dispositioning of PCs from FAs is largely
independent of the chosen σd, meaning that smaller phased
photometric data windows may be favored to reduce the
computational burden while retaining sufficient information;
this additionally supports a transit-like timescale upper bound
on the GP’s lc.

In testing how the variance of prior width affects our results,
we use quantiles of ∼68.2689%, 95.4410%, 99.7300%,
99.9937%, and 99.9999% for prior widths of subsequent
independently computed nested sampling runs corresponding
to 1, 5p [ ]s Î and fixed σd= 2. As expected, the  possesses a

general inverse proportionality to σp resulting from
Equation (2) (see Figure 5). Conveniently, however, this trend
is roughly similar across the entire KOI sample population,
indicating that sample populations with prior widths set by a
consistent/shared choice of quantile will experience a popula-
tion-wide shift in  plus some small variance of ∼± 5 such that
relative ranking between targets are still valid. Interestingly, it
seems that this variance is reduced to stochastic order with
greater probability of PC status, meaning that we can be
relatively more confident in our findings for the red
subpopulation. While these tests must be performed on a much
larger KOI population to draw any statistically robust
conclusions, if the general inverse trend is to hold, one could
theoretically fit and recover an empirical correction relating the
 and σp. For now, there does not seem to be a preferred σp in
terms of bias reduction, but we can recommend quantiles
corresponding to at least σp= 3 in order to promote sufficient
prior-posterior information gain and properly recovered
posteriors.
Finally, Figures 4 and 5 both suggest the presence of five

strong PCs: three known exoplanets, Kepler-62f, Kepler-442b,
and Kepler-452b, and two new additions residing within the
habitable zones of their host stars, KOI-2719.02 and KOI-
6971.01. KOI-5704.01 and KOI-7621.01 are also noteworthy:
The former consistently crests the  boundary of ∼10, whereas
the latter displays anomalous behavior in that it draws a steep
upward trajectory in  characteristic of the strong PC
subpopulation across σd while only escaping the otherwise
clearly defined boundary at σd= 16; this is not observed for
any other member of the inconclusive/weak subpopulation.

Figure 2. Kepler’s photometric PDC data (black) for all observed transit events of Kepler-62f with σd = 8 and σp = 5, overlaid by MAP (red) TGP (PC hypothesis;
top) and GP (FA hypothesis; bottom) model solutions alongside corresponding O-C (data – MAP) residuals. GP-corrected phase-folded results are shown in the
rightmost column and are accompanied by O-C residuals. O-C residual histograms are overlaid by Gaussian distributions with zero mean and TGP or GP MAP-scaled
median photometric error standard deviations (dashed red) in order to help identify signs of overfitting (i.e., non-Gaussian O-C residuals).
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If verified with current fitted parameters (see Table 2), KOI-
7621.01 would rank alongside Kepler-62f, Kepler-442b, and
Kepler-452b in terms of Earth–Sun analog candidacy. That
being said, some points of contention must be addressed
regarding this candidate: (i) we derive a nearly parabolic
minimum eccentricity of e 0.89min 0.04

0.02= -
+ , and (ii) the photo-

metric data contain long-timescale fluctuations of considerable
amplitude, likely caused by spot modulation. Since eccentricity
is degenerate with the mean stellar density and impact parameter
—found to be 76 g cm31

26 3r = -
+ -

 and b 0.33 0.23
0.28= -

+ , whereas
Berger et al. (2020) obtained ρå= 1.00± 0.11 g cm−3

—we
cannot readily conclude whether this is a highly eccentric orbit
or the consequence of grazing transits.
In terms of obtaining best-fitting model parameters, fluctua-

tions caused by spot modulation affect a greater number of data
points than those caused by transit-timescale events such that
our GP’s lc is motivated toward longer timescales, thereby
foregoing the ability to represent transit events in favor of

Figure 3. A single-parameter mock example of the process used to obtain
quantile-based prior widths for standardization tests conducted in Figure 5. In
the first nested sampling run, a wide net is cast to ensure the parameter’s
empirical posterior distribution (black) is captured in its entirety (top). In
subsequent runs, quantiles (solid red) of this complete posterior are used to
define subsequent prior widths (middle), with which associated fractions of the
complete posterior are recovered (bottom). While demonstrated with uniform
priors, this is not a constraining factor; we apply this methodology to both
uniform and nonuniform priors. In this example, skewed, non-Gaussian
posterior behavior causes standard deviations (dashed blue) from the complete
posterior’s median (dashed–dotted green) to be inefficient in capturing
parameter space information compared to quantiles. Since recovered posteriors
are not guaranteed to be Gaussian in nature, we ensure consistent information
gain by focusing only on relevant regions of parameter space via quantiles. The
middle panel also visualizes how the normalized amplitude of a uniform prior
is dictated by its width; this is a known origin of bias in Equation (2).

Figure 4. The logged Bayes’ factor,  , of each KOI listed in Table 2 as they
vary with the phased photometric data window multiplier, σd. Red and blue
subpopulations correspond to strong PCs and periodic transit events possessing
inconclusive/weak evidence-based model preference with respect to the PC
and FA hypotheses, respectively; solid lines indicate previously validated
planets.

Figure 5. Same as Figure 4, but with respect to σp, which sets quantile-based
prior widths.
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producing an overall “better” fit. It follows in subsequent TGP-
GP model comparison that the TGP model will always
outperform the GP-only solution. We can then expect the 
to become artificially inflated with increasing σd in the presence
of long-timescale correlated noise. Of the strong PC sub-
population, KOI-2719.02 is the only target to experience this
spot modulation inflation effect; its strong PC status is not
invalidated, however, as even with a subunity GP lc from the
σd= 2 and σp= 5 solution, its  remains significant in
magnitude.

Our future work will adopt more aggressive data precondi-
tioning techniques (e.g., application of low-frequency bandpass
filters) in an effort to mitigate  inflation by focusing the GP on
transit-like timescales. All things considered, both KOI-
5704.01 and KOI-7621.01 certainly warrant further invest-
igation in future studies.

4.3. Comparisons to Multiple Event Statistic and Signal-to-
noise Ratio

For our final result, we empirically compare the Bayesian
evidence approach against Q1–16 (or DR25 where available)
MES and our derived S/N according to Equation (5) of Rowe
et al. (2015); the latter two being standard metrics for candidate
discrimination in TCE/KOI searches and catalogs. Figure 6
shows that our novel methodology presents the ability to
clearly distinguish between strong PCs (red) and periodic
transit events possessing inconclusive/weak evidence-based
model preference with respect to PC and FA hypotheses (blue)
in regimes contaminated by high levels of white and correlated
noise, as demonstrated by the ample separation of these two
subpopulations. This is in contrast to both the MES and S/N,
which completely mix populations, save for Kepler-62f and
Kepler-442b, as the only KOIs that we analyzed with
MES> 10. Although we observe no strong PCs with derived
S/N< 10, the appearance of inconclusive/weak PCs or FAs
beyond this threshold illustrates a potential deficiency of S/N
when used as a PC-FA discrimination metric in comparison to
the . In the context of choosing MES or S/N cutoffs for
searches, this means that strong PCs are likely to be lost and/or
inconclusive/weak PCs and/or FAs included. Should this clear
separation between populations hold across larger KOI
samples, the  could substantially reduce this blind spot.

5. Conclusions

Our analysis of targets via the simultaneous modeling of
transits alongside a combined white and correlated noise GP
yields fundamental transit parameters (e.g., scaled planetary
radius, Rp/Rå) and Bayesian evidence-driven PC-FA model
comparison in the most robust approach to date. It is then
important to note that there is a discrepancy between our results
and those of DR25, as illustrated by the case of Kepler-452b.
While DR25 yields an estimated reliability value of ∼40% (see
Figure 11 of Thompson et al. 2018a), we recover a strongly
favored PC status of 24.9 1.2

1.1= -
+ . Note that the Bayesian

evidence does not directly translate to a reliability percentage,
so here we simply compared the interpretations of their results;
however, we aim to create a mapping between the two in future
works. To do so, we next plan to conduct extensive injection-
recovery testing, which will also facilitate an understanding of
the  floor from strong FAs.
Having performed Bayesian model comparison between PC

and FA hypotheses on the periodic transit-like photometric
events of each KOI listed in Table 2, we report strong PC
dispositions of Kepler-62f, Kepler-442b, and Kepler-452b—
agreeing with preexisting studies—plus the two new additions
of KOI-2719.02 and KOI-6971.01, as well as two moderately
strong PCs, KOI-5704.01 and KOI-7621.01.
Preliminary testing indicates a demand for the choice of free

model parameters, σd and σp, to be shared across any given
sample population of KOIs in order to promote statistically
sound comparisons between targets. Furthermore, smaller
phased photometric data windows (lower σd) and consistent
quantile-based prior widths likely mitigate potential biases.
The recovered posteriors of fitted/derived parameters were

used to obtain a statistical description of the S/N with
uncertainties on a per-target basis, rather than its point-estimate
counterpart commonly reported in previous studies. The TGP
approach also yields similar to significantly improved values of
S/N with respect to those reported by Lissauer et al. (2023;
e.g., see KOI-2719.02 and KOI-7621.01 in Table 2).
That being said, both MES and S/N exhibited vulnerability

to candidate misidentification, whereas the  was able to
clearly distinguish strong PCs from inconclusive/weak PCs
and/or FAs. Regardless of whether the  is adopted as a
standard metric in PC-FA dispositioning, the MES and S/N

Figure 6. DR25 MES (left) and our S/N (middle) metrics compared against our logged Bayes factor,  , and their histogram (right) for the KOI sample given in
Table 2. Red and blue subpopulations correspond to strong PCs and periodic transit events possessing inconclusive/weak evidence-based model preference with
respect to PC and/or FA hypotheses, respectively; solid lines indicate previously validated planets. Note the ample separation between strong PCs and inconclusive/
weak PCs (or FAs) revealed by the  , which MES and S/N are otherwise blind to.
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should undergo additional investigation and be used
thoughtfully.

6. Next Steps

When allocated one node (32 CPU threads) on high-
performance computing clusters, our current nested sampling
infrastructure sees typical per-target timescales on the order of
a week. As such, our future work will instead rely on the
development of a simulation-based inference (SBI; Cranmer
et al. 2020) machine-learning infrastructure; these have seen
great success in recent years (see Alsing et al. 2018, 2019;
Miller et al. 2020; Tejero-Cantero et al. 2020; Miller et al.
2022; Legin et al. 2023b). The amortized nature of SBI will
allow for computationally efficient deployment across para-
meter space in catalog-wide applications to current and future
missions (Kepler, K2, TESS, PLATO, etc.). Cutting-edge
supporting frameworks/methodologies (see McEwen et al.
2021; Legin et al. 2023a; Jeffrey & Wandelt 2023) will
facilitate the core Bayesian evidence-based approach debu-
ted here.
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Appendix A
Terminology and Acronyms

A list of terminology and acronyms alongside their
corresponding definitions can be found here.

1. Argument of periapsis, ω. Angle from ascending node to
periapsis along the direction of motion for a given
orbiting body.

2. Bayesian evidence, . The model-agnostic probability
of observing the data,  (see Equations (1) and (2)).

3. Central transit duration, tT,c. The duration, tT, of an
equatorial b 0( )= transit.

4. Correlated noise amplitude scale, σc. The Matérn 3/2
kernel GP unitless amplitude scale (see Equation (6);
fitted noise model parameter).

5. Correlated noise length scale, lc. The Matérn 3/2 kernel
GP unitless length scale (see Equation (6); fitted noise
model parameter).

6. Data window width free parameter, σd. The factor used
to define the phased photometric data window in terms of
transit durations, tTʼs, out from the transit midpoint, as
discussed in Section 4.2.

7. Eccentricity, e. The value describing orbital shape,
ranging from circular e 0( )= to elliptical e0 1( )< <
to parabolic e 1( )= .

8. Eccentricity projections, e cos ( )w and e sin ( )w .
Transit model parameters for noncircular orbits represent-
ing eccentricity, e, vector components projected with
respect to the argument of periapsis, ω.

9. Effective temperature, Teff. The average surface temper-
ature of an object (e.g., star), given in this study by
Berger et al. (2020).

10. Ephemeris, T0. The KOIʼs time-series epicenter in units
of days (fitted transit model parameter).

11. Eta-Earth (or eta-Venus), or( )♀h hÅ . The occurrence rate
of Earth-like (or Venus-like) planets around Sun-like
stars.

12. False alarm, FA. A periodic transit-like signal caused by
instrumental and/or stellar noise/variability.

13. False positive, FP. A periodic transit-like signal caused
by physical sources other than a transiting exoplanet (e.g.,
eclipsing stellar binary signatures).

14. Gaussian process model, GP. The FA hypothesis model
(see Table 1).

15. Impact parameter, b. The unitless projection of a/Rå with
respect to the orbital inclination, i (fitted transit model
parameter).

16. Insolation flux, S0. The measure of incident solar
radiation on a surface or body (e.g., exoplanet; see
Equation (8)).

17. Kepler Object of Interest, KOI. A periodic transit-like
event or TCE that warrants further review (Thompson
et al. 2018a).

18. Likelihood, ( )q . The probability which quantifies how
strongly the data, , supports the modeled parameters, θ
(see Equation (1)).

19. Limb darkening, q1 and q2. The unitless Kipping (2013)
reparameterization of Mandel & Agol (2002) limb
darkening (fitted transit model parameters).

20. Logged Bayes factor, . The logged Bayes factor
representing the difference in logged Bayesian evidences,
, between any two models (e.g., TGP and GP) applied
to the same data set,  (see Equations (3), (4), and (5)).

21. Maximum a posteriori, MAP. The most probable set of
modeled parameters as given by Bayesʼs theorem (see
Equation (1)).

22. Mean stellar density, ρå. The mean stellar density in units
of grams per cubic centimeter (fitted transit model
parameter).

23. Multiple event statistic, MES. A measure describing the
combined significance of all observed transits in the
detrended and whitened lightcurve with the assumption
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of a linear ephemeris, T0 (Jenkins 2002; Thompson et al.
2018a).

24. Orbital period, P. The KOIʼs time-series orbital period in
units of days (fitted transit model parameter).

25. Photometric zero point, F0. The relative (unitless)
photometric zero-point offset (fitted transit model
parameter).

26. Planet candidate, PC. A KOI which has passed FA
vetting procedures but has yet to undergo/pass FP vetting
and/or be confirmed by alternative observation
techniques.

27. Planetary radius, Rp. The radius of the companion
exoplanet.

28. Posterior distribution, ( )q . The updated probability of
modeled parameters, θ, given new data, , and informed
by combining the likelihood, ( )q , priors, ( )p q , and
Bayesian evidence,  (see Equation (1)).

29. Prior distribution, ( )p q . The initial probability or belief
about given model parameters, θ, before any new data,,
is taken into account (see Equation (1)).

30. Prior width free parameter, σp. The factor used to define
fitted parameter prior widths for UltraNest in terms of
MCMC-recovered standard deviations with respect to
their maximum-likelihood estimator values as given by
Lissauer et al. (2023) before quantile-defined widths are
obtained using Equation (10), as discussed in Section 4.2.

31. Scaled planetary radius, Rp/Rå. The unitless ratio of
companion planetary and host stellar radii (fitted transit
model parameter).

32. Scaled semimajor axis, a/Rå. Unitless ratio of the
companion exoplanet’s semimajor axis scaled with
respect to the host’s stellar radius.

33. Signal-to-noise, S/N. The quantification of a desired
signal’s quality with respect to the level of unwanted
noise contamination (see Equation (5) of Rowe et al.
2015).

34. Stellar radius, Rå. The radius of the host star, given in
this study by Berger et al. (2020).

35. Threshold-crossing event, TCE. A periodic signal
identified by the Transiting Planet Search (Jenkins et al.
2010b; Twicken et al. 2016; Jenkins 2020) module
of the SOC Science Processing Pipeline (Jenkins et al.
2010a).

36. Transit plus Gaussian process model, TGP. The PC
hypothesis model (see Table 1).

37. Transit duration, tT. The total time taken for the
(exoplanet) companion to occult its host (star) from
ingress to egress (i.e., beginning to end; see
Equation (7)).

38. White-noise amplitude scale, σw. The unitless scaling
factor to DR25-reported photometric errors (fitted noise
model parameter).

Appendix B
Strong and Weak Cases Supplementary Figures

Appendix B contains Figures 7–9.
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Figure 7. σd = 8, σp = 5 Kepler-62f TGP (bottom left) and GP (top right) corner plots depicting parameter behavior/covariance, with empirical posterior distributions
overlaid by MAP (red) and median (blue) solutions above each column.
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Figure 8. Same as Figure 2, but for KOI-5227.01.

13

The Astronomical Journal, 167:68 (15pp), 2024 February Matesic et al.



ORCID iDs

Michael R. B. Matesic https://orcid.org/0000-0002-1119-7473
Jason F. Rowe https://orcid.org/0000-0002-5904-1865
John H. Livingston https://orcid.org/0000-0002-4881-3620
Shishir Dholakia https://orcid.org/0000-0001-6263-4437
Daniel Jontof-Hutter https://orcid.org/0000-0002-6227-7510
Jack J. Lissauer https://orcid.org/0000-0001-6513-1659

References

Aigrain, S., & Foreman-Mackey, D. 2023, ARAA, 61, 329
Aigrain, S., Hodgkin, S. T., Irwin, M. J., Lewis, J. R., & Roberts, S. J. 2015,

MNRAS, 447, 2880

Aigrain, S., Parviainen, H., & Pope, B. J. S. 2016, MNRAS, 459, 2408
Alsing, J., Charnock, T., Feeney, S., & Wandelt, B. 2019, MNRAS, 488, 4440
Alsing, J., Wandelt, B., & Feeney, S. 2018, MNRAS, 477, 2874
Angus, R., Morton, T., Aigrain, S., Foreman-Mackey, D., & Rajpaul, V. 2018,

MNRAS, 474, 2094
Banachiewicz, T. 1942, AJ, 50, 38
Barclay, T., Endl, M., Huber, D., et al. 2015, ApJ, 800, 46
Bayes, T., & Price, R. 1763, RSPT, 53, 370
Berger, T. A., Huber, D., van Saders, J. L., et al. 2020, AJ, 159, 280
Borucki, W. J. 2016, RPPh, 79, 036901
Borucki, W. J., Agol, E., Fressin, F., et al. 2013, Sci, 340, 587
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Sci, 327, 977
Brahm, R., Ulmer-Moll, S., Hobson, M. J., et al. 2023, AJ, 165, 227
Bryson, S., Coughlin, J., Batalha, N. M., et al. 2020, AJ, 159, 279
Buchner, J. 2016, S&C, 26, 383
Buchner, J. 2019, PASP, 131, 108005

Figure 9. Same as Figure 7, but for KOI-5227.01.

14

The Astronomical Journal, 167:68 (15pp), 2024 February Matesic et al.

https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-1119-7473
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-5904-1865
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0002-4881-3620
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0001-6263-4437
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0002-6227-7510
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://orcid.org/0000-0001-6513-1659
https://doi.org/10.1146/annurev-astro-052920-103508
https://ui.adsabs.harvard.edu/abs/2023ARA&A..61..329A/abstract
https://doi.org/10.1093/mnras/stu2638
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.2880A/abstract
https://doi.org/10.1093/mnras/stw706
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.2408A/abstract
https://doi.org/10.1093/mnras/stz1960
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.4440A/abstract
https://doi.org/10.1093/mnras/sty819
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.2874A/abstract
https://doi.org/10.1093/mnras/stx2109
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.2094A/abstract
https://doi.org/10.1086/105708
https://ui.adsabs.harvard.edu/abs/1942AJ.....50...38B/abstract
https://doi.org/10.1088/0004-637X/800/1/46
https://ui.adsabs.harvard.edu/abs/2015ApJ...800...46B/abstract
https://ui.adsabs.harvard.edu/abs/1763RSPT...53..370B/abstract
https://doi.org/10.3847/1538-3881/159/6/280
https://ui.adsabs.harvard.edu/abs/2020AJ....159..280B/abstract
https://doi.org/10.1088/0034-4885/79/3/036901
https://ui.adsabs.harvard.edu/abs/2016RPPh...79c6901B/abstract
https://doi.org/10.1126/science.1234702
https://ui.adsabs.harvard.edu/abs/2013Sci...340..587B/abstract
https://doi.org/10.1126/science.1185402
https://ui.adsabs.harvard.edu/abs/2010Sci...327..977B/abstract
https://doi.org/10.3847/1538-3881/accadd
https://ui.adsabs.harvard.edu/abs/2023AJ....165..227B/abstract
https://doi.org/10.3847/1538-3881/ab8a30
https://ui.adsabs.harvard.edu/abs/2020AJ....159..279B/abstract
https://doi.org/10.1007/s11222-014-9512-y
https://ui.adsabs.harvard.edu/abs/2016S&C....26..383B/abstract
https://doi.org/10.1088/1538-3873/aae7fc
https://ui.adsabs.harvard.edu/abs/2019PASP..131j8005B/abstract


Buchner, J. 2021, JOSS, 6, 3001
Caceres, G. A., Feigelson, E. D., Jogesh Babu, G., et al. 2019, AJ, 158, 58
Caldwell, D. A., Kolodziejczak, J. J., Van Cleve, J. E., et al. 2010, ApJL,

713, L92
Cheney, E. W. 1966, Introduction to Approximation Theory (New York:

McGraw-Hill)
Cholesky, A.-L. 1924, BGeod, 2, 67
Christiansen, J. L. 2017, in Planet Detection Metrics: Pixel-Level Transit

Injection Tests of Pipeline Detection Efficiency for Data Release 25, Kepler
Science Document KSCI-19110-001, ed. M. R. Haas & N. M. Batalha
(Moffett Field, CA: NASA), 18

Claret, A., & Bloemen, S. 2011, A&A, 529, A75
Clarke, B., Kolodziejczak, J. J., & Caldwell, D. A. 2014, AAS Meeting

Abstracts, 224, 120.07
Cranmer, K., Brehmer, J., & Louppe, G. 2020, PNAS, 117, 30055
Czekala, I., Andrews, S. M., Mandel, K. S., Hogg, D. W., & Green, G. M.

2015, ApJ, 812, 128
Davis, P. J. 1975, Interpolation and Approximation (New York: Dover)
Dubois, P. F., Hinsen, K., & Hugunin, J. 1996, ComPh, 10, 262
Dunstan, D. J., Crowne, J., & Drew, A. J. 2020, arXiv:2007.09702
Dunstan, D. J., Crowne, J., & Drew, A. J. 2022, NatSR, 12, 993
Evans, T. M., Aigrain, S., Gibson, N., et al. 2015, MNRAS, 451, 680
Foreman-Mackey, D. 2016, JOSS, 1, 24
Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus, R. 2017, AJ,

154, 220
Foreman-Mackey, D., Montet, B. T., Hogg, D. W., et al. 2015, ApJ, 806, 215
Gibson, N. P., Aigrain, S., Roberts, S., et al. 2012, MNRAS, 419, 2683
Gilliland, R. L., Chaplin, W. J., Dunham, E. W., et al. 2011, ApJS, 197, 6
Gilliland, R. L., Chaplin, W. J., Jenkins, J. M., Ramsey, L. W., & Smith, J. C.

2015, AJ, 150, 133
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
Hastings, W. K. 1970, Biometrika, 57, 97
Hinton, S. R. 2016, JOSS, 1, 00045
Hsu, D. C., Ford, E. B., Ragozzine, D., & Ashby, K. 2019, AJ, 158, 109
Hunter, J. D. 2007, CSE, 9, 90
Jeffrey, N., & Wandelt, B. D. 2023, arXiv:2305.11241
Jeffreys, H. 1939, Theory of Probability (Oxford: Oxford Univ. Press)
Jenkins, J. M. 2002, ApJ, 575, 493
Jenkins, J. M. 2020, in Kepler Data Processing Handbook: Overview of the

Science Operations Center, ed. J. M. Jenkins (Moffett Field, CA: NASA), 2
Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010a, ApJL,

713, L87
Jenkins, J. M., Chandrasekaran, H., McCauliff, S. D., et al. 2010b, Proc. SPIE,

7740, 77400D
Jenkins, J. M., Twicken, J. D., Batalha, N. M., et al. 2015, AJ, 150, 56
Kass, R. E., & Raftery, A. E. 1995, JASA, 90, 773
Kawahara, H., & Masuda, K. 2019, AJ, 157, 218
Kepler, J. 1619, Ioannis Keppleri harmonices mundi libri V (Lincii Austriae:

sumptibus Godofredi Tampachii ..., excudebat Ioannes Plancus)
Kipping, D. M. 2013, MNRAS, 435, 2152
Kipping, D. M. 2014, MNRAS, 440, 2164
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJL, 713, L79
Lam, S. K., Pitrou, A., & Seibert, S. 2015, in Proc. Second Workshop LVM

Compiler Infrastructure in HPC, Vol. 7 ed. H. Finkel (New York: ACM), 1
Laplace, P. S. 1774, Mémoires de Mathématique et de Physique, 6, 621
Legin, R., Adam, A., Hezaveh, Y., & Perreault-Levasseur, L. 2023a, ApJL,

949, L41
Legin, R., Hezaveh, Y., Perreault-Levasseur, L., & Wandelt, B. 2023b, ApJ,

943, 4
Lissauer, J. J., Rowe, J. F., Jontof-Hutter, D., et al. 2023, Updated Catalog of

Kepler Planet Candidates: Focus on Accuracy and Orbital Periods,
arXiv:2311.00238

Littlefair, S. P., Burningham, B., & Helling, C. 2017, MNRAS, 466, 4250
Livingston, J. H., Crossfield, I. J. M., Werner, M. W., et al. 2019, AJ, 157, 102
Llorente, F., Martino, L., Curbelo, E., Lopez-Santiago, J., & Delgado, D. 2022,

arXiv:2206.05210

Mackay, D. J. C. 2003, Information Theory, Inference and Learning
Algorithms (Cambridge: Cambridge Univ. Press)

Mandel, K., & Agol, E. 2002, ApJL, 580, L171
Matèrn, B. 1960, Spatial Variation (Lecture Notes in Statistics) Vol. 36(New

York: Springer)
Mathur, S., Huber, D., Batalha, N. M., et al. 2017, ApJS, 229, 30
McEwen, J. D., Wallis, C. G. R., Price, M. A., & Docherty, M. M. 2021,

arXiv:2111.12720
McKinney, W. 2010, in Proc. 9th Python in Science Conference, ed.

S. van der Walt & J. Millman (Austin, TX: SciPy), 56
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &

Teller, E. 1953, JChPh, 21, 1087
Miller, B., Cole, A., Weniger, C., et al. 2022, JOSS, 7, 4205
Miller, B. K., Cole, A., Louppe, G., & Weniger, C. 2020, arXiv:2011.13951
Mullally, F., Coughlin, J. L., Thompson, S. E., et al. 2015, ApJS, 217, 31
NASA 2022, NASA Exoplanet Archive: A Service of NASA, NASA

Exoplanet Science Institute, https://exoplanetarchive.ipac.caltech.edu
Oliphant, T. E. 2007, CSE, 9, 10
Powell, M. J. D. 1981, Approximation Theory and Methods (Cambridge:

Cambridge Univ. Press)
Press, W. H., Flannery, B. P., & Teukolsky, S. A. 1986, Numerical Recipes.

The Art of Scientific Computing (Cambridge: Cambridge Univ. Press)
Rasmussen, C. E., & Williams, C. K. I. 2006, Gaussian Processes for Machine

Learning (Cambridge: MIT Press)
Roberts, S., Osborne, M., Ebden, M., et al. 2012, RSPTA, 371, 20110550
Rowe, J. 2016, Kepler: Kepler Transit Model Codebase Release, v1.0, Zenodo,

doi:10.5281/zenodo.60297
Rowe, J. F., Coughlin, J. L., Antoci, V., et al. 2015, ApJS, 217, 16
Schwarzenberg-Czerny, A. 1995, A&AS, 110, 405
Seager, S., & Mallén-Ornelas, G. 2003, ApJ, 585, 1038
Skilling, J. 2004, in AIP Conf. Ser. 735, Bayesian Inference and Maximum

Entropy Methods in Science and Engineering: 24th International Workshop
on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering, ed. R. Fischer, R. Preuss, & U. V. Toussaint (Melville, NY:
AIP), 395

Skilling, J. 2006, BayAn, 1, 833
Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012, PASP, 124, 1000
Stein, M. L. 1999, Interpolation of Spatial Data: Some Theory for Kriging

(New York: Springer)
Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, PASP, 124, 985
Tejero-Cantero, A., Boelts, J., Deistler, M., et al. 2020, JOSS, 5, 2505
The Pandas Development Team 2020, pandas-dev/pandas: Pandas, v2.1.0,

Zenodo, doi:10.5281/zenodo.3509134
Thompson, S. E., Coughlin, J. L., Hoffman, K., et al. 2018a, ApJS, 235, 38
Thompson, S. E., Coughlin, J. L., Hoffman, K., et al. 2018b, VizieR On-line

Data Catalog, J/ApJS/235/38
Torres, G., Kipping, D. M., Fressin, F., et al. 2015, ApJ, 800, 99
Twicken, J. D., Chandrasekaran, H., Jenkins, J. M., et al. 2010, Proc. SPIE,

7740, 77401U
Twicken, J. D., Jenkins, J. M., Seader, S. E., et al. 2016, AJ, 152, 158
Van Cleve, J. E., & Caldwell, D. A. 2016, in Kepler Instrument Handbook, ed.

M. R. Haas & S. B. Howell (Moffett Field, CA: NASA), 1
Van Cleve, J. E., Christiansen, J. L., Jenkins, J. M., et al. 2016, in Kepler Data

Characteristics Handbook, ed. D. Caldwell et al. (Moffett Field, CA:
NASA), 2

Van Eylen, V., Albrecht, S., Huang, X., et al. 2019, AJ, 157, 61
Van Rossum, G. 1995a, Extending and embedding the Python interpreter,

Centrum Wiskunde & Informatica, https://ir.cwi.nl/pub/5006
Van Rossum, G. 1995b, Python tutorial, Centrum Wiskunde & Informatica,

https://ir.cwi.nl/pub/5007
Van Rossum, G. 1995c, Python reference manual, Centrum Wiskunde &

Informatica, https://ir.cwi.nl/pub/5008
Van Rossum, G. 1995d, Python library reference, Centrum Wiskunde &

Informatica, https://ir.cwi.nl/pub/5009
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Wallis, K. F. 2014, arXiv:1405.4995

15

The Astronomical Journal, 167:68 (15pp), 2024 February Matesic et al.

https://doi.org/10.21105/joss.03001
https://ui.adsabs.harvard.edu/abs/2021JOSS....6.3001B/abstract
https://doi.org/10.3847/1538-3881/ab26ba
https://ui.adsabs.harvard.edu/abs/2019AJ....158...58C/abstract
https://doi.org/10.1088/2041-8205/713/2/L92
https://ui.adsabs.harvard.edu/abs/2010ApJ...713L..92C/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...713L..92C/abstract
https://doi.org/10.1007/BF03031308
https://ui.adsabs.harvard.edu/abs/2017ksci.rept...18C/abstract
https://doi.org/10.1051/0004-6361/201116451
https://ui.adsabs.harvard.edu/abs/2011A&A...529A..75C/abstract
https://ui.adsabs.harvard.edu/abs/2014AAS...22412007C/abstract
https://doi.org/10.1073/pnas.1912789117
https://ui.adsabs.harvard.edu/abs/2020PNAS..11730055C/abstract
https://doi.org/10.1088/0004-637X/812/2/128
https://ui.adsabs.harvard.edu/abs/2015ApJ...812..128C/abstract
https://doi.org/10.1063/1.4822400
https://ui.adsabs.harvard.edu/abs/1996ComPh..10..262D/abstract
http://arxiv.org/abs/2007.09702
https://doi.org/10.1038/s41598-021-04694-7
https://ui.adsabs.harvard.edu/abs/2022NatSR..12..993D/abstract
https://doi.org/10.1093/mnras/stv910
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451..680E/abstract
https://doi.org/10.21105/joss.00024
https://ui.adsabs.harvard.edu/abs/2016JOSS....1...24F/abstract
https://doi.org/10.3847/1538-3881/aa9332
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://doi.org/10.1088/0004-637X/806/2/215
https://ui.adsabs.harvard.edu/abs/2015ApJ...806..215F/abstract
https://doi.org/10.1111/j.1365-2966.2011.19915.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.2683G/abstract
https://doi.org/10.1088/0067-0049/197/1/6
https://ui.adsabs.harvard.edu/abs/2011ApJS..197....6G/abstract
https://doi.org/10.1088/0004-6256/150/4/133
https://ui.adsabs.harvard.edu/abs/2015AJ....150..133G/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.21105/joss.00045
https://ui.adsabs.harvard.edu/abs/2016JOSS....1...45H/abstract
https://doi.org/10.3847/1538-3881/ab31ab
https://ui.adsabs.harvard.edu/abs/2019AJ....158..109H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
http://arxiv.org/abs/2305.11241
https://doi.org/10.1086/341136
https://ui.adsabs.harvard.edu/abs/2002ApJ...575..493J/abstract
https://ui.adsabs.harvard.edu/abs/2020ksci.rept....2J/abstract
https://doi.org/10.1088/2041-8205/713/2/L87
https://ui.adsabs.harvard.edu/abs/2010ApJ...713L..87J/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...713L..87J/abstract
https://doi.org/10.1117/12.856764
https://ui.adsabs.harvard.edu/abs/2010SPIE.7740E..0DJ/abstract
https://ui.adsabs.harvard.edu/abs/2010SPIE.7740E..0DJ/abstract
https://doi.org/10.1088/0004-6256/150/2/56
https://ui.adsabs.harvard.edu/abs/2015AJ....150...56J/abstract
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.3847/1538-3881/ab18ab
https://ui.adsabs.harvard.edu/abs/2019AJ....157..218K/abstract
https://doi.org/10.1093/mnras/stt1435
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2152K/abstract
https://doi.org/10.1093/mnras/stu318
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440.2164K/abstract
https://doi.org/10.1088/2041-8205/713/2/L79
https://ui.adsabs.harvard.edu/abs/2010ApJ...713L..79K/abstract
https://ui.adsabs.harvard.edu/abs/2015llvm.confE...1L/abstract
https://doi.org/10.3847/2041-8213/acd645
https://ui.adsabs.harvard.edu/abs/2023ApJ...949L..41L/abstract
https://ui.adsabs.harvard.edu/abs/2023ApJ...949L..41L/abstract
https://doi.org/10.3847/1538-4357/aca7c2
https://ui.adsabs.harvard.edu/abs/2023ApJ...943....4L/abstract
https://ui.adsabs.harvard.edu/abs/2023ApJ...943....4L/abstract
http://arXiv.org/abs/2311.00238
https://doi.org/10.1093/mnras/stw3376
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466.4250L/abstract
https://doi.org/10.3847/1538-3881/aaff69
https://ui.adsabs.harvard.edu/abs/2019AJ....157..102L/abstract
http://arxiv.org/abs/2206.05210
https://doi.org/10.1086/345520
https://ui.adsabs.harvard.edu/abs/2002ApJ...580L.171M/abstract
https://doi.org/10.3847/1538-4365/229/2/30
https://ui.adsabs.harvard.edu/abs/2017ApJS..229...30M/abstract
http://arxiv.org/abs/2111.12720
https://doi.org/10.1063/1.1699114
https://ui.adsabs.harvard.edu/abs/1953JChPh..21.1087M/abstract
https://doi.org/10.21105/joss.04205
https://ui.adsabs.harvard.edu/abs/2022JOSS....7.4205M/abstract
http://arxiv.org/abs/2011.13951
https://doi.org/10.1088/0067-0049/217/2/31
https://ui.adsabs.harvard.edu/abs/2015ApJS..217...31M/abstract
https://exoplanetarchive.ipac.caltech.edu/
https://exoplanetarchive.ipac.caltech.edu/
https://exoplanetarchive.ipac.caltech.edu/
https://doi.org/10.1109/MCSE.2007.58
https://ui.adsabs.harvard.edu/abs/2007CSE.....9c..10O/abstract
https://doi.org/10.1098/rsta.2011.0550
https://ui.adsabs.harvard.edu/abs/2012RSPTA.37110550R/abstract
https://doi.org/10.5281/zenodo.60297
https://doi.org/10.1088/0067-0049/217/1/16
https://ui.adsabs.harvard.edu/abs/2015ApJS..217...16R/abstract
https://ui.adsabs.harvard.edu/abs/1995A&AS..110..405S/abstract
https://doi.org/10.1086/346105
https://ui.adsabs.harvard.edu/abs/2003ApJ...585.1038S/abstract
https://ui.adsabs.harvard.edu/abs/2004AIPC..735..395S/abstract
https://doi.org/10.1214/06-BA127
https://doi.org/10.1086/667697
https://ui.adsabs.harvard.edu/abs/2012PASP..124.1000S/abstract
https://doi.org/10.1086/667698
https://ui.adsabs.harvard.edu/abs/2012PASP..124..985S/abstract
https://doi.org/10.21105/joss.02505
https://ui.adsabs.harvard.edu/abs/2020JOSS....5.2505T/abstract
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.3847/1538-4365/aab4f9
https://ui.adsabs.harvard.edu/abs/2018ApJS..235...38T/abstract
https://ui.adsabs.harvard.edu/abs/2018yCat..22350038T/abstract
https://doi.org/10.1088/0004-637X/800/2/99
https://ui.adsabs.harvard.edu/abs/2015ApJ...800...99T/abstract
https://doi.org/10.1117/12.856798
https://ui.adsabs.harvard.edu/abs/2010SPIE.7740E..1UT/abstract
https://ui.adsabs.harvard.edu/abs/2010SPIE.7740E..1UT/abstract
https://doi.org/10.3847/0004-6256/152/6/158
https://ui.adsabs.harvard.edu/abs/2016AJ....152..158T/abstract
https://ui.adsabs.harvard.edu/abs/2016ksci.rept....1V/abstract
https://doi.org/10.3847/1538-3881/aaf22f
https://ui.adsabs.harvard.edu/abs/2019AJ....157...61V/abstract
https://ir.cwi.nl/pub/5006
https://ir.cwi.nl/pub/5007
https://ir.cwi.nl/pub/5008
https://ir.cwi.nl/pub/5009
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
http://arxiv.org/abs/1405.4995

	1. Introduction
	2. Methodology
	2.1. Model Comparison
	2.2. Summary of Models
	2.3. Software Architecture
	2.4. Derived Parameters

	3. Candidates Modeled Herein
	4. Numerical Results
	4.1. Strong and Weak Cases
	4.2. Varying Free Parameters
	4.3. Comparisons to Multiple Event Statistic and Signal-to-noise Ratio

	5. Conclusions
	6. Next Steps
	Appendix ATerminology and Acronyms
	Appendix BStrong and Weak Cases Supplementary Figures
	References



