
ICST Transactions Preprint

Advancements of Outlier Detection: A Survey

Ji Zhang

Department of Mathematics and Computing

University of Southern Queensland, Australia

ji.zhang@usq.edu.au

abstract

1. Introduction

Outlier detection is an important research problem

in data mining that aims to find objects that are

considerably dissimilar, exceptional and inconsistent

with respect to the majority data in an input database

[50]. Outlier detection, also known as anomaly detection

in some literatures, has become the enabling underlying

technology for a wide range of practical applications

in industry, business, security and engineering, etc. For

example, outlier detection can help identify suspicious

fraudulent transaction for credit card companies. It

can also be utilized to identify abnormal brain signals

that may indicate the early development of brain

cancers. Due to its inherent importance in various

areas, considerable research efforts in outlier detection

have been conducted in the past decade. A number of

outlier detection techniques have been proposed that

use different mechanisms and algorithms. This paper

presents a comprehensive review on the major state-

of-the-art outlier detection methods. We will cover

different major categories of outlier detection approaches

and critically evaluate their respective advantages and

disadvantages.

In principle, an outlier detection technique can be

considered as a mapping function f that can be expressed

as f(p) → q, where q ∈ ℜ+. Giving a data point p in

the given dataset, a corresponding outlier-ness score

is generated by applying the mapping function f to

quantitatively reflect the strength of outlier-ness of p.

Based on the mapping function f , there are typically two

major tasks for outlier detection problem to accomplish,

which leads to two corresponding problem formulations.

From the given dataset that is under study, one may

want to find the top k outliers that have the highest

outlier-ness scores or all the outliers whose outlier-ness

score exceeding a user specified threshold.

The exact techniques or algorithms used in different

outlier methods may vary significantly, which are largely

dependent on the characteristic of the datasets to be

dealt with. The datasets could be static with a small

number of attributes where outlier detection is relatively

easy. Nevertheless, the datasets could also be dynamic,

such as data streams, and at the same time have a

large number of attributes. Dealing with this kind of

datasets is more complex by nature and requires special

attentions to the detection performance (including speed

and accuracy) of the methods to be developed.

Given the abundance of research literatures in the

field of outlier detection, the scope of this survey

will be clearly specified first in order to facilitate

a systematic survey of the existing outlier detection

methods. After that, we will start the survey with a

review of the conventional outlier detection techniques

that are primarily suitable for relatively low-dimensional

static data, followed by some of the major recent

advancements in outlier detection for high-dimensional

static data and data streams.

2. Scope of This Survey

Before the review of outlier detection methods is

presented, it is necessary for us to first explicitly specify

the scope of this survey. There have been a lot of

research work in detecting different kinds of outliers

from various types of data where the techniques outlier

detection methods utilize differ considerably. Most of the

existing outlier detection methods detect the so-called

point outliers from vector-like data sets. This is the focus

of this review as well as of this thesis. Another common

1

ICST Transactions Preprint

category of outliers that has been investigated is called

collective outliers. Besides the vector-like data, outliers

can also be detected from other types of data such as

sequences, trajectories and graphs, etc. In the reminder

of this subsection, we will discuss briefly different types

of outliers.

First, outliers can be classified as point outliers and

collective outliers based on the number of data instances

involved in the concept of outliers.

• Point outliers. In a given set of data instances,

an individual outlying instance is termed as a

point outlier. This is the simplest type of outliers

and is the focus of majority of existing outlier

detection schemes [28]. A data point is detected

as a point outlier because it displays outlier-ness

at its own right, rather than together with other

data points. In most cases, data are represented

in vectors as in the relational databases. Each

tuple contains a specific number of attributes.

The principled method for detecting point outliers

from vector-type data sets is to quantify, through

some outlier-ness metrics, the extent to which each

single data is deviated from the other data in the

data set.

• Collective outliers. A collective outlier repre-

sents a collection of data instances that is outlying

with respect to the entire data set. The individual

data instance in a collective outlier may not be

outlier by itself, but the joint occurrence as a

collection is anomalous [28]. Usually, the data

instances in a collective outlier are related to each

other. A typical type of collective outliers are

sequence outliers, where the data are in the format

of an ordered sequence.

Outliers can also be categorized into vector outliers,

sequence outliers, trajectory outliers and graph outliers,

etc, depending on the types of data from where outliers

can be detected.

• Vector outliers. Vector outliers are detected

from vector-like representation of data such as

the relational databases. The data are presented

in tuples and each tuple has a set of associated

attributes. The data set can contain only numeric

attributes, or categorical attributes or both. Based

on the number of attributes, the data set can

be broadly classified as low-dimensional data and

high-dimensional data, even though there is not

a clear cutoff between these two types of data

sets. As relational databases still represent the

mainstream approaches for data storage, therefore,

vector outliers are the most common type of

outliers we are dealing with.

• Sequence outliers. In many applications, data

are presented as a sequence. A good example

of a sequence database is the computer system

call log where the computer commands executed,

in a certain order, are stored. A sequence

of commands in this log may look like the

following sequence: http-web, buffer-overflow, http-

web, http-web, smtp-mail, ftp, http-web, ssh.

Outlying sequence of commands may indicate a

malicious behavior that potentially compromises

system security. In order to detect abnormal

command sequences, normal command sequences

are maintained and those sequences that do not

match any normal sequences are labeled sequence

outliers. Sequence outliers are a form of collective

outlier.

• Trajectory outliers. Recent improvements in

satellites and tracking facilities have made it

possible to collect a huge amount of trajectory

data of moving objects. Examples include vehicle

positioning data, hurricane tracking data, and

animal movement data [65]. Unlike a vector or a

sequence, a trajectory is typically represented by

a set of key features for its movement, including

the coordinates of the starting and ending points;

the average, minimum, and maximum values of the

directional vector; and the average, minimum, and

maximum velocities. Based on this representation,

a weighted-sum distance function can be defined to

compute the difference of trajectory based on the

key features for the trajectory [60]. A more recent

work proposed a partition-and-detect framework

for detecting trajectory outliers [65]. The idea

of this method is that it partitions the whole

trajectory into line segments and tries to detect

outlying line segments, rather than the whole

trajectory. Trajectory outliers can be point outliers

if we consider each single trajectory as the basic

2

ICST Transactions Preprint

data unit in the outlier detection. However, if the

moving objects in the trajectory are considered,

then an abnormal sequence of such moving objects

(constituting the sub-trajectory) is a collective

outlier.

• Graph outliers. Graph outliers represent those

graph entities that are abnormal when compared

with their peers. The graph entities that can

become outliers include nodes, edges and sub-

graphs. For example, Sun et al. investigate the

detection of anomalous nodes in a bipartite graph

[84][85]. Autopart detects outlier edges in a general

graph [27]. Noble et al. study anomaly detection

on a general graph with labeled nodes and try to

identify abnormal substructure in the graph [72].

Graph outliers can be either point outliers (e.g.,

node and edge outliers) or collective outliers (e.g.,

sub-graph outliers).

Unless otherwise stated, all the outlier detection

methods discussed in this review refer to those methods

for detecting point outliers from vector-like data sets.

3. Outlier Detection Methods for Low

Dimensional Data

The earlier research work in outlier detection mainly

deals with static datasets with relatively low dimensions.

Literature on these work can be broadly classified into

four major categories based on the techniques they

used, i.e., statistical methods, distance-based methods,

density-based methods and clustering-based methods.

3.1. Statistical Detection Methods

Statistical outlier detection methods [23, 47] rely on

the statistical approaches that assume a distribution or

probability model to fit the given dataset. Under the

distribution assumed to fit the dataset, the outliers are

those points that do not agree with or conform to the

underlying model of the data.

The statistical outlier detection methods can be

broadly classified into two categories, i.e., the parametric

methods and the non-parametric methods. The major

differences between these two classes of methods lie in

that the parametric methods assume the underlying

distribution of the given data and estimate the

parameters of the distribution model from the given data

[34] while the non-parametric methods do not assume

any knowledge of distribution characteristics [31].

Statistical outlier detection methods (parametric and

non-parametric) typically take two stages for detecting

outliers, i.e., the training stage and test stage.

• Training stage. The training stage mainly

involves fitting a statistical model or building

data profiles based on the given data. Statistical

techniques can be performed in a supervised, semi-

supervised, and unsupervised manner. Supervised

techniques estimate the probability density for

normal instances and outliers. Semi-supervised

techniques estimate the probability density for

either normal instances, or outliers, depending on

the availability of labels. Unsupervised techniques

determine a statistical model or profile which fits

all or the majority of the instances in the given

data set;

• Test stage. Once the probabilistic model or

profile is constructed, the next step is to determine

if a given data instance is an outlier with respect to

the model/profile or not. This involves computing

the posterior probability of the test instance to

be generated by the constructed model or the

deviation from the constructed data profile. For

example, we can find the distance of the data

instance from the estimated mean and declare any

point above a threshold to be an outlier [42].

Parametric Methods. Parametric statistical outlier

detection methods explicitly assume the probabilistic

or distribution model(s) for the given data set. Model

parameters can be estimated using the training data

based upon the distribution assumption. The major

parametric outlier detection methods include Gaussian

model-based and regression model-based methods.

A. Gaussian Models

Detecting outliers based on Gaussian distribution

models have been intensively studied. The training stage

typically performs estimation of the mean and variance

(or standard deviation) of the Gaussian distribution

using Maximum Likelihood Estimates (MLE). To ensure

that the distribution assumed by human users is

the optimal or close-to-optima underlying distribution

the data fit, statistical discordany tests are normally

conducted in the test stage [23][16][18]. So far, over one

3

ICST Transactions Preprint

hundred discordancy/outlier tests have been developed

for different circumstances, depending on the parameter

of dataset (such as the assumed data distribution) and

parameter of distribution (such as mean and variance),

and the expected number of outliers [50][58]. The

rationale is that some small portion of points that have

small probability of occurrence in the population are

identified as outliers. The commonly used outlier tests

for normal distributions are the mean-variance test and

box-plot test [66][49][83][44]. In the mean-variance test for

a Gaussian distribution N(µ, σ2), where the population

has a mean µ and variance σ, outliers can be considered

to be points that lie 3 or more standard deviations

(i.e., ≥ 3σ) away from the mean [41]. This test is

general and can be applied to some other commonly used

distributions such as Student t-distribution and Poisson

distribution, which feature a fatter tail and a longer right

tail than a normal distribution, respectively. The box-

plot test draws on the box plot to graphically depict

the distribution of data using five major attributes, i.e.,

smallest non-outlier observation (min), lower quartile

(Q1), median, upper quartile (Q3), and largest non-

outlier observation (max). The quantity Q3-Q1 is called

the Inter Quartile Range (IQR). IQR provides a means

to indicate the boundary beyond which the data will be

labeled as outliers; a data instance will be labeled as an

outlier if it is located 1.5*IQR times lower than Q1 or

1.5*IQR times higher than Q3.

In some cases, a mixture of probabilistic models may

be used if a single model is not sufficient for the purpose

of data modeling. If labeled data are available, two

separate models can be constructed, one for the normal

data and another for the outliers. The membership

probability of the new instances can be quantified

and they are labeled as outliers if their membership

probability of outlier probability model is higher than

that of the model of the normal data. The mixture of

probabilistic models can also be applied to unlabeled

data, that is, the whole training data are modeled using

a mixture of models. A test instance is considered to be

an outlier if it is found that it does not belong to any of

the constructed models.

B. Regression Models

If the probabilistic model is unknown regression can

be employed for model construction. The regression

analysis aims to find a dependence of one/more random

variable(s) Y on another one/more variable(s) X .

This involves examining the conditional probability

distribution Y|X . Outlier detection using regression

techniques are intensively applied to time-series data

[4][2][39][1][64]. The training stage involves constructing

a regression model that fits the data. The regression

model can either be a linear or non-linear model,

depending on the choice from users. The test stage tests

the regression model by evaluating each data instance

against the model. More specifically, such test involves

comparing the actual instance value and its projected

value produced by the regression model. A data point

is labeled as an outlier if a remarkable deviation occurs

between the actual value and its expected value produced

by the regression model.

Basically speaking, there are two ways to use the

data in the dataset for building the regression model for

outlier detection, namely the reverse search and direct

search methods. The reverse search method constructs

the regression model by using all data available and

then the data with the greatest error are considered as

outliers and excluded from the model. The direct search

approach constructs a model based on a portion of data

and then adds new data points incrementally when the

preliminary model construction has been finished. Then,

the model is extended by adding most fitting data, which

are those objects in the rest of the population that have

the least deviations from the model constructed thus

far. The data added to the model in the last round,

considered to be the least fitting data, are regarded to

be outliers.

Non-parametric Methods. The outlier detection tech-

niques in this category do not make any assumptions

about the statistical distribution of the data. The most

popular approaches for outlier detection in this category

are histograms and Kernel density function methods.

A. Histograms

The most popular non-parametric statistical tech-

nique is to use histograms to maintain a profile of

data. Histogram techniques by nature are based on the

frequency or counting of data.

The histogram based outlier detection approach is

typically applied when the data has a single feature.

Mathematically, a histogram for a feature of data

consists of a number of disjoint bins (or buckets) and

the data are mapped into one (and only one) bin.

4

ICST Transactions Preprint

Represented graphically by the histogram graph, the

height of bins corresponds to the number of observations

that fall into the bins. Thus, if we let n be the

total number of instances, k be the total number of

bins and mi be the number of data point in the ith

bin (1 ≤ i ≤ k), the histogram satisfies the following

condition n =
∑k

i=1 mi. The training stage involves

building histograms based on the different values taken

by that feature in the training data.

The histogram techniques typically define a measure

between a new test instance and the histogram based

profile to determine if it is an outlier or not. The measure

is defined based on how the histogram is constructed in

the first place. Specifically, there are three possible ways

for building a histogram:

1. The histogram can be constructed only based on

normal data. In this case, the histogram only

represents the profile for normal data. The test

stage evaluates whether the feature value in the

test instance falls in any of the populated bins of

the constructed histogram. If not, the test instance

is labeled as an outlier [5] [54][48];

2. The histogram can be constructed only based

on outliers. As such, the histogram captures the

profile for outliers. A test instance that falls into

one of the populated bins is labeled as an outlier

[32]. Such techniques are particularly popular in

intrusion detection community [34][38] [30] and

fraud detection [40];

3. The histogram can be constructed based on a

mixture of normal data and outliers. This is the

typical case where histogram is constructed. Since

normal data typically dominate the whole data set,

thus the histogram represents an approximated

profile of normal data. The sparsity of a bin in the

histogram can be defined as the ratio of frequency

of this bin against the average frequency of all

the bins in the histogram. A bin is considered as

sparse if such ratio is lower than a user-specified

threshold. All the data instance falling into the

sparse bins are labeled as outliers.

The first and second ways for constructing histogram,

as presented above, rely on the availability of labeled

instances, while the third one does not.

For multivariate data, a common approach is to

construct feature-wise histograms. In the test stage, the

probability for each feature value of the test data is

calculated and then aggregated to generate the so-called

outlier score. A low probability value corresponds a

higher outlier score of that test instance. The aggregation

of per-feature likelihoods for calculating outlier score is

typically done using the following equation:

Outlier Score =
∑
f∈F

wf · (1− pf)/|F |

where wf denotes the weight assigned for feature f ,

pf denotes the probability for the value of feature f

and F denotes the set of features of the dataset. Such

histogram-based aggregation techniques have been used

in intrusion detection in system call data [35], fraud

detection [40], damage detection in structures [67] [70]

[71], network intrusion detection [90] [91], web-based

attack detection [63], Packet Header Anomaly Detection

(PHAD), Application Layer Anomaly Detection (ALAD)

[69], NIDES (by SRI International) [5] [12] [79]. Also,

a substantial amount of research has been done in the

field of outlier detection for sequential data (primarily

to detect intrusions in computer system call data)

using histogram based techniques. These techniques are

fundamentally similar to the instance based histogram

approaches as described above but are applied to

sequential data to detect collective outliers.

Histogram based detection methods are simple to

implement and hence are quite popular in domain such

as intrusion detection. But one key shortcoming of

such techniques for multivariate data is that they are

not able to capture the interactions between different

attributes. An outlier might have attribute values that

are individually very frequent, but their combination is

very rare. This shortcoming will become more salient

when dimensionality of data is high. A feature-wise

histogram technique will not be able to detect such kinds

of outliers. Another challenge for such techniques is that

users need to determine an optimal size of the bins to

construct the histogram.

B. Kernel Functions

Another popular non-parametric approach for outlier

detection is the parzen windows estimation due to Parzen

[76]. This involves using Kernel functions to approximate

the actual density distribution. A new instance which lies

5

ICST Transactions Preprint

in the low probability area of this density is declared to

be an outlier.

Formally, if x1, x2, ..., xN are IID (independently and

identically distributed) samples of a random variable x,

then the Kernel density approximation of its probability

density function (pdf) is

fh(x) =
1

Nh

N∑
i=1

K(
x− xi

h
)

where K is Kernel function and h is the bandwidth

(smoothing parameter). Quite often, K is taken to be

a standard Gaussian function with mean µ = 0 and

variance σ2 = 1:

K(x) =
1√
2π

e−
1
2x

2

Novelty detection using Kernel function is presented

by [17] for detecting novelties in oil flow data. A test

instance is declared to be novel if it belongs to the

low density area of the learnt density function. Similar

application of parzen windows is proposed for network

intrusion detection [29] and for mammographic image

analysis [86]. A semi-supervised probabilistic approach

is proposed to detect novelties [31]. Kernel functions

are used to estimate the probability distribution

function (pdf) for the normal instances. Recently, Kernel

functions are used in outlier detection in sensor networks

[80][25].

Kernel density estimation of pdf is applicable to

both univariate and multivariate data. However, the

pdf estimation for multivariate data is much more

computationally expensive than the univariate data.

This renders the Kernel density estimation methods

rather inefficient in outlier detection for high-dimensional

data.

Advantages and Disadvantages of Statistical Meth-

ods. Statistical outlier detection methods feature some

advantages. They are mathematically justified and if

a probabilistic model is given, the methods are very

efficient and it is possible to reveal the meaning of the

outliers found [75]. In addition, the model constructed,

often presented in a compact form, makes it possible to

detect outliers without storing the original datasets that

are usually of large sizes.

However, the statistical outlier detection methods,

particularly the parametric methods, suffer from some

key drawbacks. First, they are typically not applied in

a multi-dimensional scenario because most distribution

models typically apply to the univariate feature

space. Thus, they are unsuitable even for moderate

multi-dimensional data sets. This greatly limits their

applicability as in most practical applications the data

is multiple or even high dimensional. In addition, a

lack of the prior knowledge regarding the underlying

distribution of the dataset makes the distribution-based

methods difficult to use in practical applications. A single

distribution may not model the entire data because the

data may originate from multiple distributions. Finally,

the quality of results cannot be guaranteed because they

are largely dependent on the distribution chosen to fit the

data. It is not guaranteed that the data being examined

fit the assumed distribution if there is no estimate of

the distribution density based on the empirical data.

Constructing such tests for hypothesis verification in

complex combinations of distributions is a nontrivial task

whatsoever. Even if the model is properly chosen, finding

the values of parameters requires complex procedures.

From above discussion, we can see the statistical methods

are rather limited to large real-world databases which

typically have many different fields and it is not easy to

characterize the multivariate distribution of exemplars.

For non-parametric statistical methods, such as

histogram and Kernal function methods, they do

not have the problem of distribution assumption

that the parametric methods suffer and they both

can deal with data streams containing continuously

arriving data. However, they are not appropriate for

handling high-dimensional data. Histogram methods

are effective for a single feature analysis, but they

lose much of their effectiveness for multi or high-

dimensional data because they lack the ability to analyze

multiple feature simultaneously. This prevents them from

detecting subspace outliers. Kernel function methods are

appropriate only for relatively low dimensional data as

well. When the dimensionality of data is high, the density

estimation using Kernel functions becomes rather

computationally expensive, making it inappropriate for

handling high-dimensional data streams.

6

ICST Transactions Preprint

3.2. Distance-based Methods

There have already been a number of different ways

for defining outliers from the perspective of distance-

related metrics. Most existing metrics used for distance-

based outlier detection techniques are defined based

upon the concepts of local neighborhood or k nearest

neighbors (kNN) of the data points. The notion of

distance-based outliers does not assume any underlying

data distributions and generalizes many concepts from

distribution-based methods. Moreover, distance-based

methods scale better to multi-dimensional space and can

be computed much more efficiently than the statistical-

based methods.

In distance-based methods, distance between data

points is needed to be computed. We can use any of

the Lp metrics like the Manhattan distance or Euclidean

distance metrics for measuring the distance between a

pair of points. Alternately, for some other application

domains with presence of categorical data (e.g., text

documents), non-metric distance functions can also be

used, making the distance-based definition of outliers

very general. Data normalization is normally carried out

in order to normalize the different scales of data features

before outlier detection is performed.

A. Local Neighborhood Methods

The first notion of distance-based outliers, called

DB(k, λ)-Outlier, is due to Knorr and Ng [58]. It is

defined as follows. A point p in a data set is a DB(k, λ)-

Outlier, with respect to the parameters k and λ, if no

more than k points in the data set are at a distance λ

or less (i.e., λ−neighborhood) from p. This definition

of outliers is intuitively simple and straightforward.

The major disadvantage of this method, however, is its

sensitivity to the parameter λ that is difficult to specify

a priori. As we know, when the data dimensionality

increases, it becomes increasingly difficult to specify an

appropriate circular local neighborhood (delimited by λ)

for outlier-ness evaluation of each point since most of the

points are likely to lie in a thin shell about any point [19].

Thus, a too small λ will cause the algorithm to detect

all points as outliers, whereas no point will be detected

as outliers if a too large λ is picked up. In other words,

one needs to choose an appropriate λ with a very high

degree of accuracy in order to find a modest number of

points that can then be defined as outliers.

To facilitate the choice of parameter values, this

first local neighborhood distance-based outlier definition

is extended and the so-called DB(pct, dmin)-Outlier is

proposed which defines an object in a dataset as a

DB(pct, dmin)-Outlier if at least pct% of the objects in

the datasets have the distance larger than dmin from

this object [59][60]. Similar to DB(k, λ)-Outlier, this

method essentially delimits the local neighborhood of

data points using the parameter dmin and measures the

outlierness of a data point based on the percentage,

instead of the absolute number, of data points falling

into this specified local neighborhood. As pointed out in

[56] and [57], DB(pct, dmin) is quite general and is able

to unify the exisiting statisical detection methods using

discordancy tests for outlier detection. For exmaple,

DB(pct, dmin) unifies the definition of outliers using a

normal distribution-based discordancy test with pct =

0.9988 and dmin = 0.13. The specification of pct is

obviously more intuitive and easier than the specification

of k in DB(k, λ)-Outliers [59]. However, DB(pct, dmin)-

Outlier suffers a similar problem as DB(pct, dmin)-

Outlier in specifying the local neighborhood parameter

dmin.

To efficiently calculate the number (or percentage)

of data points falling into the local neighborhood

of each point, three classes of algorithms have been

presented, i.e., the nested-loop, index-based and cell-

based algorithms. For easy of presentation, these three

algorithms are discussed for detecting DB(k, λ)-Outlier.

The nested-loop algorithm uses two nested loops to

compute DB(k, λ)-Outlier. The outer loop considers

each point in the dataset while the inner loop

computes for each point in the outer loop the number

(or percentage) of points in the dataset falling into

the specified λ-neighborhood. This algorithm has the

advantage that it does not require the indexing structure

be constructed at all that may be rather expensive at

most of the time, though it has a quadratic complexity

with respect to the number of points in the dataset.

The index-based algorithm involves calculating the

number of points belonging to the λ-neighborhood of

each data by intensively using a pre-constructed multi-

dimensional index structure such as R∗-tree [22] to

facilitate kNN search. The complexity of the algorithm is

approximately logarithmic with respect to the number of

the data points in the dataset. However, the construction

7

ICST Transactions Preprint

of index structures is sometimes very expensive and the

quality of the index structure constructed is not easy to

guarantee.

In the cell-based algorithm, the data space is

partitioned into cells and all the data points are mapped

into cells. By means of the cell size that is known a

priori, estimates of pair-wise distance of data points are

developed, whereby heuristics (pruning properties) are

presented to achieve fast outlier detection. It is shown

that three passes over the dataset are sufficient for

constructing the desired partition. More precisely, the

d−dimensional space is partitioned into cells with side

length of λ
2
√
d
. Thus, the distance between points in any

2 neighboring cells is guaranteed to be at most λ. As

a result, if for a cell the total number of points in the

cell and its neighbors is greater than k, then none of the

points in the cell can be outliers. This property is used

to eliminate the vast majority of points that cannot be

outliers. Also, points belonging to cells that are more

than 3 cells apart are more than a distance λ apart. As

a result, if the number of points contained in all cells

that are at most 3 cells away from the a given cell is less

than k, then all points in the cell are definitely outliers.

Finally, for those points that belong to a cell that cannot

be categorized as either containing only outliers or only

non-outliers, only points from neighboring cells that are

at most 3 cells away need to be considered in order to

determine whether or not they are outliers. Based on

the above properties, the authors propose a three-pass

algorithm for computing outliers in large databases. The

time complexity of this cell-based algorithm is O(cd +

N), where c is a number that is inversely proportional

to λ. This complexity is linear with dataset size N but

exponential with the number of dimensions d. As a result,

due to the exponential growth in the number of cells

as the number of dimensions is increased, the cell-based

algorithm starts to perform poorly than the nested loop

for datasets with dimensions of 4 or higher.

In [36], a similar definition of outlier is proposed.

It calculates the number of points falling into the

w-radius of each data point and labels those points

as outliers that have low neighborhood density. We

consider this definition of outliers as the same as that

for DB(k, λ)-Outlier, differing only that this method

does not present the threshold k explicitly in the

definition. As the computation of the local density

for each point is expensive, [36] proposes a clustering

method for an efficient estimation. The basic idea of

such approximation is to use the size of a cluster to

approximate the local density of all the data in this

cluster. It uses the fix-width clustering [36] for density

estimation due to its good efficiency in dealing with large

data sets.

B. kNN-distance Methods

There have also been a few distance-based outlier

detection methods utilizing the k nearest neighbors

(kNN) in measuring the outlier-ness of data points in the

dataset. The first proposal uses the distance to the kth

nearest neighbors of every point, denoted as Dk, to rank

points so that outliers can be more efficiently discovered

and ranked [81]. Based on the notion of Dk, the following

definition for Dk
n-Outlier is given: Given k and n, a point

is an outlier if the distance to its kth nearest neighbor of

the point is smaller than the corresponding value for no

more than n− 1 other points. Essentially, this definition

of outliers considers the top n objects having the highest

Dk values in the dataset as outliers.

Similar to the computation of DB(k, λ)-Outlier, three

different algorithms, i.e., the nested-loop algorithm,

the index-based algorithm, and the partition-based

algorithm, are proposed to compute Dk for each data

point efficiently.

The nested-loop algorithm for computing outliers

simply computes, for each input point p,Dk, the distance

of between p and its kth nearest neighbor. It then sorts

the data and selects the top n points with the maximum

Dk values. In order to compute Dk for points, the

algorithm scans the database for each point p. For a

point p, a list of its k nearest points is maintained, and

for each point q from the database which is considered,

a check is made to see if the distance between p and q

is smaller than the distance of the kth nearest neighbor

found so far. If so, q is included in the list of the k nearest

neighbors for p. The moment that the list contains more

than k neighbors, then the point that is furthest away

from p is deleted from the list. In this algorithm, since

only one point is processed at a time, the database would

need to be scanned N times, where N is the number of

points in the database. The computational complexity

is in the order of O(N2), which is rather expensive for

large datasets. However, since we are only interested in

the top n outliers, we can apply the following pruning

8

ICST Transactions Preprint

optimization to early-stop the computation of Dk for a

point p. Assume that during each step of the algorithm,

we store the top n outliers computed thus far. Let Dn
min

be the minimum among these top n outliers. If during

the computation of for a new point p, we find that the

value for Dk computed so far has fallen below Dn
min,

we are guaranteed that point p cannot be an outlier.

Therefore, it can be safely discarded. This is because

Dk monotonically decreases as we examine more points.

Therefore, p is guaranteed not to be one of the top n

outliers.

The index-based algorithm draws on index structure

such as R*-tree [22] to speed up the computation. If

we have all the points stored in a spatial index like R*-

tree, the following pruning optimization can be applied

to reduce the number of distance computations. Suppose

that we have computed for point p by processing a

portion of the input points. The value that we have

is clearly an upper bound for the actual Dk of p. If

the minimum distance between p and the Minimum

Bounding Rectangles (MBR) of a node in the R*-tree

exceeds the value that we have anytime in the algorithm,

then we can claim that none of the points in the sub-

tree rooted under the node will be among the k nearest

neighbors of p. This optimization enables us to prune

entire sub-trees that do not contain relevant points to

the kNN search for p.

The major idea underlying the partition-based

algorithm is to first partition the data space, and then

prune partitions as soon as it can be determined that

they cannot contain outliers. Partition-based algorithm

is subject to the pre-processing step in which data space

is split into cells and data partitions, together with

the Minimum Bounding Rectangles of data partitions,

are generated. Since n will typically be very small,

this additional preprocessing step performed at the

granularity of partitions rather than points is worthwhile

as it can eliminate a significant number of points as

outlier candidates. This partition-based algorithm takes

the following four steps:

1. First, a clustering algorithm, such as BIRCH, is

used to cluster the data and treat each cluster as

a separate partition;

2. For each partition P , the lower and upper bounds

(denoted as P.lower and P.upper, respectively) on

Dk for points in the partition are computed. For

every point p ∈ P , we have P.lower ≤ Dk(p) ≤
P.upper;

3. The candidate partitions, the partitions containing

points which are candidates for outliers, are iden-

tified. Suppose we could compute minDkDist, the

lower bound on Dk for the n outliers we have

detected so far. Then, if P.upper < minDkDist,

none of the points in P can possibly be outliers

and are safely pruned. Thus, only partitions P

for which P.upper ≥ minDkDist are chosen as

candidate partitions;

4. Finally, the outliers are computed from among the

points in the candidate partitions obtained in Step

3. For each candidate partition P , let P.neighbors

denote the neighboring partitions of P , which are

all the partitions within distance P.upper from P .

Points belonging to neighboring partitions of P are

the only points that need to be examined when

computing Dk for each point in P .

The Dk
n-Outlier is further extended by considering

for each point the sum of its k nearest neighbors

[10]. This extension is motivated by the fact that the

definition of Dk merely considers the distance between

an object with its kth nearest neighbor, entirely ignoring

the distances between this object and its another k − 1

nearest neighbors. This drawback may make Dk fail to

give an accurate measurement of outlier-ness of data

points in some cases. For a better understanding, we

present an example, as shown in Figure 1, in which

the same Dk value is assigned to points p1 and p2, two

points with apparently rather different outlier-ness. The

k − 1 nearest neighbors for p2 are populated much more

densely around it than those of p1, thus the outlier-ness

of p2 is obviously lower than p1. Obviously, Dk is not

robust enough in this example to accurately reveal the

outlier-ness of data points. By summing up the distances

between the object with all of its k nearest neighbors,

we will be able to have a more accurate measurement of

outlier-ness of the object, though this will require more

computational effort in summing up the distances. This

method is also used in [36] for anomaly detection.

The idea of kNN-based distance metric can be

extended to consider the k nearest dense regions. The

recent methods are the Largest cluster method [61][98]

and Grid-ODF [89], as discussed below.

9

ICST Transactions Preprint

Figure 1. Points with the same Dk value but different outlier-ness

Khoshgoftaar et al. propose a distance-based method

for labeling wireless network traffic records in the data

stream used as either normal or intrusive [61][98]. Let

d be the largest distance of an instance to the centriod

of the largest cluster. Any instance or cluster that has a

distance greater than αd (α ≥ 1) to the largest cluster is

defined as an attack. This method is referred to as the

Largest Cluster method. It can also be used to detect

outliers. It takes the following several steps for outlier

detection:

1. Find the largest cluster, i.e. the cluster with

largest number of instances, and label it as normal.

Let c0 be the centriod of this cluster;

2. Sort the remaining clusters in ascending order

based on the distance from their cluster centroid

to c0;

3. Label all the instances that have a distance to

c0 greater than αd, where α is a human-specified

parameter;

4. Label all the other instances as normal.

When used in dealing with projected anomalies

detection for high-dimensional data streams, this method

suffers the following limitations:

• First and most importantly, this method does not

take into account the nature of outliers in high-

dimensional data sets and is unable to explore

subspaces to detect projected outliers;

• k-means clustering is used in this method as the

backbone enabling technique for detecting intru-

sions. This poses difficulty for this method to deal

with data streams. k-means clustering requires

iterative optimization of clustering centroids to

gradually achieve better clustering results. This

optimization process involves multiple data scans,

which is infeasible in the context of data streams;

• A strong assumption is made in this method that

all the normal data will appear in a single cluster

(i.e., the largest cluster), which is not properly

substantiated in the paper. This assumption may

be too rigid in some applications. It is possible that

the normal data are distributed in two or more

clusters that correspond to a few varying normal

behaviors. For a simple instance, the network

traffic volume is usually high during the daytime

and becomes low late in the night. Thus, network

traffic volume may display several clusters to

represent behaviors exhibiting at different time

of the day. In such case, the largest cluster is

apparently not where all the normal cases are only

residing;

• In this method, one needs to specify the parameter

α. The method is rather sensitive to this parameter

whose best value is not obvious whatsoever.

First, the distance scale between data will be

rather different in various subspaces; the distance

between any pair of data is naturally increased

when it is evaluated in a subspace with higher

dimension, compared to in a lower-dimensional

10

ICST Transactions Preprint

subspace. Therefore, specifying an ad-hoc α value

for each subspace evaluated is rather tedious and

difficult. Second, α is also heavily affected by

the number of clusters the clustering method

produces, i.e., k. Intuitively, when the number of

clusters k is small, D will become relatively large,

then α should be set relatively small accordingly,

and vice versa.

Recently, an extension of the notion of kNN, called

Grid-ODF, from the k nearest objects to the k nearest

dense regions is proposed [89]. This method employed

the sum of the distances between each data point and

its k nearest dense regions to rank data points. This

enables the algorithm to measure the outlier-ness of

data points from a more global perspective. Grid-ODF

takes into account the mechanisms used in detecting

both global and local outliers. In the local perspective,

human examine the point’s immediate neighborhood and

consider it as an outlier if its neighborhood density is low.

The global observation considers the dense regions where

the data points are densely populated in the data space.

Specifically, the neighboring density of the point serves

as a good indicator of its outlying degree from the local

perspective. In the left sub-figure of Figure 2, two square

boxes of equal size are used to delimit the neighborhood

of points p1 and p2. Because the neighboring density of

p1 is less than that of p2, so the outlying degree of p1 is

larger than p2. On the other hand, the distance between

the point and the dense regions reflects the similarity

between this point and the dense regions. Intuitively,

the larger such distance is, the more remarkably p is

deviated from the main population of the data points

and therefore the higher outlying degree it has, otherwise

it is not. In the right sub-figure of 2, we can see a dense

region and two outlying points, p1 and p2. Because the

distance between p1 and the dense region is larger than

that between p2 and the dense region, so the outlying

degree of p1 is larger than p2.

Based on the above observations, a new measurement

of outlying factor of data points, called Outlying Degree

Factor (ODF), is proposed to measure the outlier-ness of

points from both the global and local perspectives. The

ODF of a point p is defined as follows:

ODF (p) =
k DF (p)

NDF (p)

where k DF (p) denotes the average distance between

p and its k nearest dense cells and NDF (p) denotes

number of points falling into the cell to which p belongs.

In order to implement the computation of ODF of

points efficiently, grid structure is used to partition

the data space. The main idea of grid-based data

space partition is to super-impose a multi-dimensional

cube in the data space, with equal-volumed cells. It

is characterized by the following advantages. First,

NDF (p) can be obtained instantly by simply counting

the number of points falling into the cell to which

p belongs, without the involvement of any indexing

techniques. Secondly, the dense regions can be efficiently

identified, thus the computation of k DF (p) can be very

fast. Finally, based on the density of grid cells, we will

be able to select the top n outliers only from a specified

number of points viewed as outlier candidates, rather

than the whole dataset, and the final top n outliers

are selected from these outlier candidates based on the

ranking of their ODF values.

The number of outlier candidates is typically 9 or

10 times as large as the number of final outliers to be

found (i.e., top n) in order to provide a sufficiently large

pool for outlier selection. Let us suppose that the size of

outlier candidates is m ∗ n, where the m is a positive

number provided by users. To generate m ∗ n outlier

candidates, all the cells containing points are sorted in

ascending order based on their densities, and then the

points in the first t cells in the sorting list that satisfy

the following inequality are selected as the m ∗ n outlier

candidates:

t−1∑
i=1

Den(Ci) ≤ m ∗ n ≤
t∑

i=1

Den(Ci)

The kNN-distance methods, which define the top n

objects having the highest values of the corresponding

outlier-ness metrics as outliers, are advantageous over

the local neighborhood methods in that they order the

data points based on their relative ranking, rather than

on the distance cutoff. Since the value of n, the top

outlier users are interested in, can be very small and

is relatively independent of the underlying data set, it

will be easier for the users to specify compared to the

distance threshold λ.

C. Advantages and Disadvantages of Distance-

based Methods

11

ICST Transactions Preprint

Figure 2. Local and global perspectives of outlier-ness of p1 and p2

The major advantage of distance-based algorithms is

that, unlike distribution-based methods, distance-based

methods are non-parametric and do not rely on any

assumed distribution to fit the data. The distance-based

definitions of outliers are fairly straightforward and easy

to understand and implement.

Their major drawback is that most of them are not

effective in high-dimensional space due to the curse

of dimensionality, though one is able to mechanically

extend the distance metric, such as Euclidean distance,

for high-dimensional data. The high-dimensional data

in real applications are very noisy, and the abnormal

deviations may be embedded in some lower-dimensional

subspaces that cannot be observed in the full data space.

Their definitions of a local neighborhood, irrespective of

the circular neighborhood or the k nearest neighbors,

do not make much sense in high-dimensional space.

Since each point tends to be equi-distant with each

other as number of dimensions goes up, the degree of

outlier-ness of each points are approximately identical

and significant phenomenon of deviation or abnormality

cannot be observed. Thus, none of the data points can

be viewed outliers if the concepts of proximity are used

to define outliers. In addition, neighborhood and kNN

search in high-dimensional space is a non-trivial and

expensive task. Straightforward algorithms, such as those

based on nested loops, typically require O(N2) distance

computations. This quadratic scaling means that it will

be very difficult to mine outliers as we tackle increasingly

larger data sets. This is a major problem for many

real databases where there are often millions of records.

Thus, these approaches lack a good scalability for large

data set. Finally, the existing distance-based methods

are not able to deal with data streams due to the

difficulty in maintaining a data distribution in the local

neighborhood or finding the kNN for the data in the

stream.

3.3. Density-based Methods

Density-based methods use more complex mechanisms

to model the outlier-ness of data points than distance-

based methods. It usually involves investigating not only

the local density of the point being studied but also the

local densities of its nearest neighbors. Thus, the outlier-

ness metric of a data point is relative in the sense that

it is normally a ratio of density of this point against the

the averaged densities of its nearest neighbors. Density-

based methods feature a stronger modeling capability of

outliers but require more expensive computation at the

same time. What will be discussed in this subsection are

the major density-based methods called LOF method,

COF method, INFLO method and MDEF method.

A. LOF Method

The first major density-based formulation scheme of

outlier has been proposed in [21], which is more robust

than the distance-based outlier detection methods. An

example is given in [21] (refer to figure 3), showing the

advantage of a density-based method over the distance-

based methods such as DB(k, λ)-Outlier. The dataset

contains an outlier o, and C1 and C2 are two clusters with

very different densities. The DB(k, λ)-Outlier method

cannot distinguish o from the rest of the data set no

matter what values the parameters k and λ take. This

is because the density of o’s neighborhood is very much

closer to the that of the points in cluster C1. However,

the density-based method, proposed in [21], can handle

it successfully.

This density-based formulation quantifies the outlying

degree of points using Local Outlier Factor (LOF). Given

12

ICST Transactions Preprint

Figure 3. A sample dataset showing the advantage of LOF over DB(k, λ)-Outlier

parameter MinPts, LOF of a point p is defined as

LOFMinPts(p) =

∑
o∈MinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|

where |NMinPts(p)| denotes the number of objects falling

into the MinPts-neighborhood of p and lrdMinPts(p)

denotes the local reachability density of point p that is

defined as the inverse of the average reachability distance

based on the MinPts nearest neighbors of p, i.e.,

lrdMinPts(p) = 1/

(∑
o∈MinPts(p) reach distMinPts(p, o)

|NMinPts(p)|

)
Further, the reachability distance of point p is defined as

reach distMinPts(p, o) = max(MinPts distance(o), dist(p, o))

Intuitively speaking, LOF of an object reflects the

density contrast between its density and those of its

neighborhood. The neighborhood is defined by the

distance to the MinPtsth nearest neighbor. The local

outlier factor is a mean value of the ratio of the density

distribution estimate in the neighborhood of the object

analyzed to the distribution densities of its neighbors

[21]. The lower the density of p and/or the higher the

densities of p’s neighbors, the larger the value of LOF (p),

which indicates that p has a higher degree of being

an outlier. A similar outlier-ness metric to LOF, called

OPTICS-OF, was proposed in [20].

Unfortunately, the LOF method requires the com-

putation of LOF for all objects in the data set which

is rather expensive because it requires a large number

of kNN search. The high cost of computing LOF for

each data point p is caused by two factors. First, we

have to find the MinPtsth nearest neighbor of p in

order to specify its neighborhood. This resembles to

computing Dk in detecting Dk
n-Outliers. Secondly, after

the MinPtsth-neighborhood of p has been determined,

we have to further find the MinPtsth-neighborhood for

each data points falling into theMinPtsth-neighborhood

of p. This amounts to MinPtsth times in terms of

computation efforts as computing Dk when we are

detecting Dk
n-Outliers.

It is desired to constrain a search to only the top n

outliers instead of computing the LOF of every object in

the database. The efficiency of this algorithm is boosted

by an efficient micro-cluster-based local outlier mining

algorithm proposed in [52].

LOF ranks points by only considering the neighbor-

hood density of the points, thus it may miss out the

potential outliers whose densities are close to those of

their neighbors. Furthermore, the effectiveness of this

algorithm using LOF is rather sensitive to the choice

of MinPts, the parameter used to specify the local

neighborhood.

13

ICST Transactions Preprint

B. COF Method

As LOF method suffers the drawback that it may

miss those potential outliers whose local neighborhood

density is very close to that of its neighbors. To address

this problem, Tang et al. proposed a new Connectivity-

based Outlier Factor (COF) scheme that improves the

effectiveness of LOF scheme when a pattern itself has

similar neighborhood density as an outlier [87]. In order

to model the connectivity of a data point with respect to

a group of its neighbors, a set-based nearest path (SBN-

path) and further a set-based nearest trail (SBN-trail),

originated from this data point, are defined. This SNB

trail stating from a point is considered to be the pattern

presented by the neighbors of this point. Based on SNB

trail, the cost of this trail, a weighted sum of the cost of

all its constituting edges, is computed. The final outlier-

ness metric, COF, of a point p with respect to its k-

neighborhood is defined as

COFk(p) =
|Nk(p)| ∗ ac distNk(p)(p)∑

o∈Nk(p)
ac distNk(o)(o)

where ac distNk(p)(p) is the average chaining distance

from point p to the rest of its k nearest neighbors, which

is the weighted sum of the cost of the SBN-trail starting

from p.

It has been shown in [87] that COF method is

able to detect outlier more effectively than LOF

method for some cases. However, COF method requires

more expensive computations than LOF and the time

complexity is in the order of O(N2) for high-dimensional

datasets.

C. INFLO Method

Even though LOF is able to accurately estimate

outlier-ness of data points in most cases, it fails to

do so in some complicated situations. For instance,

when outliers are in the location where the density

distributions in the neighborhood are significantly

different, this may result in a wrong estimation. An

example where LOF fails to have an accurate outlier-

ness estimation for data points has been given in [53].

The example is presented in Figure 4. In this example,

data p is in fact part of a sparse cluster C2 which is

near the dense cluster C1. Compared to objects q and

r, p obviously displays less outlier-ness. However, if LOF

is used in this case, p could be mistakenly regarded to

having stronger outlier-ness than q and r.

Authors in [53] pointed out that this problem of

LOF is due to the inaccurate specification of the space

where LOF is applied. To solve this problem of LOF, an

improved method, called INFLO, is proposed [53]. The

idea of INFLO is that both the nearest neighbors (NNs)

and reverse nearest neighbors (RNNs) of a data point are

taken into account in order to get a better estimation of

the neighborhood’s density distribution. The RNNs of

an object p are those data points that have p as one of

their k nearest neighbors. By considering the symmetric

neighborhood relationship of both NN and RNN, the

space of an object influenced by other objects is well

determined. This space is called the k-influence space

of a data point. The outlier-ness of a data point, called

INFLuenced Outlierness (INFLO), is quantified. INFLO

of a data point p is defined as

INFLOk(p) =
denavg(ISk(p))

den(p)

INFLO is by nature very similar to LOF. With respect

to a data point p, they are both defined as the ratio of

p’s its density and the average density of its neighboring

objects. However, INFLO uses only the data points in

its k-influence space for calculating the density ratio.

Using INFLO, the densities of its neighborhood will be

reasonably estimated, and thus the outliers found will be

more meaningful.

D. MDEF Method

In [77], a new density-based outlier definition,

called Multi-granularity Deviation Factor (MEDF), is

proposed. Intuitively, the MDEF at radius r for a point pi

is the relative deviation of its local neighborhood density

from the average local neighborhood density in its r-

neighborhood. Let n(pi, αr) be the number of objects in

the αr-neighborhood of pi and n̂(pi, r, α) be the average,

over all objects p in the r-neighborhood of pi, of n(p, αr).

In the example given by Figure 5, we have n(pi, αr) = 1,

and n̂(pi, r, α) = (1 + 6 + 5 + 1)/4 = 3.25.

MDEF of pi, given r and α, is defined as

MDEF (pi, r, α) = 1− n(pi, αr)

n̂(pi, r, α)

where α = 1
2 . A number of different values are set for the

sampling radius r and the minimum and the maximum

values for r are denoted by rmin and rmax. A point

is flagged as an outliers if for any r ∈ [rmin, rmax], its

MDEF is sufficient large.

14

ICST Transactions Preprint

Figure 4. An example where LOF does not work

Figure 5. Definition of MDEF

E. Advantages and Disadvantages of Density-

based Methods

The density-based outlier detection methods are

generally more effective than the distance-based

methods. However, in order to achieve the improved

effectiveness, the density-based methods are more

complicated and computationally expensive. For a

data object, they have to not only explore its local

density but also that of its neighbors. Expensive kNN

search is expected for all the existing methods in this

category. Due to the inherent complexity and non-

updatability of their outlier-ness measurements used,

LOF, COF, INFLO and MDEF cannot handle data

streams efficiently.

3.4. Clustering-based Methods

The final category of outlier detection algorithm for

relatively low dimensional static data is clustering-based.

Many data-mining algorithms in literature find outliers

as a by-product of clustering algorithms [6, 11, 13,

46, 101] themselves and define outliers as points that

do not lie in or located far apart from any clusters.

Thus, the clustering techniques implicitly define outliers

as the background noise of clusters. So far, there are

numerous studies on clustering, and some of them are

equipped with some mechanisms to reduce the adverse

effect of outliers, such as CLARANS [73], DBSCAN [37],

BIRCH [101], WaveCluster [82]. More recently, we have

seen quite a few clustering techniques tailored towards

15

ICST Transactions Preprint

subspace clustering for high-dimensional data including

CLIQUE [6] and HPStream [9].

Next, we will review several major categories of

clustering methods, together with the analysis on their

advantages and disadvantages and their applicability

in dealing with outlier detection problem for high-

dimensional data streams.

A. Partitioning Clustering Methods

The partitioning clustering methods perform cluster-

ing by partitioning the data set into a specific number

of clusters. The number of clusters to be obtained,

denoted by k, is specified by human users. They typically

start with an initial partition of the dataset and then

iteratively optimize the objective function until it reaches

the optimal for the dataset. In the clustering process,

center of the clusters (centroid-based methods) or the

point which is located nearest to the cluster center

(medoid-based methods) is used to represent a cluster.

The representative partitioning clustering methods are

PAM, CLARA, k-means and CLARANS.

PAM [62] uses a k-medoid method to identify the

clusters. PAM selects k objects arbitrarily as medoids

and swap with objects until all k objects qualify as

medoids. PAM compares an object with entire dataset

to find a medoid, thus it has a slow processing time with

a complexity of O(k(N − k)2), where N is number of

data in the data set and k is the number of clusters.

CLARA [62] tries to improve the efficiency of PAM. It

draws a sample from the dataset and applies PAM on the

sample that is much smaller in size than the the whole

dataset.

k-means [68] initially choose k data objects as seeds

from the dataset. They can be chosen randomly or in

a way such that the points are mutually farthest apart.

Then, it examines each point in the dataset and assigns

it to one of the clusters depending on the minimum

distance. The centroid’s position is recalculated and

updated the moment a point is added to the cluster

and this continues until all the points are grouped into

the final clusters. The k-means algorithm is relatively

scalable and efficient in processing large datasets because

the computational complexity is O(nkt), where n is total

number of points, k is the number of clusters and t is the

number of iterations of clustering. However, because it

uses a centroid to represent each cluster, k-means suffers

the inability to correctly cluster with a large variation of

size and arbitrary shapes, and it is also very sensitive to

the noise and outliers of the dataset since a small number

of such data will substantially effect the computation of

mean value the moment a new object is clustered.

CLARANS [73] is an improved k-medoid method,

which is based on randomized search. It begins with a

random selection of k nodes, and in each of following

steps, compares each node to a specific number of its

neighbors in order to find a local minimum. When

one local minimum is found, CLARANS continues to

repeat this process for another minimum until a specific

number of minima have been found. CLARANS has

been experimentally shown to be more effective than

both PAM and CLEAR. However, the computational

complexity of CLARANS is close to quadratic w.r.t the

number of points [88], and it is prohibitive for clustering

large database. Furthermore, the quality of clustering

result is dependent on the sampling method, and it

is not stable and unique due to the characteristics of

randomized search.

B. Hierarchical Clustering Methods

Hierarchical clustering methods essentially constructs

a hierarchical decomposition of the whole dataset. It

can be further divided into two categories based on

how this dendrogram is operated to generate clusters,

i.e., agglomerative methods and divisive methods. An

agglomerative method begins with each point as a

distinct cluster and merges two closest clusters in each

subsequent step until a stopping criterion is met. A

divisive method, contrary to an agglomerative method,

begins with all the point as a single cluster and splits

it in each subsequent step until a stopping criterion is

met. Agglomerative methods are seen more popular in

practice. The representatives of hierarchical methods are

MST clustering, CURE and CHAMELEON.

MST clustering [92] is a graph-based divisive

clustering algorithm. Given n points, a MST is a set of

edges that connects all the points and has a minimum

total length. Deletion of edges with larger lengths will

subsequently generate a specific number of clusters.

The overhead for MST clustering is determined by the

Euclidean MST construction, which is O(\↕≀}\) in time

complexity, thus MST algorithm can be used for scalable

clustering. However, MST algorithm can only work well

on the clean dataset and are sensitive to outliers. The

intervention of outliers, termed ”chaining-effect” (that

16

ICST Transactions Preprint

is, a line of outliers between two distinct clusters will

make these two clusters be marked as one cluster due to

its adverse effect), will seriously degrade the quality of

the clustering results.

CURE [46] employs a novel hierarchical clustering

algorithm in which each cluster is represented by a

constant number of well-distributed points. A random

sample drawn from the original dataset is first

partitioned and each partition is partially clustered. The

partial clusters are then clustered in a second pass to

yield the desired clusters. The multiple representative

points for each cluster are picked to be as disperse

as possible and shrink towards the center using a pre-

specified shrinking factor. At each step of the algorithm,

the two clusters with the closest pair of representative

(this pair of representative points are from different

clusters) points are merged. Usage of multiple points

representing a cluster enables CURE to well capture

the shape of clusters and makes it suitable for clusters

with non-spherical shapes and wide variance in size. The

shrinking factor helps to dampen the adverse effect of

outliers. Thus, CURE is more robust to outliers and

identifies clusters having arbitrary shapes.

CHAMELEON [55] is a clustering technique trying

to overcome the limitation of existing agglomerative

hierarchical clustering algorithms that the clustering is

irreversible. It operates on a sparse graph in which

nodes represent data points and weighted edges represent

similarities of among the data points. CHAMELEON

first uses a graph partition algorithm to cluster

the data points into a large number of relatively

small sub-clusters. It then employs an agglomerative

hierarchical clustering algorithm to genuine clusters

by progressively merging these sub-clusters. The key

feature of CHAMELEON lies in its mechanism

determining the similarity between two sub-clusters in

sub-cluster merging. Its hierarchical algorithm takes into

consideration of both inter-connectivity and closeness

of clusters. Therefore, CHAMELEON can dynamically

adapt to the internal characteristics of the clusters being

merged.

C. Density-based Clustering Methods

The density-based clustering algorithms consider

normal clusters as dense regions of objects in the

data space that are separated by regions of low

density. Human normally identify a cluster because

there is a relatively denser region compared to its

sparse neighborhood. The representative density-based

clustering algorithms are DBSCAN and DENCLUE.

The key idea of DBSCAN [37] is that for each

point in a cluster, the neighborhood of a given radius

has to contain at least a minimum number of points.

DBSCAN introduces the notion of ”density-reachable

points” and based on which performs clustering. In

DBSCAN, a cluster is a maximum set of density-

reachable points w.r.t. parameters Eps and MinPts,

where Eps is the given radius and MinPts is the

minimum number of points required to be in the Eps-

neighborhood. Specifically, to discover clusters in the

dataset, DBSCAN examines the Eps-neighborhood of

each point in the dataset. If the Eps-neighborhood of a

point p contains more than MinPts, a new cluster with

p as the core object is generated. All the objects from

within this Eps-neighborhood are then assigned to this

cluster. All this newly entry points will also go through

the same process to gradually grow this cluster. When

there is no more core object can be found, another core

object will be initiated and another cluster will grow.

The whole clustering process terminates when there are

no new points can be added to any clusters. As the

clusters discovered are dependent on the specification of

the parameters, DBSCAN relies on the user’s ability to

select a good set of parameters. DBSCAN outperforms

CLARANS by a factor of more than 100 in terms of

efficiency [37]. DBSCAN is also powerful in discovering of

clusters with arbitrary shapes. The drawbacks DBSCAN

suffers are: (1) It is subject to adverse effect resulting

from ”chaining-effect”; (2) The two parameters used

in DBSCAN, i.e., Eps and MinPts, cannot be easily

decided in advance and require a tedious process of

parameter tuning.

DENCLUE [51] performs clustering based on density

distribution functions, a set of mathematical functions

used to model the influence of each point within its

neighborhood. The overall density of the data space

can be modeled as sum of influence function of all

data points. The clusters can be determined by density

attractors. Density attractors are the local maximum of

the overall density function. DENCLUE has advantages

that it can well deal with dataset with a large number of

noises and it allows a compact description of clusters

of arbitrary shape in high-dimensional datasets. To

17

ICST Transactions Preprint

facilitate the computation of the density function,

DENCLUE makes use of grid-like structure. Noted that

even though it uses grids in clustering, DENCLUE

is fundamentally different from grid-based clustering

algorithm in that grid-based clustering algorithm uses

grid for summarizing information about the data points

in each grid cell, while DENCLUE uses such structure

to effectively compute the sum of influence functions at

each data point.

D. Grid-based Clustering Methods

Grid-based clustering methods perform clustering

based on a grid-like data structure with the aim of

enhancing the efficiency of clustering. It quantizes the

space into a finite number of cells which form a grid

structure on which all the operations for clustering are

performed. The main advantage of the approaches in this

category is their fast processing time which is typically

only dependent on the number of cells in the quantized

space, rather than the number of data objects. The

representatives of grid-based clustering algorithms are

STING, WaveCluster and DClust.

STING [88] divides the spatial area into rectangular

grids, and builds a hierarchical rectangle grids

structure. It scans the dataset and computes the

necessary statistical information, such as mean, variance,

minimum, maximum, and type of distribution, of each

grid. The hierarchical grid structure can represent

the statistical information with different resolutions

at different levels. The statistical information in this

hierarchical structure can be used to answer queries.

The likelihood that a cell is relevant to the query at

some confidence level is computed using the parameters

of this cell. The likelihood can be defined as the

proportion of objects in this cell that satisfy the query

condition. After the confidence interval is obtained, the

cells are labeled as relevant or irrelevant based on some

confidence threshold. After examining the current layer,

the clustering proceeds to the next layer and repeats the

process. The algorithm will subsequently only examine

the relevant cells instead of all the cells. This process

terminates when all the layers have been examined. In

this way, all the relevant regions (clusters) in terms of

query are found and returned.

WaveCluster [82] is grid-based clustering algorithm

based on wavelet transformation, a commonly used

technique in signal processing. It transforms the multi-

dimensional spatial data to the multi-dimensional signal,

and it is able to identify dense regions in the transformed

domain that are clusters to be found.

In DClust [95], the data space involved is partitioned

into cells with equal size and data points are mapped into

the grid structure. A number of representative points of

the database are picked using the density criterion. A

Minimum Spanning Tree (MST) of these representative

points, denoted as R-MST, is built. After the R-MST

has been constructed, multi-resolution clustering can

be easily achieved. Suppose a user wants to find k

clusters. A graph search through the R-MST is initiated,

starting from the largest cost edge, to the lowest cost

edge. As an edge is traversed, it is marked as deleted

from the R-MST. The number of partitions resulting

from the deletion is computed. The process stops when

the number of partitions reaches k. Any change in the

value of k simply implies re-initiating the search-and-

marked procedure on the R-MST. Once the R-MST has

been divided into k partitions, we can now propagate

this information to the original dataset so that each

point in the dataset is assigned to one and only one

partition/cluster. DClust is equipped with more robust

outlier elimination mechanisms to identify and filter

the outliers during the various stages of the clustering

process. First, DClust uses a uniform random sampling

approach to sample the large database. This is effective

in ruling out the majority of outliers in the database.

Hence, the sample database obtained will be reasonably

clean; Second, DClust employs a grid structure to

identify representative points. Grid cells whose density

is less than the threshold are pruned. This pre-filtering

step ensures that the R-MST constructed is an accurate

reflection of the underlying cluster structure. Third, the

clustering of representative points may cause a number

of the outliers that are in close vicinity to form a cluster.

The number of points in such outlier clusters will be

much smaller than the number of points in the normal

clusters. Thus, any small clusters of representative points

will be treated as outlier clusters and eliminated. Finally,

when the points in the dataset are labeled, some of these

points may be quite far from any representative point.

DClust will regard such points as outliers and filter them

out in the final clustering results.

18

ICST Transactions Preprint

E. Advantages and Disadvantage of Clustering-

based Methods

Detecting outliers by means of clustering analysis is

quite intuitive and consistent with human perception

of outliers. In addition, clustering is a well-established

research area and there have been abundant clustering

algorithms that users can choose from for performing

clustering and then detecting outliers.

Nevertheless, many researchers argue that, strictly

speaking, clustering algorithms should not be considered

as outlier detection methods, because their objective is

only to group the objects in dataset such that clustering

functions can be optimized. The aim to eliminate outliers

in dataset using clustering is only to dampen their

adverse effect on the final clustering result. This is in

contrast to the various definitions of outliers in outlier

detection which are more objective and independent

of how clusters in the input data set are identified.

One of the major philosophies in designing new outlier

detection approaches is to directly model outliers and

detect them without going though clustering the data

first. In addition, the notions of outliers in the context of

clustering are essentially binary in nature, without any

quantitative indication as to how outlying each object is.

It is desired in many applications that the outlier-ness of

the outliers can be quantified and ranked.

4. Outlier Detection Methods for High

Dimensional Data

There are many applications in high-dimensional

domains in which the data can contain dozens or even

hundreds of dimensions. The outlier detection techniques

we have reviewed in the preceding sections use various

concepts of proximity in order to find the outliers based

on their relationship to the other points in the data set.

However, in high-dimensional space, the data are sparse

and concepts using the notion of proximity fail to achieve

most of their effectiveness. This is due to the curse of

dimensionality that renders the high-dimensional data

tend to be equi-distant to each other as dimensionality

increases. They does not consider the outliers embedded

in subspaces and are not equipped with the mechanism

for detecting them.

4.1. Methods for Detecting Outliers in

High-dimensional Data

To address the challenge associated with high data

dimensionality, two major categories of research work

have been conducted. The first category of methods

project the high dimensional data to lower dimen-

sional data. Dimensionality deduction techniques, such

as Principal Component Analysis(PCA), Independent

Component Analysis (ICA), Singular Value Decomposi-

tion (SVD), etc can be applied to the high-dimensional

data before outlier detection is performed. Essentially,

this category of methods perform feature selection and

can be considered as the pre-processing work for outlier

detection. The second category of approaches is more

promising yet challenging. They try to re-design the

mechanism to accurately capture the proximity relation-

ship between data points in the high-dimensional space

[14].

A. Sparse Cube Method. Aggarwal et al. conducted

some pioneering work in high-dimensional outlier

detection [15][14]. They proposed a new technique for

outlier detection that finds outliers by observing the

density distributions of projections from the data. This

new definition considers a point to be an outlier if in

some lower-dimensional projection it is located in a local

region of abnormally low density. Therefore, the outliers

in these lower-dimensional projections are detected by

simply searching for these projections featuring lower

density. To measure the sparsity of a lower-dimensional

projection quantitatively, the authors proposed the so-

called Sparsity Coefficient. The computation of Sparsity

Coefficient involves a grid discretization of the data space

and making an assumption of normal distribution for

the data in each cell of the hypercube. Each attribute

of the data is divided into φ equi-depth ranges. In

each range, there is a fraction f = 1/φ of the data.

Then, a k-dimensional cube is made of ranges from k

different dimensions. Let N be the dataset size and n(D)

denote the number of objects in a k-dimensional cube

D. Under the condition that attributes were statistically

independent, the Sparsity Coefficient S(D) of the cube

D is defined as:

S(D) =
n(D)−N ∗ fk√
N ∗ fk ∗ (1− fk)

19

ICST Transactions Preprint

Since there are no closure properties for Sparsity

Coefficient, thus no fast subspace pruning can be

performed and the lower-dimensional projection search

problem becomes a NP-hard problem. Therefore, the

authors employ evolutionary algorithm in order to

solve this problem efficiently. After lower-dimensional

projections have been found, a post-processing phase is

required to map these projections into the data points;

all the sets of data points that contain in the abnormal

projections reported by the algorithm.

B. Example-based Method. Recently, an approach

using outlier examples provided by users are used to

detect outliers in high-dimensional space [96][97]. It

adopts an ′′outlier examples → subspaces → outliers′′

manner to detect outliers. Specifically, human users

or domain experts first provide the systems with a

few initial outlier examples. The algorithm finds the

subspaces in which most of these outlier examples

exhibit significant outlier-ness. Finally, other outliers are

detected from these subspaces obtained in the previous

step. This approach partitions the data space into

equi-depth cells and employs the Sparsity Coefficient

proposed in [14] to measure the outlier-ness of outlier

examples in each subspace of the lattice. Since it is

untenable to exhaustively search the space lattice, the

author also proposed to use evolutionary algorithms

for subspace search. The fitness of a subspace is the

average Sparsity Coefficients of all cubes in that subspace

to which the outlier examples belong. All the objects

contained in the cubes which are sparser than or as sparse

as cubes containing outlier examples in the subspace are

detected as outliers.

However, this method is limited in that it is only

able to find the outliers in the subspaces where most

of the given user examples are outlying significantly. It

cannot detect those outliers that are embedded in other

subspaces. Its capability for effective outlier detection is

largely depended on the number of given examples and,

more importantly, how these given examples are similar

to the majority of outliers in the dataset. Ideally, this

set of user examples should be a good sample of all the

outliers in the dataset. This method works poorly when

the number of user examples is quite small and cannot

provide enough clues as to where the majority of outliers

in the dataset are. Providing such a good set of outlier

examples is a difficult task whatsoever. The reasons are

two-fold. First, it is not trivial to obtain a set of outlier

examples for a high-dimensional data set. Due to a lack of

visualization aid in high-dimensional data space, it is not

obvious at all to find the initial outlier examples unless

they are detected by some other techniques. Secondly

and more importantly, even when a set of outliers have

already been obtained, testing the representativeness of

this outlier set is almost impossible. Given these two

strong constraints, this approach becomes inadequate in

detecting outliers in high-dimensional datasets. It will

miss out those projected outliers that are not similar to

those given outlier examples.

C. Outlier Detection in Subspaces. Since outlier-

ness of data points mainly appear significant in

some subspaces of moderate dimensionality in high-

dimensional space and the quality of the outliers detected

varies in different subspaces consisting of different

combinations of dimension subsets. The authors in [24]

employ evolutionary algorithm for feature selection (find

optimal dimension subsets which represent the original

dataset without losing information for unsupervised

learning task of outlier detection as well as clustering).

This approach is a wrapper algorithm in which the

dimension subsets are selected such that the quality

of outlier detected or the clusters generated can

be optimized. The originality of this work is to

combine the evolutionary algorithm with the data

visualization technique utilizing parallel coordinates to

present evolution results interactively and allow users to

actively participate in evolutionary algorithm searching

to achieve a fast convergence of the algorithm.

D. Subspace Outlier Detection for Categorical Data.

Das et al. study the problem of detecting anomalous

records in categorical data sets [33]. They draw on

a probability approach for outlier detection. For each

record in the data set, the probabilities for the occurrence

of different subsets of attributes are investigated. A

data record is labeled as an outlier if the occurrence

probability for the values of some of its attribute subsets

is quite low. Specifically, the probability for two subsets

of attributes at and bt to occur together in a record,

denoted by r(at, bt), is quantified as:

r(at, bt) =
P (at, bt)

P (at)P (bt)

20

ICST Transactions Preprint

Due to the extremely large number of possible attribute

subsets, only the attribute subsets with a length not

exceeding than k are studied.

Because it always evaluates pairs of attribute subsets,

each of which contain at least one attribute, therefore,

this method will miss out the abnormality evaluation for

1-dimensional attribute subsets. In addition, due to the

exponential growth of the number of attribute subsets

w.r.t k, the value of k is set typically small in this

method. Hence, this method can only cover attribute

subsets not larger than 2k for a record (this method

evaluates a pair of attribute subsets at a time). This

limits the ability of this method for detecting records

that have outlying attribute subsets larger than 2k.

4.2. Outlying Subspace Detection for

High-dimensional Data

All the outlier detection algorithms that we have

discussed so far, regardless of in low or high dimensional

scenario, invariably fall into the framework of detecting

outliers in a specific data space, either in full space or

subspace. We term these methods as “space → outliers′′

techniques. For instance, outliers are detected by first

finding locally sparse subspaces [14], and the so-called

Strongest/Weak Outliers are discovered by first finding

the Strongest Outlying Spaces [59].

A new research problem called outlying subspace

detection for multiple or high dimensional data has been

identified recently in [94][99][93]. The major task of

outlying subspace detection is to find those subspaces

(subset of features) in which the data points of interest

exhibit significant deviation from the rest of population.

This problem can be formulated as follows: given a data

point or object, find the subspaces in which this data is

considerably dissimilar, exceptional or inconsistent with

respect to the remaining points or objects. These points

under study are called query points, which are usually

the data that users are interested in or concerned with.

As in [94][99], a distance threshold T is utilized to decide

whether or not a data point deviates significantly from

its neighboring points. A subspace s is called an outlying

subspace of data point p if ODs(p) ≥ T , where OD is the

outlier-ness measurement of p.

Finding the correct subspaces so that outliers can

be detected is informative and useful in many practical

applications. For example, in the case of designing a

training program for an athlete, it is critical to identify

the specific subspace(s) in which an athlete deviates from

his or her teammates in the daily training performances.

Knowing the specific weakness (subspace) allows a more

targeted training program to be designed. In a medical

system, it is useful for the Doctors to identify from

voluminous medical data the subspaces in which a

particular patient is found abnormal and therefore a

corresponding medical treatment can be provided in a

timely manner.

The unique feature of the problem of outlying

subspace detection is that, instead of detecting outliers

in specific subspaces as did in the classical outlier

detection techniques, it involves searching from the space

lattice for the associated subspaces whereby the given

data points exhibit abnormal deviations. Therefore, the

problem of outlying subspace detection is called an
′′outlier → spaces′′ problem so as to distinguish the

classical outlier detection problem which is labeled as

a ′′space → outliers′′ problem. It has been theoretically

and experimentally shown that the conventional outlier

detection methods, irrespectively dealing with low or

high-dimensional data, cannot successfully cope with

the problem of outlying subspace detection problem

in [94]. The existing high-dimensional outlier detection

techniques, i.e., find outliers in given subspaces, are

theoretically applicable to solve the outlying detection

problem. To do this, we have to detect outliers in all

subspaces and a search in all these subspaces is needed

to find the set of outlying subspaces of p, which are those

subspaces in which p is in their respective set of outliers.

Obviously, the computational and space costs are both

in an exponential order of d, where d is the number

of dimensions of the data point. Such an exhaustive

space searching is rather expensive in high-dimensional

scenario. In addition, they usually only return the top n

outliers in a given subspace, thus it is impossible to check

whether or not p is an outlier in this subspace if p is not in

this top n list. This analysis provides an insight into the

inherent difficulty of using the existing high-dimensional

outlier detection techniques to solve the new outlying

subspace detection problem.

A. HighDoD

Zhang et al. proposed a novel dynamic subspace

search algorithm, called HighDoD, to efficiently identify

the outlying subspaces for the given query data points

21

ICST Transactions Preprint

[94][99]. The outlying measure, OD, is based on the sum

of distances between a data and its k nearest neighbors

[10]. This measure is simple and independent of any

underlying statistical and distribution characteristics of

the data points. The following two heuristic pruning

strategies employing upward-and downward closure

property are proposed to aid in the search for outlying

subspaces: If a point p is not an outlier in a subspace

s, then it cannot be an outlier in any subspace that is

a subset of s. If a point p is an outlier in a subspace

s, then it will be an outlier in any subspace that is

a superset of s. These two properties can be used to

quickly detect the subspaces in which the point is not

an outlier or the subspaces in which the point is an

outlier. All these subspaces can be removed from further

consideration in the later stage of the search process. A

fast dynamic subspace search algorithm with a sample-

based learning process is proposed. The learning process

aims to quantitize the prior probabilities for upward- and

downward pruning in each layer of space lattice. The

Total Saving Factor (TSF) of each layer of subspaces

in the lattice, used to measure the potential advantage

in saving computation, is dynamically updated and the

search is performed in the layer of lattice that has the

highest TSF value in each step of the algorithm.

However, HighDoD suffers the following major

limitations. First, HighDoD relies heavily on the closure

(monotonicity) property of the outlying measurement of

data points, termed OD, to perform the fast bottom-

up or top-down subspace pruning in the space lattice,

which is the key technique HighDoD utilizes for speeding

up subspace search. Under the definition of OD, a

subspace will always be more likely to be an outlying

subspace than its subset subspaces. This is because

that OD of data points will be naturally increased

when the dimensionality of the subspaces under study

goes up. Nevertheless, this may not be a very accurate

measurement. The definition of a data point’s outlier-

ness makes more sense if its measurement can be

related to other points, meaning that the averaged

level of the measurement for other points in the same

subspace should be taken into account simultaneously in

order to make the measurement statistically significant.

Therefore, the design of a new search method is desired in

this situation. Secondly, HighDoD labels each subspace

in a binary manner, either an outlying subspace or a non-

outlying one, and most subspaces are pruned away before

their outlying measurements are virtually evaluated in

HighDoD. Thus, it is not possible for HighDoD to

return a ranked list of the detected outlying subspaces.

Apparently, a ranked list will be more informative and

useful than an unranked one in many cases. Finally,

a human-user defined cutoff for deciding whether a

subspace is outlying or not with respect to a query

point is used. This parameter will define the ”outlying

front” (the boundary between the outlying subspaces and

the non-outlying ones). Unfortunately, the value of this

parameter cannot be easily specified due to the lack of

prior knowledge concerning the underlying distribution

of data point that maybe very complex in the high-

dimensional spaces.

B. SOF Method

In [100], a novel technique based on genetic algorithm

is proposed to solve the outlying subspace detection

problem and well copes with the drawbacks of the

existing methods. A new metric, called Subspace

Outlying Factor (SOF), is developed for measuring

the outlying degree of each data point in different

subspaces. Based on SOF, a new definition of outlying

subspace, called SOF Outlying Subspaces, is proposed.

Given an input dataset D, parameters n and k, a

subspace s is a SOF Outlying Subspace for a given

query data point p if there are no more than n− 1

other subspaces s′ such that SOF (s′, p) > SOF (s, p).

The above definition is equivalent to say that the

top n subspaces having the largest SOF values are

considered to be outlying subspaces. The parameters

used in defining SOF Outlying Subspaces are easy to

be specified, and do not require any prior knowledge

about the data distribution of the dataset. A genetic

algorithm (GA) based method is proposed for outlying

subspace detection. The upward and downward closure

property is no longer required in the GA-based method,

and the detected outlying subspaces can be ranked based

on their fitness function values. The concepts of the lower

and upper bounds of Dk, the distance between a given

point and its kth nearest neighbor, are proposed. These

bounds are used for a significant performance boost

in the method by providing a quick approximation of

the fitness of subspaces in the GA. A technique is also

22

ICST Transactions Preprint

proposed to compute these bounds efficiently using the

so-called kNN Look-up Table.

4.3. Clustering Algorithms for High-dimensional

Data

We have witnessed some recent developments of

clustering algorithms towards high-dimensional data. As

clustering provides a possible, even though not the best,

means to detect outliers, it is necessary for us to review

these new developments. The representative methods

for clustering high-dimensional data are CLIQUE and

HPStream.

A. CLIQUE

CLIQUE [7] is a grid-based clustering method

that discretizes the data space into non-overlapping

rectangular units, which are obtained by partitioning

every dimension into a specific number of intervals of

equal length. A unit is dense if the fraction of total data

points contained in this unit is greater than a threshold.

Clusters are defined as unions of connected dense units

within a subspace. CLIQUE first identifies a subspace

that contains clusters. A bottom-up algorithm is used

that exploits the monotonicity of the clustering criterion

with respect to dimensionality: if a k -dimensional unit is

dense, then so are its projections in (k -1) -dimensional

space. A candidate generation procedure iteratively

determines the candidate k -dimensional units Ck after

determining the (k -1)-dimensional dense units Dk−1. A

pass is made over the data to determine those candidates

units that are dense Dk. A depth-first search algorithm

is then used to identify clusters in the subspace: it

starts with some unit u in D, assign it the first cluster

label number, and find all the units it is connected

to. Then, if there are still units in D that have yet

been visited, it finds one and repeats the procedure.

CLIQUE is able to automatically finds dense clusters in

subspaces of high-dimensional dataset. It can produce

identical results irrespective of the order in which

input data are presented and not presume any specific

mathematical form of data distribution. However, the

accuracy of this clustering method maybe degraded due

to the simplicity of this method. The clusters obtained

are all of the rectangular shapes, which is obviously

not consistent with the shape of natural clusters. In

addition, the subspaces obtained are dependent on the

choice of the density threshold. CLIQUE uses a global

density threshold (i.e., a parameter that is used for all

the subspaces), thus it is difficult to specify its value

especially in high-dimensional subspaces due to curse of

dimensionality. Finally, the subspaces obtained are those

where dense units exist, but this has nothing to do with

the existence of outliers. As a result, CLIQUE is not

suitable for detecting projected outliers.

B. HPStream

In order to find the clusters embedded in the

subspaces of high-dimensional data space in data

streams, a new clustering method, called HPStream,

is proposed [9]. HPStream introduces the concept of

projected clustering to data streams as significant and

high-quality clusters only exist in some low-dimensional

subspaces. The basic idea of HPStream is that it does not

only find clusters but also updates the set of dimensions

associated with each cluster where more compact clusters

can be found. The total number of clusters obtained

in HPStream is initially obtained through k−means

clustering and the initial set of dimensions associated

with each of these k clusters is the full set of dimensions

of the data stream. As more streaming data arrive, the

set of dimensions for each cluster evolves such that each

cluster can become more compact with a smaller radius.

HPStream is innovative in finding clusters that

are embedded in subspaces for high-dimensional data

streams. However, the number of subspaces returned by

HPStream is equal to the number of clusters obtained

that is typically of a small value. Consequently, if

HPStream is applied to detect projected outliers, then

it will only be able to detect the outliers in those

subspaces returned and miss out a significant potions

of outliers existing in other subspaces that are not

returned by HPStream. Of course, it is possible to

increase the number of subspaces returned in order to

improve the detection rate. However, the increase of

subspaces will imply an increase of the number of clusters

accordingly. An unreasonably large number of clusters is

not consistent with the formation of natural clusters and

will therefore affect the detection accuracy of projected

outliers.

5. Outlier Detection Methods for Data

Streams

The final major category of outlier detection methods

we will discuss in this section are those outlier detection

23

ICST Transactions Preprint

methods for handling data streams. We will first

discuss Incremental LOF, and then the outlier detection

methods for sensor networks that use Kernel density

function. The incremental clustering methods that can

handle continuously arriving data will also be covered at

the end of this subsection.

A. Incremental LOF Method

Since LOF method is not able to handle data streams,

thus an incremental LOF algorithm, appropriate for

detecting outliers from dynamic databases where fre-

quently data insertions and deletions occur, is pro-

posed in [78]. The proposed incremental LOF algorithm

provides an equivalent detection performance as the

iterated static LOF algorithm (applied after insertion

of each data record), while requiring significantly less

computational time. In addition, the incremental LOF

algorithm also dynamically updates the profiles of data

points. This is an appealing property, since data profiles

may change over time. It is shown that insertion of new

data points as well as deletion of obsolete points influence

only limited number of their nearest neighbors and thus

insertion/deletion time complexity per data point does

not depend on the total number of points N [78].

The advantage of Incremental LOF is that it can

deal with data insertions and deletions efficiently.

Nevertheless, Incremental LOF is not economic in space.

The space complexity of this method is in the order of the

data that have been inserted but have not been deleted.

In other words, Incremental LOF has to maintain the

whole length of data stream in order to deal with

continuously arriving data because it does not utilize any

compact data summary or synopsis. This is clearly not

desired for data stream applications that are typically

subject to explicit space constraint.

B. Outlier Detection Methods for Sensor

Networks

There are a few recent anomaly detection methods for

data streams. They mainly come from sensor networks

domain such as [80] and [25]. However, the major

effort taken in these works is the development of

distributable outlier detection methods from distributed

data streams and does not deal with the problem of

outlier detection in subspaces of high-dimensional data

space. Palpanas et al. proposed one of the first outlier

detection methods for distributed data streams in the

context of sensor networks [80]. The author classified

the sensor nodes in the network as the low capacity and

high capacity nodes, through which a multi-resolution

structure of the sensor network is created. The high

capacity nodes are nodes equipped with relatively strong

computational strength that can detect local outliers.

The Kernel density function is employed to model local

data distribution in a single or multiple dimensions

of space. A point is detected as an outlier if the

number of values that have fallen into its neighborhood

(delimited by a sphere of radius r) is less than an

application-specific threshold. The number of values in

the neighborhood can be computed by the Kernel density

function. Similarly, the authors in [25] also emphasize

the design of distributed outlier detection methods.

Nevertheless, this work employs a number of different

commonly used outlier-ness metric such as the distance

to kth nearest neighbor, average distance to the k nearest

neighbors, the inverse of the number of neighbors within

a specific distance. Nevertheless, these metrics are not

applicable to data streams.

C. Incremental Clustering Methods

Most clustering algorithms we have discussed earlier

in this section assume a complete and static dataset

to operate. However, new data becomes continuously

available in many applications such as the data streams.

With the aforementioned classical clustering algorithms,

reclustering from scratch to account for data updates is

too costly and inefficient. It is highly desired that the

data can be processed and clustered in an incremental

fashion. The recent representative clustering algorithms

having mechanisms to handle data updates are BIRCH*,

STREAM and CluStream.

BIRCH* [45] is a framework for fast, scalable

and incremental clustering algorithms. In the BIRCH*

family of algorithms, objects are read from the

databases sequentially and inserted into incrementally

evolving clusters which are represented by generalized

cluster features (CF*s), the condensed and summarized

representation of clusters. A new objects reading from

the databases is inserted into the closest cluster. BIRCH*

organizes all clusters in an in-memory index, and

height-balanced tree, called CF*-tree. For a new object,

the search for an appropriate cluster requires time

logarithmic in the number of the clusters to a linear scan.

CF*s are efficient because: (1) they occupy much less

space than the naive representation; (2) the calculation

24

ICST Transactions Preprint

of inter-cluster and intra-cluster measurements using the

CF* is much faster than calculations involving all objects

in clusters. The purpose of the CF*-tree is to direct a new

object to the cluster closest to it. The non-leaf and leaf

entries function differently, non-leaf entries are used to

guide new objects to appropriate leaf clusters, whereas

leaf entries represent the dynamically evolving clusters.

However, clustering of high-dimensional datasets has not

been studied in BIRCH*. In addition, BIRCH* cannot

perform well when the clusters are not spherical in shape

due to the fact that it relies on spherical summarization

to produce the clusters.

STREAM [74] considers the clustering of continuously

arriving data, and provides a clustering algorithm

superior to the commonly used k-means algorithm.

STREAM assumes that the data actually arrives in

chunks X1, X2, · · · , Xn, each of which fits into main

memory. The streaming algorithm is as follows. For

each chunk i, STREAM first assigns weight to points

in the chunks according to their respective appearance

frequency in the chunks ensuring that each point appear

only once. The STREAM clusters each chunk using

procedure LOCALSEARCH. For each chunk, only k

weighted cluster centers are retained and the whole

chunk is discarded in order to free the memory for

new chunks. Finally, LOCALSEARCH is applied to

the weighted centers retained from X1, X2, · · · , Xn, to

obtain a set of (weighted) centers for the entire stream

X1, X2, · · · , Xn.

In order to find clusters in different time horizons

(such as the last month, last year or last decade), a new

clustering method for data stream, called CluStream,

is proposed in [8]. This approach provides the user the

flexibility to explore the nature of the evolution of the

clusters over different time periods. In order to avoid

bookkeeping the huge amount of information about the

clustering results in different time horizons, CluStream

divides the clustering process into an online micro-

clustering component and an offine macro-clustering

component. The micro-clustering phase mainly collects

online the data statistics for clustering purpose. This

process is not dependent on any user input such as

the time horizon or the required granularity of the

clustering process. The aim is to maintain statistics at a

sufficiently high level of granularity so that it can be

effectively used by the offline components of horizon-

specific macro-clustering as well as evolution analysis.

The micro-clusters generated by the algorithm serve as

an intermediate statistical representation which can be

maintained in an efficient way even for a data stream

of large volume. The macro-clustering process does not

work on the original data stream that may be very large

in size. Instead, it uses the compactly stored summary

statistics of the micro-clusters. Therefore, the micro-

clustering phase is not subject to the one-pass constraint

of data stream applications.

D. Advantages and Disadvantages of Outlier

Detection for Data Streams

The methods discussed in this subsection can detect

outliers from data streams. The incremental LOF

method is able to deal with continuously arriving data,

but it may face an explosion of space consumption.

Moreover, the incremental LOF method is not able to

find outliers in subspaces in an automatic manner. The

outlier detection methods for sensor networks cannot find

projected outliers either. Unlike the clustering methods

that are only appropriate for static databases, BIRCH*,

STREAM and CluStream go one step further and are

able to handle incrementally the continuously arriving

data. Nevertheless, they are designed to use all the

features of data in detecting outliers and are difficult

to detect projected outliers.

5.1. Summary

This section presents a comprehensive survey on the

major existing methods for detecting point outliers

from vector-like data sets. Both the conventional outlier

detection methods that are mainly appropriate for

relatively low dimensional static databases and the

more recent methods that are able to deal with

high-dimensional projected outliers or data stream

applications have been discussed. For a big picture of

these methods, we present a summary in Table 6. In

this table, we evaluate each method against two criteria,

namely whether it can detect projected outliers in a

high-dimensional data space and whether it can handle

data streams. The symbols of tick and cross in the table

indicate respectively whether or not the corresponding

method satisfies the evaluation criteria. From this table,

we can see that the conventional outlier detection

methods cannot detect projected outliers embedded in

25

ICST Transactions Preprint

Figure 6. A summary of major existing outlier detection methods

different subspaces; they detect outliers only in the full

data space or a given subspace. Amongst these methods

that can detect projected outliers, only HPStream

can meet both criteria. However, being a clustering

method, HPStream cannot provide satisfactory support

for projected outliers detection from high-dimensional

data streams.

6. Conclusions

In this paper, a comprehensive survey is presented to

review the existing methods for detecting point outliers

from various kinds of vector-like datasets. The outlier

detection techniques that are primarily suitable for

relatively low-dimensional static data, which serve the

technical foundation for many of the methods proposed

later, are reviewed first. We have also reviewed some of

recent advancements in outlier detection for dealing with

more complex high-dimensional static data and data

streams.

It is important to be aware of the limitation of this

survey. As it has clearly stated in Section 2, we only focus

on the point outlier detection methods from vector-like

datasets due to the space limit. Also, outlier detection is

a fast developing field of research and more new methods

will quickly emerge in the foreseeable near future. Driven

by their emergence, it is believed that outlier detection

techniques will play an increasingly important role in

various practical applications where they can be applied

to.

26

ICST Transactions Preprint

References

[1] C. C. Aggarwal. On Abnormality Detection in Spu-

riously Populated Data Streams. SIAM International

Conference on Data Mining (SDM’05), Newport Beach,

CA, 2005.

[2] B. Abraham and G. E. P. Box. Bayesian analysis of some

outlier problems in time series. Biometrika 66, 2, 229-

236, 1979.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I.

Nishizawa, J. Rosenstein an J. Widom. STREAM: The

Stanford Stream Data Manager, SIGMOD’03, 2003.

[4] B. Abraham and A. Chuang. Outlier detection and time

series modeling. Technometrics 31, 2, 241-248, 1989.

[5] D. Anderson, T. Frivold, A. Tamaru, and A. Valdes.

Next-generation intrusion detection expert system

(nides), software users manual, beta-update release.

Technical Report, Computer Science Laboratory, SRI

International, 1994.

[6] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan.

Automatic subspace clustering of high dimensional data

for data mining applications. In Proc. of 1998 ACM

SIGMOD International Conference on Management of

Data (SIGMOD’98), pp 94-105, 1998.

[7] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic Subspace Clustering of High Dimensional

Data Mining Application. In proceeding of ACM

SIGMOD’99, Philadelphia, PA, USA, 1999.

[8] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu: A Framework

for Clustering Evolving Data Streams. In Proc. of 29th

Very Large Data Bases (VLDB’03),pp 81-92, Berlin,

Germany, 2003.

[9] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu. A Framework

for Projected Clustering of High Dimensional Data

Streams. In Proc. of 30th Very Large Data Bases

(VLDB’04), pp 852-863, Toronto, Canada, 2004.

[10] F. Angiulli and C. Pizzuti. Fast Outlier Detection in

High Dimensional Spaces. In Proc. of 6th European

Conference on Principles and Practice of Knowledge

Discovery in Databases (PKDD’02),Helsinki, Finland,

pp 15-26, 2002.

[11] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf,

P. S. Yu and J. S. Park. Fast algorithms for

projected clustering. In Proc. of 1999 ACM SIGMOD

International Conference on Management of Data

(SIGMOD’99), pp 61-72, 1999.

[12] D. Anderson, A. Tamaru, and A. Valdes. Detecting

unusual program behavior using the statistical compo-

nents of NIDES. Technical Report, Computer Science

Laboratory, SRI International, 1995.

[13] C. C. Aggarwal and P. Yu. Finding generalized

projected clusters in high dimensional spaces. In Proc.

of 2000 ACM SIGMOD International Conference on

Management of Data (SIGMOD’00), pp 70-81, 2000.

[14] C. C. Aggarwal and P. S. Yu. Outlier Detection

in High Dimensional Data. In Proc. of 2001 ACM

SIGMOD International Conference on Management of

Data (SIGMOD’01), Santa Barbara, California, USA,

2001.

[15] Charu C. Aggarwal and Philip S. Yu. 2005. An effective

and efficient algorithm for high-dimensional outlier

detection. VLDB Journal, 14: 211-221, Springer-Verlag

Publisher.

[16] V. Barnett. The ordering of multivariate data (with

discussion). Journal of the Royal Statistical Society.

Series A 139, 318-354, 1976.

[17] C. Bishop. Novelty detection and neural network

validation. In Proceedings of IEEE Vision, Image and

Signal Processing, Vol. 141. 217-222, 1994.

[18] R. J. Beckman and R. D. Cook. Outliers. Technometrics

25, 2, 119-149, 1983.

[19] K. Beyer, J. Goldstein, R. Ramakrishnan and U.

Shaft. When is nearest neighbors meaningful? In Proc.

of 7th International Conference on Database Theory

(ICDT’99), pp 217-235, Jerusalem, Israel, 1999.

[20] M. M. Breunig, H-P Kriegel, R. T. Ng and J. Sander.

OPTICS-OF: Identifying Local Outliers. PKDD’99, 262-

270, 1999.

[21] M. Breuning, H-P. Kriegel, R. Ng, and J. Sander.

LOF: Identifying Density-Based Local Outliers. In Proc.

of 2000 ACM SIGMOD International Conference on

Management of Data (SIGMOD’00), Dallas, Texas, pp

93-104, 2000.

[22] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.

Seeger. The R∗-tree: an efficient and robust access

method for points and rectangles. In Proc. of 1990 ACM

SIGMOD International Conference on Management of

Data (SIGMOD’90), pp 322-331, Atlantic City, NJ,1990.

[23] V. Barnett and T. Lewis. Outliers in Statistical Data.

John Wiley, 3rd edition, 1994.

[24] L. Boudjeloud and F. Poulet. Visual Interactive

Evolutionary Algorithm for High Dimensional Data

Clustering and Outlier Detection. In Proc. of 9th Pacific-

Asia Conference on Advances in Knowledge Discovery

and Data Mining (PAKDD’05), Hanoi, Vietnam, pp426-

431, 2005.

[25] Branch, J. Szymanski, B. Giannella, C. Ran Wolff

Kargupta, H. n-Network Outlier Detection in Wire-

less Sensor Networks. In Proc. of. 26th IEEE Inter-

national Conference on Distributed Computing Systems

(ICDCS), 2006.

27

ICST Transactions Preprint

[26] H. Cui. Online Outlier Detection Detection Over Data

Streams. Master thesis, Simon Fraser University, 2002.

[27] D. Chakrabarti. Autopart: Parameter-free graph parti-

tioning and outlier detection. In PKDD’04, pages 112-

124, 2004.

[28] V. Chandola, A. Banerjee, and V. Kumar. Outlier

Detection-A Survey, Technical Report, TR 07-017,

Department of Computer Science and Engineering,

University of Minnesota, 2007.

[29] C. Chow and D. Y. Yeung. Parzen-window network

intrusion detectors. In Proceedings of the 16th

International Conference on Pattern Recognition, Vol.

4, Washington, DC, USA, 40385, 2002.

[30] D. E. Denning. An intrusion detection model. IEEE

Transactions of Software Engineering 13, 2, 222-232,

1987.

[31] M. Desforges, P. Jacob, and J. Cooper. Applications

of probability density estimation to the detection of

abnormal conditions in engineering. In Proceedings of

Institute of Mechanical Engineers, Vol. 212. 687-703,

1998.

[32] D. Dasgupta and F. Nino. A comparison of negative and

positive selection algorithms in novel pattern detection.

In Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics, Vol. 1. Nashville, TN,

125-130, 2000.

[33] K. Das and J. G. Schneider: Detecting anomalous

records in categorical datasets. KDD’07, 220-229, 2007.

[34] E. Eskin. Anomaly detection over noisy data using

learned probability distributions. In Proceedings of

the Seventeenth International Conference on Machine

Learning (ICML). Morgan Kaufmann Publishers Inc.,

2000.

[35] D. Endler. Intrusion detection: Applying machine

learning to solaris audit data. In Proceedings of the 14th

Annual Computer Security Applications Conference,

268, 1998.

[36] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and

S. Stolfo. A Geometric Framework for Unsupervised

Anomaly Detection: Detecting Intrusions in Unlabeled

Data. Applications of Data Mining in Computer

Security, 2002.

[37] M. Ester, H-P Kriegel, J. Sander, and X.Xu. A Density-

based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise. In proceedings of 2nd

International Conference on Knowledge Discovery and

Data Mining (KDD’96), Portland, Oregon, USA, 1996.

[38] E. Eskinand and S. Stolfo. Modeling system call

for intrusion detection using dynamic window sizes.

In Proceedings of DARPA Information Survivability

Conference and Exposition, 2001.

[39] A. J. Fox. Outliers in time series. Journal of the Royal

Statistical Society, Series B (Methodological) 34, 3, 350-

363, 1972.

[40] T. Fawcett. and F. Provost. Activity monitoring:

noticing interesting changes in behavior. In Proceedings

of the 5th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 53-62, 1999.

[41] D. Freedman, R. Pisani and R. Purves. Statistics, W.

W. Norton, New York, 1978.

[42] F. Grubbs Procedures for detecting outlying observa-

tions in samples. Technometrics 11, 1, 1-21, 1969.

[43] D. E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,

Reading, Massachusetts, 1989.

[44] S. Guttormsson, R. M. II, and M. El-Sharkawi. Elliptical

novelty grouping for on-line short-turn detection of

excited running rotors. IEEE Transactions on Energy

Conversion 14, 1, 1999.

[45] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J.

French. Clustering Large Datasets in Arbitrary Metric

Spaces. In Proc.s of the 15th International Conference on

Data Engineering (ICDE’99), Sydney, Australia, 1999.

[46] S. Guha, R. Rastogi, and K. Shim. CURE: An

Efficient Clustering Algorithm for Large Databases. In

Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data (SIGMOD’98),

Seattle, WA, USA, 1998.

[47] D. Hawkins. Identification of Outliers. Chapman and

Hall, London, 1980.

[48] P. Helman and J. Bhangoo. A statistically based

system for prioritizing information exploration under

uncertainty. In IEEE International Conference on

Systems, Man, and Cybernetics, Vol. 27, 449-466, 1997.

[49] P. S. Horn, L. Feng, Y. Li, and A. J. Pesce. Effect of

outliers and nonhealthy individuals on reference interval

estimation. Clinical Chemistry 47, 12, 2137-2145, 2001.

[50] J. Han and M Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufman Publishers, 2000.

[51] A. Hinneburg, and D.A. Keim. An Efficient Approach

to Cluster in Large Multimedia Databases with Noise.

KDD’98, 1998.

[52] W. Jin, A. K. H. Tung and J. Han. Finding Top n

Local Outliers in Large Database. In Proc. of 7th ACM

International Conference on Knowledge Discovery and

Data Mining (SIGKDD’01), San Francisco, CA, pp 293-

298, 2001.

[53] W. Jin, A. K. H. Tung, J. Han and W. Wang: Ranking

Outliers Using Symmetric Neighborhood Relationship.

PAKDD’06, 577-593, 2006.

[54] H. S. Javitz and A. Valdes. The SRI IDES statistical

anomaly detector. In Proceedings of the 1991 IEEE

28

ICST Transactions Preprint

Symposium on Research in Security and Privacy, 1991.

[55] G. Karypis, E-H. Han, and V. Kumar. CHAMELEON:

A Hierarchical Clustering Algorithm Using Dynamic

Modeling. IEEE Computer, 32, Pages 68-75, 1999.

[56] E. M. Knorr and R. T. Ng. A unified approach for mining

outliers. CASCON’97, 11, 1997.

[57] E. M. Knorr and R. T. Ng. A Unified Notion of Outliers:

Properties and Computation. KDD’97, 219-222, 1997.

[58] E. M. Knorr and R. T. Ng. Algorithms for Mining

Distance-based Outliers in Large Dataset. In Proc. of

24th International Conference on Very Large Data Bases

(VLDB’98), New York, NY, pp 392-403, 1998.

[59] E. M. Knorr and R. T. Ng (1999). Finding Intentional

Knowledge of Distance-based Outliers. In Proc. of 25th

International Conference on Very Large Data Bases

(VLDB’99), Edinburgh, Scotland, pp 211-222, 1999.

[60] E. M. Knorr, R. T. Ng and V. Tucakov. Distance-Based

Outliers: Algorithms and Applications. VLDB Journal,

8(3-4): 237-253, 2000.

[61] T. M. Khoshgoftaar, S. V. Nath, and S. Zhong. Intrusion

Detection in Wireless Networks using Clusterings

Techniques with Expert Analysis. Proceedings of the

Fourth International Conference on Machine Leaning

and Applications (ICMLA’05), Los Angeles, CA, USA,

2005.

[62] L. Kaufman and P.J. Rousseeuw. Finding Groups

in Data: an Introduction to Cluster Analysis. John

wiley&Sons, 1990.

[63] C. Kruegel, T. Toth, and E. Kirda. Service specific

anomaly detection for network intrusion detection. In

Proceedings of the 2002 ACM Symposium on Applied

computing, 201-208, 2002.

[64] X. Li and J. Han: Mining Approximate Top-K Subspace

Anomalies in Multi-Dimensional Time-Series Data.

VLDB, 447-458, 2007.

[65] J. Lee, J. Han and X. Li. Trajectory Outlier Detection:

A Partition-and-Detect Framework. ICDE’08, 140-149,

2008.

[66] J. Laurikkala, M. Juhola1, and E. Kentala. 2000.

Informal identification of outliers in medical data.

In Fifth International Workshop on Intelligent Data

Analysis in Medicine and Pharmacology, 20-24, 2000.

[67] G. Manson. Identifying damage sensitive, environment

insensitive features for damage detection. In Proceedings

of the IES Conference. Swansea, UK, 2002.

[68] J. MacQueen. Some methods for classification and

analysis of multivariate observations. In Proc. of 5th

Berkeley Symp. Math. Statist, Prob., 1, pages 281-297,

1967.

[69] M. V. Mahoney and P. K. Chan. Learning nonstationary

models of normal network traffic for detecting novel

attacks. In Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, 376-385, 2002.

[70] G. Manson, G. Pierce, and K. Worden. On the long-

term stability of normal condition for damage detection

in a composite panel. In Proceedings of the 4th

International Conference on Damage Assessment of

Structures, Cardiff, UK, 2001.

[71] G. Manson, S. G. Pierce, K. Worden, T. Monnier, P.

Guy, and K. Atherton. Long-term stability of normal

condition data for novelty detection. In Proceedings of

Smart Structures and Integrated Systems, 323-334, 2000.

[72] C. C. Noble and D. J. Cook. Graph-based anomaly

detection. In KDD’03, pages 631-636, 2003.

[73] R. Ng and J. Han. Efficient and Effective Clustering

Methods for Spatial Data Mining. In proceedings of the

20th VLDB Conference, pages 144-155, 1994.

[74] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha,

and R. Motwani. Streaming-Data Algorithms For High-

Quality Clustering. In Proceedings of the 18th Interna-

tional Conference on Data Engineering (ICDE’02), San

Jose, California, USA, 2002.

[75] M. I. Petrovskiy. Outlier Detection Algorithms in Data

Mining Systems. Programming and Computer Software,

Vol. 29, No. 4, pp 228-237, 2003.

[76] E. Parzen. On the estimation of a probability density

function and mode. Annals of Mathematical Statistics

33, 1065-1076, 1962.

[77] S. Papadimitriou, H. Kitagawa, P. B. Gibbons and C.

Faloutsos: LOCI: Fast Outlier Detection Using the Local

Correlation Integral. ICDE’03, 315, 2003.

[78] D. Pokrajac, A. Lazarevic, L. Latecki. Incremental

Local Outlier Detection for Data Streams, IEEE

symposiums on computational Intelligence and Data

Mining (CIDM’07), 504-515, Honolulu, Hawaii, USA,

2007.

[79] P. A. Porras and P. G. Neumann. EMERALD:

Event monitoring enabling responses to anomalous

live disturbances. In Proceedings of 20th NIST-NCSC

National Information Systems Security Conference, 353-

365, 1997.

[80] T. Palpanas, D. Papadopoulos, V. Kalogeraki, D.

Gunopulos. Distributed deviation detection in sensor

networks. SIGMOD Record 32(4): 77-82, 2003.

[81] S. Ramaswamy, R. Rastogi, and S. Kyuseok. Efficient

Algorithms for Mining Outliers from Large Data Sets. In

Proc. of 2000 ACM SIGMOD International Conference

on Management of Data (SIGMOD’00), Dallas, Texas,

pp 427-438, 2000.

[82] G. Sheikholeslami, S. Chatterjee, and A. Zhang.

WaveCluster: A Wavelet based Clustering Approach for

29

ICST Transactions Preprint

Spatial Data in Very Large Database. VLDB Journal,

vol.8 (3-4), pages 289-304, 1999.

[83] H. E. Solberg and A. Lahti. Detection of outliers in

reference distributions: Performance of horn’s algorithm.

Clinical Chemistry 51, 12, 2326-2332, 2005.

[84] J. Sun, H. Qu, D. Chakrabarti and C. Faloutsos.

Neighborhood Formation and Anomaly Detection in

Bipartite Graphs. ICDM’05, 418-425, 2005.

[85] J. Sun, H. Qu, D. Chakrabarti and C. Faloutsos.

Relevance search and anomaly detection in bipartite

graphs. SIGKDD Explorations 7(2): 48-55, 2005.

[86] L. Tarassenko. Novelty detection for the identification of

masses in mammograms. In Proceedings of the 4th IEEE

International Conference on Artificial Neural Networks,

Vol. 4. Cambridge, UK, 442-447, 1995.

[87] J. Tang, Z. Chen, A. Fu, and D. W. Cheung. Enhancing

Effectiveness of Outlier Detections for Low Density

Patterns. In Proc. of 6th Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD’02),

Taipei, Taiwan, 2002.

[88] W. Wang, J. Yang, and R. Muntz. STING: A Statistical

Information Grid Approach to Spatial Data Mining. In

Proceedings of 23rd VLDB Conference, pages 186-195,

Athens, Green, 1997.

[89] W. Wang, J. Zhang and H. Wang. Grid-ODF: Detecting

Outliers Effectively and Efficiently in Large Multi-

dimensional Databases. In Proc. of 2005 International

Conference on Computational Intelligence and Security

(CIS’05), pp 765-770, Xi’an, China, 2005.

[90] K. Yamanishi and J. I. Takeuchi. Discovering outlier

filtering rules from unlabeled data: combining a

supervised learner with an unsupervised learner. In

Proceedings of the 7th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

389-394, 2001.

[91] K. Yamanishi, J. I. Takeuchi, G. Williams, and P.

Milne. On-line unsupervised outlier detection using

finite mixtures with discounting learning algorithms.

Data Mining and Knowledge Discovery 8, 275-300, 2004.

[92] C.T. Zahn. Graph-theoretical Methods for Detecting

and Describing Gestalt Clusters. IEEE Transaction on

Computing, C-20, pages 68-86, 1971.

[93] J. Zhang, Q. Gao and H. Wang. Outlying Subspace

Detection in High dimensional Space. Encyclopedia of

Database Technologies and Applications (2nd Edition),

Idea Group Publisher, 2009.

[94] J. Zhang and H. Wang. Detecting Outlying Subspaces

for High-dimensional Data: the New Task, Algorithms

and Performance. Knowledge and Information Systems:

An International Journal (KAIS), Springer-Verlag

Publisher, 2006.

[95] J. Zhang, W. Hsu and M. L. Lee. Clustering in Dynamic

Spatial Databases. Journal of Intelligent Information

Systems (JIIS) 24(1): 5-27, Kluwer Academic Publisher,

2005.

[96] C. Zhu, H. Kitagawa and C. Faloutsos. Example-Based

Robust Outlier Detection in High Dimensional Datasets.

In Proc. of 2005 IEEE International Conference on Data

Management(ICDM’05), pp 829-832, 2005.

[97] C. Zhu, H. Kitagawa, S. Papadimitriou and C. Faloutsos.

OBE: Outlier by Example. PAKDD’04, 222-234, 2004.

[98] S. Zhong, T. M. Khoshgoftaar, and S. V. Nath.

A clustering approach to wireless network intrusion

detection. In ICTAI, pages 190-196, 2005.

[99] J. Zhang, M. Lou, T. W. Ling and H. Wang. HOS-

Miner: A System for Detecting Outlying Subspaces of

High-dimensional Data. In Proc. of 30th International

Conference on Very Large Data Bases (VLDB’04),

demo, pages 1265-1268, Toronto, Canada, 2004.

[100] J. Zhang, Q. Gao and H. Wang. A Novel Method

for Detecting Outlying Subspaces in High-dimensional

Databases Using Genetic Algorithm. 2006 IEEE

International Conference on Data Mining (ICDM’06),

pages 731-740, Hong Kong, China, 2006.

[101] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:

An Efficient Data Clustering Method for Very

Large Databases. In proceedings of the 1996 ACM

International Conference on Management of Data

(SIGMOD’96), pages 103-114, Montreal, Canada, 1996.

[102] J. Zhang and H. Wang. Detecting Outlying Subspaces

for High-dimensional Data: the New Task, Algorithms

and Performance. Knowledge and Information Systems

(KAIS), 333-355, 2006.

[103] J. Zhang, Q. Gao, H. Wang, Q. Liu, K. Xu. Detecting

Projected Outliers in High-Dimensional Data Streams.

DEXA 2009: 629-644, 2009.

30

ICST Transactions Preprint

