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ABSTRACT 

This thesis integrates signal processing techniques, functional brain 

connectivity analysis, and artificial intelligence methods to address the challenges of 

real-time epilepsy seizure detection and provide insights into complex brain disorders, 

such as alcoholism and schizophrenia (ScZ). By leveraging electroencephalogram 

(EEG) data and advanced analysis methods, the research aims to achieve high 

accuracy detection and identification of biomarkers for these conditions. The real-time 

epilepsy seizure detection involves three main steps: pre-processing, feature 

extraction, and machine learning (ML) or deep learning (DL) models for classification 

and detection. Various signal processing methods, such as discrete wavelet transform, 

tunable-Q wavelet transform, and short-time Fourier transform, are applied in the pre-

processing stage to decompose the EEG signals into time domain, frequency domain, 

and time-frequency domain data. Feature extraction techniques, such as statistical 

moments, entropy algorithms, and power spectrum analysis, are used to detect the 

sharp waves indicative of seizure activity. ML and DL models, such as support vector 

machines and convolutional neural networks (CNN), are employed to address the 

robustness challenges and provide high accuracy classification results for seizure 

detection. The EEG brain connectivity analysis focus on the correlations between 

different EEG channel signals within the complex brain network. Alcoholism and ScZ 

datasets are utilized in three experiments. The signal processing methods include 

continuous wavelet transform and multivariate autoregressive models to extract 

relevant features from the EEG signals. Functional brain connectivity is then calculated 

using mutual information and coherence algorithms. DL models, particularly CNN, are 

employed to classify patients and healthy control subjects based on the calculated 

functional connectivity. Furthermore, statistical analysis of the entire brain connectivity 

is conducted to identify biomarkers of abnormal connectivity patterns associated with 

complex brain disorders. 
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CHAPTER 1: INTRODUCTION 

1.1. Research background and questions 

Electroencephalography (EEG) research plays a significant role in 

understanding brain diseases and disorders. By measuring and analysing the 

electrical activity of the brain, EEG provides valuable insights into the underlying 

mechanisms and abnormalities associated with various brain conditions. 

EEG has been extensively used in epilepsy research. It helps in the diagnosis 

and classification of epileptic seizures, as well as in localizing the epileptic focus. Long-

term EEG monitoring can provide valuable information about seizure frequency, 

duration, and patterns, assisting in treatment planning and assessing the effectiveness 

of anti-epileptic medications [5]. 

Additionally, EEG research has provided insights into the neural abnormalities 

associated with complex brain disorders through functional brain network. Studies 

have identified specific EEG patterns, such as reduced specific frequency band activity 

with alcoholism and schizophrenia (ScZ) diseases. EEG can help in early detection, 

differential diagnosis, monitoring treatment response, and studying the impact of 

medications and therapeutic interventions in alcoholism and ScZ [6,7]. 

 

1.1.1. EEG background 

EEG birthed by Hans Berger's pioneering work in the early 20th century, stands 

as an instrumental non-invasive neuroimaging tool to detect electrical patterns 

resultant from the brain's intricate neuronal activities [8]. Within its vast spectrum of 

brain activity classifications, EEG segregates waves into delta, theta, alpha, beta, and 

gamma bands [9]. EEG frequency bands provide insights into various cognitive and 

physiological states. Delta (1-4 Hz) bands are most prominent in deep sleep and may 

indicate brain injury during wakefulness. Theta (4-8 Hz) is associated with reduced 

alertness, introspection, and memory processes. Alpha (8-12 Hz) represents a 

relaxed, alert state and its modulation is used in biofeedback relaxation techniques. 

Beta (12-30 Hz) manifests during analytical thinking and heightened alertness, with 

excessive activity potentially indicating anxiety. Gamma (30-100 Hz), the least 

understood, is linked to high-level cognitive functions, including perception and 

consciousness, with disruptions suggesting conditions like ScZ [10]. Beyond its 

foundational role in epilepsy and brain connectivity research, EEG finds robust 



 

2 

application in sleep studies, cognitive neuroscience, brain-computer interfaces, and 

neurofeedback, offering insights into brain function and pathologies [11]. While EEG 

boasts of high temporal resolution, affordability, and accessibility, it faces challenges 

in spatial resolution and is often susceptible to artifacts from external and biological 

sources [12]. Despite these limitations, the real-time data acquisition capabilities of 

EEG have solidified its standing in both clinical and research settings. 

 

1.1.2. Real-time EEG seizure detection 

Epilepsy is a chronic noncommunicable brain disorder characterized by sudden 

abnormal synchronous activity of brain neurons [13,14]. According to a report by the 

World Health Organization (WHO) in 2022, approximately 50 million people worldwide 

are affected by epilepsy [15]. Individuals with epilepsy experience recurrent seizures, 

which manifest as involuntary jerks in one part of the body or the entire body [16]. To 

enhance the effectiveness of epilepsy treatment, the EEG technique is employed to 

detect the onset of seizures which can detect nerve discharges with a high time 

resolution at the millisecond level. 

This research aims to develop a novel method for automatic identification and 

clinical application of EEG-based epilepsy signal detection. The study comprises four 

main components: EEG data collection, signal processing, feature extraction, and 

classification work. Figure 1.1 shows the framework for EEG seizure detection, 

highlighting the various stages involved. 

 

Figure 1.1: The framework of EEG seizure onset detection 

In the data collection stage, EEG channel selection is performed with the 

objective of reducing computational costs. Since the location of epilepsy disorder in 

each patient may be uncertain, seizure detection faces robustness challenges. As a 

result, the selection of EEG channels also impacts the final detection results. Signal 

denoising is another important objective, aiming to eliminate noise and artifacts from 

the raw EEG signal. To enable real-time application, a sliding window technique is 

employed, and the choice of window size directly influences the performance. If the 
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calculation time exceeds the overlapping time, the method cannot be used in real-time 

clinical applications. Additionally, when detecting EEG seizure onset, the delay must 

be considered. A large sliding window input may lead to a significant delay, rendering 

the detection meaningless. 

The abnormalities in EEG seizure signals are primarily observed in sharp and 

spike waves [17]. Analysing the signal in specific frequency bands using different 

signal processing methods is crucial for detecting these sharp and spike waves. 

Therefore, many signal processing methods are employed to extract features from 

time domain, frequency domain, and time-frequency domain techniques. 

The feature extraction stage involves calculating the eigenvalues of the EEG 

features obtained through signal processing methods. This process helps reduce 

computational costs by transforming the decomposed signal into several eigenvalues. 

The eigenvalues mainly focus on statistical moments, various entropy parameters, and 

spectral power density, which describe the degree of oscillation in sharp and spike 

waves. The spectral power, representing the power density in specific frequency 

bands, can also be utilized in this process to capture the characteristics of sharp and 

spike waves. 

In the classification work, artificial intelligence methods, particularly machine 

learning (ML) and deep learning (DL) models, play a significant role compared to 

traditional methods like linear discriminant method, distance discriminant method, and 

Bayesian classifier method. ML and DL models offer high accuracy in classifying 

seizure-free and seizure-active data in this research. 

 

1.1.3. EEG brain connectivity analysis  

In current research, there is significant emphasis on understanding the 

interaction between different brain regions to comprehend cognitive functions. By 

integrating the brain as a whole and conducting in-depth explorations in brain science, 

researchers aim to address the limitations of functional localization and gain a more 

comprehensive understanding of brain function [18,19]. While different areas of the 

human brain may have distinct functions, even a simple task requires multiple 

functional areas to interact and coordinate with each other, forming a network to carry 

out the task [20]. The functionality of brain relies on extensive interaction between 

multiple brain regions, highlighting the importance of interconnectedness in performing 

various cognitive processes. 
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In the analysis of complex brain networks, the region of interest (ROI) within the 

brain is considered as a node, and the connectivity between these nodes is 

represented as an edge [21]. The functional brain connectivity analysis in this thesis 

is centred around detecting complex brain disorders and identifying biomarkers for 

these diseases. Figure 1.2 illustrates the five main components or stages of the 

functional brain connectivity study. 

 

Figure 1.2: The framework of EEG brain connectivity analysis of complex brain 

disorders 

In this study, two public EEG databases are employed for evaluation: the 

Archive UCI KDD database for alcoholism and the Lomonosov Moscow State 

University (LMSU) database for schizophrenia (ScZ). These data were collected 

utilizing the entire channel data to detect the functional connectivity of the entire ROI 

in the brain. The Butterworth algorithm's band-pass filter is applied to eliminate noise 

and artifacts from the raw EEG signal. To capture the dynamic changes in ScZ 

diseases, a sliding window technique is employed to address the time-varying nature 

of the functional brain network and improve research accuracy. 

Signal processing methods, including time domain, frequency domain, and 

time-frequency domain analyses, are implemented for EEG alcoholism and EEG ScZ 

signals. The objective is to identify significant brain rhythms associated with the 

respective diseases, reducing computational costs, and enhancing detection 

accuracy. 

Functional brain connectivity focuses on the correlations between different 

ROIs in the complex brain network. In EEG analysis, ROIs correspond to EEG 

channels. There are two main approaches to detect the connectivity matrix in 

functional brain network analysis. The first approach treats the connectivity matrix as 

a brain graph and utilizes ML or DL methods for classification. The second approach 

employs graph theory measurements to assess the connectivity characteristics and 

abilities of matrix. 
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To identify biomarkers for the diseases, statistical analysis of the entire brain 

connectivity is conducted to identify abnormal connectivity areas between patients and 

healthy control subjects. These biomarkers can be cross verified with medical 

discoveries. For example, the default mode network (DMN) may exhibit significant 

changes in resting-state brain activity in complex brain disorders [22]. 

Given the exceptional performance of ML and DL in image classification tasks, 

these methods are also proposed for classifying the brain graph in this study. 

Convolutional neural network (CNN) demonstrates high accuracy in alcoholism and 

ScZ detection. Additionally, ML techniques can achieve high accuracy in classifying 

graph theory measurements. 

 

1.1.4. Research objectives 

This research is to develop new methods to detect the EEG seizure onset in 

clinical detection and detect EEG complex brain disorders through brain connectivity 

analysis. Five objectives shown below are the focuses: 

• Develop the signal processing method to extract the sharp and spike 

waves from epilepsy seizure EEG signal. 

• Apply the ML and DL methods to classify the seizure active and seizure 

free EEG signals. 

• Improve EEG based seizure detection performance in accuracy, 

sensitivity, false positive (FP) rate and delay. 

• Develop and apply the brain connectivity algorithms for alcoholic and 

ScZ EEG signal detection. 

• Provide a biomarker for alcoholic and ScZ disease, and improve 

detection performance in accuracy, sensitivity, and specificity. 

 

1.2. Contributions  

This thesis contains six research papers, three of them focus on the real-time 

EEG seizure detection and another three focus on the EEG brain connectivity analysis. 

The relationship between research questions, research objectives and contributions 

of each paper is shown in Figure 1.3 and 1.4.  
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Figure 1.3: The relationship of research in EEG real-time epilepsy seizure detection 

 

 

Figure 1.4: The relationship of research in EEG brain connectivity analysis 

 

The major contributions of each paper were summarised as follow: 

Paper 1: “An EEG based real-time epilepsy seizure detection approach using discrete 

Wavelet transform and machine learning methods”. 

• DB4- Discrete wavelet transform (DWT) and DB16-DWT are proposed 

to extract sharp and spike waves of signals and remove redundant 

information. 

• Improve the robustness of EEG based epilepsy detection via ML 

methods. 

• Propose a method that achieves 97% in accuracy and 96.67% in 

sensitivity in 3-class classification between healthy control (HC), seizure 

free and seizure active using Database UB, and 96.38% accuracy, 

96.15% sensitivity and 3.24% false positive rate in the real-time seizure 

detection using Database CHB-MIT. 

• Implement an automatic seizure detection approach in real-time way. 
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Paper 2: “Real-time Epilepsy Seizure Detection based on EEG using Tunable-Q 

Wavelet Transform and Convolutional Neural Network”. 

• Propose tunable-Q wavelet transform (TQWT) method to extract sharp 

and spike waves of signal and remove redundant information. 

• Improve the robustness of EEG based epilepsy detection using the DL 

method with CNN model. 

• Combine signal processing method and image classification in this 

experiment. 

• Conduct an automatic real-time seizure detection implementation. 

• Obtain excellent performance of 97.57% in accuracy, 98.90% in 

sensitivity, 2.10% in false positive rate and 10.46-seconds in time delay 

in the real-time seizure detection evaluation. 

 

Paper 3: “A Real-time Epilepsy Seizure Detection Approach based on EEG using 

Short-time Fourier Transform and Google-Net Convolutional Neural Network”. 

• Short time Fourier transform (STFT) method is proposed to extract sharp 

and spike waves of the signal and remove redundant information. 

• Google-Net CNN model is applied to classify the seizure-active and 

seizure-free EEG data and overcome the robustness problem of EEG 

research. 

• The proposed real-time seizure detection method achieves 97.74% 

accuracy, 98.90% sensitivity, 1.94% false positive rate, and 9.85-second 

delay through STFT spectrum in CHB-MIT Database. 

• The proposed method is suitable for real-time seizure detection in clinic 

application, the processing time is just 0.02 seconds for every 2-second 

EEG episode in this study. 

 

Paper 4: “Detection of alcoholic EEG signals based on whole brain connectivity and 

convolution neural networks”. 

• A DL model enabled whole brain connectivity analysis method is applied 

to detect alcoholic EEG signal. 

• A framework of a 3D-CNN and image classification method are 

developed and applied to detect EEG signal and get an accuracy of 
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96.25 ± 3.11% using leaving-one out training method for all the testing 

subjects. 

• Brain rhythms factor is taken into consideration in detecting the alcoholic 

EEG, and the gamma band (30 – 40 Hz) is found to be the most 

significant rhythm. 

• The results show that the Cross mutual information (CMI) adjacent 

connectivity between the left parietal part, the left frontal part, the right 

temporal part, the right frontal part and the right parietal part are found 

to be the fuzzy locations in determining alcoholism. 

 

Paper 5: “Automatic identification of schizophrenia based on EEG signals using 

dynamic functional connectivity analysis and 3D convolutional neural network”. 

• The time-frequency domain functional connectivity calculated by 

continuous wavelet transform (CWT) and CMI is firstly used in ScZ 

identification, and the frequency resolution is selected in 1 Hz in this 

experiment. 

• Sliding window technique is proposed to extend the functional 

connectivity to time-varying functional connectivity for exploring dynamic 

properties of resting-state function connectivity in EEG. 

• The graph theory measures of complex brain network analysis are used 

to select brain rhythms and the alpha band (8-12 Hz) is found to be the 

significance frequency band for ScZ identification. 

• The 3D-CNN models are applied to classify the ScZ subjects and HC 

subjects and achieved a result of 97.74 ± 1.15% accuracy, 96.91 ± 

2.76% sensitivity, and 98.53 ± 1.97% specificity. 

• Furthermore, the CMI values show that not only the DMN region but also 

the connectivity between temporal lobe and posterior temporal lobe in 

both right and left side has significant difference between the ScZ and 

HC subjects. 

 

Paper 6: “3D convolutional neural network for identifying schizophrenia using as EEG-

based brain network”. 
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• Functional brain network calculated using multivariate autoregressive 

(MVAR) model and coherence algorithm is applied in ScZ detection. 

• Sliding window technique is employed in this study to capture the 

dynamic changes of ScZ resting data. 

• Brain rhythm analysis shows that the alpha band (8-12 Hz) data plays a 

significant role in ScZ detection. 

• The self-designed 3D-CNN models achieve the 98.47 ± 1.47% accuracy, 

99.26 ± 1.07% sensitivity, and 97.23 ± 3.76% specificity results of ScZ 

detection. 

• The ScZ biomarkers of abnormal connectivity of DMN regions and 

temporal lobe and posterior temporal lobe in both right and left side are 

provided in this study. 

 

1.3. Thesis organisation 

The real-time EEG seizure detection and EEG brain connectivity analysis are 

the focus of this thesis, which consists of nine chapters.  

Chapter 1 introduces the research background and research problems of the 

thesis including the EEG seizure detection, EEG brain connectivity analysis and 

research objectives. The contributions and the thesis organisation also presented in 

this chapter. 

Chapter 2 provides the background and literature review of the previous works. 

It contains the signal processing analysis, brain connectivity analysis and ML & DL 

models. The research problems and gaps are summarized in this chapter as well. 

Chapter 3 is the published paper “An EEG based real-time epilepsy seizure 

detection approach using discrete wavelet transform and machine learning methods”. 

This paper proposed a new method to detect EEG seizure onset in real-time, and it 

also provided a method to classify health control, seizure free and seizure active EEG 

data. 

 Chapter 4 is the published paper “Real-time epilepsy seizure detection based 

on EEG using tunable-Q wavelet transform and convolutional neural network”. This 

paper investigated the EEG real-time detection in clinical application through signal 

processing and deep learning method. 
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Chapter 5 is the submitted paper “A Real-time Epilepsy Seizure Detection 

Approach based on EEG using Short-time Fourier Transform and Google-net 

Convolutional Neural Network”. This paper improved the accuracy of the detection 

results in EEG real-time seizure detection. 

Chapter 6 is the published paper “Detection of alcoholic EEG signals based on 

whole brain connectivity and convolution neural networks”. This paper highlighted the 

brain connectivity analysis in EEG alcoholic detection and provided excellent detection 

results. 

Chapter 7 is the published paper “Automatic identification of schizophrenia 

based on EEG signals using dynamic functional connectivity analysis and 3D 

convolutional neural network.” This paper reported the high identification accuracy and 

fuzzy localization of ScZ diseases. 

Chapter 8 is the submitted paper “3D convolutional neural network for 

schizophrenia detection using as EEG-based functional brain network” This paper 

introduced several brain connectivity methods with 3D-CNN model to detect the ScZ 

diseases and achieved high accuracy results. The biomarkers of abnormal 

connectivity information also presented in this research.  

Chapter 9 summarizes the main outcomes obtained and conclusions drawn 

from the research. In addition, it discusses the implications of the proposed studies 

and find the areas of future direction in EEG seizure research and EEG brain 

connectivity analysis.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Significance of research problems 

Real-time EEG seizure detection allows for the early identification of seizure 

activity as it occurs [23]. By providing immediate feedback, it enables timely 

intervention and treatment, which can help mitigate the impact of seizures and improve 

patient outcomes. Early detection is particularly crucial in cases of prolonged or 

repetitive seizures that may lead to status epilepticus, a medical emergency requiring 

immediate intervention [24]. It can trigger alerts or notifications to caregivers, family 

members, or healthcare professionals when a seizure is detected, enabling prompt 

assistance, and ensuring a safer environment for the person experiencing seizures. 

This can improve the quality of life for individuals with epilepsy and provide peace of 

mind for their caregivers. Moreover, this application can aid in the optimization of 

treatment strategies for individuals with epilepsy [25]. By continuously monitoring 

seizure activity, it provides valuable data on the frequency, duration, and patterns of 

seizures, allowing healthcare professionals to assess the effectiveness of 

medications, adjust dosages, or explore alternative treatment options. This 

personalized approach can lead to improved seizure control and better management 

of epilepsy. 

EEG functional connectivity analysis plays a significant role in studying and 

understanding the neurological mechanisms underlying alcoholism and ScZ. This 

research can help identify alterations in the functional connectivity patterns of the brain 

in individuals with alcoholism and ScZ [26,27]. It provides insights into the disrupted 

communication between brain regions and the overall network organization. This 

information contributes to understanding the neurobiological basis of alcoholism and 

ScZ diseases. Additionally, functional connectivity analysis can help identify specific 

patterns of brain connectivity that serve as potential biomarkers for alcoholism and 

ScZ [28,29]. These biomarkers may aid in the early detection and diagnosis of 

diseases, as well as provide insights into the individual differences in susceptibility and 

treatment response. Furthermore, the analysis of functional brain connectivity can also 

be used to assess the effects of treatment interventions in alcoholism and ScZ [30,31]. 

By examining changes in functional connectivity patterns over time, researchers can 

evaluate the efficacy of different therapeutic approaches and identify neurobiological 

correlates of treatment response. 
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2.2 Signal processing of EEG signal 

The main objectives of EEG signal processing are to extract the features of 

time-domain, frequency domain and time-frequency domain from the EEG data. The 

related works and methods of signal processing methods in epilepsy seizure detection, 

alcoholism detection and ScZ detection are reviewed and summarized discussed in 

this section. 

 

2.2.1 Time domain methods 

The time domain methods of EEG signal analysis are mainly focus on the 

wavelet transform and empirical mode decomposition (EMD) methods.  

Tuncer, E. et al. utilized the DWT combined with long short-term memory 

(LSTM) for classifying complex partial seizures and absence seizures [32]. They 

reported an accuracy of 98.08%. Wijayanto, I. et al. applied the DWT as part of a 

compressive sensing method to detect ictal, interictal, and pre-ictal EEG seizure 

signals [33]. They achieved a 100% accuracy between ictal and interictal data and 

95% accuracy between ictal and pre-ictal data using the support vector machine 

(SVM) model. Ghazali, S.M. et al. used an improved double-density DWT algorithm 

with Levenberg-Marquardt backpropagation classification for epilepsy seizure 

detection. They reported the highest accuracy of 99.45% and an average accuracy of 

98.46% [34]. Chavan, P.A. et al. proposed the use of the TQWT with a hidden Markov 

model for detecting focal and non-focal epilepsy seizures. They obtained an accuracy 

of 99.158%, sensitivity of 98.086%, and specificity of 99.155% [35]. Wijayanto, I. et al. 

highlighted the use of EMD transform with an SVM model for detecting seizure-active, 

seizure-free, and HC signals from the database UB [36]. They achieved a result of 

99.7% accuracy, 99.7% sensitivity, and 99.9% specificity in their study. 

In addition, Patidar, S. et al. employed the TQWT in conjunction with the least 

squares SVM method to detect EEG signals related to alcoholism [37]. They obtained 

an accuracy of 97.02% in their research. 

 Furthermore, Sairamya, N. J. et al. utilized the DWT along with the relaxed 

local neighbour difference pattern (RLNDiP) technique for detecting ScZ using the 

database LMSU [38]. They achieved a maximum accuracy of 100% in their 

experiment. 
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2.2.2 Frequency domain methods 

Power spectral density, calculated using various frequency domain algorithms, 

is widely used in EEG signal analysis. Researchers have applied different methods 

based on the Fourier transform (FT) to EEG clinical applications. 

Oweis, R.J., and E.W. Abdulhay employed the Hilbert-Huang transform for 

seizure classification [39]. They reported a result of 94% accuracy and 96% specificity 

in their classification task. Hu, W., et al. proposed the mean amplitude spectrum with 

a CNN model for seizure prediction [40]. They achieved an 86.25% classification 

accuracy in their work. Baser, O. et al. proposed the use of Thomson's multi-taper 

power spectral density to detect spike and wave discharges in epilepsy patients and 

rats [41]. They suggested that their experiment could enhance the acceptance of 

artificial intelligence decision-making in accurate epileptic seizure detection.  

Additionally, Shri, T.P. et al. introduced the calculation of spectral entropy using 

the Shannon entropy algorithm and FT power spectral density for detecting EEG 

signals related to alcoholism. They reported an accuracy of 99.6% in their research 

[42].  

Moreover, Iglesias-Tejedor, M. et al. found that the resting-state power of FT 

spectral density in the theta band is related to the P300 task in ScZ [43].  

 

2.2.3 Time-frequency domain methods 

In time-frequency domain analysis of EEG signals, several popular approaches 

are commonly used, including STFT, CWT, and Wavelet Scattering Transform (WST).  

Shayeste, H. et al. developed an STFT algorithm based on the bagging 

technique and decision tree (DT) model for automatic seizure detection [44]. They 

achieved a result of 99.56% accuracy, 99.52% sensitivity, and 99.62% specificity. 

Amiri, M. et al. proposed sparse common spatial pattern and adaptive STFT based 

synchro squeezing transform for automatic seizure detection [45], and received a 

result of 98.44% sensitivity, 99.19% specificity, and 98.81% accuracy. 

In addition, Bajaj et al. combined STFT spectral images with a nonnegative 

least squares classifier to detect EEG signals related to alcoholism [46]. They 

achieved an accuracy result of 95.83%. Buriro, A.B. et al. applied WST time-frequency 

analysis in the detection of alcoholism based on EEG signals [47]. They reported 

excellent results with 100% accuracy, 100% sensitivity, and 100% specificity using an 

SVM classifier.   
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Furthermore, Gosala, B. et al. conducted a study on ScZ detection using time-

frequency analysis and SVM [48]. They compared three signal processing methods, 

including DWT, CWT, and WST, and obtained the best results using WST with 97.98% 

accuracy, 98.2% sensitivity, 97.72% specificity, and 95.94% Kappa score. 

 

2.3 Brain connectivity analysis 

Brain connectivity analysis aims to investigate the communication and 

interaction between different ROIs in the brain. In EEG analysis, brain connectivity is 

calculated by examining the relationship between different EEG channel signals. In 

the context of this thesis, the focus is on the development of brain connectivity analysis 

methods for alcoholism and ScZ diseases. 

Alcoholism and ScZ are complex brain disorders that involve dysfunctions in 

multiple brain regions and disrupted connectivity patterns. By studying the connectivity 

patterns in EEG data from individuals with these disorders, researchers can gain 

insights into the underlying mechanisms and identify potential biomarkers for 

diagnosis and treatment evaluation. 

 

2.3.1 Functional connectivity 

Functional brain connectivity analysis aims to construct and examine the 

statistical relationships between functional signals from different brain areas [49]. By 

studying these relationships, researchers can gain insights into the functional 

organization of the brain and detect patterns that are associated with specific diseases 

or conditions.  

Mumtaz, W. et al. proposed the power coherence algorithm to calculate the 

frequency band functional connectivity in EEG alcoholic signal detection [50]. They 

reported an accuracy of 89.3% and a sensitivity of 88.5% in their study. This method 

analysed the coherence of power spectra between different brain regions, and 

investigated the functional connectivity patterns associated with alcoholism. Goksen, 

N. et al. utilized mutual information (MI) functional connectivity to construct time-

domain functional connectivity networks for classifying alcoholism subjects [51]. They 

achieved an accuracy of 82.33% and a sensitivity of 85.33% in their classification task. 

By quantifying the statistical dependence between the signals of different brain 

regions, MI-based functional connectivity can capture the underlying interactions 

related to alcoholism. Pain, S. et al. combined the phase lag index (PLI) connectivity 
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feature with a graph neural network to detect alcoholism [52]. PLI measures the 

consistency of phase differences between different brain regions, allowing for the 

identification of functional connectivity disruptions associated with alcoholism. They 

obtained an accuracy of 93.28% using this approach. 

In the context of ScZ, Wang, J. et al. investigated the left frontal-

parietal/temporal networks and identified biomarkers of auditory verbal hallucinations 

(AVH) using the phase locking value (PLV) connectivity algorithm [53]. They achieved 

an accuracy of 80.95% in classifying AVH patients and non-AVH patients. PLV 

quantifies the phase synchronization between different brain regions, offering insights 

into the functional connectivity alterations associated with AVH in ScZ. Furthermore, 

Prieto-Alcantara, M. et al. employed EEG coherence connectivity to investigate 

neurophysiological differences in different cognitive states between ScZ patients and 

HC subjects [54]. The Coherence connectivity measures the linear relationship 

between the signals of different brain regions, enabling the identification of altered 

functional connectivity in ScZ. Their study provided evidence of distinct functional 

connectivity patterns between the two groups. 

 

2.3.2 Effective connectivity 

Effective connectivity analysis aims to identify and quantify the causal 

influences between brain regions. It goes beyond mere correlation analysis and 

focuses on the direction and strength of the connections. This method can also provide 

insights into the direction of information propagation and help uncover the underlying 

mechanisms of brain function and dysfunction [55]. By considering the temporal 

dynamics and statistical dependencies among brain signals, effective connectivity 

analysis can provide a more comprehensive understanding of how different brain 

regions interact and communicate with each other.  

Khan et al. utilized the PDC algorithm in conjunction with a 3D-CNN model for 

alcoholism diagnosis, achieving an accuracy of 87.85 ± 4.64% [56]. This highlights the 

potential of effective connectivity analysis to capture the directed information flow and 

uncover patterns that are indicative of alcoholism.  

Similarly, Zhao et al. employed the PDC connectivity measure and a SVM 

model to classify ScZ subjects, and reported impressive results with an accuracy of 

95.16%, sensitivity of 96.15%, and specificity of 94.44% [57]. This study demonstrated 

the effectiveness of effective connectivity analysis in discerning patterns specific to 
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ScZ and differentiating between ScZ subjects and HC subjects. Moreover, Phang et 

al. extended the application of PDC by combining it with a vector autoregressive model 

and a multi-domain connectome CNN model for ScZ identification [58]. They achieved 

promising results with an accuracy of 91.69 ± 4.67%, sensitivity of 91.11 ± 8.31%, and 

specificity of 92.50 ± 10.00%. This research showed the potential of integrating 

effective connectivity analysis with advanced machine learning models to improve the 

accuracy of ScZ classification. 

 

2.3.3 Graph theory analysis 

Graph theory is a mathematical framework used to analyse functional brain 

network which include functional segregation and integration [59]. Five main 

measurements are widely used in EEG analysis which include degree, clustering 

coefficient, path length, small-worldness and modularity. Degree quantifies the 

number of connections of a node, reflecting its importance or centrality in the network. 

Clustering coefficient measures the extent to which nodes in a network tend to cluster 

together, indicating the presence of local connectivity patterns. Path length represents 

the average number of edges that need to be traversed to go from one node to another, 

reflecting the network's efficiency of information transfer. Small-worldness 

characterizes the balance between local clustering and global integration in a network, 

indicating its capacity for both specialized processing and efficient communication. 

Modularity assesses the presence of distinct communities or modules within a network, 

indicating the segregation of brain regions into functional subnetworks. 

By applying graph theory measures to brain connectivity data, researchers can 

investigate the organization and dynamics of brain networks, identify network-level 

biomarkers of diseases, and understand how alterations in connectivity contribute to 

cognitive functions and neurological disorders. Sadiq, M.T et al. applied graph theory 

measures and phase space dynamics parameters to detect alcoholic EEG signals [60]. 

By utilizing a feedforward neural network classifier, they achieved impressive 

performance with 99.16% accuracy, 100% sensitivity, and 98.36% specificity. These 

findings demonstrate the potential of graph-based features in accurately identifying 

alcohol-related EEG patterns. In EEG ScZ detection, Kim, J.Y et al. utilized global and 

local clustering coefficients as brain network features [61]. Using a linear discriminant 

analysis classifier, they achieved an accuracy of 80.66%. This study underscores the 
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significance of graph theory measures, particularly clustering coefficients, in 

discerning individuals with ScZ from healthy subjects. 

 

2.4 Artificial intelligence methods 

The combination of signal processing techniques and ML or DL methods has 

also been widely used in EEG-based clinical applications recently. These approaches 

leverage the power of artificial intelligence to analyze EEG signals and extract 

meaningful information for classification and diagnosis purposes. In this thesis, the ML 

and DL methods are used in the classification of EEG seizure signal and brain 

connectivity features. 

 

2.4.1 Machine learning methods 

ML methods are applied to develop models that can accurately classify EEG 

data into different categories or classes. ML algorithms such as SVM, random forests, 

and k-nearest neighbours (k-NN) are utilized to construct these classification models. 

 Samiee, K. et al. used multivariate textural features with a gray-level co-

occurrence matrix in an SVM classifier and achieved a sensitivity of 70.19% in real-

time seizure detection [62]. Zarei, A. et al. utilized orthogonal matching pursuit with 

DWT as a pre-processing step, combined with non-linear features and an SVM 

classifier [63]. They reported a sensitivity of 96.81% and a false positive (FP) rate of 

2.74% in seizure onset detection. Li, C. et al. proposed a method that involved EMD, 

Common Spatial Pattern, and an SVM model [64]. They achieved a sensitivity of 

97.34% and a 2.5% FP rate. Omidvar, M. et al. used an SVM model to classify EEG 

data decomposed at the 5th level of DWT and obtained an accuracy of 98.7% [65]. 

Donos, C. et al. employed random forest methods to detect early seizures in 

intracranial EEG data and reported a sensitivity of 93.84% [66].  

Additionally, Agarwal, S. et al. combined sliding singular spectrum analysis, 

independent component analysis, and the XGBoost classifier to detect alcoholic 

subjects. They achieved an accuracy of 98.97% [67].  

Furthermore, De Miras, J.R. et al. used principal component analysis and k-NN 

models to distinguish patients with ScZ from healthy subjects, and achieved an 

accuracy of 0.87, sensitivity of 0.82, and specificity of 0.90 [68]. 
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2.4.2 Deep learning methods 

DL methods have gained significant attention in EEG analysis due to their ability 

to automate feature extraction and model training, eliminating the need for manual 

feature engineering. This advantage makes DL particularly suitable for handling 

complex and high-dimensional EEG data. By training DL models on large amounts of 

labelled EEG data, these models can automatically learn discriminative features and 

optimize their parameters, leading to improved performance in decoding tasks. DL 

models are also capable of handling common events and artifacts in EEG data, such 

as eye movements or background EEG, by learning to differentiate relevant features 

from noise. The end-to-end decoding characteristic of DL models allows them to take 

raw EEG signals as input and produce the desired outputs directly, such as 

classification labels or reconstructed signals. This eliminates the need for explicit pre-

processing steps and manual feature extraction, simplifying the analysis pipeline and 

potentially improving performance. DL techniques, such as CNN, recurrent neural 

network (RNN), or LSTM networks, are also used to automatically learn discriminative 

features directly from the raw EEG data. 

Gao, Y. et al. achieved a 90% average classification accuracy in epilepsy 

seizure detection using a deep CNN [69]. Cao, X. et al. utilized LSTM networks to 

directly detect seizure onset and achieved a 96.3% accuracy [70]. Wang, X. et al. 

reported an 88.14% accuracy and low FP rate using a stacked 1D-CNN model for 

seizure onset detection [71]. 

For alcoholism detection, Khan, D.M et al. combined partial directed coherence 

with a 3D-CNN model and achieved an 87.85% accuracy and 100% correct 

classification of all testing subjects [56]. Mukhtar, H. et al. applied CNN directly to 

normalized 8-second EEG data segments and achieved 98% accuracy in alcoholism 

detection [72]. 

In ScZ identification, Lillo, E. et al. employed a CNN model and obtained a 93% 

success rate, enabling computer-assisted diagnosis in a short timeframe [73]. 

Supakar, R. et al. proposed a deep learning model combining RNN and LSTM 

networks, achieving 98% accuracy on the database LMSU [74]. Hassan, F. et al. 

applied a CNN to extract ScZ signal features, employed logistic regression for 

classification, and achieved 90% and 98% accuracies on subject-based and non-

subject-based testing, respectively [75]. 

 



 

19 

2.5 EEG data acquisition 

In this study four public EEG database are employed to develop the proposed 

new methods and evaluate their performance. These databases include two EEG 

epilepsy data, one EEG alcoholism data and one EEG ScZ data. The details of these 

data are listed as below: 

• First EEG epilepsy database: Database UB 

Database UB was collected from the University of Bonn which includes 

5 datasets named F, N, O, S and Z [76,77]. Each dataset was the single 

channel data with 173.61 Hz sample rate.  Datasets O and Z contains 5 

HC subjects which dataset O was closed eyes data and dataset Z was 

open eyes data. Datasets F, N and S collected from 5 epilepsy patients 

which datasets F and N was epilepsy seizure free state data and dataset 

S was epilepsy seizure active state data.  

https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-

neurophysik/downloads/ 

 

• Second EEG epilepsy database: Database CHB-MIT 

Database CHB-MIT was collected in Boston Children’s Hospital with 23 

subjects (5 males between ages 3 to 22 years and 17 females of ages 

between 1.5 and 19 years) [78]. Each dataset was collected through 

International 10-20 system standard scalp of 23 bipolar channels (FP1-

F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-

C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, P7-

T7, T7-FT9, FT9-FT10, FT10-T8, T8-P8) with 256 Hz sample rate. The 

EEG electrodes cap of this data was shown in Figure 2.1. 

https://physionet.org/content/chbmit/1.0.0/ 

https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-neurophysik/downloads/
https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-neurophysik/downloads/
https://physionet.org/content/chbmit/1.0.0/
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Figure 2.1: EEG electrodes position of database CHB-MIT [79]. 

• EEG alcoholism database: Database KDD  

Database KDD was collected from Neurodynamic Laboratory at the 

State University of New York [80]. It contains 122 subjects with 77 male 

alcoholics with an average age of 35.83 (22.3 to 49.8 ages) and 45 HC 

subjects. The 64-channel EEG electrodes with 256 Hz sample rate was 

applied to collect the EEG signal, the information of channel localization 

was shown in Figure 2.2. 

https://archive.ics.uci.edu/ml/datasets/eeg+database 

https://archive.ics.uci.edu/ml/datasets/eeg+database
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Figure 2.2: EEG electrodes position of database KDD [81]. 

 

• EEG ScZ database: Database LMSU 

The public EEG ScZ database was collected from LMSU which includes 

84 subjects (45 ScZ subjects and 39 HC subjects) [82,83]. All patients 

with ScZ were diagnosed at the Mental Health Research Centre 

according to ScZ diagnostic criteria F20, F21, F25 of the ICD-10 

classification of mental and behavioural disorders developed by the 

international statistical classification of diseases and related health 

problems. The data sampled in 128 Hz and collected in 16 channels (F7, 

F3, F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, O2). The details 

of EEG channel location of this database were shown in Figure 2.3. 

http://brain.bio.msu.ru/eeg_schizophrenia.htm 

 

http://brain.bio.msu.ru/eeg_schizophrenia.htm
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Figure 2.3: EEG electrodes position of database LMSU [84]. 

 

2.6 Research gaps of problems 

The major research achievements and outcomes in the literature review of this 

thesis are summarized in three tables. Table 2.1 illustrates the works in EEG epilepsy 

seizure detection. Table 2.2 shows the works in EEG alcoholism detection. Table 2.3 

describes the EEG ScZ identification. 

Table 2.1:  EEG based seizure detection 

References Techniques Sen (%) 
FP rate 

(%) 
Delay (s) 

Wang, X. et al. 

(2021) [71] 
1D-CNN 88.14 0.38 

Not 

reported 

Li, C. et al. (2021) 

[64] 
EMD + SVM 97.34 2.5 

Not 

reported 

Zarei, A. et al. 

(2021) [63] 
DWT + SVM 96.81 2.74 

Not 

reported 
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Abdelhameed, A. et 

al. (2021) [85] 
LSTM 98.72 1.14 

Not 

reported 

Alharthi, M.K. et al. 

(2022) [86] 
DWT + LSTM 96.85 3.02 

Not 

reported 

Amiri, M. et al. 

(2022) [45] 
STFT + Linear SVM 98.44 0.81 

Not 

reported 

Shayeste, H. et al.  

(2022) [44] 

STFT + DT, bagging 

technique 
99.52 0.38 

Not 

reported 

Jiang, L. et al. 

(2022) [87] 

Functional brain network 

+ SVM 
97.72 4.38 

Not 

reported 

Paper 1 (2022) [1] DWT + RUS Boosted 96.15 3.24 10.42 

Paper 2 (2023) [2] TQWT + CNN 98.90 2.13 10.46 

Paper 3 (2023)  STFT + Google-net CNN 98.90 1.94 9.85 

* ‘Sen’ is sensitivity. 

From Table 2.1, three papers obtained the satisfied performance in EEG 

seizure onset detection. However, the previous work did not factor in clinical diagnosis 

in EEG seizure detection. Another three papers considered the processing time and 

delay of the seizure onset in clinical application. The delay refers to the time it takes 

for the detection algorithm to identify the onset of a seizure after it occurs. A large 

delay can reduce the clinical relevance of the detection method, as timely intervention 

or response may be compromised. 

Table 2.2: EEG based alcoholism detection 

References Techniques Acc (%) 

Malar, E. et al. (2020) [88] 
Wavelet decomposition + 

Extreme learning machine 
87.6 

Farsi, L. et al.  (2020) [89] LSTM 93 

Agarwal, S. et al. (2021) [67] 
Independent component analysis 

+ XGBoost classifier 
98.97 

Mukhtar, H. et al (2021) [72] CNN 98 

Kumari, N. et al. (2022) [90] CNN 92.7 

Li, H. et al. (2022) [91] DWT + CNN, LSTM 99.32 

Paper 4 (2023) [3] CMI + 3D-CNN 96.25 ± 3.11 

* ‘Acc’ is accuracy. 



 

24 

According to Table 2.2, work conducted in paper 4 provided a high accuracy 

result in EEG alcoholism detection. The related works mainly used the traditional 

signal processing methods and ML/DL models. Comparing the related work, Paper 4 

provided the biomarkers of abnormal connectivity in the left parietal part, the left frontal 

part, the right temporal part, the right frontal part, and the right parietal part as well. 

Table 2.3: EEG based ScZ detection 

References Technique Acc (%) Sen (%) Spe (%) 

Baygin, M et al (2021) 

[92] 

Collatz pattern 

technique + k-NN 
99.47 99.20 99.80 

Akbari, H et al.  (2021) 

[93] 

Phase space 

dynamic features + k-

NN 

94.80 94.30 95.20 

Lillo, E et al. (2022) [73] CNN 93.00 - - 

Supakar, R et al. (2022) 

[74] 
RNN - LSTM 98.00 98.00 98.00 

Sairamya, N.J et al, 

(2022) [38] 
DWT + RLNDip 100 - - 

Hassan, F et al. (2023) 

[75] 

CNN + logistic 

regression 

98.05 ± 

1.13 

99.00 ± 

1.00 

97.00 ± 

2.00 

Gosala, B et al. (2023) 

[48] 
WST + SVM 97.98 98.20 97.72 

Paper 5 [4] CMI + 3D-CNN 
97.74 ± 

1.15 

96.91 ± 

2.76 

98.53 ± 

1.97 

Paper 6 
MVAR coherence + 

3D-CNN 

98.47 ± 

1.47 

99.26 ± 

1.07 

97.23 ± 

3.76 

* ‘Acc’ is accuracy, ‘Sen’ is sensitivity and ‘Spe’ is specificity. 

As Table 2.3 showing, based on the previous works in EEG ScZ detection, the 

work included in Paper 5 and Paper 6 was conducted and achieved excellent results. 

Furthermore, these two papers also provided the biomarkers of ScZ abnormal 

connectivity in DMN region, the temporal and posterior temporal lobes of both right 

and left hemispheres. 
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2.7 Summary of literature review 

This chapter provides a comprehensive literature review on the recent 

advancements in EEG-based clinical applications leveraging signal processing, brain 

connectivity and artificial intelligence methodologies. The focus has been on the 

integration of signal processing techniques with ML and DL models to enhance EEG 

data classification, specifically in the domains of seizure detection. Additionally, this 

chapter also summarize the method in combining brain connectivity analysis and 

artificial intelligence techniques to develop the alcoholism detection, and ScZ 

identification. Various studies employing techniques such as SVM, CNN, LSTM, and 

more, have been systematically presented. These works achieved notable accuracy, 

sensitivity, and specificity rates. Moreover, the materials of EEG database have 

shared in this chapter which encourage readers to do the further research. 

Furthermore, significant research gaps are listed which include EEG seizure detection, 

alcoholism detection and ScZ identification in recent years. Overall, while strides have 

been made in the EEG analysis using artificial intellgence, areas of improvement 

remain, underlining the need for continued exploration and innovation in the fields. 
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CHAPTER 3: PAPER 1 – An EEG based real-time epilepsy 

seizure detection approach using discrete wavelet 

transform and machine learning methods 

3.1 Overview of Paper 1 

The details of the Paper 1 are given below: 

• Paper title: “An EEG based real-time epilepsy seizure detection 

approach using discrete wavelet transform and machine learning 

methods.” 

• Paper length: 8 pages 

• Journal: Biomedical signal processing and control  

o Rank: Q1 (Biomedical Engineering) 

o Impact factor: 5.1 (2022-2023) 

o Cite Score: 8.2 (2022)  

o SJR: 1.071 (2022) 

o SNIP: 1.552 (2022) 

• DOI: https://doi.org/10.1016/j.bspc.2022.103820 

• First author: Mingkan Shen 

• Corresponding author: Mingkan Shen 

 

HDR thesis author’s declaration 

☒ The authors declare that they have no known competing financial       interests 

or personal relationships that could have appeared to influence the work reported in 

this paper. 

☐ The authors declare the following financial interests/personal relationships 

which may be considered as potential competing interests: 

 

Table 3.1: Authorship contributions of Paper 1 

Conception and design of study Mingkan Shen, Peng Wen, Bo Song, 

Yan Li 

Analysis and interpretation of data Mingkan Shen 

Drafting the manuscript Mingkan Shen 

https://doi.org/10.1016/j.bspc.2022.103820
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Revising the manuscript critically for 

important intellectual content 

Mingkan Shen, Peng Wen, Bo Song, 

Yan Li 

Approval of the version of the manuscript 

to be published 

Mingkan Shen, Peng Wen, Bo Song, 

Yan Li 

 

3.2 Summary of Paper 1 

In the endeavour to develop effective real-time systems for epilepsy seizure 

detection, the utilization of EEG signals has emerged as a pivotal tool. The 

unpredictability and sudden onset of epileptic seizures not only disrupt daily activities 

but can also lead to grave complications. Immediate detection, thus, becomes crucial 

for timely intervention. This paper introduces a novel approach that combines the 

prowess of the DWT with cutting-edge machine learning methods to detect seizures 

using EEG data. 

Traditionally, EEG signals have been challenging to interpret due to their 

intricate nature. However, the DWT, known for its capability to decompose signals into 

various frequency bands, provides a solution. By applying DWT, we extracted salient 

features from segmented EEG signals, distinguishing between seizure and non-

seizure activities. Following this, a series of machine learning algorithms were 

employed to classify these segments, leading to an effective real-time seizure 

detection mechanism. 

The findings from this research, which encompass data from 16 epilepsy-

diagnosed patients, not only highlight the potential of the combined DWT and machine 

learning approach but also emphasize its potential application in wearable 

technologies for continuous monitoring. Through this, we seek to usher in a new age 

in epilepsy management, ensuring safer environments for patients by minimizing risks 

associated with undetected seizures. 

 

3.3 Paper file 
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CHAPTER 4: PAPER 2 –Real-time epilepsy seizure 

detection based on EEG using tunable-Q wavelet 

transform and convolutional neural network 

4.1 Overview of Paper 2 

The details of the Paper 2 are given below: 

• Paper title: “Real-time epilepsy seizure detection based on EEG using 

tunable-Q wavelet transform and convolutional neural network.” 

• Paper length: 9 pages 

• Journal: Biomedical signal processing and control  

o Rank: Q1 (Biomedical Engineering) 

o Impact factor: 5.1 (2022-2023) 

o Cite Score: 8.2 (2022) 

o SJR: 1.071 (2022) 

o SNIP: 1.552 (2022) 

• DOI: https://doi.org/10.1016/j.bspc.2022.104566 

• First author: Mingkan Shen 

• Corresponding author: Mingkan Shen 

 

HDR thesis author’s declaration 

☒ The authors declare that they have no known competing financial       interests 

or personal relationships that could have appeared to influence the work reported in 

this paper. 

☐ The authors declare the following financial interests/personal relationships 

which may be considered as potential competing interests: 

 

Table 4.1: Authorship contributions of Paper 2 

Conception and design of study Mingkan Shen, Peng Wen, Bo Song, 

Yan Li 

Analysis and interpretation of data Mingkan Shen 

Drafting the manuscript Mingkan Shen 

Revising the manuscript critically for 

important intellectual content 

Mingkan Shen, Peng Wen, Bo Song, 

Yan Li 
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Approval of the version of the manuscript 

to be published 

Mingkan Shen, Peng Wen, Bo Song, 

Yan Li 

 

4.2 Summary of Paper 2 

Epileptic seizures, unpredictable in nature and abrupt in onset, pose significant 

risks if not identified and managed immediately. The challenge lies in the real-time 

detection of these seizures to provide prompt intervention. The utilization of EEG data 

has been at the forefront of attempts to address this challenge. This paper pioneers 

an innovative methodology that amalgamates the advantages of the TQWT and the 

computational depth of CNN to detect seizures using EEG signals in real time. 

EEG signals, with their complex and multifaceted characteristics, demand an 

advanced analytical approach for efficient interpretation. The TQWT, with its capacity 

to analyse non-stationary signals and adjust its Q-factor, permits the extraction of 

pertinent features from segmented EEG signals. Subsequent to this feature extraction, 

we introduced these segments into a convolutional neural network. The CNN, 

renowned for its ability to handle intricate patterns in image and signal processing, 

was optimized to classify these segments as seizure or non-seizure events. 

Based on a study encompassing EEG data from 16 patients diagnosed with 

epilepsy, our methodology exhibited promising results in the real-time detection of 

seizures. Beyond the sheer accuracy of detection, this paper also sheds light on the 

potential of integrating the TQWT-CNN approach into next-generation wearable 

devices.  

 

4.3 Paper file 

 

 

 

 

 

 

 



Biomedical Signal Processing and Control 82 (2023) 104566

Available online 4 January 2023
1746-8094/© 2022 Elsevier Ltd. All rights reserved.
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A B S T R A C T   

Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, leading to transient brain 
dysfunctions. This paper proposed an EEG based real-time approach to detect epilepsy seizures using tunable-Q 
wavelet transform and convolutional neural network (CNN). Statistical moments and spectral band power were 
used to reveal the time domain and frequency domain features in EEG, and then were converted into imaged-like 
data fed into CNN. The proposed approach was evaluated using the database CHB-MIT. The proposed algorithm 
achieved 97.57% in accuracy, 98.90% in sensitivity, 2.13% in false positive rate and 10.46-second delay. In 
addition, the proposed method is suitable in real-time implementation. The outcomes indicate that the proposed 
method can applied to real-time seizure detection in clinical applications.   

1. Introduction 

Epilepsy is a chronic non-communicable disease caused by the 
abnormal synchronous electrical activity of brain neurons [1,2]. It is one 
of the most common neurological diseases, which affects approximately 
50 million people in the world [2,3]. Repeated seizures can cause 
persistent adverse effects on patients’ mental and cognitive functions, 
and bring life-threatening risks [4]. Therefore, research on the diagnosis 
and treatment of epilepsy has important clinical significance. Automatic 
identification of epilepsy seizures from electroencephalogram (EEG) 
signals and its real-time implementation can provide an objective 
reference basis for the diagnosis and in time evaluation of epilepsy, 
thereby reducing the workload of doctors and improving the efficiency 
of treatment [5]. Bhattacharyya et al. introduced a real-time seizure 
detection approach through the empirical Wavelet transform method 
[6]. Disruptive EEG networks for epileptic seizures in real-time appli-
cation was reported by Bomela et al. [7]. Harmonic Wavelet packet 
transform with relevance vector machine method was proposed by 
Vidyaratne et al [2]. Automatic seizure detection based on imaged-EEG 
signals through fully convolutional networks research was reported by 
Gómez, C., et al., and they achieved 98.0% in accuracy and 98.3% in 
specificity result [8]. A deep learning method via two-dimensional deep 
convolutional autoencoder method was developed by Abdelhameed, A. 
and M. Bayoumi, and they achieved 98.79% in accuracy and 98.72% in 

sensitivity [9]. 
EEG abnormalities in epileptic seizures are mainly manifested as 

spike waves and sharp waves [10]. Many methods in time, frequency, 
and time–frequency domains have been developed, such as discrete 
wavelet transform (DWT), empirical mode decomposition (EMD), Q- 
wavelet transformation, Hilbert-Huang transform (HHT), mean ampli-
tude spectrum (MAS), tunable-Q wavelet transform (TQWT), etc. 
[6,11–15]. An important progress in epilepsy seizure detection is the 
development of machine learning based classification methods. The 
support vector machine (SVM), linear discriminant analysis (LDA), 
naive Bayes, logistic regression (LR) and random forest were used to 
classify the different seizure states in previous studies [11,15–19]. 
Traditional machine learning methods require manual feature extrac-
tion and model matching, while deep learning methods greatly simplify 
the preprocessing process, which can automatically extract features and 
complete decoding at the same time. Deep convolutional neural network 
(CNN) was proposed by Gao et al. and achieved an average classification 
accuracy of 90% in epilepsy detection [20]. Long short-term memory 
networks (LSTM) deep learning method was reported by Cao et al., in 
their experiment, they achieved an 96.3% accuracy [21]. Currently, 
automatic epilepsy detection can be divided into two types: offline 
seizure detection and real-time seizure detection. The purpose of offline 
seizure detection is to identify epileptic seizure signals as accurately as 
possible from EEG signal [22]. The purpose of real-time seizure 
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detection is to identify seizures onsite with the shortest possible delay 
when the patient has a seizure during continuous EEG monitoring [23]. 

Samiee et al. used multivariate textural features with gray-level co- 
occurrence matrix (GLCM) in SVM and reported a 70.19% sensitivity in 
the real-time seizure detection [24]. As a contrast, time delay embed-
ding method proposed by Zabihi et al. obtained an 89.01% sensitivity 
[25]. In particularly, graph theory analysis, function connectivity 
analysis and effective connectivity analysis were used in the seizure 
detection [15,26–27]. Bomela et al. constructed the network connec-
tivity using Fourier transform to detect the seizure onset and reported 
93.6 % sensitivity and a false positive (FP) rate of 0.16 per hour (FP/h) 
result [7]. A stacked 1D-CNN model is presented via Wang, X., et al. to 
detect seizure onset automatically and achieved 88.14% accuracy and 
0.38% FP rate result [28]. Orthogonal matching pursuit with DWT as 
pre-processing progress with non-linear features and SVM classifier can 
also detect the seizure onset in the same dataset. Zarei, A. and B.M. Asl 
used this method and reported 96.81% sensitivity and 2.74% FP result 
[29]. Li, C., et al. proposed EMD, common spatial pattern and SVM 
model get 97.34% sensitivity, 2.5% FP output as well [30]. In our pre-
vious work, we achieved 96.15% sensitivity, 96.38% accuracy and 
3.24% false positive rate for the real-time seizure onset detection via 
DWT and RUSBoosted tree Ensemble method [31]. 

With the recent high-speed development of artificial intelligence 
techniques in graph classification, research combining signal processing 
and image classification are used widely in EEG based clinical applica-
tions. Chen et al. constructed the imaged-like data via mutual infor-
mation (MI) brain network matrix based on the EEG attention-deficit/ 
hyperactivity disorder (ADHD) signal as the input of CNN model, and 
they reported an accuracy of 94.67% on the test data [32]. Ozcan, A.R. 
and S. Erturk, using 3D-CNN model with an imaged-based approach in 

seizure prediction work [33]. They converted the statistical moments, 
Hjorth parameters and spectral band power into 3Dimaged-like data and 
achieved 85.7% sensitivity and a false prediction rate of 0.096/h in their 
study. Considering the good performance of this method in other EEG 
research areas, we applied it in this study by combining the signal 
processing and image classification in EEG real-time epilepsy seizure 
detection. 

This study aims to develop a seizure detection approach which can 
be implemented in real-time. In this study, the Butterworth zero-phase 
filter denoised method and TQWT method were used for the data pre- 
processing. Statistical moments and spectral band power were calcu-
lated to reveal the time domain and frequency domain features to 
distinguish the seizure-free and seizure active states. The features were 
then converted into imaged-like data as the input of the CNN models for 
training and testing using Database CHB-MIT. Finally, the approached is 
implemented using a 5-second sliding window. All the experiments in 
this study were carried out in a Dell workstation with dual Intel Xeon E5- 
2697 V3 CPUs using MATLAB 2021b. 

The first section of the paper provides a brief introduction of this 
study. Section II describes the details of the EEG long-term epilepsy 
patients’ Database CHB-MIT. The pre-processing, feature extraction and 
CNN model classification are also introduced in this section. Section III 
reported the work in our experiments and results obtained using the 
proposed method. Comparisons of previous work using the same data-
sets were conducted and evaluated in Section IV. Section V concluded 
the paper. 

2. Methodology 

In this study, the proposed real-time EEG based seizure detection 
method includes four major steps using CHB-MIT Database. EEG data 
from eight channels was selected in this study and the moving sliding 
window size was selected as 5 s. The Butterworth algorithm was applied 
to denoise the EEG raw data and TQWT analysis was used to decompose 
the EEG signal data. After feature extraction, 30 eigenvalues from both 
time domain and frequency domain features of each EEG channel data 
were converted into 8*30 imaged-like data as the input of the CNN 
model to classify seizure free and seizure active subjects for real-time 
epilepsy seizure detection. The framework of the proposed method is 
described in Fig. 1. 

2.1. EEG data collection 

Database CHB-MIT was collected by Boston Children’s Hospital with 
23 subjects (5 males in age 3–22 years and 17 females in age 1.5–19 
years) [34]. The CHB-MIT data was sampled at 256 Hz from 23 bipolar 
channels by scalp EEG standard 10–20 system caps. In this experiment, 8 
electrodes closer to both sides of frontal and temporal regions, such as 
channel FP1 - F7, F7 - T7, T7 - P7, T7 - FT9, FP2 - F8, F8 - T8, T8 - P8 and 
FT10 - T8, were used to detect the seizure onset in real-time applica-
tions. This study used 16 patients from the CHB-MIT Database, which 

Fig. 1. The framework and main procedures.  

Table 1 
Data collection from Long-term EEG data Dataset CHB-MIT.  

Patient EEG 
used 
(h) 

Number 
of 
seizures 

Seizure duration (s) 

Chb01 25 7 40,27,40,51,90,93,101 
Chb02 16 3 82,81,9 
Chb03 36 7 52,65,69,52,47,64,53 
Chb04 25 4 49,111,102,116 
Chb05 14 5 115,110,96,120,117 
Chb07 28 3 86,96,143 
Chb08 16 5 171,190,134,160,264 
Chb09 34 4 64,79,71,62 
Chb10 20 7 35,70,65,58,76,89,54 
Chb17 15 3 90,115,88 
Chb18 18 6 50,30,68,55,68,46 
Chb19 14 3 78,77,81 
Chb20 15 8 29,30,39,38,35,49,35,39 
Chb22 15 3 58,74,72 
Chb23 14 7 113,20,47,71,62,27,84 
Chb24 12 16 25,25,29,25,32,27,19,24,22,19,70,16,27,17,66,68  
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excluded patients that had seizures characterized by amplitude 
depression [14]. The selected subject details are shown in Table 1. 

The extra details of CHB-MIT database are summarized in Table 2. 

2.2. Pre-processing 

In this work, EEG signals were firstly segmented into a 5-second 
sliding window size with 1-second overlap. A six order Butterworth 
zero-phase filter between 1 and 50 Hz was used to denoise the raw EEG 
data. One of the most challenging parts of the EEG based epilepsy seizure 
detection is to detect the sharp waves and spike waves. However, in 
different brain rhythms, the features perform differently between 
different seizure states. TQWT is extensively to decompose an EEG signal 
into different frequency sub-bands. In TQWT analysis, three adjustable 
parameters are needed for different signal, which are quality factor ‘Q’, 
the redundancy parameter ‘r’ and the number of levels of decomposition 
‘j’. The selection of appropriate TQWT parameters significantly affects 
classification of seizure free and seizure active EEG. The formula of 

TQWT is shown in formula (1) and (2): 

Gj
0 =

⎧
⎨

⎩

Πj− 1
m=0G0

( ω
αm

)
, |ω|⩽αjπ

0, αjπ⩽|w|⩽π
(1)  

Gj
1 =

⎧
⎨

⎩

G1

( ω
αj− 1

)
Πj− 2

m=0G0

( ω
αm

)
, (1 − β)αj− 1⩽|ω|〈αj− 1π

0,ω ∈ [− π, π]
(2) 

where ‘α’ is the low-pass scaling of low-pass frequency response 
‘G0(ω)G0(ω)’, ‘β’ is the high pass scaling of high-pass frequency response 
‘G1(ω)G1(ω)’ (the conditions 0 < α < 1, 0 < β ≤ 1, and α + β > 1 is 
selected to avoid redundancy in signal reconstruction progress), and ‘j’ is 
the decomposition level. 

The Quality factor ‘Q’ affects the oscillation behaviour of wavelets 
and the extent to which the wavelet oscillations are maintained, and 
expressed as: 

Q =
2 − β

β
(3) 

The redundancy parameter ‘r’ is the oversampling rate calculated as: 

r =
β

1 − α (4) 

In this study, the redundancy parameter ‘r’ was selected as 3. The 
redundancy parameter ‘r’ will be sufficient if r ≥ 3. For r ≈ 1, the wavelet 
will resemble the ‘sinc’ wavelet. When r ≥ 3, the passband of the level-J 
frequency response will not have a ‘flat top’ (where the frequency 
response is equal to a constant over a sub-interval of its passband) [35]. 
The Quality factor ‘Q’ was adjusted as 2 and the specified Q-factor 
should be chosen from Q ≥ 1. Setting Q = 1 leads to a wavelet transform 
for which the wavelet resembles the second derivative of a Gaussian, and 
higher values of ‘Q’ lead to more oscillatory wavelets [35]. In addition, 
we divided the EEG raw signal into 6 sub-bands when selected j = 5, 
because j levels decomposition corresponds to into j + 1 sub-bands [36]. 
Then, the first 1280 samples of sub-band 2, the first 640 samples of sub- 
bands 3, 4, 6 and 320 samples of sub-band 5 were selected respectively, 
which demonstrate significant differences between seizure free and 

Table 2 
Extra details of the CHB-MIT Database.  

Patient Gender Age (y) Seizure type Seizure onset zone 

Chb01 F 11 SP, CP Temporal 
Chb02 M 11 SP, CP, GTC Frontal 
Chb03 F 14 SP, CP Temporal 
Chb04 M 22 SP, CP, GTC Temporal, Occipital 
Chb05 F 7 CP, GTC Frontal 
Chb07 F 14.5 SP, CP, GTC Temporal 
Chb08 M 3.5 SP, CP, GTC Temporal 
Chb09 F 10 CP, GTC Frontal 
Chb10 M 3 SP, CP, GTC Temporal 
Chb17 F 12 SP, CP, GTC Temporal 
Chb18 F 18 SP, CP Temporal, Occipital 
Chb19 F 19 SP, CP, GTC Frontal 
Chb20 F 6 SP, CP, GTC Temporal 
Chb22 F 9 Not reported Temporal, Occipital 
Chb23 F 6 Not reported Frontal 
Chb24 F 13.5 SP, CP Temporal 

Here, ‘GTC’ is generalized tonic-clonic seizures, ‘CP’ is complex partial seizures, 
‘SP’ is simple partial seizures. 

Fig. 2. (a) Sub-band 2 seizure active data, (b) Sub-band 3 seizure active data, (c) Sub-band 4 seizure active data, (d) Sub-band 5 seizure active data, (e) Sub-band 6 
seizure active data, (f) Sub-band 2 seizure free data, (g) Sub-band 3 seizure free data, (h) Sub-band 4 seizure free data, (i) Sub-band 5 seizure free data, (j) Sub-band 6 
seizure free data. The seizure active input is collected from Chb01_03 from 3006 s to 3011 s data of Channel FP1 – F7, the seizure free input is collected from 
Chb01_03 from 55 s to 60 s data of Channel FP1 – F7. 

M. Shen et al.                                                                                                                                                                                                                                    



Biomedical Signal Processing and Control 82 (2023) 104566

4

seizure active states. Detail is shown in the Fig. 2. 

2.3. Feature extraction 

Five time domain statistical moments from each sub-band were 
calculated to assess and find the differences in different seizure states. 

The time domain features contain the standard deviation (SD), mean 
value, variance, skewness and kurtosis. Furthermore, the frequency 
domain features were considered in this study as well, we calculated the 
spectral band power from the denoised EEG data and divided it into five 
frequency bands, which are δ δ band (1–4 Hz), θ band (4–8 Hz), α band 
(8–12 Hz), β band (12–30 Hz) and γ band (30–50 Hz) respectively. As a 
result, 25 time domain eigenvalues and 5 frequency domain eigenvalues 
were derived for each 5-second sliding window data. 

Both SD and variance can be used to describe the degree of dispersion 
of the signal, and can be obtained as below in formula (5) and (6) 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=0
(Sn − μ)2

√
√
√
√ (5)  

Variance = SD2 =
1
N

ΣN
n=0(Sn − μ)2 (6) 

H
(
Fi, Fj

)
Kurtosis is a measure of the peak of the probability distri-

bution of a real random variable. High kurtosis means that the increase 
in variance is caused by extreme differences in low frequencies that are 
greater than or less than the average. Skewness describes the measure of 
the asymmetry of a probability distribution function. The formula of 
kurtosis and skewness is described in formula (7) and formula (8). 

Kurtosis =
E(x − μ)4

σ4 (7)  

Skewness =
E(x − μ)3

σ3 (8) 

where ‘μ’ is the mean value and ‘ơ’ is the SD of the EEG segments, 
and E(.) is the expectation operator. 

In addition, we calculate the percentage of the total power in a 
specified frequency interval. 

SpectrualBP(δ, θ, α, β, γ) =
Power(δ, θ, α, β, γ)
Power(1 − 50Hz)

% (9) 

Eight channels were selected in this study, and each channel 
included 30 eigenvalues. Thus, we construct the imaged-like data into 
an 8*30 matrix as the input of CNN model. 

2.4. Classification via convolutional neural networks 

Following the approach based on the VGGNet, a 11-layer CNN was 
constructed in this study which shown in Fig. 3 [37]. The leaving one out 
training method and CNN deep learning method were applied to detect 
seizure onset using Database CHB-MIT.  

1) Leaving one out experiment for Database CHB-MIT 

Sixteen patients’ data from Database CHB-MIT (detail shown in Table 1) 
was used in this part. In leaving one out training method, one subject 

Fig. 3. Diagram of 11-layer CNN architecture, ‘CL’ is convolution layer, ‘R’ is ReLU, ‘PL’ is max pooling layer and ‘FL’ is fully connected layer.  

Table 3 
The architecture of CNN for training and test of the seizure detection.  

Layer Input size Output size Trainable parameters 

Imaged-data input 8*30*1   
Convolution layer 8*30*1 6*28*32 Kernel size: 3*3 

Stride: 1*1 
Channel: 32 

ReLU 6*28*32 6*28*32  
Max Pooling layer 3*14*32 3*14*32 Pooling size: 2*2 

Stride: 2*2 
Convolution layer 3*14*32 2*13*32 Kernel size: 2*2 

Stride: 1*1 
Channel: 32 

ReLU 2*13*32 2*13*32  
Max Pooling layer 2*13*32 1*6*32 Pooling size: 2*2 

Stride: 1*1 
Convolution layer 1*6*32 1*3*32 Kernel size: 1*4 

Stride: 1*1 
Channel: 32 

ReLU 1*3*32 1*3*32  
Convolution layer 1*3*32 1*1*32 Kernel size: 1*3 

Stride: 1*1 
Fully Connected layer 1*1*32 1*1*2 Channel: 32  

Softmax 1*1*2    

Table 4 
The validation accuracy of 16 CNN training models.  

Subject for CNN training model Validation Acc (%) 

Chb01 97.38 
Chb02 97.29 
Chb03 97.50 
Chb04 97.51 
Chb05 97.43 
Chb07 97.20 
Chb08 97.10 
Chb09 97.10 
Chb10 97.06 
Chb17 97.63 
Chb18 97.65 
Chb19 97.27 
Chb20 96.91 
Chb22 97.27 
Chb23 97.08 
Chb24 95.74 
Mean ± SD 97.20 ± 0.44 

‘Acc’ is accuracy. 
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data was used for testing, and the other 15 subjects were used for 
training. As a result, 16 models have been trained. 

In this part, the EEG data was segmented into 5-second epoch with a 
256 Hz sample rate, which resulted in 1280 sampling points in each 
epoch. In all 16 subjects, the EEG raw data of 10 min before seizure 
epochs and 5 min after seizure epochs for each subject data were used to 
train. The 1-minute interval between the preictal period and the seizure 
was considered an intervention time and excluded from the training 
data.  

2) Convolutional neural network 

In this study, the 8*30 size imaged-like data is the input of the CNN 

model. In CNN model analysis, the training progress selects the learning 
rate as 0.01, and epochs as 100. 

The CNN model includes four convolution layers with batch 
normalization, two max pooling layers, three ReLU layers and one fully 
connected layer. The six convolution layers all use 32 filters with 
convolution kernels of 3*3, 2*2, 1*4, and 1*3, respectively. Batch 
normalization of each convolution layer is to reduce the internal 
covariance shift, which can improve training speed and reduce the over- 
fitting phenomenon. Two Max pooling layers of this architecture are to 
reduce the cost of training calculation with 2*2 size and 2*2 stride. The 
activation function ReLU is defined as f(x) = tanh(x) which is used to 
activate or deactivate a node based on mapped value. The last part is the 
fully connected layer followed by a Softmax classifier for the identifi-
cation using the concatenated outputs of the last layers. Table 3 

Fig. 4. Training progress for case ‘Chb01′ based on MATLAB 2021b software.  

Fig. 5. Confusion matrix for real-time epilepsy seizure detection for 
case ‘Chb20′. 

Table 5 
Real time detection for Database CHB-MIT using CNN method.  

Patient NS TP FP (%) Sen (%) Delay (s) Acc (%) 

Chb01 7 7  0.13 100  12.60  99.59 
Chb02 3 3  3.74 100  7.36  96.13 
Chb03 7 7  0.64 100  6.88  98.97 
Chb04 4 4  7.73 100  38.53  91.86 
Chb05 5 5  7.96 100  1.03  91.99 
Chb07 3 3  4.73 100  3.03  95.22 
Chb08 5 5  0.27 100  9.23  98.53 
Chb09 4 4  1.50 100  − 3.97  98.49 
Chb10 7 7  2.71 100  8.32  97.11 
Chb17 3 3  0.59 100  15.36  98.98 
Chb18 6 5  0.30 83.33  19.43  99.42 
Chb19 3 3  0.17 100  10.36  99.65 
Chb20 8 8  0.50 100  24.78  99.45 
Chb22 3 3  0.58 100  6.03  99.32 
Chb23 7 7  1.64 100  − 0.97  97.68 
Chb24 16 16  0.86 100  9.41  98.70 
Total 91 90     
Mean    2.13   10.46  97.57 
Sen  98.90     

‘NS’ is the number of seizures, ‘TP’ is true positive, ‘FP’ is false positive rate, ‘Sen’ 
is sensitivity, and ‘Acc’ is accuracy. 
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summarizes the details of the architecture and gives the details of 
hyperparameter settings in each layer. 

In this study, 20% training data is used to validate the CNN model via 
hold-out validation method and the validation frequency was selected as 
50 iterations. In addition, the validation accuracy is listed in Table 4 for 

16 CNN models, which shows the performance for each imaged CNN 
model. 

All CNN analysis is implemented using MATLAB 2021b with a single 
CPU in a Dell workstation of dual Intel Xeon E5-2697 V3 CPUs. The loss 
and accuracy of training models and validation accuracy were 

Fig. 6. (a) DB4-DWT D1 level seizure active data, (b) DB4-DWT D2 level seizure active data, (c) DB4-DWT D3 level seizure active data, (d) DB4-DWT D4 level 5 
seizure active data, (e) DB4-DWT A4 level seizure active data, (f) TQWT sub-band 2 seizure active data, (g) TQWT sub-band 3 seizure active data, (h) TQWT sub-band 
4 seizure active data, (i) TQWT sub-band 5 seizure active data, (j) TQWT sub-band 6 seizure active data. The seizure active input is collected from Chb01_03 from 
3006 s to 3011 s data of Channel FP1 – F7. 

Table 6 
Statistical analysis in TQWT method.  

State Eigenvalue TQWT decomposition levels   

Sub-2 Sub-3 Sub-4 Sub-5 Sub-6 

Seizure-free SD 1.3619 ± 2.2613 6.5784 ± 10.3294 10.4072 ± 13.2264 15.0327 ± 17.3020 39.1627 ± 28.2774  
Var 8.0975 ± 64.3944 173.8810 ± 1273.8478 325.4521 ± 1443.8094 609.1218 ± 2319.7164 2790.4187 ± 12547.2178  
Mean 0.0001 ± 0.0015 0.8034 ± 1.5672 − 0.0001 ± 0.0069 0.0001 ± 0.0121 − 0.0027 ± 0.2678  
SK 0.0011 ± 0.2146 − 0.0002 ± 0.0827 − 0.0006 ± 0.0870 0.0001 ± 0.0950 0.0936 ± 0.2188  
Kur 6.2395 ± 5.3059 5.3712 ± 4.3218 5.4932 ± 4.4805 5.3152 ± 4.2003 4.7753 ± 2.2624 

Seizure-active SD 3.2849 ± 2.5685 16.3514 ± 12.9003 27.2736 ± 21.5849 40.5403 ± 32.2915 128.3645 ± 82.9969  
Var 19.4455 ± 35.8182 485.7264 ± 893.4722 1357.5774 ± 2472.6776 3016.4642 ± 5510.5715 26905.3477 ± 35389.4594  
Mean 0.0001 ± 0.0032 1.6878 ± 1.2154 − 0.0002 ± 0.0149 − 0.0003 ± 0.0300 − 0.0054 ± 0.7251  
SK 0.0017 ± 0.1900 0.0019 ± 0.0977 − 0.0005 ± 0.1015 0.0013 ± 0.1066 0.0635 ± 0.1745  
Kur 7.2427 ± 5.3358 6.5474 ± 4.3414 6.7001 ± 4.6037 6.4038 ± 4.3846 4.1248 ± 1.7769 

‘Var’ is variance, ‘SK’ is skewness and ‘Kur’ is kurtosis. 

Table 7 
Statistical analysis in DWT method.  

State Eigenvalue DWT decomposition levels   

D1 D2 D3 D4 A4 

Seizure-free SD 2.0692 ± 3.0851 9.2324 ± 12.2004 10.9351 ± 11.5218 9.2463 ± 8.8087 16.5965 ± 11.9710  
Var 15.9233 ± 105.9836 267.2654 ± 1373.9836 294.0855 ± 1184.4718 185.0976 ± 1366.8678 517.8911 ± 2067.3266  
Mean 0.0000 ± 0.0008 1.0804 ± 1.7132 0.0002 ± 0.0068 0.0001 ± 0.0149 0.0003 ± 0.6136  
SK 0.0025 ± 0.0666 0.0044 ± 0.0391 − 0.0147 ± 0.0924 0.0194 ± 0.1082 0.0891 ± 0.2362  
Kur 5.7845 ± 5.1579 7.1305 ± 5.7376 6.8999 ± 5.2255 6.1760 ± 2.7626 4.6424 ± 1.7191 

Seizure-active SD 5.2033 ± 4.0940 24.2633 ± 19.1757 32.3770 ± 26.2264 35.4194 ± 31.9827 53.2343 ± 31.8316  
Var 49.0374 ± 89.7095 971.2714 ± 1963.0377 1932.0716 ± 3436.5237 2588.6643 ± 5024.4247 4356.7395 ± 5314.4662  
Mean 0.0001 ± 0.0013 2.4564 ± 1.8062 − 0.0001 ± 0.0228 0.0002 ± 0.0635 0.0100 ± 1.4412  
SK 0.0003 ± 0.0724 0.0039 ± 0.0450 0.0022 ± 0.0893 0.0171 ± 0.0901 0.0558 ± 0.1651  
Kur 7.1263 ± 5.1789 8.8929 ± 6.0805 8.0551 ± 5.4553 6.0060 ± 2.8144 3.7751 ± 1.1979 

‘Var’ is variance, ‘SK’ is skewness and ‘Kur’ is kurtosis. 
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summarized in Fig. 4 in the progress of the training data for case 
‘Chb01′. 

The accuracy, sensitivity, FP rate and seizure onset detection delay 
used to evaluate the proposed method in Database CHB-MIT are defined 
as below. 

Accuracy is a direct parameter in method evaluation, and is defined 
in formula (10). 

Acc =
TP + TN

TP + TN + FP + FN
(10) 

‘TP’ is the true positive, ‘TN’ is the true negative, ‘FP’ is the false 
positive and ‘FN’ is the false negative. 

Sensitivity is the parameter to measure the ability to recognize the 
patient cases correctly. In EEG real-time detection, this parameter is 
used to evaluate the active seizure detection performance. 

Sen =
TP
NS

(11) 

where ‘NS’ means the number of seizures. 
The seizure onset detection delay represents the difference between 

the detected seizure onset time and the doctor’s marker. Delay is 
negative if detected the seizure active signal early. 

3. Results 

3.1. The confusion matrix of real-time seizure detection 

The confusion matrix describes all the measures for evaluation in 
epilepsy seizure detection, which includes the ‘TP’, ‘TN’, ‘FP’, and ‘FN’. 
The confusion matrix for case ‘Chb20′ detection is shown in Fig. 5. 

According to the confusion matrix information, we calculated the 
accuracy as 99.45% and the false rate as 0.50%. There are 8 seizure 
active states in this case, and all the seizure active states were detected 
correctly, so the sensitivity of this case is 100%, and their detection 
delays were 19.03, 27.03, 33.03, 29.03, 22.03, 19.03, 18.03 and 31.03 s, 
respectively. 

3.2. Real-time seizure onset detection results for Database CHB-MIT 

In the real-time application, 240 eigenvalues from 8*30 matrix 
imaged-like data were selected, and the details of the features selected 
are shown in Fig. 3 and Fig. 4. CNN model of deep learning method was 
applied to evaluate the model using leaving one training method. As a 
result, we received 98.90% sensitivity, 97.57% accuracy, 2.13% FP rate 
and 10.46 s delay (Table 5). 

4. Discussion 

4.1. Comparison with other decomposition methods 

To compare the performance between TQWT, DB4-DWT and EMD, 

Table 8 
Results of 3 Machine learning methods and proposed methods.  

Machine learning methods Sen (%) Acc (%) FP rate (%) 

DWT  98.90  96.71  3.02 
TQWT  98.90  97.57  2.13 

‘Sen’ is sensitivity, and ‘Acc’ is accuracy. 

Fig. 7. The eigenvalue SD of the sixth sub-band of TQWT from Channel T7 – P7 in different sliding window sizes for Chb01 second seizure, seizure label line is the 
seizure active state labelled by doctor from the 1467 s to 1494 s. 

Table 9 
Results of 3 Machine learning methods and proposed methods.  

Machine learning methods Sen (%) Acc (%) FP rate (%) 

SVM  76.92  97.83  1.75 
KNN  79.12  97.25  2.26 
RUSBoosted tree Ensemble  95.60  96.53  3.12 
CNN  98.90  97.57  2.13 

‘Sen’ is sensitivity, and ‘Acc’ is accuracy. 

Table 10 
Comparison of the proposed method and previous works using CHB-MIT 
Database.  

Reference Sen 
(%) 

FP (%) Delay (s) 

Bhattacharyya and Pachori (2017) [6] 97.91  0.43 Not 
reported 

Fan and Chou (2018) [40] 97  8.61 6–7 
Bomela et al. (2020) [7] 93.6  0.16 per hour 10.06 
Wang, X., et al. (2021) [28] 88.14  0.38 Not 

reported 
Li, C., et al. (2021) [30] 97.34  2.5 Not 

reported 
Zarei, A. and B.M. Asl (2021) [29] 96.81  2.74 Not 

reported 
Abdelhameed, A. and M. Bayoumi 

(2021) [9] 
98.72  1.14 Not 

reported 
Our previous work (2022) [31] 96.15  3.24 10.42 
Proposed method 98.90  2.13 10.46 

‘Sen’ is sensitivity, and ‘Acc’ is accuracy. 
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the number of decomposition level were all selected as 5. However, the 
EMD method cannot decompose all 5-sliding window size data into 5 
levels. In EMD analysis, parts of seizure-free data can just decompose 
into 4 levels. Thus, we just compare the performance between TQWT 
and DWT. In DWT analysis, 5 decomposition levels correspond to 
64–128 Hz, 32–64 Hz, 16–32 Hz, 8–16 Hz and 0–8 Hz, respectively. The 
details of TQWT and DWT were shown in Fig. 6. 

To compare performance of TQWT and DWT in this study, the sta-
tistical analysis between seizure free and seizure active of training data 
is conducted. The details of eigenvalues in TQWT and DWT decompo-
sition levels are summarized in Table 6 and Table 7. 

The statistical comparison between seizure free and seizure active in 
this experiment shows that the SD and variance of sub-band 6 in TQWT 
and A4 level in DWT has most significant difference. Compare with the 
TQWT and DWT, the difference between seizure free and seizure active 
in TQWQ of eigenvalue SD and variance is greater but not in eigenvalue 
mean, skewness and kurtosis. So, we used the CNN model with same 
architecture to test the performance of the DWT method and the results 
show in the Table 8. 

It is evident that, from Table 8, the TQWT provides a better perfor-
mance in real-time epilepsy seizure detection which can provide lower 
FP rate and higher accuracy. 

4.2. EEG channel selection and real-time implementation 

Channel selection is essential in EEG epilepsy detection, as it can 
improve accuracy and reduce the computation time. In previous studies, 
researchers used algorithms, such as the typical spatial pattern, per-
mutation entropy and non-dominated sorting genetic algorithm (NSGA), 
to select the most significant channels [30,38,39]. After analysing the 
previous works and the information listed in Table 2 that recorded the 
details of seizure onset zone in Database CHB-MIT, we found that the 
electrodes located in the lateral border of the brain have a better per-
formance in epilepsy seizure detections. In this study, we selected eight 
channels, which are FP1-F7, F7-T7, T7-P7, T7-FT9, FP2-F8, F8-T8, T8- 
P8 and FT10-T8. Considering the random nature of the epilepsy 
seizure onset zone for each patient, the aforementioned eight channels 
were selected to cover the pre-frontal lobe, inferior frontal lobe, tem-
poral lobe and posterior temporal lobe area in both right and left side of 
the brain. 

If the calculation time of each sliding size data is greater than a 
sliding window overlap (1 s in this study), the real-time implementation 
would not be possible. The intervention time includes the progress of 
Butterworth filter denoised, TQWT analysis, eigenvalues calculation and 
CNN classifier in each 5-second sliding window is 0.03 s. If the sliding 
window size is too small, the false positive rate will increase. If the size is 
too large, the results may cause a long-time delay in seizure onset 
detection due to the increased computational workload. The perfor-
mance of eigenvalue SD (the sixth sub-band of TQWT from Channel T7 – 
P7 data) is provided under five sliding window sizes (2 s, 3 s, 5 s, 10 s 
and 30 s). According to the performance described in Fig. 7, the sliding 
window is selected as 5 s in this study because of the time delay. 

4.3. Performance comparison 

We compared three machine learning methods with the proposed 
CNN model in test data. In the epilepsy seizure detection via TQWT, 
CNN models, we get 97.57% accuracy, 98.90% sensitivity, and 2.13% FP 
rate. SVM, KNN and RUSBoosted tree Ensemble methods with random 
20% hold-out validation were applied to conduct the EEG epilepsy 
signal detection and compared with the results of the CNN models. In 
CNN model, we used 8*30 matrix imaged-like data as input, thus, in 
these machine learning methods we use the same 240 features as input. 
The results of these three machine learning methods are summarized in 
Table 9. 

It is obvious in Table 9, the CNN models provide a better 

performance in real-time EEG epilepsy seizure onset detection than 
these three machine learning methods. The SVM provides better accu-
racy and less FP rate, but it just detects 70 of 91 seizures. 

Table 10 summarizes the performance of the proposed method and 
other peer works in the epilepsy seizure onset detection using CHB-MIT 
Database. The proposed method achieved 97.57% accuracy, 98.90% 
sensitivity, 2.13% FP rate and 10.46-second delay in real-time seizure 
onset detection. 

5. Conclusion 

This study proposed an EEG based real-time epilepsy seizure detec-
tion approach using TQWT and CNN models of deep learning method, 
and evaluated its performance by comparison. In this paper, our pro-
posed method can achieve 97.57% accuracy, 98.90% sensitivity, 2.10% 
false positive rate and 10.46-second delay in automatic real-time seizure 
detection implementation in CHB-MIT Database. In addition, we com-
bined signal processing and image classification methods in this exper-
iment. We firstly proposed TQWT method to extract approximate and 
details of signal and remove redundant information. Furthermore, the 
comparison also showed that the TQWT is better than DWT in this study 
which can provide less FP rate. Secondly, we improved the robustness of 
EEG based epilepsy detection using the deep learning method with CNN 
model. We also compared the designed CNN model with three machine 
learning models (SVM, KNN and RUSBoostred tree Ensemble), and find 
the CNN model can achieve better performance in classifying imaged- 
like data in this study. At last, the proposed method is suitable for 
real-time seizure detection in clinical applications as well. 
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5.2 Summary of Paper 3 

This paper introduces an advanced approach to real-time epilepsy seizure 

detection, merging the capabilities of signal processing techniques with deep learning 

methodologies. Using the Scalp EEG standard from the CHB-MIT Database, the study 

employs the STFT to refine EEG signals, emphasizing essential features. This 

refinement not only enhances data clarity but also bolsters the reliability of epilepsy 

detection. 

At the heart of the methodology stands the Google-Net CNN model, adapted 

expressly for image-like data derived from EEG readings. To ascertain its efficacy, the 

performance of the Google-Net CNN was juxtaposed with renowned models like the 

Squeeze-net and VGG-net CNNs. The outcomes were notable, with the Google-Net 

CNN demonstrating superior accuracy and sensitivity in data classification. 

Key findings include an impressive accuracy rate of 97.74% and a sensitivity 

rate of 98.90%, underscoring the method's viability for clinical settings. The paper 

concludes by spotlighting potential future explorations, focusing on the integration of 

seizure prediction using portable EEG devices and brainwave monitors, forging a 

pathway for significant real-world applications in healthcare. 
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Abstract 1 

Epilepsy is one of the common brain disorders, and seizures of epilepsy have severe adverse 2 

effects on patients. Real-time epilepsy seizure detection using electroencephalography (EEG) 3 

signals is an important area of research aimed at improving the diagnosis and treatment of 4 

epilepsy. This paper proposed a real-time approach based on EEG signal for detecting epilepsy 5 

seizures using the STFT and Google-net convolutional neural network (CNN). CHB-MIT 6 

database was evaluated in this study, and received the results of 97.74% accuracy, 98.90% 7 

sensitivity, 1.94% false positive rate. Additionally, the proposed method was implemented in 8 

a real-time manner using the sliding window technique. In this research, the processing time 9 

of this study is just 0.02 seconds for every 2-second EEG episode and achieved average 9.85- 10 

second delay in each seizure onset. 11 

Keywords: Epilepsy seizure detection, EEG, real-time, STFT, Google-net CNN. 12 

1. Introduction 13 

Epilepsy is indeed a neurological disorder characterized by abnormal synchronous electrical 14 

activity in the brain [1]. It affects a significant number of people worldwide, with an estimated 15 

50 million individuals living with epilepsy [2]. Given the high prevalence of epilepsy and the 16 

impact of seizures on patients, there is a growing need to improve the efficiency of diagnosis 17 

and treatment. One approach to address this is by developing real-time automatic detection 18 

systems that utilize electroencephalogram (EEG) signals [3]. 19 

The main features of EEG seizure active signals are the spikes waves and sharp waves. To 20 

distinguish the spike waves, sharp waves with the normal waves, majority of the signal 21 

processing methods were proposed in recent years. The study by Alharthi, M.K et al. focused 22 

on EEG seizure onset detection using a combination of the discrete wavelet transform (DWT) 23 

and a deep learning model consisting of a 1D-Convolutional Neural Network (CNN) with 24 

bidirectional long short-term memory (Bi-LSTM) [4]. They achieved the results of 96.87% 25 

accuracy, 96.85% sensitivity and 96.98% precision in their experiment.  Zarei, A et al. explored 26 

the use of orthogonal matching pursuit (OMP) combined with a support vector machine (SVM) 27 
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classifier for detecting seizure onsets [5]. Their study reported a sensitivity of 96.81% and a 28 

false positive (FP) rate of 2.74%. In another study by Bhattacharyya, A. et al., they proposed 29 

the use of tunable-Q wavelet transform (TQWT) to decompose EEG epilepsy signals [6]. They 30 

then calculated entropy measures based on the decomposed signals. Their approach achieved 31 

an accuracy of 98.6%. Li, C. et al. proposed the use of common spatial pattern (CSP) to select 32 

relevant EEG channels for seizure onset detection [7]. They combined CSP with empirical 33 

mode decomposition (EMD) and an SVM model and obtained the result of a sensitivity of 34 

97.34% and a false positive rate of 2.5%. In the research conducted by Oweis, R.J. et al., they 35 

utilized the Hilbert-Huang transform (HHT) in the frequency domain for seizure detection [8]. 36 

Their method achieved an accuracy of 94% and specificity of 96%. Hu, W. et al. highlighted 37 

the use of mean amplitude spectrum (MAP) combined with a CNN model for classifying the 38 

seizure active and seizure free data [9]. Their approach reported a classification accuracy of 39 

86.25%. Bomela, W. et al. developed a complex brain connection method for real-time seizure 40 

detection [10]. They supported the result of a sensitivity of 93.6% and a false positive rate of 41 

0.16 per hour in their study. Shayeste, H. et al. developed a short-time Fourier transform (STFT) 42 

algorithm based on the bagging technique and a decision tree model for automatic seizure 43 

detection [11]. Their approach received high accuracy, sensitivity, and specificity, with 44 

reported values of 99.56%, 99.52%, and 99.62%, respectively. Amiri, M. et al. utilized Sparse 45 

CSP combined with an adaptive STFT-based synchro squeezing transform for automatic 46 

seizure detection [12]. Their method achieved a sensitivity of 98.44%, specificity of 99.19%, 47 

and accuracy of 98.81%. In our previous work, DWT and RUSBoosted tree Ensemble methods 48 

were combined to detect EEG epilepsy seizure onset in real-time application, and achieved 49 

96.15% sensitivity, 96.38% accuracy, 3.24% FP rate and 10.42 seconds delay results [13]. 50 

Furthermore, TQWT and CNN model were also applied our seizure detection work, the results 51 

received 97.57% in accuracy, 98.90% in sensitivity, 2.13% in FP rate and 10.46-second delay 52 

[14]. 53 

To address the robustness issue in EEG-based epilepsy detection, researchers have focused on 54 

developing machine learning and deep learning methods. Omidvar, M. et al. proposed the use 55 

of a SVM model to classify EEG signals decomposed at the 5th level using the 5-db DWT [15]. 56 

They reported an accuracy of 98.7% as the result in their paper. Donos, C. et al. employed the 57 

random forest algorithm to detect early seizures using intracranial EEG data [16]. Their method 58 

can obtain a result of 93.84% sensitivity. Gao, Y. et al. focused on deep learning and utilized a 59 

deep CNN to classify seizure activity in EEG data [17]. Their approach achieved an average 60 

classification accuracy of 90% in epilepsy seizure detection. Cao, X. et al. used LSTM 61 

networks to directly detect seizure onset [18]. They provided the result with an accuracy of 62 

96.3% in their experiment. Wang, X et al. proposed a stacked 1D-CNN model for automatic 63 

seizure onset detection [19]. Their approach obtained an accuracy of 88.14% and a false 64 

positive rate of 0.38%. 65 

Combining signal processing and image classification techniques using CNN models has 66 

shown promising results in EEG research. Chen, H et al. utilized mutual information (MI) 67 

algorithm to calculate brain graph data and combined it with a graph CNN model for detecting 68 

subjects with attention-deficit/hyperactivity disorder (ADHD) using EEG signals [20]. In their 69 

study, they received an accuracy of 94.67% on the test data. Ozcan, A.R. et al. employed a 3D-70 

CNN model to classify features extracted from EEG signals, including statistical parameters 71 

and band power spectrum, in the context of seizure prediction. Their method achieved a 72 
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sensitivity of 85.7% and a false positive rate of 0.096 per hour [21]. In our previous work, 3D-73 

CNN classifier was proposed to classify the EEG alcoholic brain connectivity data and received 74 

the results of 96.25 ± 3.11% accuracy [22]. Moreover, this kind of method also employed in 75 

our previous research focused on EEG schizophrenia identification work [23]. 3D-CNN 76 

provided the 97.74 ±1.15% accuracy, 96.91 ± 2.76% sensitivity, and 98.53 ± 1.97% results in 77 

this study. By integrating signal processing techniques with deep learning models can support 78 

good performance in classifying other EEG diseases data, leveraging this kind of methods in 79 

EEG seizure onset detection is proposed in this study. Signal processing methods can be used 80 

to pre-process and extract relevant features from EEG signals, while the image classification 81 

capabilities of CNN models enable the learning of complex patterns and representations. 82 

In this study, a bandpass filter using a 6th-order Butterworth zero-phase algorithm is used to 83 

denoise the raw EEG data within the frequency range of 1-60 Hz. To extract features from the 84 

EEG signals, STFT spectrums can provide a time-frequency representation of the data. The 85 

obtained spectrums were then transformed into graph data, which serves as the input for the 86 

Google-Net CNN models. To implement the approach in real-time, a sliding window technique 87 

with a duration of 1.35 seconds and a 1-second overlap is utilized. The experiments of this 88 

study were conducted on a Dell workstation equipped with an Intel I9-10900K CPU, 64 GB 89 

memory, and an Nvidia 2080ti GPU. MATLAB 2021b, along with the Deep Network Designer 90 

toolbox, was used for the deep learning work and model development.    91 

Section 1 brief introduced the background and literature review of this paper. Section 2 92 

described the methodology and list the algorithm of this study which include the signal 93 

processing, feature extraction and CNN model classification. Section 3 reported the results 94 

obtained using the proposed method. Section 4 discussed the statistical analysis in time-95 

frequency spectrum analysis, brain rhythms selection, and evaluation of different CNN models. 96 

Moreover, the previous works of the database CHB-MIT were also listed and evaluated in 97 

Section 4. Section 5 concluded the paper. 98 

2. Material 99 

The CHB-MIT database, collected by Boston Children's Hospital, consists of EEG data from 100 

23 subjects [24]. The database included 5 males ranging in age from 3 to 22 years and 17 101 

females ranging in age from 1.5 to 19 years. The EEG data in the CHB-MIT database was 102 

recorded using scalp EEG standard 10-20 system caps, with a sampling rate of 256 Hz. The 103 

data was collected from 22 bipolar channels. In this experiment, six specific electrodes located 104 

closer to the frontal and temporal regions were used for detecting seizure onset in real-time 105 

applications. These electrodes are P3 - O1, FP2 - F8, P8 - O2, P7 - T7, T7 - FT9, and FT10 - 106 

T8. For this study, a subset of the CHB-MIT Database was selected, consisting of 16 patients. 107 

Patients who had seizures characterized by amplitude depression were excluded from the 108 

analysis [10]. The details of the selected subjects can be found in Table 1 of the study. 109 

TABLE 1 110 

INFORMATION ABOUT DATABASE CHB-MIT OF THIS STUDY 111 

Case 
Data collected 

(hour) 

  Number 

of seizures 
Seizure duration (second) 

Patient 1 26 7 40,27,40,51,90,93,101 

Patient 2 17 3 82,81,9 

Patient 3 37 7 52,65,69,52,47,64,53 
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Patient 4 24 4 49,111,102,116 

Patient 5 16 5 115,110,96,120,117 

Patient 7 29 3 86,96,143 

Patient 8 18 5 171,190,134,160,264 

Patient 9 32 4 64,79,71,62 

Patient 10 22 7 35,70,65,58,76,89,54 

Patient 17 17 3 90,115,88 

Patient 18 17 6 50,30,68,55,68,46 

Patient 19 16 3 78,77,81 

Patient 20 17 8 29,30,39,38,35,49,35,39 

Patient 22 17 3 58,74,72 

Patient 23 15 7 113,20,47,71,62,27,84 

Patient 24 13 16 
25,25,29,25,32,27,19,24,22,19,70,16,2

7,17,66,68 

3. Methodology 112 

Figure 1 in this proposed study illustrates the progression of the method, highlighting the four 113 

major steps involved. To reduce computational costs, six specific channels are selected for 114 

analysis. These channels include P3 - O1, FP2 - F8, P8 - O2, P7 - T7, T7 - FT9, and FT10 - 115 

T8. To enable real-time application, a sliding window technique is employed. The sliding 116 

window has a size of 1.35 seconds, which corresponds to 345 samples of EEG data. This 117 

approach allows for continuous analysis of the EEG signals by processing them in overlapping 118 

segments. The EEG raw data is subjected to band-pass filtering using a 6th-order Butterworth 119 

algorithm. This filtering process helps to remove unwanted noise and artifacts from the EEG 120 

signals, focusing on frequency components within the range of interest. Time-frequency 121 

analysis is performed on the filtered EEG data to extract specific frequency bands of interest. 122 

This analysis provides information on how the frequency content of the EEG signals changes 123 

over time, capturing transient characteristics such as those seen during seizure activity. The 124 

resulting time-frequency spectra are converted into a graph representation with dimensions of 125 

120×344, which serves as the input for the Google-net CNN model. 126 

 127 

Figure. 1.  The framework of STFT spectrum and Google-Net CNN models for seizure 128 

detection. 129 

3.1 Pre-processing 130 

A 6th-order Butterworth algorithm is applied as a band-pass filter to the raw EEG data in this 131 

study. The purpose of this filtering process is to selectively retain frequency components within 132 

the range of interest while attenuating frequencies outside this range. By applying the 6th-order 133 

Butterworth filter, frequencies outside the desired range from 1 to 60 Hz are attenuated, 134 

reducing the impact of noise and artifacts on the EEG signals. The filtered EEG signals 135 
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primarily contain frequency components within the specified range, which is important for 136 

subsequent analysis and feature extraction steps in the proposed method. 137 

3.2 Short-time Fourier transform 138 

In this paper, STFT is utilized as a time-frequency analysis technique to decompose the EEG 139 

signal into different frequency sub-bands and components. Specifically, the STFT is used to 140 

construct the time-frequency domain spectrum of the EEG signal within the frequency range 141 

of 20-60 Hz. This frequency range is of interest in this study, because it contains relevant 142 

information related to the detection of epilepsy seizures. The STFT provides a representation 143 

of the signal in both the time and frequency domains by applying a series of Fourier transforms 144 

to overlapping segments of the signal. Based on the Fourier transform, STFT analysis considers 145 

the window function of time varying EEG fragments which are converted into frequency and 146 

time axes. The formula of Fourier transforms and STFT analysis are shown in equations (1) 147 

and (2). 148 

𝑆(𝜔) = ∑ �̅�(𝑡)𝑒𝑗𝜔𝑡 
𝑡

(1) 149 

𝑆(𝜔) = ∑ �̅�(𝑡)𝑔(𝑡 − 𝑢)𝑒𝑗𝜔𝑡

𝑡
(2) 150 

where ω is the selected frequency band, g(t-u) is the window function. Here, the window is 151 

selected as hamming 2 samples, and the number of overlapped samples is selected as 1. The 152 

input data from the K domains are donated by �̅� = [�̅�1, … , �̅�𝐾]𝑇 ∈ 𝑅𝐾×𝑑, where �̅� ∈ 𝑅𝑑×1, and 153 

the epoch with the time index t is given as �̅�(𝑡).  154 

In this study, the frequency resolution for the STFT is chosen as 2 Hz. After the STFT analysis, 155 

one channel EEG data is converted into a 20×344 image-like data. Detail is shown in Figure. 156 

2. After obtaining the STFT spectra for the six selected channels, the next step in the proposed 157 

approach is to combine them together. The spectra from each channel are combined to create 158 

a single input matrix with a size of 120 × 344 per epoch. 159 

 160 

Figure 2. (a) STFT spectrum of seizure free data, (b) STFT spectrum of seizure active data. 161 

The seizure active data is collected from case ‘Chb01_03’ from 3009s to 3011s, and the seizure 162 

free data is collected in the same case from 2800s to 2802s. 163 
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3.3 Classification through deep learning method 164 

According to the size of the input data through STFT analysis, a 29-layer Google-Net CNN is 165 

constructed and shown in Figure.3. 166 

 167 

Figure. 3. The 29-layer Google-net CNN architecture, ‘CL’ is convolution layer, ‘PL’ is max 168 

pooling layer, ‘IL’ is inception layer, ‘APL’ is average pooling layer, ‘DL’ is dropout layer and 169 

‘FL’ is fully connected layer. 170 

3.3.1 Leaving one out training method   171 

In the study, the leave-one-out training method is employed to evaluate the performance of the 172 

proposed method. This approach involves using one set of data as the test set while using the 173 

remaining data for training. In this experiment, a total of 16 models are trained, with each 174 

model being trained on a different combination of training and test data. For training purposes, 175 

the EEG raw data from 10 minutes before seizure onset and 5 minutes after seizure onset are 176 

used for each subject data. 177 

3.3.2 Google-Net convolutional neural network 178 

In the proposed Google-net CNN model, the graph data with dimensions of 120×344 matrices 179 

are used as input. The model is trained using a learning rate of 0.01 and 30 epochs. The Google-180 

Net CNN model consists of three individual convolution layers and a total of fifty-four 181 

convolutions using nine inceptions. All convolutions in the model utilize rectified linear 182 

activation function ReLU along with batch normalization. The three individual convolution 183 

layers in the model have sixty-four filters each, with convolution kernels of size 5×3, 5×3, and 184 

1×1, respectively. The nine inceptions in the model are designed similarly, and the detailed 185 

architecture of an inception is depicted in Figure 4. 186 
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 187 

Figure 4. Architecture of an inception in Google-Net CNN model. 188 

In addition, the Google-Net CNN architecture described in the study includes a total of six 189 

pooling layers. These pooling layers consist of five max pooling layers and one average pooling 190 

layer. Six pooling layers of this architecture are selected as 1×3, 3×3, 3×3, 3×3, 3×3, 7×7 size 191 

and 1×3, 2×2, 2×2, 2×2, 2×2, 1×1 stride, respectively. To alleviate the occurrence of overfitting 192 

in the CNN model, a 40% dropout layer is designed in the architecture. Finally, the last two 193 

layers of the CNN model consist of a fully connected layer and a Softmax classifier layer, 194 

respectively. Table 2 in the paper provides a summary of the Google-net architecture, including 195 

the hyperparameter settings for each layer. 196 

TABLE 2 197 
THE GOOGLE-NET CNN ARCHITECTURE USED IN EEG SEIZURE DETECTION 198 

Level Layer Input data size Output data size 
Hyperparameter 

settings 

- 
Image-data 

input 
120×344×1   

1 
Convolution 

layer 
120×344×1 116×342×64 

Kernel size: 5×3 

Stride: 1×1 

Channel: 64 

2 
Max Pooling 

layer  
116×342×64 116×114×64 

Pooling size: 1×3 

Stride: 1×3 

3 
Convolution 

layer 
116×114×64 112×112×64 

Kernel size: 5×3 

Stride: 1×1 

Channel: 64 

4 
Max Pooling 

layer 
112×112×64 56×56×64 

Pooling size: 3×3 

Stride: 2×2 

5 
Convolution 

layer 
56×56×64 56×56×192 

Kernel size: 1×1 

Stride: 1×1 

Channel: 192 

6 
Max Pooling 

layer 
56×56×192 28×28×192 

Pooling size: 2×2 

Stride: 2×2 
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7 
Inception 

layer 
28×28×192 28×28×256 Channel: 256 

9 
Inception 

layer 
28×28×256 28×28×480 Channel: 480 

11 
Max Pooling 

layer 
28×28×480 14×14×480 

Pooling size: 3×3 

Stride: 2×2 

12 
Inception 

layer 
14×14×480 14×14×512 Channel: 512 

14 
Inception 

layer 
14×14×512 14×14×512 Channel: 512 

16 
Inception 

layer 
14×14×512 14×14×512 Channel: 512 

18 
Inception 

layer 
14×14×512 14×14×528 Channel: 528 

20 
Inception 

layer 
14×14×528 14×14×832 Channel: 832 

22 
Max Pooling 

layer 
14×14×832 7×7×832 

Pooling size: 3×3 

Stride: 2×2 

23 
Inception 

layer 
7×7×832 7×7×832 Channel: 832 

25 
Inception 

layer 
7×7×832 7×7×1024 Channel: 1024 

27 

Average 

Pooling 

layer 

7×7×1024 1×1×1024 
Pooling size: 7×7 

Stride: 1×1 

28 
Dropout 

layer 
1×1×1024 1×1×1024 40% 

29 

Fully 

Connected 

layer 

1×1×1024 1×1×2  

- Softmax 1×1×2 1×1×2  

In this training progress, a hold-out validation method is employed to validate the deep learning 199 

model during the training process. The training data is randomly divided into a training set and 200 

a validation set, with the validation set comprising 20% of the training data. During training, 201 

the performance of each model is evaluated periodically using the validation set. The validation 202 

accuracy is calculated and recorded at regular intervals, with a validation frequency of 50 203 

iterations. Table 3 presents the validation accuracy results obtained during the training process, 204 

showcasing the performance of each model on the validation set at different stages of training. 205 

TABLE 3 206 
THE VALIDATION ACCURACY OF STFT SPECTRUM WITH GOOGLE-NET TRAINING MODELS. 207 

Case Validation Accuracy of STFT (%) 

Patient 1 96.75 

Patient 2 96.90 

Patient 3 96.48 

Patient 4 96.90 

Patient 5 96.89 

Patient 7 96.96 

Patient 8 97.06 
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Patient 9 97.22 

Patient 10 96.69 

Patient 17 96.92 

Patient 18 97.00 

Patient 19 

Patient 20 

Patient 22 

Patient 23 

Patient 24 

Mean ± SD  

97.00 

97.02 

96.84 

96.82 

96.33 

96.86 ± 0.22 

In Figure 5, the progress of training the Google-net CNN model using STFT analysis for the 208 

'Patient 1' case is depicted. The figure shows the changes in loss and accuracy during the 209 

training process for both the training data and validation data. The training loss and accuracy 210 

curves indicate how well the model is fitting the training data over iterations. The validation 211 

accuracy curve shows the performance of the model on the validation set during training. 212 

According to the figure, the proposed Google-net CNN model successfully distinguished the 213 

imbalanced features of seizure-free and seizure-active states in this case. The model achieved 214 

a validation accuracy of 96.75% for this particular case, indicating its ability to accurately 215 

classify EEG signals related to seizures. 216 

 217 

Figure 5. The training progress for 'Patient 1' case via STFT analysis and Google-net CNN 218 

based on MATLAB 2021b software. 219 

4. Results and Comparison 220 

By evaluating a real-time seizure onset detection method, four main parameters are applied in 221 

this study which include the accuracy, sensitivity, FP rate and the delay of the seizure onsets. 222 

Accuracy measures how well the proposed method correctly identifies seizure onset events and 223 

non-seizure events, and the formula is described in the equation (3) 224 
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𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 225 

where ‘TP’, ‘TN’, ‘FP’, ‘FN’ correspond to the true positive, true negative, false positive and 226 

false negative. 227 

Sensitivity, also known as recall or true positive rate, measures the ability of the algorithm to 228 

correctly identify seizure events or seizure onset. In active seizure detection, the goal is to 229 

accurately detect the occurrence of seizure activity in real-time EEG signals. Sensitivity 230 

quantifies the proportion of actual seizure events that are correctly detected by the algorithm. 231 

The algorithm of sensitivity is defined in equation (4) 232 

𝑆𝑒𝑛 =
𝑇𝑃

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑖𝑧𝑢𝑟𝑒𝑠
 (4) 233 

Delay of the seizure onset measures the time delay between the actual occurrence of a seizure 234 

onset and the detection of that onset by the method. It reflects the temporal accuracy of the 235 

detection algorithm. The delay is typically calculated as the time elapsed from the onset of the 236 

seizure to the detection of the seizure onset. 237 

4.1 Results of the proposed method 238 

In the real-time application based on Database CHB-MIT, 41280 eigenvalues from 120×344 239 

matrix graph data are selected. Google-net CNN model is utilized to evaluate the model using 240 

leaving one training method. As a result, Table 4 reported 97.74% in accuracy, 98.90% in 241 

sensitivity, 1.94% in false positive rate, 9.85 seconds delay in this study. 242 

TABLE 4 243 
REAL TIME DETECTION USING STFT AND GOOGLE-NET METHOD 244 

Case 
Number of 

seizures 

True 

positive 

FP rate 

(%)  

Sensitivity 

(%) 

Delay 

(s) 

Accuracy 

(%) 

Patient 1 7 7 2.34 100.00 2.45 97.46 

Patient 2 3 3 2.30 100.00 6.35 97.64 

Patient 3 7 7 0.37 100.00 3.73 99.26 

Patient 4 4 4 0.72 100.00 22.02 99.06 

Patient 5 5 5 2.22 100.00 8.82 97.63 

Patient 7 3 3 3.10 100.00 3.02 96.85 

Patient 8 5 5 2.12 100.00 6.62 96.83 

Patient 9 4 4 7.69 100.00 1.52 92.30 

Patient 10 7 7 5.82 100.00 1.45 94.07 

Patient 17 3 3 0.14 100.00 31.02 99.48 

Patient 18 6 5 0.30 83.33 17.02 99.25 

Patient 19 3 3 0.26 100.00 5.35 99.58 

Patient 20 8 8 0.25 100.00 17.90 99.28 

Patient 22 3 3 0.69 100.00 9.02 99.20 

Patient 23 7 7 0.75 100.00 13.31 98.47 

Patient 24 16 16 1.93 100.00 8.02 97.55 

Total 91 90     

Mean   1.94  9.85 97.74 

Sensitivity  98.90     
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4.2 Comparison with different frequency bands 245 

By analysing the properties of the EEG signals within different frequency bands, the study 246 

aimed to determine which specific frequency range or band yielded the most promising results 247 

for real-time epilepsy seizure detection. This approach helps to reduce computing costs by 248 

focusing on the most relevant frequency components of the EEG signals. Six frequency bands 249 

are considered in this experiment which include δ band (1-4 Hz), θ band (4-8 Hz), α band (8-250 

12 Hz), β band (12-30 Hz), γ band (30-60 Hz) and selected frequency band (20-60 Hz), the 251 

comparison is described in Table 5. 252 

TABLE 5 253 

THE COMPARISON BETWEEN DIFFERENT FREQUENCY BAND  254 

Frequency band Accuracy (%) Sensitivity (%) FP rate (%) 

δ band (1-4 Hz) 90.23  91.20   10.84  

θ band (4-8 Hz) 92.45  93.41   8.93  

α band (8-12 Hz) 93.38  93.41  7.61  

β band (12-30 Hz) 94.56  96.70 5.94 

γ band (30-60 Hz) 96.93  98.90  3.12 

Selected band (20-60 Hz) 97.74  98.90  1.94 

According to Table 6, the selected frequency band brain has been verified as the best frequency 255 

band to detect the EEG epilepsy seizure signal. 256 

4.3 Comparison with different deep learning models 257 

Another two CNN methods are compared with the proposed Google-net CNN model in testing 258 

data which contains VGG-net CNN and Squeeze-net CNN. In these comparison work, the same 259 

input data with the same validation method are applied to conduct the EEG epilepsy signal 260 

detection and compared with the results of the proposed method. The input data for the Google-261 

Net CNN model was a 120×344 matrix of imaged-like data, while for VGG-net CNN and 262 

Squeeze-net CNN models, the first three layers of the Google-Net CNN model were used to 263 

represent a 224×224×3 input. The results of these three deep learning methods are summarized 264 

in Table 6. 265 

TABLE 6 266 
RESULTS OF 2 DEEP LEARNING METHODS AND PROPOSED METHODS 267 

Deep learning 

methods 

Accuracy 

(%) 

Sensitivity 

(%) 
FP rate (%) Delay (s) 

VGG-net CNN 95.89 84.62 3.70 8.33 

Squeeze-net CNN 97.23 91.20 2.37 12.41 

 Google-net CNN 97.74 98.90 1.94 9.85 

Table 7 indicates that the Google-Net CNN model outperformed the VGG-net CNN and 268 

Squeeze-net CNN models in real-time EEG epilepsy seizure onset detection. The Google-Net 269 

CNN model, with its complex architecture and multiple layers, seems to have demonstrated 270 

better capabilities in capturing and understanding the relevant patterns and features in the EEG 271 

data for seizure detection. 272 

5. Discussion 273 

5.1 Time-frequency domain analysis 274 

Continuous wavelet transform (CWT) is another commonly used time-frequency analysis 275 

techniques that provide insights into the frequency content of a signal over time. The CWT 276 
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provides variable time and frequency resolution. It uses a wavelet function that can be adjusted 277 

in scale to analyse the signal at different frequencies with varying time resolution. Additionally, 278 

CWT can capture both high and low frequencies with good temporal localization. It can provide 279 

detailed information about transient events or signals with varying frequency content over time. 280 

Moreover, CWT is more flexible in terms of the choice of wavelet function and the ability to 281 

adapt the analysis to different frequency bands or signal characteristics. This allows for better 282 

customization and optimization based on the specific requirements of the application. In this 283 

study, the CWT spectrum also tests in the EEG seizure onset detection work, and the frequency 284 

resolution are selected into 2 Hz as well. The details are shown in the Figure 6 and the results 285 

are described in the Table 7. 286 

 287 

Figure 6. (a) CWT spectrum of seizure free data, (b) CWT spectrum of seizure active data. The 288 

seizure active data is collected from case ‘Chb01_03’ from 3009s to 3011s, and the seizure free 289 

data is collected in the same case from 2800s to 2802s. 290 

TABLE 7 291 
REAL TIME DETECTION USING CWT AND GOOGLE-NET METHOD 292 

Case 
Number of 

seizures 

True 

positive 

FP rate 

(%)  

Sensitivity 

(%) 

Delay 

(s) 

Accuracy 

(%) 

Patient 1 7 7 3.02 100.00 16.88 96.59 

Patient 2 3 3 2.67 100.00 5.69 97.28 

Patient 3 7 7 1.63 100.00 15.16 97.89 

Patient 4 4 4 1.60 100.00 26.52 98.12 

Patient 5 5 5 3.68 100.00 3.42 96.29 

Patient 7 3 3 1.56 100.00 3.02 98.33 

Patient 8 5 5 1.85 100.00 5.22 96.93 

Patient 9 4 4 53.08 100.00 -8.98 46.91 

Patient 10 7 7 6.09 100.00 3.16 93.70 

Patient 17 3 3 2.01 100.00 15.02 97.63 

Patient 18 6 5 0.72 83.33 25.62 98.79 

Patient 19 3 3 0.84 100.00 2.35 98.91 

Patient 20 8 8 3.38 100.00 14.52 96.18 

Patient 22 3 3 3.33 100.00 6.35 96.42 
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Patient 23 7 7 8.31 100.00 6.59 90.94 

Patient 24 16 16 9.16 100.00 5.15 90.28 

Total 91 90     

Mean   6.43  9.11 93.20 

Sensitivity  98.90     

It is evident that, from Table 7, the CWT spectrum with Google-net CNN model is hard to 293 

detect case ‘Patient 09’, which just achieved 46.91% accuracy and 53.08% FP rate. The STFT 294 

can provide a better performance in this research area. 295 

5.2 Real-time application  296 

In real-time applications, it is essential to process the data within a limited time frame to 297 

provide timely and actionable results. If the calculation time exceeds the overlapping time 298 

between consecutive windows, it can result in a delay that renders the detection impractical for 299 

real-time use. Therefore, selecting an appropriate window size is crucial to ensure that the 300 

computational requirements of the method align with the desired real-time performance. 301 

Moreover, the parameter of delay is an important consideration when detecting EEG seizure 302 

onset. A large sliding window input, due to a larger window size, can result in a significant 303 

delay parameter. This delay refers to the time it takes for the detection algorithm to identify the 304 

onset of a seizure after it occurs. A large delay can reduce the clinical relevance of the detection 305 

method, as timely intervention or response may be compromised. In this study, selecting a 2-306 

second sliding window is a reasonable choice to balance performance detection and avoid 307 

significant delays in real-time applications while ensuring good performance detection. 308 

In our previous work [13, 14], the eigenvalue calculation step added to the overall calculation 309 

time. The decision to utilize the STFT spectrum directly as input for the Google-Net CNN 310 

model has proven to be an effective strategy for minimizing processing time and enabling real-311 

time applications in EEG seizure detection in this research. The processing time of the proposed 312 

method is just 0.02 second. 313 

5.3 Previous works comparison 314 

Comparisons with the related works in EEG epilepsy seizure onset detection are listed in Table 315 

8. In this study, the proposed method receives 97.74% in accuracy, 98.90% in sensitivity, 316 

1.94% in false positive rate, and 9.85-second results in the testing data. Compared with the 317 

previous related work, the proposed method can achieve satisfactory detection results using the 318 

CHB-MIT database. Moreover, the study highlights the efficiency of the proposed method in 319 

terms of processing time. It reports a processing time of just 0.02 seconds for every 2-second 320 

EEG episode. This indicates that the method is computationally efficient and capable of 321 

performing real-time seizure detection with minimal delay. 322 

TABLE 8 323 
COMPARISON OF THE RELATED WORKS IN EEG EPILEPSY SEIZURE DETECTION 324 

Reference Sensitivity (%) FP rate (%) Delay (s) 

Zarei, A., et al. (2021) [5] 96.81 2.74 - 

Abdelhameed, A., et al. (2021) [25] 98.72 1.14 - 

Alharthi, M.K., et al. (2022) [4] 96.85 3.02 - 

Amiri, M., et al. (2022) [12] 98.44 0.81 - 

Shayeste, H., et al. (2022) [11] 99.52 0.38 - 

L. Jiang., et al. (2022) [26] 97.72 4.38 - 
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Our previous work (2022) [13] 96.15 3.24 10.42 

Our previous work (2023) [14] 98.90 2.13 10.46 

Proposed method 98.90 1.94 9.85 

However, there are limitations in this study. The experiment conducted in the study had a 325 

frequency resolution of 2 Hz instead of 1 Hz. This reduction in frequency resolution was due 326 

to limitations in the CPU memory capacity of the workstation used for the study. A higher 327 

frequency resolution could potentially provide more detailed information and improve the 328 

accuracy of the seizure detection. The selection of CNN models was limited in the study due 329 

to GPU memory constraints. As a result, the study could not include CNN models such as 330 

Efficient-Net CNN and ResNet-50 CNN. These models are known for their effectiveness in 331 

various computer vision tasks and may have provided additional insights and potentially 332 

improved the performance of the proposed method if they could have been utilized. 333 

Conclusion 334 

This study proposes an EEG-based real-time epilepsy seizure detection approach that combines 335 

signal processing techniques with deep learning methods, specifically utilizing time-frequency 336 

spectrum and Google-Net CNN models. This approach starts by applying the STFT method to 337 

extract signal features and remove redundant information. This step helps to improve the 338 

robustness of epilepsy detection using EEG signals. The study then employs the Google-Net 339 

CNN model, designed specifically for image-like data, and compares its performance with the 340 

Squeeze-net and VGG-net CNN models. The evaluation results demonstrate that the Google-341 

Net CNN model achieves better performance in classifying the image-like data. Additionally, 342 

the STFT method is found to be superior to the CWT in terms of reducing the false positive 343 

rate. The proposed real-time seizure detection method achieved impressive results on the CHB-344 

MIT Database, with 97.74% accuracy, 98.90% sensitivity, 1.94% false positive rate, and 9.85-345 

second delay when utilizing the STFT spectrum. Based on these findings, the study concludes 346 

that the proposed method is suitable for real-time seizure detection and holds great potential 347 

for impactful clinical applications. The future plan includes testing the seizure prediction aspect 348 

of the method in clinical applications using portable EEG devices and brainwave monitors. 349 
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CHAPTER 6: PAPER 4 – Detection of alcoholic EEG signals 
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6.2 Summary of Paper 4 

The intricate and dynamic connections within the brain offer profound insights 

into its functional states. In neuroscience, one significant challenge lies in detecting 

abnormalities or deviations from standard patterns, particularly in conditions such as 

alcoholism that subtly and deeply influence brain function. This paper delves into the 

paradigm of detecting EEG signals indicative of alcoholism by leveraging whole brain 

connectivity analysis in tandem with CNN. 

Beyond its socio-cultural impacts, alcoholism creates a distinct mark on the 

electrical activity of the brain. To understand these marks, a thorough analysis of brain 

connectivity stands essential. With advanced analytical techniques, this study 

explores the inter-relations and synchronizations across different regions of the brain, 

as reflected in EEG signals. To enhance the detection process, this research 

processes these connectivity patterns through convolutional neural networks, a 

sophisticated machine learning method renowned for its strength in pattern recognition 

and image analysis. 

In this research, which includes EEG datasets from 20 individuals (10 

individuals with alcoholism and 10 without), the proposed methodology highlights not 

only the efficacy of melding whole brain connectivity analysis with CNN but also the 

subtle shifts that alcohol triggers in brainwave patterns. The implications of this study 

go beyond simple detection. By illuminating the neural signatures associated with 

alcoholism, the study sets the stage for timely interventions, improved therapeutic 

strategies, and a more profound grasp of the neurobiological bases of addictive 

behaviours. 
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A B S T R A C T   

Alcoholism is a common complex brain disorder caused by excessive drinking of alcohol and severely affected the 
basic function of the brain. This paper investigates classification of the alcoholic electroencephalogram (EEG) 
signals through whole brain connectivity analysis and deep learning methods. The whole brain connectivity 
analysis is proposed and implemented using mutual information algorithm. Continuous Wavelet transform was 
applied to extract time–frequency domain information in each selected frequency bands from EEG signal. The 2D 
and 3D convolutional neural networks (CNN) were used to classify the alcoholic subjects and health control 
subjects. UCI Alcoholic EEG dataset is employed to evaluate the proposed method, a 96.25 ± 3.11 % accuracy, 
0.9806 ± 0.0163 F1-score result in 3D-CNN model was obtained via leaving-one out training method of all the 
testing subjects.   

1. Introduction 

Alcoholism is a physical disease that is addicted to drinking, simi-
larly to obsessive–compulsive disorder [1]. The most common negative 
effects of alcoholism patients are digestive system diseases which 
include Ulcers, esophageal bleeding, stomach cancer, acute and chronic 
pancreatic inflammation and nervous system disorders such as mentally 
handicapped, Alzheimer, stroke [2]. In addition, the excessive alcohol 
consumption can cause high blood pressure and gout. According to the 
report of World Health Organization (WHO), alcoholism is regarded as 
the third highest risk factor for causing diseases, and it summarized that 
about 3.3 million deaths every year result from the excessive alcohol 
consumption [3]. Long-term consumption of alcohol impairs the 
development of the brain that severely damage the brain’s grey and 
white matter [4]. Similarly, in short-term, alcohol may cause issues in 
cognition problems and memory loss [5]. 

Early diagnosis of alcoholism will help individual subjects under-
stand their condition and prevent permanent damage. Traditional 
alcoholism identification methods are based on questionnaires, breath 
test and blood tests. Pham, T.T.L., S. Callinan, and M. Livingston used 
questionnaires method to assess the prevalence of risky drinking among 
people with a range of chronic diseases [6]. However, the data used in 
their work is self-reported data which may exist inaccurate responses in 

their study. Bertholet, N., et al. stated that the breath test and blood test 
for identifying alcoholism are questionable as the biomarkers can only 
provide 66 % sensitivity in carbohydrate-deficient transferrin blood test 
and missed 70–80 % of cases in breath test [7]. Electroencephalogram 
(EEG), which records brain activities electronically from the scalp and is 
the most popular technique in detecting complex brain disorder, can 
support more accurate classification of the alcoholism brain and health 
control brain [8,9]. Compared with traditional methods of alcoholism 
identification, EEG is low-cost, non-invasive, high accuracy of detection 
and less reliant on trained professionals in practical applications [10]. 
EEG as the recorded brain activity signals has different features in time 
domain, frequency domain and time–frequency domain. However, 
traditional research methods such as Fast Fourier Transform etc are not 
suitable for analysing the resting-state EEG because EEG signals are 
considered to be non-stationary time series in this condition, and it can 
also be computationally expensive for high-density EEGs. 

To overcome this limitation, the brain network analysis was pro-
posed as another analogous solution. Many researchers focus on con-
nectivity analysis of brain networks in detecting complex brain disorders 
such as epilepsy, Alzheimer diseases, schizophrenia etc, and alcoholism 
can also use connectivity analysis to extract features from EEG raw 
signal to do the detection work. The connectivity analysis of brain 
network is derived from the data of EEG and depicts the functional 
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connections between different brain regions where the brain regions are 
regarded as nodes and the connections as edges. In EEG alcoholism 
detection, the nodes and edges of the graph represent the EEG channels 
and the connections between channels. Mumtaz et al. proposed the 
power coherence functional connectivity of frequency domain to detect 
the resting-state EEG alcoholic signal and achieved a result of 89.3 % 
accuracy and 88.5 % sensitivity [11]. Goksen et al. highlighted the 
functional connectivity measured by mutual information of time domain 
correlation to classify alcoholism subject and got a result of 82.33 % 
accuracy and 85.33 % sensitivity [12]. 

Machine learning methods is widely used in classification work. 
Comparing with the traditional statistical classification methods, the 
machine learning methods can provide more accuracy classification 
results. Nonnegative least squares (NNLS) classifier proposed by Bajaj 
et al. combined with time–frequency images features of short time 
Fourier transform (STFT) in alcoholism signal detection and achieved a 
result of 95.83 % accuracy [13]. Goksen et al. proposed KNN based on 
relative entropy features got a result of 80.33 % accuracy and 82.67 % 
sensitivity result [12]. Fayyaz et al. used support vector machine and 
long short-term memory (LSTM) with peak visualization method ach-
ieved a result of 90.97 % in accuracy [14]. Farsi also reported the LSTM 
algorithm of deep learning methods could directly classify the EEG 
alcoholism signal and achieved a result of 93 % accuracy [15]. Patidar, 
S., et al. used Tunable-Q wavelet transform and extracted features as 
centered correntropy from the decomposition level. Patidar, S., et al. 
proposed least squares-support vector with 10-fold cross validation 
method to detect EEG alcoholic signal and achieved an accuracy of 
97.02 % [16]. Agarwal, S. and M. Zubair highlighted a method which 
combined sliding singular spectrum analysis (S-SSA), independent 
component analysis (ICA) and XGBoost classifier to detect alcoholic 
subjects and obtained an accuracy of 98.97 % [17]. 

Traditional machine learning methods require manual feature 
extraction and model matching, while deep learning methods greatly 
simplifies the preprocessing process, which can automatically extract 
features and complete decoding at the same time. In addition, deep 
learning can directly deal with common events such as eye movements, 
artifacts, or background EEG, optimizing traditional methods, and giv-
ing full play to the end-to-end decoding characteristics of deep learning. 
The convolution neural network (CNN) is one of the mainstream deep 
learning algorithms. Most CNN models are used in the image classifi-
cation work, such as the AlexNet and GoogleNet architectures. In EEG 
analysis, the CNN models are also used widely, in particular in the 
image-liked EEG data. Chen et al. combined the mutual information 
function connectivity and convolution neural networks (CNN) models to 
detect the attention-deficit/hyperactivity disorder (ADHD) based on 
EEG signal and obtained a 94.67 % accuracy [18]. Khan et al. applied 
this method to detect alcoholism EEG data, they used the partial directed 
coherence with a 3D-CNN model, and achieved an 87.85 % accuracy and 
100 % correct classification of all testing subjects [19]. CNN also pro-
posed by Mukhtar, H., S.M. Qaisar, and A. Zaguia to detect alcoholism in 
a normalized 8-second length EEG data segment directly and achieve 98 
% accuracy [20]. 

In this paper, we proposed the brain connectivity analysis with CNN 
model to detect EEG alcoholic signal. MI functional connectivity can 
reveal the abnormal connectivity and nodes (channels) of alcoholic 
diseases. It can also be used to achieve a satisfying detection result. CNN 
is used widely in graph classification work because its perfect perfor-
mance, and it can also achieve good results dealing with the image-like 
data. Thus, we applied the CNN models and designed a framework 
suitable for our experiment. 

The main contributions of this study are: (1) Firstly, a deep learning 
enabled whole brain connectivity analysis method was applied to detect 
alcoholic EEG signal; (2) Design a framework of a 3D-CNN, and apply 
the image classification method to detect EEG signal and get an accuracy 
of 96.25 ± 3.11 % using leaving-one out training method for all the 
testing subjects; (3) Brain rhythms factor was taken into consideration in 

detecting the alcoholic EEG, and the gamma band (30–40 Hz) was found 
to be the most significant rhythm. (4) After the evaluation of all cross 
mutual information (CMI) connectivity values, the adjacent connectiv-
ities between the left parietal part, the left frontal part, the right tem-
poral part, the right frontal part and the right parietal part were found to 
be the fuzzy locations in determining alcoholism. All the experiments in 
this study were carried out in a Dell workstation with dual Intel Xeon E5- 
2697 V3 CPUs using MATLAB 2021b. 

The first section of the paper provided a brief introduction of the 
work. Section 2 described the details of the dataset. The pre-processing, 
functional connectivity analysis and classification were also introduced 
in this section. Section 3 reported our experimental work using the 
proposed method and the results obtained. The threshold selection of 
CMI, brain rhythms selection, statistical analysis of CMI values and 
machine learning method comparison were evaluated in Section 4. We 
also listed the previous work results to compare the proposed method in 
this section. Section 5 concluded the work. 

2. Methodology 

In this EEG based alcoholism detection study, there are four major 
steps. The Butterworth algorithm was applied to denoise the EEG raw 
data and the time–frequency domain features were extracted using 
continuous wavelet transform (CWT) as a pre-processing measure. After 
that, the extracted features were converted into image-like connectivity 
matrix through the CMI algorithm. The image-like data is, then, fed to 
the CNN model as input, and then the training data with leaving-one out 
training method is used to train the input and test and evaluate the re-
sults. The framework of the proposed method is described in Fig. 1: 

2.1. Datasets 

The data used in this study is collected from the University of Cali-
fornia, Irvine Knowledge Discovery in Databases Archive UCI KDD [21]. 
Dataset SMNI_CMI_TRAIN and Dataset SMNI_CMI_TEST contain data for 
10 alcoholic and 10 control subjects, with 10 runs per subject per 
paradigm. In these two datasets, each dataset has 600 recorded files with 
256 Hz sample rate and 64 channels including the EOG signals and the 
reference channel ND. 

2.2. Pre-processing 

The sliding window technique is used in this study. A 5-second 
sliding window was developed and data within the moving window 
was considered as the input data, and the sliding window overlap was 
selected as 1 s. A Butterworth zero-phase filter/algorithm is used to 
denoise the EEG raw data. The CWT algorithm is used to extract time – 
frequency domain features in different frequency bands with delta band 
(1–4 Hz), theta band (4–8 Hz), alpha band (8–12 Hz), beta band (12–30 
Hz), gamma band (30–40 Hz) and whole band (1–40 Hz). The formula of 
CWT with 1 Hz frequency resolution is shown as follow: 

Wxi (t, f ) =
∫

xi(λ)⋅ϕt,f(t − λ)dλ (1)  

where Wxi (t, f) is the energy density in frequency f of the ith channel at 
time instant t, ϕt,f (t − λ) is the complex conjugates of ϕt,f (t − λ). 

The Morlet wavelet method is selected as the mother wavelet, and 
the algorithm was described as follow: 

ϕt,f (λ) = A⋅ei2πf (λ− t)⋅e
− (λ− t)2

2σ2 (2)  

where σ = 8
2πf is the time spread of the wavelet. 

After the denoising and CWT, the data is converted into 256*4 (delta 
band), 256*5 (theta band), 256*5 (alpha band), 256*19 (beta band), 
256*11 (gamma band) and 256*40 (whole band) matrix respectively. 
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2.3. The cross mutual information functional brain connectivity 

The cross mutual information (CMI) based on the CWT algorithm is 
applied to construct the functional brain matrix in time–frequency 
domain. The algorithm of CMI between two different channels is shown 
as follow: 

MI
(
Fi,Fj

)
= H(Fi)+H

(
Fj
)
− H

(
Fi,Fj

)
(3)  

where, the H(Fi) is the entropy of Channel i, which describe as: 

H(Fi) = −
∑40

b=1
p
(
Fi,b

)
log2p

(
Fi,b

)
(4)  

where Fi is the averaged power signals at the ith channel. The p(Fi,b) is 
the probability density function of each frequency bin. The bin is 
selected as 40. 

H(Fi, Fj) is the joint entropy of two channel’s averaged power signals, 
given by: 

H
(
Fi,Fj

)
= −

∑40

b=1
p
(
Fi,b,Fj,b

)
log2p

(
Fi,b,Fj,b

)
(5) 

Similarly, the bin is selected as 40 and p
(
Fi,b, Fj,b

)
is the probability 

density function of averaged power signals for channel i and j. 
After the calculation, the cross mutual information between channel 

i and j is obtained: 

MI
(
Fi,Fj

)
=

∑40

b=1
p
(
Fi,b,Fj,b

)
log2

p
(
Fi,b,Fj,b

)

p
(
Fi,b

)
p
(
Fj,b

) (6) 

Thus, the data of six frequency bands (delta band, theta band, alpha 
band, beta band, gamma band and whole band) are all converted into 
64*64 matrix through cross mutual information algorithm. As an 
example, the image-like CMI matrix of an alcoholic subject 
co2a0000364 in gamma band is shown in Fig. 2. 

Fig. 1. The framework of CWT, CMI functional connectivity and 3D-CNN methods for seizure detection.  

Fig. 2. Cross mutual information functional connectivity matrix of alcoholic subject co2a0000364 in gamma band.  
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2.4. Classification via convolutional neural networks 

The functional connectivity matrix shown above is image-like data 
which represents the brain connection network. 20 subjects’ data (10 HC 
subjects and 10 alcoholic subjects) from UCI alcoholic EEG dataset was 
used in this study. In leaving-one out training method, one subject data 
is used for testing and the other 19 subjects were used for training. As a 
result, 20 models have been trained. In addition, 20 % random training 
data is selected as the validation data via hold-out validation method. 
The input data is the 64*64 size imaged-like data constructed using the 
CMI algorithm. The training progress selects the learning rate as 0.01, 
and epochs as 400. Table 1 summarizes the architectural details of the 
2D-CNN model as shown below: 

The 2D-CNN model includes 6 convolution layers with batch 
normalization, 3 max pooling layer, 5 ReLU layers and 1 fully connected 
layer. The 6 convolution layers all use 64 filters with convolution kernels 
of 3*3, 3*3, 3*3, 3*3, 3*3, and 2*2, respectively. Batch normalization of 
each convolution layer is to reduce the internal covariance shift which 
can improve training speed and reduce the over-fitting phenomenon. 
The 3 Max pooling layers of this architectural is to reduce the cost of 
training calculation with 2*2 size and 2*2 stride. The activation function 
ReLU is defined as f(x) = max(0,x) which is used to activate or deactivate 
a node based on mapped value. The last part is the fully connected layer 
followed by a Softmax classifier for the identification using the concat-
enated outputs of the last layers. 

Based on the 2D-CNN model with functional connectivity analysis, 
the gamma band has a better performance than other frequency bands. 
3D-CNN in gamma band was designed to further improve the accuracy 
of the results. The CWT and CMI algorithms are used to compute the 
functional matrix in each Hz frequency such as (30–31 Hz, 31–32 Hz, …, 
39–40 Hz). Thus, the input data size of each segment has changed into 
3D imaged-like data size 64*64*10. The 3D functional matrix of the 
same subject in Fig. 2 is shown in Fig. 3: 

In the 3D-CNN model, the learning rate is still selected as 0.01 and 

the epochs selected as 400 for comparison with the 2D-CNN results. In 
addition, the 3D-CNN architectural is designed to classify the input data 
shown in Fig. 3. Table 2 summarizes the architectural details of the 3D- 
CNN model with the hyperparameter settings in each layer. 

Similar as the architectural of 2D-CNN, this model contains 6 
convolution layers with batch normalization, 3 max pooling layers, The 
5 ReLU layers and 1 fully connected layer as well. The difference is the 
hyperparameter settings of each layer. In this model, the 6 convolution 
layers all use 64 filters with dimensions of 3*3*3, 3*3*3, 3*3*1, 3*3*1, 
3*3*1, and 2*2*1 respectively. The size of kernel in 3 max pooling layers 
are set as 2*2*2, 2*2*2, and 2*2*1 with stride 2*2*2, 2*2*2, and 2*2*1. 
Other hyperparameter setting is the same as the 2D-CNN such as the 
ReLU algorithm, fully connected layer and softmax classifier. The opti-
mizer based Deep Network Designer of MATLAB 2021b of HC subject 
co2c0000345 is shown in Fig. 4. 

3. Experiments and results 

Accuracy is a direct parameter in method evaluation which is define 
as follow: 

Acc =
TP + TN

TP + TN + FP + FN
(7)  

where ‘TP’ is the true positive, ‘TN’ is the true negative, ‘FP’ is the false 
positive and ‘FN’ is the false negative. 

In statistical analysis of binary classification, the F1-score is an ac-
curacy measure of a test. It is calculated from the precision and recall of 
the test, where the precision is the number of true positive results 
divided by the number of all positive results, including those not iden-
tified correctly, and the recall is the number of true positive results 
divided by the number of all samples that should have been identified as 
positive. In this study, we use the leaving-one out training method that 
makes the true negative and false positive being zero. The formula of F1- 
score were shown in equation (10). 

PRECISION =
TP

TP + FP
=

TP
TP

= 1 (8)  

RECALL =
TP

TP + FN
= Acc (9)  

F1 − score = 2*
PRECISION*RECALL

PRECISION + RECALL
=

2*Acc
1 + Acc

(10)  

where ‘TP’ is the true positive, ‘FP’ is the false positive, ‘FN’ is the false 
negative and ‘Acc’ is accuracy. 

3.1. Results for 2D and 3D convolutional neural networks 

Based on the performance in alcoholic subjects’ detection on gamma 
band which detailly discussed in Discussion part section B, 2D and 3D 
CNN methods are applied to detect EEG alcoholic signal in this study. 
We achieved 86.25 ± 6.48 % accuracy, 0.9249 ± 0.0378 F1-score and 
96.25 ± 3.11 % accuracy, 0.9806 ± 0.0163 F1-score respectively. The 
details are summarized in Table 3 and Table 4. 

4. Discussion 

4.1. Time-frequency domain functional connectivity analysis 

The Mutual information measures the degree of interdependence 
between two variables which widely used in studies of analysing syn-
chronicity. Joint entropy, as one of the significant parameters of mutual 
information, describes the distribution of the signal. The bin selection of 
the joint entropy changes the distribution of the data. The challenge in 
calculating the CMI from experimental data is to estimate p

(
Fi,b, Fj,b

)

from histograms. For a given number of data points, using larger sam-

Table 1 
The architecture of 2D-CNN for training and test of the alcoholic detection.  

Layer Input Size Output Size Trainable parameters 

2D imaged-data input 64*64*1   
Convolution layer 64*64*1 62*62*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 62*62*64 62*62*64  
Max Pooling layer 62*62*64 31*31*64 Pooling Size: 2*2 

Stride: 2*2 
Convolution layer 31*31*64 29*29*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 29*29*64 29*29*64  
Max Pooling layer 29*29*64 14*14*64 Pooling Size: 2*2 

Stride: 2*2 
Convolution layer 14*14*64 12*12*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 12*12*64 12*12*64  
Max Pooling layer 12*12*64 6*6*64 Pooling Size: 2*2 

Stride: 2*2 
Convolution layer 6*6*64 4*4*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 4*4*64 4*4*64  
Convolution layer 4*4*64 2*2*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 2*2*64 2*2*64  
Convolution layer 2*2*64 1*1*64 Kernel size: 2*2 

Stride: 1*1 
Channel: 64 

Fully Connected layer 1*1*64 1*1*2  
Softmax 1*1*2    
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pling bins to construct the histograms produces more accurate estimates 
of the average probability, but then the estimate of p

(
Fi,b, Fj,b

)
will be 

over detrended, and underestimate theMI
(
Fi, Fj

)
. Using smaller bins is 

better in indicating changes in p
(
Fi,b, Fj,b

)
over short distances, but it 

produces fluctuations because of the smaller sample size, which will 
overestimateMI

(
Fi, Fj

)
. Empirically, the bin of joint entropy was selected 

as 40, as shown in Fig. 5: 
To extract the features from both time domain and frequency 

domain, CWT method is applied to obtain the power spectrum of 
time–frequency domain. In alcoholic EEG detection, the data of gamma 
band (30–40 Hz) provides the best performance in detection than other 
frequency bands. The CWT method and CMI algorithm of brain con-
nectivity analysis can consider both time domain and frequency domain 
features, which improves the performance of classification results. 

4.2. Brain rhythms selection 

In this study, the functional connectivity is constructed in different 
frequency bands, delta band (1–4 Hz), theta band (4–8 Hz), alpha band 
(8–12 Hz), beta band (12–30 Hz), gamma band (30–40 Hz) and whole 
band (1–40 Hz), to find the best brain rhythms in EEG alcoholic subject 
detection. Table 5 summarized the results of the accuracy and sensitivity 
of the classification between alcoholic subjects and health control sub-
jects in each frequency bands. 

To reduce the computational cost, the gamma band data is selection 
to fed into the deep learning methods. 

4.3. Different classification method comparison 

In this experiment of alcoholic detection via CWT, CMI and 3D-CNN 
models, we get a 96.25 ± 3.11 % accuracy using the gamma band. The 
SVM, KNN and decision tree methods with random 20 % hold-out 
validation of leaving-one out training method were applied to conduct 
the alcoholic signal detection and compared with the results of the 3D- 
CNN models. In 3D-CNN model, we used the 64*64*10 (40960) imaged- 
like data as input. But the value of CMI matrix is symmetrical, in addi-
tion, the values between the same nodes, such as (Fz to Fz), are all equal 
to 1. To reduce the computing costs, we used (64*64–64)/2*10 = 20160 
eigenvalues as the input. The results of these three machine learning 
methods are summarized in Table 6. 

It is evident that, from Table 6, the 3D-CNN model provides a better 
performance in alcoholic signal detection than the aforementioned three 
machine learning methods. 

4.4. Statistical significance of CMI connectivity in whole brain 
connectivity 

Finding the connectivity location can aid in detecting the location of 

Fig. 3. 10 layers cross mutual information functional connectivity matrix of alcoholic subject in gamma band.  

Table 2 
The architecture of 3D-CNN for training and test of the alcoholic detection.  

Layer Input Size Output Size Trainable parameters 

3D imaged-data input 64*64*10*1   
Convolution layer 64*64*10*1 62*62*8*64 Kernel size: 3*3*3 

Stride: 1*1*1 
Channel: 64 

ReLU 62*62*8*64 62*62*8*64  
Max Pooling layer 62*62*8*64 31*31*4*64 Pooling Size: 2*2*2 

Stride: 2*2*2 
Convolution layer 31*31*4*64 29*29*2*64 Kernel size: 3*3*3 

Stride: 1*1*1 
Channel: 64 

ReLU 29*29*2*64 29*29*2*64  
Max Pooling layer 29*29*2*64 14*14*1*64 Pooling Size: 2*2*2 

Stride: 2*2*2 
Convolution layer 14*14*1*64 12*12*1*64 Kernel size: 3*3*1 

Stride: 1*1*1 
Channel: 64 

ReLU 12*12*1*64 12*12*1*64  
Max Pooling layer 12*12*1*64 6*6*1*64 Pooling Size: 2*2*1 

Stride: 2*2*1 
Convolution layer 6*6*1*64 4*4*1*64 Kernel size: 3*3*1 

Stride: 1*1*1 
Channel: 64 

ReLU 4*4*1*64 4*4*1*64  
Convolution layer 4*4*1*64 2*2*1*64 Kernel size: 3*3*1 

Stride: 1*1*1 
Channel: 64 

ReLU 2*2*1*64 2*2*1*64  
Convolution layer 2*2*1*64 1*1*1*64 Kernel size: 2*2*1 

Stride: 1*1*1 
Channel: 64 

Fully Connected layer 1*1*1*64 1*1*1*2  
Softmax 1*1*1*2    
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symptoms in alcoholism patients. We calculated all CMI connectivity 
values and listed the top 7 channels (≥0.05) with the major difference in 
CMI mean values between HC subjects and alcoholic subjects in Table 7: 

We found that the major difference happened to the connectivity 
between the left parietal part, the left frontal part, the right temporal 
part, the right frontal part and the right parietal part. In addition, the 
most difference connectivities are between adjacent channels. The HC 
subjects’ CMI values in this location are obviously more remarkable than 
the alcoholic subjects. 

4.5. Performance comparison with previous work 

Table 8 summarizes the performance of the proposed method and 
other peer works in alcoholic signal detection. The proposed method 
achieved a result of 96.25 ± 3.11 % in accuracy through function con-
nectivity analysis and 3D-CNN deep learning model. 

The proposed method achieved a satisfying result of 96.25 ± 3.11 % 

in accuracy. In addition, this method can also determine fuzzy locations 
of the abnormal connectivity area caused by alcoholic diseases. 
Furthermore, the sliding window technique applied can capture the 
dynamics of alcoholism [11,25–27]. However, this study still has several 
limitations. Firstly, there is more work to be done to implement real- 
time detection, as the proposed method cannot calculate a sliding win-
dow size smaller than 10 s. Secondly, the alcoholic diseases’ location is 
fuzzy, this method cannot detect the alcoholic diseases in specific re-
gions of interest in the brain at the moment. 

5. Conclusion 

In this paper, the whole brain connectivity analysis is applied and 
implemented using mutual information algorithm. The functional con-
nectivity maps between the whole brain regions are estimated using 
CWT and CMI algorithms. The 2D and 3D convolutional neural networks 
are applied to classify the alcoholic subjects and health control subjects. 

Fig. 4. The optimizer for 3D-CNN model of HC subject co2C0000345.  

Table 3 
Classification performance of 2D-CNN test.  

Subject No. CMI matrices Samples identified as Acc (%) 

ALC HC 

Co2a0000364 56 48 8 85.71 
Co2a0000365 56 50 6 89.29 
Co2a0000368 56 49 7 87.50 
Co2a0000369 56 44 12 78.57 
Co2a0000370 56 47 9 83.93 
Co2a0000371 56 48 8 85.71 
Co2a0000372 56 49 7 87.50 
Co2a0000375 56 52 4 92.86 
Co2a0000377 56 56 0 100.00 
Co2a0000378 56 40 16 71.43 
Co2c0000337 56 5 51 91.07 
Co2c0000338 56 12 44 78.57 
Co2c0000339 56 11 45 80.36 
Co2c0000340 56 8 48 85.71 
Co2c0000341 56 6 50 89.29 
Co2c0000342 56 7 49 87.50 
Co2c0000344 56 7 49 87.50 
Co2c0000345 56 3 53 94.64 
Co2c0000346 56 12 44 78.57 
Co2c0000347 

Mean ± Std 
56  6 50  89.29 

86.25 ± 6.48 

‘ALC’ is the alcoholic subject, ‘HC’ is the healthy control subject, and ‘Acc’ is 
accuracy. 

Table 4 
Classification performance of 3D-CNN test.  

Subject No. CMI matrices Samples identified as Acc (%) 

ALC HC 

Co2a0000364 56 55 1 98.21 
Co2a0000365 56 51 5 91.07 
Co2a0000368 56 55 1 98.21 
Co2a0000369 56 55 1 98.21 
Co2a0000370 56 56 0 100.00 
Co2a0000371 56 55 1 98.21 
Co2a0000372 56 55 1 98.21 
Co2a0000375 56 56 0 100.00 
Co2a0000377 56 56 0 100.00 
Co2a0000378 56 51 5 91.07 
Co2c0000337 56 5 51 91.07 
Co2c0000338 56 0 56 100.0 
Co2c0000339 56 3 53 94.64 
Co2c0000340 56 4 52 92.86 
Co2c0000341 56 3 53 94.64 
Co2c0000342 56 3 53 94.64 
Co2c0000344 56 3 53 94.64 
Co2c0000345 56 2 54 96.43 
Co2c0000346 56 3 53 94.64 
Co2c0000347 

Mean ± Std 
56  1 55  98.21 

96.25 ± 3.11 

‘ALC’ is the alcoholic subject, ‘HC’ is the healthy control subject, and ‘Acc’ is 
accuracy. 
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In particular, the 2D-CNN model achieved results of 86.25 ± 6.48 % in 
accuracy and 0.9249 ± 0.0378 F1-score of gamma band data which 
have better performance than other frequency bands. Based on the 2D- 
CNN results, a 3D-CNN was proposed to improve the detection results 
further and 96.25 ± 3.11 % accuracy and 0.9806 ± 0.0163 F1-score of 
all the testing subjects. Furthermore, we analysed the CMI values in the 
whole connectivity and found the most significant channels that can 
detect the fuzzy brain connectivities location of symptoms in alcoholism 
patients. 
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7.2 Summary of Paper 5 

The intricate landscape of the human brain, with its myriad connections and 

pathways, continually adapts and evolves over time, especially in response to various 

disorders. ScZ, a severe mental disorder, is one such condition that brings about 

marked changes in the brain's functional dynamics. The paper embarks on a cutting-

edge approach to automatically identify ScZ by analysing EEG signals through 

dynamic functional connectivity analysis and leveraging the computational might of 

3D-CNN. 

ScZ does not only manifest as a collection of symptoms on the surface but also 

imprints unique changes on the underlying neural activity. By observing and 

understanding these changes, there's potential for early diagnosis and intervention. 

This research employs dynamic functional connectivity analysis to chronicle the time-

varying associations between distinct regions of the brain as represented by EEG 

signals. To take the detection process to the next level, these dynamic patterns are 

then subjected to 3D-CNN models, which are adept at recognizing intricate spatial-

temporal patterns in data volumes. 

Spanning EEG datasets from 84 individuals, 45 subjects diagnosed with ScZ 

and 39 subjects as controls, this research accentuates the power of combining 

dynamic brain connectivity techniques with the robustness of 3D-CNNs. This novel 

approach not only optimizes the automatic detection of ScZ but also shines a light on 

the deeper, often overlooked, neural alterations associated with the disorder. By 

demystifying these neural signatures, the study holds promise for more targeted 

therapeutic interventions and a holistic understanding of the enigmatic world of ScZ. 
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A R T I C L E  I N F O   

Index terms: 
ScZ 
EEG 
Cross mutual information 
3D convolutional neural network 
Default mode network 

A B S T R A C T   

Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of 
emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning 
methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research 
into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dy-
namic functional connectivity analysis and deep learning methods. A time-frequency domain functional con-
nectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band 
(8–12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects 
and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed 
method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were 
achieved in this study. In addition, we also found not only the default mode network region but also the con-
nectivity between temporal lobe and posterior temporal lobe in both right and left side have significant differ-
ence between the ScZ and HC subjects.   

1. Introduction 

Schizophrenia (ScZ) is a major neuropsychiatric disorder which 
causes psychosis and is associated with considerable disability [1,2]. 
Mainly ScZ patients have persistent delusions, persistent hallucinations, 
disorganized thinking and highly disorganized behavior [3–5]. World 
Health Organization (WHO) reported that ScZ disease affects approxi-
mately 24 million people throughout the world in 2022 [6]. Electroen-
cephalogram (EEG) as an auxiliary mean of identification, which can 
provide perfect performance in identification with high accuracy results 
between ScZ subjects and health control (HC) subjects through the scalp 
brain electronically signal [7]. In addition, EEG supports several benefits 
rather than the other medical machine application such as functional 
magnetic resonance imaging (fMRI) and Magnetoencephalography 
(MEG), which includes low-cost prize in medical machine and less 
reliance on trained professionals for practical application [8,9]. 

Complex brain networks analysis is used widely to explore brain 
diseases such as Alzheimer diseases, Parkinso’s diseases, alcoholism, 
epilepsy diseases and ScZ diseases etc, [10–12]. Chen et al. proposed 

function connectivity calculated through the mutual information (MI) 
algorithm and improved Google-net CNN models to identify the 
attention-deficit/hyperactivity disorder (ADHD) subjects based on EEG 
signal and reported a result of 94.67% accuracy [13]. They also 
compared the connectivity features in the support vector machine 
(SVM) and multilayer perceptron and received 90.16% and 92.08% 
accuracy, respectively. Khan et al. applied the PDC connectivity method 
with a 3D-CNN model to detect alcoholism EEG data, and received a 
result of 87.85% accuracy [12]. In our previous work, we proposed the 
functional connectivity through the cross mutual information (CMI) 
algorithm as signal processing work with a 3D-CNN method to classify 
the alcoholic EEG data, and received a result of 96.25 ± 3.11% accuracy 
[14]. Inspired by the good classification results of the method which 
combined the EEG brain connectivity and graph deep learning models in 
research, combining brain connectivity analysis and graph classification 
in EEG ScZ identification is proposed in this paper. 

The default mode network (DMN) is a popular location for resting 
state brain activity analysis through the fMRI and EEG data. There are 
three main well-recognized area of the DMN which contains the mesial 
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prefrontal cortex (MPC), the lateral posterior cortex (LPC) and posterior 
cingulate cortex/precuneus (PCC) [15]. Many ScZ identification work 
based on fMRI data used the DMN region as the nodes through the in-
dependent component analysis [16,17]. However, Phang et al. regarded 
local brain network connectivity cannot fully reflect abnormal brain 
region communication observed in ScZ [18]. In our study, the whole 
brain connectivity is used to identify the ScZ and verify the effect of the 
DMN region through the statistical significance of connectivity. 

1.1. State of art section 

Many researchers have attempted to identify ScZ from EEG data 
through traditional signal processing method with the machine learning 
and deep learning models. Shoeibi et al. proposed a deep learning model 
which combined 1D-CNN and long short-term memories (LSTMs) to 
detect the ScZ EEG signal and received an accuracy percentage of 
99.25% result [19]. Siuly et al. applied a Google-net based deep features 
with an SVM model to classify the ScZ subjects and reported a result of 
98.84% accuracy, 99.02% sensitivity and 98.58% specificity [20]. They 
also highlighted another method through a deep residual network and 
SVM classifier in the same dataset and achieved 99.23% accuracy [21]. 
Discrete wavelet transform (DWT) and relaxed local neighbor difference 
pattern (RLNDip) technique with artificial neural network (ANN) is 
proposed by N.J. Sairamya et al. to identify the EEG ScZ signal, and they 
reported a maximum accuracy of 100% in their study [22]. Principal 
component analysis (PCA) and k-nearest neighbours (k-NN) models 
stated via de Miras et al. to perform ScZ patients from healthy subjects, 
and achieved a result of 0.87 accuracy, 0.82 sensitivity and 0.90 speci-
ficity [23]. 

Comparing with the traditional signal processing method used in 
EEG signal detection, the brain network analysis not only can achieve a 
satisfied detection result, but also can find the abnormal connectivity 
area caused by ScZ diseases. In connectivity analysis, there are mainly 
two methods to identification patients and HC subjects. One is using 
graph theory measures of complex brain network analysis to summarize 
the details of the brain graph and using machine learning methods to 
classifier the data. Kim, J.-Y et al. proposed the global and local clus-
tering coefficient as the brain network features and received their best 
accuracy of 80.66% through linear discriminant analysis classifier in ScZ 
detection [24]. Another method is directly using the machine learning 
and deep learning methods to classifier the brain connectivity matrix. 
Panischev et al. proposed cross correlation function algorithm to 
construct frequency domain functional connectivity for detecting ScZ 
and reported results of 80% in accuracy, 76% in sensitivity and 85% 
specificity [25]. Zhao, Z. et al. used partial directed coherence (PDC) and 
phase lag index (PLI) to calculate the effective and functional connec-
tivity matrix, and they applied the SVM model to classifier the ScZ 
subject and achieved 95.16% accuracy 96.15% sensitivity and 94.44% 
specificity results [26]. Naira, T. and C. Alberto proposed the Pearson 
correlation connectivity with CNN to classifier the EEG ScZ signal and 
reported the results 90% in accuracy, 90% in sensitivity and 90% in 
specificity, respectively [27]. Phang et al. developed a directed func-
tional connectivity through PDC with vector autoregressive model, then 

classified the ScZ EEG signal via a multi-domain connectome CNN model 
and reported a result of 91.69 ± 4.67% in accuracy, 91.11 ± 8.31% in 
sensitivity and 92.50 ± 10.00% in specificity [18]. Chang, Q. et al. 
highlighted the graph neural network (GNN) to classify ScZ connectivity 
features calculated by PLI and partial correlation (PC) algorithms, and 
reported a result of 93.33% accuracy [28]. 

1.2. Objectives of this study 

In this study, dynamic CMI connectivity method with 3D-CNN model 
is proposed to identify the EEG ScZ signal. The CMI connectivity can 
extract the time-frequency domain features and find abnormal connec-
tivity area caused by the ScZ diseases. In addition, the 3D-CNN models 
were applied and designed as a framework to classify the graph data of 
brain connectivity matrix. Furthermore, extension to the dynamic con-
nectivity analysis for improving the accuracy, moving sliding window is 
applied in this experiment. To reduce the computational cost, the graph 
theory measures of complex brain network analysis is used to select the 
corresponding brain rhythm of ScZ identification as well. All the ex-
periments were simulated in MATLAB 2021b software on a Dell com-
puter with an NVIDIA 2080TI GPU. 

In this paper, Section I introduced the background and brief lecture 
review of the study area. Section II described the EEG ScZ Dataset. The 
pre-processing, time-frequency brain connectivity algorithm, machine 
learning and deep learning classification models were summarized as 
well. Section III reported the results and compared the different machine 
learning and deep learning models of this study. In Section IV, the se-
lection of frequency bands, statistical analysis of whole brain connec-
tivity values and dynamic analysis were evaluated. The limitation and 
comparison between the proposed method with previous work were 
proposed in this section as well. Section V is a brief conclusion of this 
paper. 

2. Method 

There are four main steps in EEG ScZ identification, the details are 
described in Fig. 1. In pre-processing progress, the band-pass filter is 
applied to denoise the EEG raw data, and continuous wavelet transform 
(CWT) is stated to extract selected frequency bands data. To extend into 
dynamic functional connectivity, the sliding window size is selected as 
30 s with 1 s overlap in this study. Then, using MI algorithm to convert 
the data into the functional connectivity matrix. Finally, feeding the 
graph matrix into the machine learning and deep learning models for the 
classification work. 

2.1. Dataset 

The publicly ScZ EEG dataset collected from Lomonosov Moscow 
State University (LMSU) is used to evaluate the performance through the 
proposed method in this study [29,30]. The dataset LMUS contains 84 
subjects which includes 45 ScZ subjects and 39 HC subjects. Each sub-
jects’ data is 60-s resting eye-closed state from 16 channels (F7, F3, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2) with 128 Hz 

Fig. 1. The framework of automatic identification of ScZ though dynamic functional connectivity analysis and deep learning method.  
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sample rate. All patients with ScZ were diagnosed at the Mental Health 
Research Center (MHRC) according to ScZ diagnostic criteria F20, F21, 
F25 of the ICD-10 classification of mental and behavioral disorders 
developed by the International Statistical Classification of Diseases and 
Related Health Problems. During the MHRC examination, the patient 
did not receive any chemotherapy. 

2.2. Pre-processing 

Sliding window technique is used in this study, to explore the dy-
namic changes of the functional connectivity. The sliding size was 
selected as 30 s within 1 s overlap. Band pass filter between 1 and 50 Hz 
denoised the EEG raw data through a six order Butterworth zero-phase 
filter algorithm. 

CWT is proposed in the signal processing progress in this experiment, 
which converted the raw data into the time-frequency domain power 
spectrum in α band (8–12 Hz). The algorithm of CWT is shown in 
equation (1): 

Wxi (t, f )=
∫

xi(λ) × φt,f (t − λ)dλ (1)  

where ‘Wxi ’ is the power density, the ‘f’ is the selected frequency bands, 
‘t’ is the time instant, and ‘i’ means the number of the channel. 

The mother wavelet calculated by the Morlet wavelet formula is 
described as follow in equation (2). 

φt,f (λ)=A × ei2πf (λ− t)×e
− (λ− t)2

2σ2 (2)  

where ‘ơ’ is the time spread which equals to 8
2πf. 

The output of the pro-cessing progress is changed into 4 × 3840 size 
of each channel data. 

2.3. Cross mutual information algorithm 

Based on the CWT power spectrum density, MI is used to construct 
the CMI functional connectivity on the time-frequency data which 
measures the interdependence communication between two EEG chan-
nels. The MI formula is shown in equation (3). 

MI
(
Fi,Fj

)
=H(Fi)+H

(
Fj
)
− H

(
Fi,Fj

)
(3)  

where ‘i’ is the number of the channel, the H(Fi) is the entropy and the 
details described in equation (4). 

H(Fi)= −
∑40

b=1
p
(
Fi,b

)
log2 p

(
Fi,b

)
(4)  

where Fi is the mean value of the band power. The p(Fi,b) is the proba-
bility power density. 

The H(Fi, Fj) is the joint entropy which describes the signal distri-
bution, given by: 

H
(
Fi,Fj

)
= −

∑40

b=1
p
(
Fi,b,Fj,b

)
log2 p

(
Fi,b,Fj,b

)
(5)  

Similarly, p(Fi,b, Fj,b) is the probability power density of the mean value 
of the band power between the channel ‘i’ and ‘j’. To avoid the over 
detrended phenomenon of p(Fi,b,Fj,b), the value of the bin is selected as 

Fig. 2. CMI matrix of ScZ subject ‘022w1’ in alpha band.  
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40 in this study. In addition, the CMI formula is obtained in equation (6) 

MI
(
Fi,Fj

)
=
∑40

b=1
p
(
Fi,b,Fj,b

)
log2

p
(
Fi,b,Fj,b

)

p
(
Fi,b

)
p
(
Fj,b

) (6) 

To obtain more information from the CMI connectivity matrix, 
functional connectivity matrix of each Hz frequency (8–9 Hz, 9–10 Hz, 
10–11 Hz, 11–12 Hz) is computed. Thus, the data of alpha band (8–12 
Hz) are all converted into 16 × 16 × 4 matrix through CMI algorithm. As 
an example, the 4-level CMI matrix of a ScZ subject ‘022w1’ of alpha 
band is shown in Fig. 2. 

2.4. Classification via machine learning and deep learning methods 

84 subjects’ data (45 ScZ subjects and 39 HC subjects) from LMSU 
ScZ EEG dataset was applied to evaluate the proposed method in this 
research. The dataset was divided into 5 groups, each group has 9 ScZ 
subjects and 8 HC subjects, last group have 7 HC subjects and the details 
are listed in Table 1. To make sure the proposed method can overcome 
the robustness problem, 4 groups’ data is used to training the model and 
another group data is used as the test data which have no overlapping of 
subject affiliations in the training and testing sets. In addition, the 20% 
random hold-out validation method is used in the training progress. 

2.4.1. Three machine learning methods 
Three basic machine learning methods were applied to test the ScZ 

EEG signal identification work which include the SVM, k-NN and deci-
sion tree (DT) methods. Because of the value of functional connectivity 
is symmetrical, just half data needs to feed into the machine learning 
models. For example, the value of F3–F4 and value of F4–F3 is same. 
Moreover, the CMI value of same node do not need to consider which all 
equals to 0. Thus, just 480 eigenvalues of 4-layer CMI connectivity 
matrix is used as the input. 

2.4.2. Self-designed 3D-CNN model 
In complex brain network analysis, researchers regarded the brain 

connectivity which includes structural connectivity, functional connec-
tivity and effective connectivity (directed functional connectivity) as a 
graph. In this study, brain connectivity is considered as a whole graph. 
As the CNN has achieved good performance in photograph classification 

Table 1 
The details of five group dataset.   

ScZ dataset HC dataset 

Group 
1 

022w1, 32w1, 33w1, 088w1, 103w, 
113w1, 155w1, 156w1, 192w 

S10W1, s12w1, S18W1, s20w1, 
S26W1, s27w1, S31W, S42W1 

Group 
2 

219w1, 221w, 249w1, 276w1, 
307w1, 312w1, 314w1, 342mw1, 
382w1 

s43w1, S47W1, S50W, s53w1, 
S55W1, S59W1, S60W, S72W1 

Group 
3 

387-02w1, 387-03w1, 401w1, 
423w, 429w1, 454-1W, 485w1, 
508w1, 509w1 

S78W, S85W1, s94w1, s152w1, 
S153W1, S154W1, S155W1, 
s157w1 

Group 
4 

510-1W, 515w1, 517w1, 540w1, 
548w, 573w1, 575w1, 585w1, 
586w1 

s158w1, S163W1, S164W1, 
S165W1, S167W1, S169W, 
s170w1, s173w1 

Group 
5 

642w1, 683w1, 719w1, r229w1, 
r416w1, s083w1, S084–1W, s351w, 
s425w1 

S174W1, s176w1, S177W1, 
s178w1, S179W1, S182W1, 
S196W1  

Fig. 3. Architecture of 11-layer 3D-CNN, ‘CL’ is convolution layer, ‘R’ is ReLU, ‘PL’ is max pooling layer and ‘FL’ is fully connected layer.  
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work, we used 3D-CNN model to classifier the ScZ brain connectivity 
graph and a 10-layer 3D-CNN shown in Fig. 3 was constructed. In 
addition, Table 2 shows the details of the architecture. 

There are four convolution layers, three ReLU layers, one max 
pooling layer and one fully connected layer designed in the 3D-CNN 
architecture. To reduce the over-fitting phenomenon, batch normaliza-
tion work is added in each convolution layers. The hyperparameters of 
the convolution layers are selected as 64 filters, and the kernels size 
selected as 3 × 3 × 3, 3 × 3 × 1, 3 × 3 × 1, and 3 × 3 × 1, respectively. 
To improve the training speed, the max pooling layers is designed to 
reduce the cost of training calculation in this architectural. The hyper-
parameters of this max pooling layer is selected as 2 × 2 × 2 size and 2 ×

2 × 2 stride. ReLU is calculated follow the f(x) = max(0,x) formula. The 
fully connected layer which selected as the two classes classification 
work. Finally, a Softmax classifier for the identification using the 
concatenated outputs of the last layers. The training progress based on 
the MATLAB 2021b for testing Group 1 is shown in Fig. 4. 

The 20% random hold-out validation method with 50 iterations 
validation frequency is used in whole comparison models include three 
machine learning methods and the self-designed 3D-CNN model in this 
study. The validation accuracy is summarized in Table 3 for the training 
models. 

3. Results 

Three parameters were calculated to evaluate the proposed method 
in LMSU ScZ EEG dataset include the accuracy, sensitivity, and speci-
ficity are defined as below. Accuracy is a direct parameter in method 
evaluation, and is defined in equation (7): 

Acc=
TP + TN

TP + TN + FP + FN
(7)  

where ‘TP’, ‘TN’, ‘FP’, ‘FN’ correspond to the true positive, true negative, 
false positive and false negative. 

Sensitivity is the parameter to measure the ability to recognize the 
patient cases correctly. 

Table 2 
The details of 3D-CNN architecture.  

Layer Input Size Output Size hyperparameters 

3D imaged-data 
input 

16 × 16 × 4 ×
1   

Convolution layer 16 × 16 × 4 ×
1 

14 × 14 × 2 ×
64 

Kernel size: 3 × 3 × 3 
Stride: 1 × 1 × 1 
Channel: 64 

ReLU 14 × 14 × 2 ×
64 

14 × 14 × 2 ×
64  

Max Pooling layer 14 × 14 × 2 ×
64 

7 × 7 × 1 × 64 Pooling Size: 2 × 2 ×
2 
Stride: 2 × 2 × 2 

Convolution layer 7 × 7 × 1 × 64 5 × 5 × 1 × 64 Kernel size: 3 × 3 × 1 
Stride: 1 × 1 × 1 
Channel: 64 

ReLU 5 × 5 × 1 × 64 5 × 5 × 1 × 64  
Convolution layer 5 × 5 × 1 × 64 3 × 3 × 1 × 64 Kernel size: 3 × 3 × 1 

Stride: 1 × 1 × 1 
Channel: 64 

ReLU 3 × 3 × 1 × 64 3 × 3 × 1 × 64  
Convolution layer 3 × 3 × 1 × 64 1 × 1 × 1 × 64 Kernel size: 3 × 3 × 1 

Stride: 1 × 1 × 1 
Channel: 64 

Fully Connected 
layer 

1 × 1 × 1 × 64 1 × 1 × 1 × 2  

Softmax 1 × 1 × 1 × 2    

Fig. 4. The training progress for self-designed 3D-CNN model for testing Group 1.  

Table 3 
The Validation accuracy for three machine learning methods and 3D-CNN 
model.   

Test 
group 

SVM KNN DT 3D-CNN 

Validation 
accuracy (%) 

Group 1 100.00 100.00 96.91 98.82 
Group 2 99.76 100.00 99.29 100.00 
Group 3 100.00 100.00 99.06 100.00 
Group 4 98.27 100.00 97.39 99.76 
Group 5 99.52 100.00 98.34 100.00 
Mean ±
Std 

99.51 ±
0.72 

100.00 ±
0.00 

98.20 ±
1.03 

99.72 ±
0.51  
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Sen=
TP

TP + FN
(8) 

Specificity refers to the probability of a negative test, conditioned on 
truly being negative. 

Spe=
TN

TN + FP
(9)  

3.1. Results for machine learning methods and 3D-CNN 

SVM, k-NN, DT and 3D-CNN method are applied to detect EEG ScZ 
signal in this study. Comparing the results of each model, self-designed 
3D-CNN model achieved the best performance which received results of 
97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% 
specificity of test data. The details are summarized in Table 4. 

According to Table 4, it is obvious that the self-designed deep 
learning model can provide a better performance in ScZ signal identi-
fication than the SVM, k-NN and DT methods. Although these three 
machine learning methods can also achieve high rate in validation ac-
curacy, they failed to provide a better classification result in the testing 
data. Comparing with these three machine learning methods, our self- 
designed 3D-CNN can overcome the robustness problem which shows 
the excellent identification result in the testing data of each subject. The 
standard deviation of our self-designed method is significant smaller 
than three machine learnings, it indicates that the proposed method can 
detect each subject in LMSU publicly ScZ dataset. 

4. Discussion 

4.1. Brain rhythms selection through complex brain network analysis 

To reduce the computational cost, selecting corresponding frequency 
bands is necessary. The brain network is constructed via multi-channel 
EEG data. Complex brain network analysis has its origins in the math-
ematical study of networks and is known as the graph theory [31]. The 
complex brain network analysis describes large-scale organization of 
brain networks into neurobiologically meaningful and easily comput-
able measures [32]. Four graph theory parameters are chosen to select 
the brain rhythms which provide significant differences between ScZ 
subjects and HC subjects which include modularity, efficiency, diffusion 
efficiency and clustering coefficient. The statistical analysis results of the 
graph theory parameters in different frequency bands are listed in 
Table 5. 

According to the statistical analysis results in four graph theory pa-
rameters, we found the alpha band (8–12 Hz) data have the most dif-
ference between the ScZ subjects and HC subjects. Thus, the alpha band 
is selected to analysis ScZ identification work in this study. 

4.2. Statistical analysis in CMI connectivity matrix 

DMN is regarded as the highly active network as compared to others 
which makes DMN as the key contributor in maintaining brain’s func-
tional organization which related to the sensory, motor executive con-
trol, visual components, frontal, parietal, auditory, temporal and 
parietal [33]. In ScZ diseases analysis, DMN brain connectivity of fMRI 
data is used widely [16,17]. The DMN is identifiable in three regions 
which includes PCC, LPC and MPC [15]. In this experiment, the Brod-
mann areas (BA) is used to correspond to the DMN region [34]. Channel 
Pz is the precuneus location in BA07, channel Cz, F3 and F4 are the MPC 
part in BA08/09, BA08/09 left hemisphere and BA08/09 right hemi-
sphere respectively [35]. The LPC region corresponds to the channel P3 
and P4 which in the BA39/40 left hemisphere and BA39/40 right 
hemisphere area [35]. In this study, the top 6 functional connectivity 
with the major difference of CMI values (≥0.03) between ScZ subjects 
and HC subjects was shown in Table 6: 

Based on statistical significance of CMI connectivity of whole brain, 
we found not only the DMN region but also the T4-T6 and T3-T5 con-
nectivity have obviously difference between ScZ and HC subjects which 
corresponding to the area between temporal lobe and posterior temporal 

Table 4 
The test results for three machine learning methods and 3D-CNN model.  

Results Test 
group 

SVM k-NN DT 3D-CNN 

Accuracy 
(%) 

Group 1 85.69 57.66 68.55 97.98 
Group 2 82.86 67.94 63.91 97.38 
Group 3 85.28 53.54 72.98 97.18 
Group 4 90.12 70.16 82.26 99.60 
Group 5 87.50 67.34 83.06 96.57 
Mean ±
Std 

86.29 ±
2.71 

63.33 ±
7.28 

74.15 ±
8.41 

97.74 ± 
1.15 

Sensitivity 
(%) 

Group 1 88.94 55.30 55.76 95.59 
Group 2 100.00 51.15 71.43 100.00 
Group 3 82.95 36.41 41.47 96.77 
Group 4 100.00 77.88 88.94 99.09 
Group 5 99.54 71.43 73.73 93.10 
Mean ±
Std 

94.29 ±
7.91 

58.43 ±
16.55 

66.27 ±
18.18 

96.91 ± 
2.76 

Specificity 
(%) 

Group 1 83.15 59.50 78.49 100.00 
Group 2 69.53 81.00 58.06 95.55 
Group 3 87.10 67.03 97.49 97.49 
Group 4 82.44 64.16 77.06 100.00 
Group 5 78.14 64.16 90.32 99.62 
Mean ±
Std 

80.07 ±
6.70 

67.17 ±
8.19 

80.28 ±
15.04 

98.53 ± 
1.97  

Table 5 
Statistical analysis of graph theory measures in different brain rhythms.   

Measures Brain rhythms 

δ band (1–4 Hz) θ band (4–8 Hz) α band (8–12 Hz) β band (12–30 Hz) γ band (30–60 Hz) 

ScZ subjects Modularity 5.084 ± 1.073 4.956 ± 1.015 4.632 ± 1.082 5.386 ± 1.117 6.052 ± 1.392  
Efficiency 0.205 ± 0.025 0.132 ± 0.020 0.112 ± 0.021 0.074 ± 0.017 0.064 ± 0.019  
Diffusion Efficiency 0.050 ± 0.002 0.044 ± 0.002 0.041 ± 0.003 0.033 ± 0.004 0.031 ± 0.005  
Clustering Coefficient 0.245 ± 0.027 0.162 ± 0.021 0.137 ± 0.023 0.093 ± 0.020 0.083 ± 0.022 

HC subjects Modularity 5.101 ± 0.893 4.825 ± 0.955 4.392 ± 0.766 5.428 ± 1.036 5.871 ± 1.015  
Efficiency 0.205 ± 0.020 0.131 ± 0.018 0.116 ± 0.022 0.076 ± 0.017 0.065 ± 0.017  
Diffusion Efficiency 0.050 ± 0.001 0.044 ± 0.002 0.043 ± 0.003 0.034 ± 0.004 0.031 ± 0.004  
Clustering Coefficient 0.246 ± 0.021 0.161 ± 0.020 0.139 ± 0.025 0.094 ± 0.019 0.083 ± 0.019  

Table 6 
The mean value of CMI values.  

CMI location (Channel to 
Channel) 

CMI values in ScZ 
subjects 

CMI values in HC 
subjects 

T4 - T6 0.117 ± 0.054 0.190 ± 0.090 
T3 - T5 0.130 ± 0.097 0.191 ± 0.099 
Cz - C4 0.193 ± 0.063 0.240 ± 0.082 
Cz - Pz 0.132 ± 0.035 0.171 ± 0.100 
Pz - P4 0.169 ± 0.048 0.203 ± 0.070 
F3 – F4 0.149 ± 0.052 0.182 ± 0.055  
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lobe in both right and left side. It is the evidence that using the whole 
brain connectivity analysis is essential. 

4.3. Dynamic analysis with the sliding window size selection 

Y. Sun et al. reported the ScZ-related aberrations in the dynamic 
properties of resting-state function connectivity in fMRI [36]. Consid-
ering the same issue, we use sliding window technique to extend the 
functional connectivity into time-varying functional connectivity. 
However, if the sliding window is too big, it is hard to cluster the dy-
namic changes in detection, and if the sliding window is too small, it will 
decrease the classifier accuracy. We compared the 2-s, 5-s, 10-s and 30-s 
sliding window sizes, and the results shows the 30-s sliding window size 
can achieve better performance in this study and the details summarized 
in Table 7. 

4.4. Performance comparison with previous work and future work 

Table 8 summarizes the performance of the proposed method and 
other peer works in EEG ScZ signal identification. The proposed method 
achieved a result of 97.74 ± 1.15% in accuracy, 96.91 ± 2.76% sensi-
tivity and 98.53 ± 1.97% specificity through function connectivity 
analysis and 3D-CNN deep learning model. Comparing with the previous 
works, our proposed method can supply an excellent performance in 
LMSU publicly ScZ dataset (45 ScZ subjects and 39 HC subjects). 
Furthermore, our proposed method is capable of fuzzy localization of the 
ScZ disease locations as well. Through the statistical analysis in CMI 
connectivity matrix of whole brain network, we found the temporal lobe 
and posterior temporal lobe in both right and left side and the DMN 
region have significant differences in brain network analysis. 

Comparing with SVM, k-NN and DT models, our self-designed 3D- 
CNN can overcome the robustness problem in classifying the CMI con-
nectivity matrix between ScZ and HC subjects. In addition, the sliding 
window technique applied can capture the dynamics of ScZ signal and 
improve the performance of the results. However, the dynamic model 
depends on the sliding window technique to cluster the dynamic state 
more clearly. Furthermore, the source model reconstruction technique 
can be applied to achieve more precise localization of ScZ disease. 

5. Conclusion 

In this paper, the whole brain connectivity analysis is applied and 
implemented using mutual information algorithm. The time-frequency 
domain functional connectivity calculated by CWT and CMI is firstly 
used in ScZ identification and the frequency resolution is selected in 1 
Hz in this experiment. Sliding window technique is proposed to extend 
the functional connectivity to time-varying functional connectivity for 
exploring dynamic properties of resting-state function connectivity in 
EEG. To reduce the computational cost, graph theory measures of 
complex brain network analysis is used to select brain rhythms and find 
alpha band (8–12 Hz) is the significance frequency band for ScZ iden-
tification work. The 3D-CNN models are applied to classify the ScZ 
subjects and health control subjects and achieved a result of 97.74 ±
1.15% in accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% 
specificity. Comparing with the machine learning methods, regarding 
the brain connectivity matrix as a whole graph with 3D-CNN can 
overcome the robustness problem. Furthermore, we analysed the CMI 
values in the whole connectivity and found not only the DMN region but 
also the connectivity between temporal lobe and posterior temporal lobe 
in both right and left side has significant difference between the ScZ and 
HC subjects. 
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8.2 Summary of Paper 6 

This paper delves into the potential of employing a functional brain network 

analysis for detecting ScZ using EEG signals. While traditional research primarily 

relies on f-MRI data for ScZ detection, this study offers a fresh approach that 

capitalizes on the high-frequency accuracy, non-invasiveness, and cost-effectiveness 

of EEG.  

To differentiate between ScZ patients and healthy controls, the study 

implements a MVAR and magnitude squared coherence algorithm. These techniques 

focus on the dynamic nature of resting-state brain connectivity, particularly in the alpha 

band frequency range (8-12 Hz), which has been identified as crucial for ScZ 

detection. The proposed 3D-CNN model classifies these functional brain network 

features, demonstrating impressive accuracy, sensitivity, and specificity results, 

outperforming traditional models like SVM, k-NN, and DT. 

Furthermore, the research pinpoints abnormal brain connectivity regions in ScZ 

patients, notably in the DMN region, and the temporal and posterior temporal lobes in 

both brain hemispheres. These findings offer valuable insights and potential 

biomarkers for understanding and identifying the neural abnormalities associated with 

ScZ. 

In essence, this paper provides a comprehensive methodology for ScZ 

detection using EEG signals, paving the way for more accurate and efficient diagnostic 

tools in the future. 
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Abstract 1 

Schizophrenia (ScZ) is a chronic mental disorder affecting the function of the brain, which 2 

causes emotional, social, and cognitive problems. This paper explored the functional brain 3 

network and deep learning methods to detect ScZ using electroencephalogram (EEG) signals. 4 

Functional brain network analysis was proposed and implemented using a multivariate 5 

autoregressive model and coherence connectivity algorithm. The three machine learning 6 

techniques and 3D-convolutional neural network (CNN) models were applied to classify the 7 

ScZ patients and health control subjects, and then the public LMSU database was utilized to 8 

assess the performance. The proposed 3D-CNN method achieved the performance of a 98.47 9 

± 1.47% in accuracy, 99.26 ± 1.07% in sensitivity, and 97.23 ± 3.76% in specificity. Moreover, 10 

in addition to the default mode network region, the temporal and posterior temporal lobes of 11 

both right and left hemispheres were found as the significant difference areas in ScZ brain 12 

network analysis. 13 

Key words: ScZ, EEG, multivariate autoregressive model, coherence, 3D-CNN, brain network 14 

analysis. 15 

1. Introduction 16 

Schizophrenia (ScZ) is a mental neuropsychiatric disorder of the brain, which affects emotional 17 

behaviours, persistent delusions, and cognitive deficit symptoms [1-3]. Regarding to the report 18 

of World Health Organization in 2022, approximately 24 million people suffered from ScZ 19 

disease [4]. In clinical detection, electroencephalogram (EEG) is an auxiliary approach to 20 

detect brain’s electronic signal, which can provide high accuracy detection without any 21 

physical intrusion [5]. Compared with the other two popular brain detection techniques, the 22 

functional magnetic resonance imaging (f-MRI) and Magnetoencephalography (MEG), EEG 23 

can provide two apparent advantages, including less reliance on the trained and lower cost 24 

medical equipment [6,7].  25 

Majority of researchers, in recent years, detected the ScZ diseases through functional brain 26 

network analysis using f-MRI data because the f-MRI technique can directly solve the space 27 

resolution problem [8-10]. Long, Q, et al. utilized independent vector analysis to extract 28 

common subspace components from fMRI data in individuals with ScZ and health control (HC) 29 
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participants [8]. They found significant differences in functional brain networks between the 30 

two groups. The results of their study contribute to our understanding of the neural mechanisms 31 

underlying ScZ and provide insights into the potential biomarkers or targets for diagnosis and 32 

treatment. Fu, Z et al. applied a brain activity-connectivity algorithm to fMRI data from 33 

individuals diagnosed with ScZ [9]. This algorithm involved estimating brain activity 34 

fluctuations and assessing connectivity patterns between different brain regions. By covarying 35 

the brain activity with connectivity measures, the researchers investigated how changes in brain 36 

activity related to fluctuations in network efficiency. Zhang, G et al. applied the Joint directed 37 

acyclic graph estimation model to detect abnormal fMRI connectivity in ScZ [10]. Their 38 

findings revealed decreased functional integration, disrupted hub structures, and characteristic 39 

edges in ScZ subjects. These results contribute to the understanding of the neural underpinnings 40 

of ScZ and provide insights into the specific connectivity abnormalities associated with the 41 

disorder. Inspired by the deep understanding of ScZ diseases through functional brain network 42 

analysis in f-MRI data, the functional brain network analysis is explored into EEG signal in 43 

this study.  44 

The default mode network (DMN) has been found to exhibit significant differences in resting-45 

state brain activity between individuals with ScZ and HC subjects [11]. The DMN is a network 46 

of brain regions that are consistently active during rest and are involved in self-referential 47 

thinking, introspection, and mind-wandering. The DMN consists of several key areas, 48 

including the mesial prefrontal cortex (MPC), the lateral posterior cortex (LPC), and the 49 

posterior cingulate cortex/precuneus (PCC) [11]. Zhang, S et al. applied the DMN region as a 50 

node of f-MRI data to detect abnormal ScZ connectivity [12]. F-MRI DMN functional 51 

connectivity analysis was also utilized via Fan. J et al to detect ScZ and obsessive-compulsive 52 

disorder [13]. However, the study conducted by Phang et al. focused on the functional brain 53 

network analysis of ScZ [14]. They employed whole brain connectivity analysis, which 54 

involves investigating the connections and interactions among all brain regions, rather than 55 

focusing solely on local brain networks. Based on the information provided, the study 56 

highlights the importance of considering the entire brain's functional connectivity, including 57 

regions within the DMN, to gain a more complete understanding of the abnormal brain activity 58 

in ScZ. 59 

In EEG analysis, traditional signal processing and machine learning, as well as deep learning 60 

models, have been widely employed in classifying EEG ScZ signals. Baygin, M et al. proposed 61 

collatz pattern technique and K-nearest neighbour (k-NN) classifier to detect EEG ScZ patients 62 

and achieved 99.47% and 93.58% in accuracy using two public ScZ databases [15]. Akbari et 63 

al. calculated ScZ features through phase space dynamic features and employed the k-NN 64 

model for classification [16]. Their research reported an accuracy of 94.80%, sensitivity of 65 

94.30%, and specificity of 95.20%. Lillo et al. utilized a convolutional neural network (CNN) 66 

to identify ScZ diseases and achieved a success rate of 93% in accuracy [17]. They also 67 

highlighted the ability of their study to achieve computer-assisted diagnosis in just 3 minutes. 68 

Supakar et al. proposed a deep learning model that combines recurrent neural network (RNN) 69 

and long short-term memory (LSTM) network to detect ScZ using the Lomonosov Moscow 70 

State University (LMSU) dataset [18]. They achieved an accuracy of 98% in their experiment. 71 

Sairamya et al. employed the discrete wavelet transform (DWT) and relaxed local neighbour 72 

difference pattern (RLNDiP) technique to detect ScZ in the LMSU database [19]. Their 73 

approach yielded a maximum accuracy of 100% in their experiment. Hassan et al. applied CNN 74 
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to extract ScZ signal features and classified the features using the logistic regression method 75 

[20]. They obtained accuracies of 90% and 98% on subject-based and non-subject-based 76 

testing, respectively. Gosala et al. utilized the wavelet scattering transform (WST) as a signal 77 

processing method to detect ScZ EEG signals [21]. They reported accuracy rates of 97.98%, 78 

sensitivity of 98.2%, specificity of 97.72%, and a Kappa score of 95.94% in SVM 79 

classification. 80 

The functional brain network is also applied to provide biomarkers of the ScZ diseases. Wang, 81 

J et al. investigated the left frontal-parietal/temporal networks and found biomarkers of 82 

auditory verbal hallucinations (AVH) in ScZ diseases through phase locking value (PLV) 83 

connectivity algorithm. They also achieved a classification result of 80.95% accuracy in AVH 84 

patients and non-AVH patients [22]. Prieto-Alcantara et al. explored neurophysiological 85 

differences in different cognitive states between ScZ patients and HC subjects using the EEG 86 

coherence connectivity method [23]. Their study provided evidence of these differences and 87 

highlighted the potential of functional connectivity analysis in understanding ScZ. In our 88 

previous work, dynamic functional connectivity analysis using the cross mutual information 89 

(CMI) algorithm with a 3D CNN was applied to identify ScZ EEG signals [24]. The results 90 

showed an accuracy of 97.74 ± 1.15%, sensitivity of 96.91 ± 2.76%, and specificity of 98.53 ± 91 

1.97%. Furthermore, the fuzzy localization of ScZ diseases was investigated in this study as 92 

well.  93 

The multivariate auto-regressive model (MVAR) coherence functional brain network method 94 

with 3D-CNN model is applied to detect the EEG ScZ signal in this Study. The MVAR 95 

coherence method was utilized to estimate the connectivity between different brain regions 96 

based on EEG data. This method allows for the extraction of frequency domain features, 97 

enabling the identification of abnormal connectivity areas associated with ScZ. After that, the 98 

3D-CNN model was designed to classify functional brain network features between ScZ 99 

patients and HC subjects. This model leverages the extracted features from the MVAR 100 

coherence brain network to differentiate between the two groups. The sliding window 101 

technique was employed to capture the dynamic changes in ScZ by considering the time-102 

varying nature of the functional brain network. This technique allows for the analysis of EEG 103 

signals in small overlapping windows, considering temporal variations and improving the 104 

accuracy of the experiment. Moreover, the study analysed different brain rhythms to reduce 105 

computational costs. It found that the alpha band (8-12 Hz) demonstrated the best performance 106 

in testing data. This suggests that focusing on the alpha band frequency range yields meaningful 107 

results in the context of ScZ analysis. Furthermore, the study performed statistical analysis on 108 

the whole brain connectivity to verify abnormal connectivity areas. Specifically, abnormal 109 

connectivity areas were identified in the DMN region, as well as the temporal lobe and posterior 110 

temporal lobe of both hemispheres. All the experiments are simulated in MATLAB 2021b 111 

software on a Dell workstation with an NVIDIA 3080TI GPU. 112 

In this paper, Section 1 introduces the research background and the related works in recent 113 

years. The objectives this study is also included in this section. Section 2 describes the proposed 114 

methodology, which includes the data pre-processing, signal processing method, functional 115 

brain network analysis and classification models. The dataset details are also report in this 116 

section. The results and comparison of the experiment are listed in Section 3. In Section 4, 117 

statistical analysis of whole brain connectivity, dynamic analysis and the comparison with 118 

previous work are discussed while the conclusion is made in Section V. 119 
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2. Methodology 120 

Five main procedures in ScZ detection based on the EEG signal are briefly summarized in 121 

Figure 1. There are two pre-processing steps, including denoised the EEG raw data and the 122 

sliding window size selection, to remove the artifacts and extend dynamic research. MVAR 123 

model is introduced to transform data from the time domain into the frequency domain, which 124 

can provide more spectrum information in different brain rhythms. To extract the brain graph 125 

features, the coherence algorithm is applied to construct the functional brain network. Machine 126 

learning models and 3D-CNN are used to classify the ScZ subjects and HC subjects using their 127 

brain graph features. Finally, three parameters are proposed to evaluate the designed method 128 

in this study. 129 

 130 

Figure. 1.  The progress of ScZ automatic identification. 131 

2.1 Datasets and pre-processing 132 

In the evaluation of the proposed methodology for EEG ScZ detection, the researchers utilized 133 

a publicly available database called LMSU [25, 26]. This database consisted of EEG recordings 134 

from a total of 84 subjects, including 45 individuals diagnosed with ScZ and 39 HC subjects. 135 

The LMSU dataset provided EEG signals collected from 16 channels, namely F7, F3, F4, F8, 136 

T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. The sampling rate of the EEG signals in 137 

this dataset was 128 Hz. 138 

By using a sliding window with a 30-second size and a 1-second overlap, the study considered 139 

short-term variations in the EEG signal, which can provide insights into the dynamic changes 140 

in brain activity associated with ScZ. The choice of these parameters indicates that the proposed 141 

methodology can potentially be applied in real-time applications, as it allows for continuous 142 

monitoring and analysis of the EEG signal. To prepare the EEG data for analysis, a 6th-order 143 

Butterworth zero-phase filter was applied to the raw data. This filter had a passband frequency 144 

range of 1-50 Hz. The purpose of this filtering step was to denoise the EEG signals and remove 145 

any artifacts that may have been present. 146 

2.2 Multivariate auto-regressive model 147 

The MVAR model is used to analyse multivariate time series data, such as EEG signals, by 148 

representing the relationships between variables, which is applied to convert the denoised EEG 149 

data into frequency domain features within the alpha band (8-12 Hz). The algorithm of MVAR 150 

model is illustrated in formula (1). 151 

1

( ) ( ) ( ) ( )
p

k

X n A k X n k W n


                                                                                              (1) 152 

where A(k) are M × M coefficient matrix which calculates the linear interaction in lag k from 153 

( )jx n k  to ( ), ( , 1,..., )ix n i j M  of MVAR model. The noise is also considered in this 154 

formula which W(n) is a vector of Gaussian noise with a covariance matrix  . To calculate the 155 

coefficient matrix A(k) and covariance matrix  , the Yule-Walker equation is used to describe 156 
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the relationship between two matrices [27]. p is the order of the MVAR model and calculate 157 

via the Akaike Information Criterion (AIC) algorithm. The AIC can select the order number 158 

fitting effect of the model and avoid the phenomenon of overfitting when the p is too large. 159 

The formula of AIC is shown in equation (2). 160 

( ) ln( ) 2AIC p l k                                                                                                                        (2) 161 

In equation (2), k is the total parameters used for model fitting and ln( )l  is the maximum 162 

likelihood estimations of log likelihood. To convert the EEG data into frequency domain 163 

spectrum, the Fourier transform is employed. The transfer matrix of MVAR model H(f), and 164 

cross-spectrum matrix S(f) are estimated in equation (3) and (4). 165 

2 1

0
( ) ( )

p jk f

kk
H f A e  


                                                                                                                       (3) 166 

( ) ( ) ( ( ))HS f H f H f                                                                                                                            (4) 167 

where ( )HH f  is the conjugate transpose of ( )H f ,   is the noise covariance matrix. kA  is 168 

the parameter of M × M coefficient matrix and the p is the model order. 169 

2.3 Functional brain network analysis 170 

The coherence connectivity based MVAR model is applied to construct the functional brain 171 

network in the corresponding frequency domain. The algorithm of magnitude-squared 172 

coherence between two different channels is shown in equation (5): 173 

2

( )
( )

( ) ( )

xy

xy

xx yy

S f
coh f

S f S f
                                                                                                                  (5)         174 

where, the ( )xxS f  is the power spectrum density of x, the ( )yyS f  is the power spectrum 175 

density of y, and ( )xyS f  is the cross-spectral power spectrum density between x and y. 176 

In the described experiment, to extract more information from the MVAR coherence 177 

connectivity matrix, the functional brain network is computed for each frequency range within 178 

the alpha band. Specifically, the frequency ranges of 8-9 Hz, 9-10 Hz, 10-11 Hz, and 11-12 Hz 179 

are considered. Since the experiment involves EEG data from 16 channels, the resulting matrix 180 

has dimensions of 16x16. For instance, the 4-level functional brain network of a subject 181 

‘022w1’ in ScZ case is illustrated in Figure. 2. 182 
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 183 

Figure. 2. Functional brain network of subject ‘022w’ in ScZ case. 184 

2.4 Classification 185 

After the features of the functional brain network have been extracted from the EEG raw signal, 186 

the next task is to classify the features between ScZ patients and HC subjects through machine 187 

learning and deep learning methods. In this study, three machine learning methods include 188 

SVM, k-NN and decision tree (DT) models, and the proposed 3D-CNN were used to classify 189 

the testing data 190 

2.4.1 Leaving one group out training method  191 

By using the leaving one group out method, the experiment aims to assess the generalizability 192 

and performance of the model on unseen data. It helps to ensure that the model is not biased or 193 

overfitted to a specific group of subjects. Therefore, five models have been established in this 194 

study. The details of the 5-group dataset are summarized in Table I.  195 

TABLE I 196 

 FIVE-GROUP DATA FOR CLASSIFICATION 197 

 ScZ dataset HC dataset 

Group A 
022w, 32w, 219w, 221w, 387-02w, 

387-03w, 510-1w, 515w, 642w 

s10w, s12w, s43w, s47w, s78w, 

s85w, s158w, s174w  

Group B 
33w, 088w, 249w, 276w, 401w, 

423w, 517w, 683w, 719w 

s18w, s20w, s50w, s94w, s163w, 

s164w, s176w, s177w 

Group C 
103w, 113w, 307w, 312w, 429w, 

454-1w, 540w, 548w, r229w 

s26w, s53w, s55w, s152w, s153w, 

s165w. s167w, s178w 
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Group D 
155w, 156w, 314w, 485w, 508w, 

573w, 575w, r416w, s083w 

s27w, s31w, s59w, s60w, s154w, 

s169w, s170w, s179w 

Group E 
192w, s084-1w, 342w, 382w, 

509w, s351w, 585w, 586w, s425w 

s42w, s72w, s155w, s157w, 

s173w, s182w, s196w 

2.4.2 Machine learning methods 198 

The Classification Learner Toolbox in MATLAB 2021b is applied in this part. In training 199 

progress, 80% of the data is used for training, and the remaining 20% is set aside for validation. 200 

The training set is used to train the models, while the validation set is used to evaluate their 201 

performance and tune any hyperparameters. The validation accuracy is listed in the Table II 202 

TABLE II 203 

THE VALIDATION ACCURACY OF SVM, K-NN AND DT 204 

 Test group SVM KNN DT 

Validation 

accuracy (%) 

Group A 99.52 100.00 98.21 

Group B 100.00 100.00 97.98 

Group C 100.00 100.00 99.41 

Group D 99.08 100.00 98.33 

Group E 99.73 100.00 99.03 

Mean ± Std 99.67 ± 0.38 100.00 ± 0.00 98.59 ± 0.60 

In the functional brain network, the matrix is symmetrical and the coherence value between the 205 

same node equals 0. To reduce the computational cost, about (16 × 16 - 16) / 2 × 4 = 480 values 206 

of the 4-layer functional brain network matrix are selected as input. 207 

2.4.3 Deep learning method 208 

In functional brain network analysis, the brain is regarded as a large-scale network, which is 209 

also known as the brain graph that consists of the nodes and edges. The nodes here are the EEG 210 

channel, and the edges are the brain connectivity. CNN is an advanced deep learning method 211 

that has been successfully applied in photograph classifications, such as Google-net CNN, 212 

VGG-net CNN, and Alex-net CNN. Therefore, the 3D-CNN is designed and employed to 213 

classify the brain graph data in this study. The architecture of the 10-layer 3D-CNN is shown 214 

in the Figure. 3. 215 

 216 
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 217 

Figure. 3. 10-layer 3D-CNN architecture, ‘Conv’ is the convolution layer and ‘FC’ is the fully 218 

connected layer. 219 

The designed 3D-CNN model in the experiment consists of four convolution layers, three 220 

ReLU layers, one max pooling layer, and one fully connected layer. The architecture aims to 221 

classify subjects with ScZ and HC subjects. To address overfitting, batch normalization is 222 

applied in the four convolution layers. Batch normalization helps stabilize and normalize the 223 

activations within each mini batch during training, reducing the likelihood of overfitting. The 224 

first convolution layer has a kernel size of 3×3×3 and 64 channels. After this layer, a max 225 

pooling layer is employed to reduce the dimensions of the 3D-image input into 2D-image data. 226 

The subsequent three convolution layers all have a kernel size of 3×3×1 and 64 channels. The 227 

purpose of these layers is to capture relevant features from the input data. A max pooling layer 228 

with a size of 2×2×2 and a stride of 2×2×2 is used to down sample the feature maps and reduce 229 

the computational cost during training. ReLU layers follow each convolution layer. The ReLU 230 
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activation function introduces non-linearity to the model by setting negative values to zero, 231 

allowing the network to learn complex patterns and improve its representational power. Since 232 

the experiment focuses on classifying ScZ and HC subjects, the fully connected layer is 233 

designed for two-class classification. This layer aggregates the learned features and performs 234 

classification based on the extracted information. The last layer of the architecture is a Softmax 235 

classifier, which provides the prediction results of the proposed method. The Softmax function 236 

assigns probabilities to each class, indicating the model's confidence in its predictions. The 237 

details of the input size and output size of each layer are summarized in Table III. 238 

 TABLE III 239 

THE DETAILS OF DEEP LEARNING METHOD ARCHITECTURE  240 

Layer Level Input Size Output Size hyperparameters 

- 16×16×4×1   

Level 1 (Conv) 16×16×4×1 14×14×2×64 

Kernel size: 3×3×3 

Stride: 1×1×1 

Channel: 64 

Level 2 (ReLU) 14×14×2×64 14×14×2×64  

Level 3 (Max Pooling) 14×14×2×64 7×7×1×64 
Pooling Size: 2×2×2 

Stride: 2×2×2 

Level 4 (Conv) 7×7×1×64 5×5×1×64 

Kernel size: 3×3×1 

Stride: 1×1×1 

Channel: 64 

Level 5 (ReLU) 5×5×1×64 5×5×1×64  

Level 6 (Conv) 5×5×1×64 3×3×1×64 

Kernel size: 3×3×1 

Stride: 1×1×1 

Channel: 64 

Level 7 (ReLU) 3×3×1×64 3×3×1×64  

Level 8 (Conv) 3×3×1×64 1×1×1×64 

Kernel size: 3×3×1 

Stride: 1×1×1 

Channel: 64 

Level 9 (FC) 1×1×1×64 1×1×1×2  

Level 10 (Softmax) 1×1×1×2   

* ‘Conv’ is the convolution layer and ‘FC’ the fully connected layer. 241 

The same validation method with 50 iterations validation frequency is used in the designed 3D-242 

CNN model and achieved 100% validation accuracy using the leaving one group out training 243 

method. The optimizer of the proposed deep learning model in MATLAB 2021b is shown in 244 

Figure. 4. 245 
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 246 

Figure. 4. The optimizer of self-designed 3D-CNN model of testing group A. 247 

3. Results and Comparison 248 

In the evaluation of the proposed method for EEG ScZ detection using the LMSU database, 249 

accuracy, sensitivity, and specificity are calculated as performance metrics. Accuracy 250 

represents the proportion of correctly classified samples (both true positives and true negatives) 251 

out of the total number of samples. Higher accuracy values indicate better performance in 252 

classifying ScZ and HC subjects. The formula of accuracy is described in equation (6). 253 

TP TN
Acc

TP TN FP FN




  
                                                                                                       (6) 254 

where ‘TP’, ‘TN’, ‘FP’, ‘FN’ correspond to the true positive, true negative, false positive and 255 

false negative. 256 

Sensitivity, also known as true positive rate or recall, measures the proportion of ScZ subjects 257 

that are correctly identified as positive by the classification model. It indicates the ability of the 258 

method to correctly detect ScZ cases. Higher sensitivity values indicate a lower rate of false 259 

negatives, suggesting a better ability to identify true positive ScZ subjects. The algorithm of 260 

sensitivity is shown in equation (7). 261 

TP
Sen

TP FN



                                                                                                                        (7) 262 

Specificity measures the proportion of HC subjects that are correctly identified as negative by 263 

the classification model. It represents the ability of the method to correctly identify HC cases. 264 

Higher specificity values indicate a lower rate of false positives, indicating a better ability to 265 

correctly identify true negative HC subjects. 266 

TN
Spe

TN FP



                                                                                                                        (8) 267 
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3.1 Results of the proposed method 268 

Three machine learning methods, SVM, k-NN and DT, and the proposed 3D-CNN are used to 269 

detect EEG ScZ functional brain network. From Table IV, the proposed 3D-CNN has achieved 270 

the best performance in this study, which reports the results of 98.47 ± 1.47% accuracy, 99.26 271 

± 1.07% sensitivity, and 97.23 ± 3.76% specificity of testing data. 272 

TABLE IV 273 

THE TEST RESULTS FOR SVM, K-NN, DT AND 3D-CNN MODEL 274 

Results Test group  SVM k-NN DT 3D-CNN  

Accuracy (%) 

Group A 89.92 77.22 74.19 98.59  

Group B 84.48 79.23 79.64 98.19 

Group C 79.81 74.80 79.44 96.17 

Group D 89.52 74.60 76.01 100.00 

Group E 84.48 80.44 77.22 99.40 

Mean ± Std 
85.64 ± 

4.18 

77.26 ± 

2.60 
77.30 ± 2.31 98.47 ± 1.47 

Sensitivity (%) 

Group A 86.46 73.21 90.83 97.67 

Group B 76.72 79.52 76.42 100.00 

Group C 76.86 70.54 83.63 100.00 

Group D 86.34 71.16 84.03 100.00 

Group E 81.53 74.59 82.91 98.64 

Mean ± Std 
81.58 ± 

4.81 

73.80 ± 

3.58 
83.56 ± 5.11 99.26 ± 1.07 

Specificity (%) 

Group A 91.24 75.58 45.62 99.07 

Group B 92.63 73.57 78.83 95.85 

Group C 80.52 72.81 65.90 91.24 

Group D 90.32 70.51 55.76 100.00 

Group E 83.41 83.87 60.37 100.00 

Mean ± Std 
87.62 ± 

5.33 

75.27 ± 

5.14 
61.30 ± 12.31 97.23 ± 3.76 

According to Table IV, these three machine learning models achieve very high validation 275 

result, but they could not overcome the robustness problem. Furthermore, the standard 276 

deviation of the proposed method is significantly smaller than the machine learning methods, 277 

which implies that every subject can be detected stably through the 3D-CNN model. It also 278 

indicates that the proposed 3D-CNN model can be used in the clinical applications. 279 

3.2 Comparison with different complex brain network methods 280 

Based on the MVAR model, five other connectivity algorithms are used to evaluate the 281 

proposed method, which includes the directed coherence (DC), directed transform function 282 

(DTF), PDC, generalized partial directed coherence (GPDC) and partial coherence (PCO). The 283 

details of the comparison are show in Table V. 284 

TABLE V 285 

THE COMPARISON BETWEEN DIFFERENT CONNECTIVITY METHODS 286 

Connectivity method Accuracy (%) Sensitivity (%) Specificity (%) 

DC 74.44 ± 6.78 77.24 ± 12.90  62.67 ± 18.17 

DTF 72.06 ± 4.31  71.30 ± 6.87  61.11 ± 5.41 

PDC 79.32 ± 6.12 85.37 ± 3.19 63.96 ± 17.44 

GPDC 78.87 ± 5.40 90.29 ± 12.93 62.03 ± 23.35 
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PCO 81.29 ± 10.39 77.63 ± 11.86 80.55 ± 11.99 

Proposed method 98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76 

The effective connectivity methods, including DC, DTF, PDC, GPDC algorithm, consider the 287 

directionality of brain connectivity, which can determine the causality information between the 288 

connectivity. However, it cannot obtain high accuracy detection results in this study as shown 289 

in Table V. 290 

3.3 Comparison with different frequency bands 291 

In the experiment, a frequency band selection analysis is performed to optimize computing 292 

costs while maintaining the effectiveness of EEG ScZ identification. The MVAR coherence is 293 

constructed in different frequency bands, namely δ band (0-4 Hz), θ band (4-8 Hz), α band (8-294 

12 Hz), β-1 band (12-16 Hz), β-2 band (16-20 Hz), β-3 band (20-24 Hz), and β-4 band (24-28 295 

Hz). The purpose of this analysis is to identify the brain rhythms within these frequency bands 296 

that yield the best results in EEG ScZ identification. The results of this analysis are summarized 297 

in Table VI, which provides information on the performance metrics (such as accuracy, 298 

sensitivity, and specificity) achieved in each frequency band. 299 

TABLE VI 300 

THE COMPARISON BETWEEN DIFFERENT FREQUENCY BAND  301 

Frequency band Accuracy (%) Sensitivity (%) Specificity (%) 

δ band (0-4 Hz) 85.04 ± 5.30 80.42 ± 6.59  87.37 ± 5.76 

θ band (4-8 Hz) 90.20 ± 4.23  85.85 ± 2.60  92.81 ± 8.56 

α band (8-12 Hz) 98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76 
β-1 band (12-16 Hz) 92.39 ± 4.49 91.78 ± 5.46 90.78 ± 5.21 

β-2 band (16-20 Hz) 92.42 ± 5.60 92.20 ± 7.49 90.60 ± 5.98 

β-3 band (20-24 Hz) 92.82 ± 5.34 92.58 ± 5.92 90.97 ± 8.71 

β-4 band (24-28 Hz) 91.17 ± 7.05 87.36 ± 8.76 93.73 ± 7.41 

According to Table VI, the alpha band brain has been verified as the best frequency band to 302 

detect the ScZ EEG signal. 303 

4. Discussion 304 

4.1 Statistical analysis of MVAR coherence connectivity 305 

In functional brain network analysis, different brain regions correspond to different functions. 306 

Through the statistical analysis of brain connectivity value, the biomarker of abnormal 307 

connectivity between the ScZ patients and HC subjects can be found. DMN region is the most 308 

significant part of the brain, which is related to the function of sensory, motor executive control 309 

and visual components [28]. There are three brain regions in DMN, including LPC, MPC and 310 

PCC [11]. In EEG analysis, Brodmann areas (BA) are applied to correspond to the DMN region 311 

with the EEG electrodes and the details shown in Table VII [29,30]. 312 

TABLE VII 313 

EEG ELECTRODES IN THE BRODMANN AREAS OF DMN REGIONS [31]  314 

DMN region Brodmann area EEG channel 

LPC BA39/40, Right P4  

LPC BA39/40, Left P3  

MPC BA08/09, Middle Cz 

MPC BA08/09, Right F4 



Biomedical signal processing and control 

13 

 

MPC BA08/09, Left F3 

PCC BA07, Middle Pz 

Based on the derived mean value and standard deviation of the whole brain connectivity of the 315 

functional brain network, the abnormal connectivities with the major difference mean value (≥ 316 

0.10) between ScZ subjects and HC subjects are listed in Table VIII. 317 

TABLE VIII 318 

THE MEAN VALUE OF CONNECTIVITY VALUES 319 

Abnormal connectivity Connectivity values of ScZ Connectivity values of HC 

T4 - T6 0.496 ± 0.188 0.732 ± 0.134  

F3 - F4 0.287 ± 0.136  0.441 ± 0.156  

T3 - T5 0.558 ± 0.180 0.710 ± 0.147 

Cz - P4 0.421 ± 0.125 0.538 ± 0.169 

P4 - Pz 0.502 ± 0.137 0.609 ± 0.164 

Cz - Pz 0.548 ± 0.134 0.651 ± 0.167  

From the statistical analysis results of Table VIII, not only the connectivity of DMN regions 320 

but also the connectivity of T4 - T6 and T3 - T5 are the biomarkers of the ScZ disease, which 321 

corresponds to the temporal lobe and posterior temporal lobe area in both right and left side. It 322 

also indicates that the whole brain connectivity analysis of the functional brain network is 323 

necessary. 324 

4.2 Dynamic analysis  325 

In this study, the sliding window technique was used to capture the dynamic changes of ScZ 326 

diseases in the EEG data. However, selecting an appropriate window size is crucial as it affects 327 

the ability to capture the dynamic properties of ScZ and the detection accuracy of the method. 328 

If the window size is chosen to be too large, it may be difficult to capture the underlying 329 

dynamic properties of ScZ. Larger window sizes tend to smooth out rapid changes and 330 

variations in the data, potentially leading to a loss of important temporal information. This can 331 

make it challenging to cluster and analyse the dynamic patterns associated with ScZ accurately. 332 

On the other hand, selecting a window size that is too small can lead to decreased detection 333 

accuracy. Smaller window sizes might not capture sufficient information about the temporal 334 

dynamics of ScZ, and the analysis may be affected by noise or random fluctuations within 335 

shorter time intervals. This can result in decreased sensitivity and specificity of the method. As 336 

a result, the sliding window size of 3-second, 5-second. 10-second, 30-second and 40-second 337 

are evaluated with the proposed method, and the results are shown in the Table IX. 338 

TABLE IX 339 

DYNAMIC ANALYSIS OF FUNCTIONAL BRAIN NETWORK    340 

Sliding window size Accuracy (%) Sensitivity (%) Specificity (%) 

3-second 87.91 ± 7.05 83.56 ± 6.99  90.00 ± 9.53 

5-second 89.11 ± 5.59  85.30 ± 5.13  90.66 ± 9.01 

10-second 90.20 ± 5.55 86.40 ± 5.78 92.10 ± 7.91 

30-second 98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76 

40-second 90.89 ± 7.12 86.25 ± 8.62 94.56 ± 7.47 

4.3 Previous works comparison 341 

Comparisons with the related works in EEG ScZ detection are listed in Table X. In this study, 342 

the proposed method receives 98.47 ± 1.47% accuracy, 99.26 ± 1.07% sensitivity, and 97.23 ± 343 

3.76% specificity results in the testing data. Compared with the previous related work, the 344 
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proposed method can achieve satisfactory detection results using the public LMSU dataset. In 345 

addition, the biomarkers of abnormal connectivity in DMN regions, temporal lobe and 346 

posterior temporal lobe area in both hemispheres are confirmed in this research. 347 

TABLE X 348 

COMPARISON OF THE RELATED WORKS IN EEG SCZ DETECTION 349 

Related works Method Accuracy (%) 
Sensitivity 

(%) 

Specificity 

(%) 

Baygin, M et al 

(2021) [15] 

Collatz pattern 

technique + k-NN 
99.47 99.20 99.80 

Akbari, H et al.  

(2021) [16] 

Phase space dynamic 

features + k-NN   
94.80 94.30 95.20 

Lillo, E et al. 

(2022) [17] 
CNN 93.00 - - 

Supakar, R et al. 

(2022) [18] 
RNN - LSTM 98.00 98.00 98.00 

Sairamya, N.J et 

al, (2022) [19] 
DWT + RLNDip 100 - - 

Hassan, F et al. 

(2023) [20] 

CNN + logistic 

regression 
98.05 ± 1.13 99.00 ± 1.00 97.00 ± 2.00 

Gosala, B et al. 

(2023) [21] 
WST + SVM 97.98 98.20 97.72 

Our previous 

work [24] 
CMI + 3D-CNN 97.74 ± 1.15 96.91 ± 2.76 98.53 ± 1.97 

Proposed 

method 

MVAR coherence + 

3D-CNN 
98.47 ± 1.47 99.26 ± 1.07 97.23 ± 3.76 

This EEG based ScZ detection study still has some limitations. Sliding window technique is 350 

not an advanced method to cluster the dynamic state of brain activity. In addition, it is difficult 351 

to use the statistical analysis of whole brain connectivity to achieve high precision localization 352 

of ScZ disease. To overcome these limitations, the dynamic modelling analysis and source 353 

model reconstruction research will be the focus in our future research plan. 354 

Conclusion 355 

In this study, the researchers propose and implement a functional brain network analysis using 356 

the magnitude squared coherence algorithm. The MVAR model is applied in the signal 357 

processing stage, with a frequency resolution of 1 Hz. The goal is to explore the dynamic 358 

properties of resting-state brain connectivity in ScZ disease. To capture the dynamic nature of 359 

the brain connectivity, the sliding window technique is employed which transforms the EEG 360 

signal into time-varying data. This allows for the analysis of changes in connectivity patterns 361 

over time. In comparing different functional brain methods, the magnitude squared coherence 362 

algorithm demonstrates the best performance in EEG ScZ detection. The proposed method 363 

achieves impressive results with 98.47% accuracy, 99.26% sensitivity, and 97.23% specificity 364 

in evaluation and testing. Additionally, the researchers highlight the effectiveness of the 365 

proposed 3D-CNN model, which overcomes the robustness issues observed in other models 366 

such as SVM, k-NN, and DT. This suggests that the 3D-CNN model is better suited for EEG 367 

ScZ detection. To reduce computational costs, the study identifies the alpha band (8-12 Hz) as 368 

the optimal frequency range for EEG ScZ detection. This frequency band is associated with 369 

the best performance in accurately classifying ScZ and HC subjects. Furthermore, the research 370 
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findings highlight the presence of abnormal connectivity in the DMN region and the temporal 371 

lobe, as well as the posterior temporal lobe, in both hemispheres of ScZ patients. These regions 372 

serve as potential biomarkers for identifying and understanding the neural abnormalities 373 

associated with ScZ. 374 
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CHAPTER 9: CONCLUSIONS 

9.1 Thesis summary 

This study focuses on real-time EEG epilepsy seizure detection and brain 

connectivity analysis in complex brain disorders. The background and research 

problems are provided firstly, along with a comprehensive literature review and 

summaries. Building upon the existing knowledge and research, the thesis proposed 

and designed three experiments for EEG seizure detection and three experiments for 

brain connectivity analysis. 

 

9.2 Conclusion  

In a comprehensive analysis of recent advancements in EEG signal processing 

and classification, six seminal papers have been dissected to delineate key 

contributions to the field.  

In EEG real-time seizure detection research, this thesis provides advanced 

methods for epilepsy seizure detection, emphasizing the synergy of diverse signal 

transformation techniques like DWT TQWT and STFT with cutting-edge neural 

network models to achieve remarkable accuracy in real-time applications. The 

evolution of real-time epilepsy seizure detection, rooted in EEG signals, signifies a 

transformative phase in neurocomputational research. Initiating with the integration of 

the DWT and traditional machine learning, the landscape was introduced to the 

profound potential of signal decomposition, shedding light on the intricate nature of 

EEG data. Building upon this foundation, subsequent research endeavoured to 

combine the adaptability of the TQWT with the architectural complexities of CNNs. 

This synthesis unearthed nuanced perspectives on EEG signal processing, revealing 

deeper layers of information. In the zenith of this progression, a groundbreakingly 

study emerged, harnessing the capabilities of the STFT with the advanced Google-

Net CNN. The remarkable accuracy benchmarks set by this research not only attest 

to the methodology's efficacy but also forecast the expansive future of neural networks 

in EEG interpretation. In essence, this thesis chronicles a transformative journey, 

intertwining computational advancements with neurological insights, promising a new 

epoch in epilepsy management and enhanced patient care. Future avenues beckon 

the exploration and refinement of these methodologies, adapting them for newer 

challenges, and ensuring their widespread application in clinical scenarios. 
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In EEG brain connectivity analysis, this thesis offers invaluable insights into the 

realm of identifying distinct neurological conditions, particularly alcoholism and ScZ. 

The study identified markers of alcoholism using a meld of whole brain connectivity 

analysis with CNNs on EEG signals, shedding light on subtle neural deviations 

triggered by alcohol consumption. Its approach not only improves detection rates but 

also paves the way for timely therapeutic interventions. In addition, the research of this 

thesis journeyed into the realm of ScZ, employing a combination of dynamic functional 

connectivity analysis and 3D convolutional neural networks. It emphasized the 

potential of time-resolved connectivity patterns in diagnosing ScZ, illustrating the 

disorder's neural footprints with impressive accuracy. Another research also focused 

on ScZ but diverged by utilizing a functional brain network approach from EEG signals. 

Harnessing the MVAR and magnitude squared coherence algorithm, and juxtaposing 

it with 3D-CNN, this study showcased a comprehensive, efficient, and cost-effective 

methodology for ScZ detection, revealing potential neural biomarkers. Collectively, the 

research of this thesis underscores the transformative potential of marrying advanced 

neural network models with EEG-derived data in understanding and diagnosing neural 

disorders. 

 

9.3 Future work 

This thesis explores the areas of seizure detection and EEG connectivity 

analysis in alcoholism and ScZ. Despite these attempts, there is still room for further 

improvement and advancements. 

In EEG seizure analysis, the works of this thesis is focusing on the seizure 

onset detection. The ability to predict seizures in advance can greatly benefit patients 

by providing them with timely warnings and opportunities for intervention. The use of 

portable EEG devices and brainwave monitors can enhance the clinical applicability 

of seizure prediction algorithms, allowing for real-time monitoring and intervention. 

In EEG connectivity analysis, achieving high precision localization of complex 

brain disorders using whole brain connectivity statistics can be challenging. Future 

research can focus on source model reconstruction techniques to improve localization 

accuracy. These techniques involve mapping the EEG data to specific brain regions 

or sources to better understand the spatial distribution of abnormalities associated with 

complex brain disorders. Dynamic modelling approaches should be developed to 
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capture the temporal dynamics of brain activity, and allow more comprehensive 

understanding of the dynamic states and transitions within the brain.  
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