MODEL SELECTION FOR FOUR- AND HIGHER-DIMENSIONAL TABLES

Ma A, Toleman

As the number of dimensions of the contingency table increases so
does the number of possible hierarchical log~-linear models., For example,
for three dimensions there are elght models and for four dimensions
there are 113 models (Bishop et al, 1975}, Obviously we cannot- test
the fit of all these models so we need a method ¢f selecting terms to be
included in our "best fit" model., There is no best method for selecting
a log~linear model just as there is no best method for variable selection
in multiple regression. Three methods of model selection are discussed,
each in the context of a single data set, The program GLIM is used
throughout to fit models.

1«  DATA SET FOR ILLUSTRATICN

Table 1 represents hypothetical data for 564 steers categoriged by
four variables, (1) breed, (2) horn length pre~dehorning, (3) dehorning
instrument and (4) regrowth at six months rost-dehorning. There are
two breeds, brahman and sahiwal, three categories of horn length, less
than 2.5 cm, 2.5-3.5 cm and greater than 3.5 cm, two dehorning instruments,
scoop dehorner and large hodge pattern calf dehorner, and two categories
of regrowth, nil and some regrowth.

Table 1 Trequency data on breed x horn length pre-dehorning x dehorning
instrument x regrowth at six months post-dehorning.

Dehorning Instrument

Horn length

Breed pre~dehorning Scoop Hodge
Regrowth
Nil Some Nil Some
Brahman £ 2.5 em 54 Li 25 18
265~3.5 cm 7 63 6l 21
73,5 em 22 25 13 5
Sapiwal £ 2.5 enm 13 5 18 1
20535 cm 21 4 3z 5
? 3.5 cm 14 2 11 5

2.  BROWN'S MODEL SELECTION METHCD

In the analysis of continuous non-orthogonal data the significance
of adding an effect depends on what effects are currently in the model,
The same holds for the analysis of dontingency tables, We cannot look
at the efféct of adding a particular term to all models. Hence, a
model selection method similar to that in Brown (1976) relies on the

calculation of twe test statistics for each effect. For example, to
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test for the term Ugs in the example of Section 1 four models would

be considered

L AL 21 31 4] (2.1
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Fach model has an associated residual deviance (G°) which follows
approximately a ¥~2 distribution with degress of frecdom given by

defs = number of cells - number of parameters fitted.
The change in deviance between models {2.2) and (2.1} is the effect of
including Uys in the "main effects only' mcdel (+b§2) while the change
in deviance belween models (2,4) and (2.3) is the effect of excluding
Rqo from the "all two—g?ctor effects” model (—*AGz)° Both test statistics
follow approximately x,f&istributions and have the same degrees of
freedom as given for effects in analysis of variance, Bach effect should

give some idea of the relative importance of the effect u Ina

12°
similar way the other two-factor effects and the three factor effects
may be examined.

Table 2 gives thensz values for this method for the example,

-
Table 2 4G values for data in Table 1.

u term d. T, +QG2 —QGE
Upp 2 6,36 8,60
Uyg q 18, 50%> 15.66%%
LI 1 26,85%% 22.09%*
u23 2 5@75 3090
uy 2 Za31 2,57
g 1 16, 62%* 9,79%*
003 2 0,01 C.00
Lo 2 0.3%9 0,145
u?EQ 1 0.k4G 0.45
u234 2 1.1 112

* P K005

=P < 0,01

Effects that warrant inclusion in a model are Uyns u13, R and
U, since they are significant (P ¢0,05) for both test statistics,
¥or some data sets one test statistic from an effect may be significant
and the other not. In this case models should be considered with and
without this effect. Neither adding extra terms nor excluding any of these
terms enhances the fit so we have the model
[2h3]auBY (2.5)
with 67 = 15,88 on 13 duf. (P 70.05) as the best model by this methods
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3 STEMISE SELECTION METHODS

The methods outlined here are similar to those used in the analysis
of continucus data with unegual sub-class numbers. Goodman (1971) first
proposed their use for log-linear models. Fienberg (1977, p. 65-66)
describes the process in details

There are two approaches (a) forward selection or (b) backward
elimination. Both methods will be illustrated using the data of
Table 1. The significance level used throughout is 0.05.

(a) TForward Selection: it the models

dufs @@
G2 3w 18 78,38 (3.1
12 30137 (14 Jres 24 1234 9 8.k (3.2
231241 (1341 234] 2 G, 38* (3.3}

Since (%.1) does not fit and (3.2) does fit we ook for a model hetween
these, {(Note that (3.3) does not fit well. Goodmsn ignores this
situation),

Add each two-factor term fo (3.1) to get the following models

defe G5 a6%(from (3.1)) duf.
331 (%] [#2] % 72,02 636 2 (3.4
27 ™7 [3) 17 59.86% 18,52* 1 (3.5}
[27 (31 [a4] 17 57.53% 26.85% 1 (3.6)
(17 |43 [23] 16 7h. 65 5673 2 (3.7)
171 (3] 2] 16 76,07* 2051 2 {3.8)
{11 [27 B4 17 61.76F 16.62% 1 (3.9

Since Usp, is the most significant effect add it te (3.1} Now adding each

two~Tactor term to (3.6) we get the following wodels

dufs 6% AGT(from (3.6)) def.
31 (] D2l 15 45, 16% 6o 37 2 (3.,10)
el [ (3] 16 33.00% 18,53* 1 (311
(] 23] 15 ko9 307l 2 (3,12)
31 [ 24 15 bg.21* 2.32 2 (3,13
21 D] B4 16 Bl 91* 16, 62* 1 (3.1
Since s is the most significant effect add it to {3.6). Neither LovA
nor v.,]3 may be deleted at this stage. Now adding each two~factor term
to (3.11) we get the following modelis
Gofa & ag%(from (3.1 d.f.
[y 3] [19) i 26,64 6o 56" 2 (3.15)
(] 37 (23] o 2g9.27¢ 3.73% 2 (3.16)
A RCINEDY 14 30,69 2031 2 {3.17)
a7 137 B4 15 22,15 10, 85% 1 (3.18)
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Since u34 is the most significant effect add it to (3.71). HNone of Ugge
u13 or u}h may be deleted at this stage. Now adding each two-factor

tern to (3.18) we get the following models

do 1, & AG (from (3.18)) d.f.
(4] 131 D3] 18] 13 15,88 6.27% 2 (3.19)
IR IR RS 13 18,51 5. 6l 2 (3.20)
(247 [13] 247 [2b 13 19,93 2.22 2 (3.21)

Since v, is the only significant effect we add it to (3.78), Wone of
Uqps u13, u34 or W, may be deleted at this stage. Now adding cach two-
factor term to (3.19) we get the following models

dofa & a6%(from (3.19)) d.f.
[ [13] 3] 2] [23] 11 12,34 .54 2
0w 3] (347 [12] few)] 11 11,01 4,87 2

Neither model suggests an improved fit so cur best model iz given by (3.19)

(b) Backward eliminatioun: Tit the models (3.1}, (3.2) and (3.3).

This time we start with (3.2) and subtract two~factor terms to get the

following models

d. 1, ¢©  56%(from (3.2)) dof.
[1z7 [ (23] 28] 34 1M 17.03 8.59* 2 (3.22}
(27} [ 23 (24 34 10 22,10% 13, 66* 1 (3.23)
127 133 [23] (247 [34] 10 0. 55 22.09* 1 {3.24)
7271 3] [y (et 34 1M 2.3k 3,90 2 (3.25)
M2 iEl Al (23] (34 11 11,01 2057 2 {(3.26)
(127 413] [a4d (23] [24] 0 18,23 9.79% 1 (3,27)

Since deleting Unj,

subtract two-factor effects to get the following models

(131 D] (23] (3¥]
[z ) 23] [34]
(27 03] [22] [(34]
(21151 [k [34]
[reyizy Ox] [23]

dofe

13
12
12
13
12

2
18,51
24a 65*
32,01*
15. 88
2177 *

NG (from (3.26)) daf.

7 50%
13, 64"
21.00*

L, 8
10.76*

is the most non-significant event choose (3.26) and

2

[ o O G

(3,28}
(3.29)
(3.30)
{3.31)
(3.32)

Since deleting u23 is the most ron-significant event choose (3.31), Neither

uah_ noy u

23

can be added back in at this stage.

Now subtracting each two-

factor effect from (%,%1) we get the following models

Mz B4
[a] [} [34]
P27303] 34
(2 ]3] 0K

dafs

13
1h
1k
1

It

G
22415

28,54
36, 87

26,64

NG (from (3.31)) dafs

6. 27*
12.66*
20.99%

10,76*

2
1
1
1

Deleting any term would now significantly affect the fit so ocur model is

(3.31). Mo deleted terms can be added back in to improve the fit so oup

"hest" model is (%3.5%1),.

Both (a) and (b} give the same "best" model,
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ke  METHOD OF STANDARDIZED PARAMETER ESTIMATES

This method relies on some simple formulae for the asympotic
variance of the estimated u-terms in the full log=~linear model
(Fienberg, 1977). Each u~term is expressible as a linear combination
of the logarithms of the expected cell values. For example in a four

dimensional table we have terms like

u - = AL log m, .
1234{1 jk1) i’j‘k’lflgkl ikl
where 5 cape = 0
i,j,k,lp’l‘]kl

The maximum likelihood estimate for this ferm is given by

~ i
u . = . PR a7 S
1234 (4. 3k1) i,j,k,l/?lel i3kl

with variance given by
w

5 AL
A xd -
i,j,k,lf513k1 ijkl
Bishop ¢t _al {1975) give the following general formulse for the
above:
= =4
Yo(3) f‘ i 108 my

vhere 2. ﬁ% = ¢, with maximum likelihood estimate
i

Iy .~
' = 2./2 s
u@(j) i /% Log *g
and variance given by
~ L ow A ERLY
Vg(5)) = ‘;_“/[i %

Standardized parameter estimates are then obtained as the estimated
u~term divided by the estimated standard deviation for that term.

Hote that cells with zero values invalidate this method since
log © is undefined.

Note also that the parameter estimates given by the constraints
used in GLIM are not appropriate for this method. However, it is
possible to consiruct our own constraints and still use GLIM.

To select a "base" model these standardized parameter estimates
are tested against a z -score, at an appropriaie sigrificance level,
Further models are théh analysed using this "base" model and the
stepwise procedures of Bection 3.

Table % gives the parameter estimates, estimated standard errors

and standardized parameter estimates for the data from Table 1,
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Table U Parameter cstimates; ostimated standerd errord and standesdized

parameter estimated for data from Table %y

Befoct - Bstimate | S.Be z=5C0re
¥ 0:6546 040555 11.79**
U, -0, 1699 0.0680 n 2450
Uy =0, 2350 0,03%92 & 5,90%%
ug 0.2259 0. 0555 Lok
u, 0,5165 0.0555 9.31%*
Uy, ~0,2549 0.0580 - 3e75%
Lo ~0.0573 0.0392 w 1,46
Uy 0.1977 0.055% 3,564
g -0.2935 0.0555 - 5.29%*
Ups -0,0676 0.0680 - 0,99
Uy 0.0749 0.0392 1291
o), ~0,0764 0.0680 - 1412
toh ~0,0U55 0,0392 - 1,16
Uy, ~0s 1472 0,0555 - 2.65%*
Ugrs 0.1266 0.0680 1.86
U103 -0,0236 0.0392 - 0,60
Werly 0.1132 0.0680 1466
gk ~0,0074 0.0392 « 0,19
434 -0.0295 0.0555 - 0453
Wy 0. 1080 040680 1459
ok ~0.0022 040392 - 0.06
Ugp 3l ~0.2279 040680 - 3,35%*
Ugg3h 0,0280 040392 0,71

5 = linear constraint for variable 2, § = quadratic constraint for
variable 2
*P <0405
P 0,01 -
Since fourwfactor effects are very difficult to interpret we ignore
the significance of this effect. Henece, our "base" model is given by
F27] 3] Do ” ()

which iz our "best" model.
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S INTERPRETATION OF THE EIAMPLE

Bach model selection method gave the seame '"hest' model:
fiz] [zl (el 34 (G° = 15.88 on 13 duf., P 7 0,05)
- Parameter estimates are given in Table 5 while fitted values are
given in Table 6.

Table 5 Parameter estimates for the "best' model.

Parameter Estimate 5.5,
u 3,922 0,105
(2 ~-1.359 0,222
U0y 0. 67 0,107
Us(3) ~0.774 0. 150
u3(2) -0, 428 0,124
U(2) w0 167 0. 116
Y12(22) 0,065 0,233
Upo(23) 0,660 0.282
B5(22) 0,73k 0,206
Hak(22) ~1,084 0252
Vs (52) w(}o 63 s 195

Table 6 Titted values for the “best' model for data of Table 1.

Dehorning Instrument

Horn length

Breed pre-dehorning Scoop Hodge
Regrowth
Nil Sonme Nil Some
Brahman € 2.5 cm 50.5 42,7 32:9 14,8
2eD=3.5 cm o6 68,2 52.5 23.7
7 3.5 ¢cm 25.3% 15,7 15,2 68
Sahiwal @ 205 cm 13.0 30? ’1?0 6 207
2:5-3.5 om 22.1 603 30,1 L6
2’505 Cm 1136 :5«3 150? 20"'*'

From the model breed is related to horn length pre-dehorning,
dehorning instrument and regrowth while dehorning instrument and
regrowth are also related, All these relationships are independent
of any third variable, that is, there are no three~factor effects.

The models fitted thus far have considered all four variables
as response variables., In fact & more logical structure is one where
breed, horn length pre-dehorning and dehorning instrument are design
variables with regrowth a response varisble, Models with this structure
necessarily have the terms given by [123}included. This will be

discussed in more detail under Logit Models.
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6o SELECTION OF A METHOD

The model selection methods of the previous sections are not the
only ones available. In particular none of the methods made use of the
fact that some models have direct cell estimates which could reduce
computing time. This class of model was not discussed since the
method of GLIM (iterative weighted least squares) takes no account
of the fact.

Although cach of the model selection technigques considered so far
gave the same "best” model for the data of Table 1 this may not be the
case for other data sets. Where there are different Pbest™ models
for the various selection methods the researcher should consider them
all and determine which one (or ones) are the most useful for his
situation.

It is necessary to have some criteria for assessing a particular
method. Table 7 gives the nmumber of models that had to be fitted to get
to the "best" model using each method.

Table 7 HNumber of models to get "best! model for each method

Method Numbaer of Models
Brown's 23
Forward Selection 23
Backward Elimination' 18
Standardized Parameter 2

Estimates

Cbviously Brown's method and the stepwise selection methods
require a large amount of computation in comparison with the method
of standardized parameter estimates. Hence whee computing costs are
significant their use would not be advised as a routine way of selecting
a modela.

Of course all these model selection technigues must be considered
as merely aids to selection of 2 final model for a particular data set.
The researcher understands his data belter than any computer ever will.

Hence, his input is uppermost in the selection of a modsl.
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