

A Scalable Distribution System for the Optimal Application of Evaporation Suppressant Film to Farm Dams

Troy Symes, NCEA, USQ

symes@usq.edu.au

Gavin Brink, NCEA & FOES, USQ

brink@usq.edu.au

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLANI

Introduction

- Automated systems for application of ESFs have not proved overly successful
 Due in small part to the poor performance of available products
- Due in large part to the poor design & management strategies – not capable of adaptive application i.e. Changing onsite conditions

Monolayer Performance has been shown to be Highly Variable

SOUTHERN OUEENSLAND

Available Products

Monolayers

- 1. WaterSavr (<u>www.phoslock.com.au</u>)
 - C_{16}/C_{18} mix in hydrated lime

Surface Films

- 1. Aquatain (<u>www.aquatain.com.au</u>)
 - Mix of differing Siloxanes

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

CRCs Collaborate to Reduce Evaporation

Representatives from the three CRCs collaborating on controlling evaporation losses (from left). Back row: Professor Graeme George (CRC-P, QUT), Dr Geoff Barnes (QUT retired), Dr Ian Dagley (CRC-P), Professor David Solomon (CRC-P, UniMelb) and Dr Graham Harris (Cotton and Irrigation Futures CRCs). Front row: Mr Erik Schmidt (Irrigation Futures CRC) and Dr Guy Roth (CEO Cotton Catchment Communities CRC)

http://www.crcp.com.au/publications/Newsletters/Polymer_News_November_2006.pdf

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Why Monolayers & Surface Films?

- Easy & Quick to install
- Economical for storages >10ha
- Product costs incurred during application only.
- Low Capital Expenditure (~\$10k rather than ~\$100k or ~\$1M)

What form will monolayers take?

Pellets or Tablets

UNIVERSITY OF SOUTHERN QUEENSLAND

fulfilling lives

Previous Application Systems

- Often simple, mechanical and rather crude working prototypes
- Monolayer application was only ever controlled in direct proportion to wind speed or wind direction
- Lack of intelligent decision systems
 As a result, very few application systems were ever commercialised.

Materials and Methods

- Our Application System is designed to be modular, scalable and built upon an intelligent decision system
- Scale is related to Dam Size, Shape and site-specific prevailing conditions.
- Current design is for the application of liquid products
- Installation & Product informed by the 'UDF' (G Brink – Poster in Hall 1)

Universal Design Framework (UDF)

Need to consider:

- 1. Monolayer product selection,
- **2.** Application System Design

including no. of applicators types (i.e. shore or floating) and their arrangement on site,

3. Management Strategy in response to prevailing conditions and/or user requirements.

Monolayer Management Issues

Half-life of ~2 days

- Application during periods of highest evaporation?
- Continuous or no application during high wind periods?
- Containment grids?
- Monolayer Detection System (P Coop)
- Specific Issues for Channel Systems

Management Strategies

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Shore or Floating Applicators?

A Research Centre of the University of Southern Queensland

SOUTHERN QUEENSLAND

Applicator System: Key Features

- Wireless Communications
- Central Coordination & Control
- Decentralised Application & Failsafe
- Simple Timed/Volume Dosing Strategy, or

 Dynamic Application via on-site Data from AWS and inputs from 'UDF'
 Input for Monolayer Detector (P Coop)

CRC IF / NCEA Monolayer Applicator

A Research Centre of the University of Southern Queensland

CRC IF / NCEA Monolayer Applicator

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Application Installation / Trial

NSW Sustaining the Basin: Border Rivers – Gwydir Pilot Project

Site: Yamba, 30km west of Moree

- Cotton and Cattle Property
- 9 Ha Water Storage (Trial Site)
- 70 Ha Water Storage (No Water)

UNIVERSITY OF SOUTHERN QUEENSLAND

fulfilling lives

Yamba, Gwydir Valley, NSW

© 2010 Google Maps Data. Used with permission.

A Research Centre of the University of Southern Queensland

A Research Centre of the University of Southern Queensland

fulfilling lives

IIS

UNIVERSITY OF

SOUTHERN QUEENSLAND

Yamba: Trial Layout

Product Application

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Product Coverage

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Results & Discussion

- Five Monolayer Applicators deployed
- Aquatain was used as a model for the application of a monolayer
- Time/Volume Application Strategy
- Product affected by wind/wave action
- System Operated very well
- Evaporation Savings achieved < 10% (Related to simple application strategy?)

Results & Discussion cont.

Wave Calming Structures

A floating structure may help to:

- Calm the water surface, and
- Contain the monolayer within smaller more manageable cells.
- Improve overall product performance

UNIVERSITY OF SOUTHERN QUEENSLAND Yamba: Acknowledgements

Lyndon Mulligan (Yamba Manager)

Bill Williamson (I&I NSW / CRC IF)

Janelle Montgomery (DPI Moree, NSW)

David Wigginton (DW Cons. / NCEA)

Orica / CRC Polymers Product and CRCIF / NCEA Applicators

- 1. 1 ha Horticulture Storage @ Caffey
- 2. 16 ha Horticulture Storage @ Forrest Hill
- 3. 10,800 ha Wivenhoe Dam? (SEQUWA)

A Scalable Distribution System for the Optimal Application of Evaporation Suppressant Film to Farm Dams

Troy Symes, NCEA, USQ

symes@usq.edu.au

Gavin Brink, NCEA & FOES, USQ

brink@usq.edu.au

A Research Centre of the University of Southern Queensland

SOUTHERN OUEENSI