
Based on wideband precoding (WBP) in the multiple-
input multiple-output orthogonal frequency division 
multiplexing system, an adaptive nonuniform codebook is 
presented in this paper. The relationship between the 
precoder distribution and spatial correlation is analyzed at 
first. A closed-form expression based on overlapped 
isosceles triangles is proposed as an approximation of the 
precoder distribution. Then, the adaptive codebook design 
is derived with the approximate distribution to minimize 
quantization errors. The capacity and bit error rate 
performance demonstrate that the adaptive codebook 
with WBP outperforms the conventional fixed uniform 
codebook. 
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I. Introduction 

Multiple-input multiple-output (MIMO) technology has 
been proven to be able to tremendously improve the spectral 
efficiency in rich scattering environments [1]. The orthogonal 
frequency division multiplexing (OFDM) technique has been 
in widespread use in high data rate wireless communication 
systems due to its high spectrum efficiency and tolerance of 
inter-symbol interference [2], [3]. Hence, MIMO-OFDM 
systems have attracted significant worldwide research efforts 
[4].  

In MIMO systems, the precoding technique is able to 
enhance the system reliability and capacity [5]. Conventional 
precoding schemes are usually designed for narrowband 
MIMO systems with flat fading, which are not suitable for 
MIMO-OFDM systems with frequency-selective fading. A 
wideband precoding (WBP) scheme is presented in [6] and [7], 
where only one precoder is used for all the subcarriers in the 
MIMO-OFDM system. The precoder is obtained from a 
subcarrier independent channel matrix constructed through the 
temporal channel vectors. The channel state information 
feedback overhead can be significantly reduced especially if 
the number of subcarriers is large. Based on the work in [6] and 
[7], the relationship between the subcarrier independent 
channel matrix and the temporal/frequency channel matrices is 
investigated and an improved WBP scheme is proposed for 
arbitrary subcarrier grouping in [8]. The idea of WBP is 
extended to the MIMO-OFDM cooperative system with a 
relay node in [9]. However, the precoder distribution for WBP 
is still an open problem, which is important for the use of WBP 
in the system with limited feedback.  

On the other hand, the codebook-based precoding technique 
is suitable for practical implementation with reduced feedback 
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overhead [10]-[12]. For codebook-based precoding, the 
quantization of a potential precoder is a challenging problem in 
the codebook design. For independent and identically 
distributed (i.i.d.) MIMO channels, the conventional precoder 
(right singular vectors of the channel matrix) is isotropically 
distributed in the set of unitary matrices [12]-[14]. Therefore, 
the codebook design is usually considered to be a classical 
Grassmanian packing problem, as in [11] and [12]. In practical 
applications, uniform quantization in the set of unitary matrices 
is simple and useful for the codebook design. The precoder 
distribution under spatially correlated channels is analyzed in 
[14], and an adaptive nonuniform codebook design is proposed 
for MIMO systems, where the codebook is designed in 
consideration of the correlation coefficient.  

In this paper, based on WBP in MIMO-OFDM systems 
under spatially correlated channels, the precoder distribution is 
analyzed and found to be affected by the spatial correlation 
coefficients of all the resolvable taps of the channel, which is 
different from the narrowband MIMO system. Then, the 
distribution is approximated by multiple overlapped isosceles 
triangles. An adaptive nonuniform codebook is designed for 
WBP accordingly. Simulation results demonstrate that the 
proposed adaptive codebook is able to reduce quantization 
errors and outperforms the fixed uniform codebook in system 
capacity and reliability.  

The remainder of this paper is organized as follows. The 
system model is described in section II. The WBP scheme is 
reviewed in section III. The precoder distribution is analyzed 
and the approximate expressions are presented in section IV. 
Accordingly, the adaptive codebook is designed in section V. 
Simulation results are given in section VI. Finally, section VII 
concludes this paper.  

Notation. The transpose and conjugate-transpose of matrix 
are denoted by AA T and AH, respectively. The n×n identity 

matrix and m×n all-zero matrix are denoted by In and Om,n, 
respectively. Mathematical expectation is denoted by E(·), and 

 denotes the Kronecker product of two matrices. The vector 
space of all m×n complex matrices is denoted by . The 
largest integral smaller than x is denoted by

⊗
nm×

 x⎢ ⎥⎣ ⎦ .  

II. System Model 

We consider the MIMO-OFDM system with the discrete 
Fourier transform (DFT) of size N and L input spatial streams. 
Equipped at the transmitter and receiver are NT and NR 
antennas, respectively. The maximum path delay is assumed to 
be shorter than the length of the cyclic prefix (CP), NT ≥L, and 
NR ≥L. 

The equivalent MIMO system over the n-th subcarrier can 
be written as 

 

Fig. 1. Illustration of MIMO system over n-th subcarrier. 
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The equivalent MIMO system is illustrated in Fig. 1, where 
dn,i is the symbol of the i-th spatial data stream to be sent over 
the n-th subcarrier, i∈{1, 2,…, L}. That is, dn=[ dn,1, dn,2,…,  
dn,L]T is the data vector before precoding.  
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The precoder over all the N subcarriers is F, and xn=Fdn.  
As described in [6]-[8], Hn can be denoted by the temporal 

channel ,q
l
ph , which is the temporal channel of the l-th tap 

between the p-th transmit and the q-th receive antennas, where 
l∈{1, 2,…, Nf}, p∈{1, 2,…, NT}, and q∈{1, 2,…, NR}. The 
channel order Nf is determined as  

max /τ= Δ +⎢ ⎥⎣ ⎦fN t 1,

T

RN

                (3) 

where τmax is the maximum path delay and ∆t is the temporal 
sampling interval. The temporal channel vector between the  
p-th transmit and the q-th receive antennas is given by 

,, , ,
1 2[ , ,..., ] .

f

p qp q p q p
N

qh h h=h           (4) 

Using (4), Hn can be expressed in terms of hp,q [6], [7]: 
T

R T
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where 
2π ·( )/2π / 2π ·2/ T1[1,e ,e ,..., e ] .fj n N Nj n N j n N

n
− ⋅− ⋅ − −⋅=w    (6) 

III. Wideband Precoding Review 

In the WBP scheme [6], [7], only one precoder is used for all 
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the subcarriers. Equation (5) can be rewritten as 
T(

RN nn = ⊗H I w H) ,

RN

⎥
⎥

−

}

              (7) 

where 
T

R T

,11,1

1, ,
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N N

⎡ ⎤
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h h
H

h h
            (8) 

is the subcarrier independent channel matrix. The singular 
value decomposition of H is obtained at the receiver as  

H.=H UΣV                  (9) 

The first L right singular vectors are used as the precoder: 

T

T
,[ , ] , {0,1,..., 1}.L L N L n N−= ∈F V I 0      (10) 

The relationship between H and the temporal/frequency 
MIMO channel matrices is given in [8]. The temporal MIMO 
channel matrix of the i-th tap is constructed by 

,{ l
p qh  as  
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It is summarized in [8] that 

( ) H (
1

0

)H [ ]
fN

i i
t

i

−

=

= ∑H H H H            (12) 

That is, the covariance matrix of the subcarrier independent 
channel is the sum of the covariance matrices of the temporal 
MIMO channel matrices [8].  

Based on WBP reviewed previously, codebook-based WBP 
under spatially correlated channels is investigated below. The 
major contributions of this paper can be summarized as follows:  

1) The precoder distributions of WBP under correlated 
channels are given under various channel assumptions. Then, a 
unified approximate expression of the precoder distribution is 
presented in section IV. The proposed approximate expression 
can also be used for narrowband precoders.  

2) An adaptive codebook for WBP is designed in section V 
with the proposed approximate expressions in section IV. 
Simulation results in section VI demonstrate that the proposed 
adaptive codebook outperforms the conventional fixed 
codebook both in the bit error rate (BER) and the capacity.  

IV. Precoder Distribution under Correlated Channel 

The spatial correlation matrices of the i-th tap at the 
transmitter and receiver are defined as  

( ) H ( )
T{[ ] }i i i

t t
iE =H H R            (13) 

and 

( ) ( ) H
R{ [ ] }t t

i iiE =H H R ,           (14) 

respectively. In (13) and (14), Pi is the average power of the i-th 
tap. According to [14], the receiver correlation matrix RRi does 
not affect the precoder distribution. Hence, it is assumed in the 
sequel that 

RR {1, 2,, ..., }.Ni fNi= ∀ ∈R I          (15) 

For brevity of exposition, it is assumed that NT=2, so that the 
spatial correlation matrix at the transmitter can be written as 
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where βi is the correlation coefficient at the transmitter of the  
i-th tap. As shown in (10), F is related to V. A generalized 
expression of V is given as [14] 

2 2
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π π+
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Here, V can be uniquely identified with θ1 and θ2. Thus, the 
precoder distribution is equivalent to the distribution of θ1 and 
θ2. The precoder distribution in the narrowband MIMO system 
can be found in [14], which is related to the correlation 
coefficient β. The distribution of θ1 is not affected by the angle 
of β. The adaptive nonuniform codebook amounts to the 
adaptive quantization of θ2 according to β [14]. Hence, we 
focus on the distribution of θ2 in this study. It is also assumed 
that L=1. That is, the precoder is the first column of V. The 
results in this study can be easily extended to the case of L=2.  

1. Distribution of Right Singular Vector 

If | | 0iβ = , i∈{1, 2,…, Nf}, that is, under the i.i.d. fading 
channel, the precoder distribution is identical to that in the i.i.d. 
narrowband MIMO systems [12]-[15]. That is, V is 
isotropically distributed in the set of unitary matrices. This 
means that cos2 θ1 and θ2 are uniformly distributed in the 
intervals of [0, 1] and [–π, π), respectively [14].  

In narrowband precoding, the distribution center of θ2 is 
related to the angle of the correlation coefficient [14]. We can 
also readily see that the distribution of the wideband precoder 
under the spatial correlated channel is related to φi.  

A. Equal Correlation Coefficient for All Taps 

In this case, the correlation coefficients of all the taps are 
assumed to be identical, that is, βi=β, i∈{1, 2,…, N∀ f}. The 
precoder distributions are the same as those in narrowband 
MIMO systems. The probability density function (PDF) of θ2, 
p(θ2) is obtained with Monte Carlo simulations, which is 
plotted with the black line in Fig. 2. The relationship between β  
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Fig. 2. Precoder distribution for (a) βi=β=0.5ejπ/2, (b) βi=β
=0.6ejπ/2, (c) βi=β=0.7ejπ/2, (d) βi=β=0.8ejπ/2, and 
(e) βi=β=0.9ejπ/2. 
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Fig. 3. Precoder distribution for P1=Pl=0.5, φ1=–π/2, φl=π/2: (a)
|β1|=|βl|=0.5, (b) |β1|=|βl|=0.6, (c) |β1|=|βl|=0.7, (d)
|β1|=|βl|=0.8, and (e) |β1|=|βl|=0.9.  
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Fig. 4. Precoder distribution for P1=0.6, Pl=0.4, φ1=–π/2,
and φ l=π/2: (a)  |β1|=|βl|=0.5, (b)  |β1|=|βl|=0.6, (c)
|β1|=|βl|=0.7, (d) |β1|=|βl|=0.8, and (e) |β1|=|βl|=0.9.  
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Fig. 5. Precoder distribution for P1=0.7, Pl=0.3, φ1=–π/2,
and φ l=π/2: (a) |β1|=|βl|=0.5, (b) |β1|=|βl|=0.6, (c)
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and p(θ2) is similar to those relationships summarized in [14]: 
p(θ2) is a symmetrical function of which the symmetrical axis 
is θ2= φ; the distribution of θ2 is mainly near φ, and the variance 
of θ2 decreases as | |β  increases.  

B. Different Correlation Coefficients for All Taps 

As shown in (12), H and V are independent of the delay of 
all the taps and related to power Pi and correlation coefficient βi 
of each tap. For our investigation, a two-tap channel with P1>0, 
Pl>0, Pl'=0, 1<l, l'≤Nf, l'≠l, and P1+Pl =1 is considered.  

a. Equal Power Case 

The precoder distributions with P1=Pl=0.5 are shown in  
Fig. 3 with the black line. As can be seen from the figures, two 
peaks of p(θ2) exist near φ1=–π/2 and φl=π/2. The variance of θ2 
around φ1 and φl also decreases with the increase of |1| β  and 
| l |β . It is easy to know the envelope of the PDFs under other 
assumptions of φ1 and φl.  

b. Nonequal Power Case 

Different powers at the taps are considered for the cases of 
P1=0.6 and P1=0.7. The precoder distributions are given in  
Figs. 4 and 5. The two peaks of the PDF still exist, and the one 
around φ1=–π/2 is higher and wider than the one around φl=π/2.  

2. Approximation of Precoder Distribution 

Figures 2 through 5 show some characteristics of p(θ2) under 
four different scenarios. 

• The peaks are related to the channel taps. 
• The locations of the peaks are equal to φi. 
• The height and the area under each peak are related to Pi, 

and the area under the peak increases as Pi increases. 
• The height of each peak is also related to| |iβ . 

The envelope of each peak of the PDF can be represented by 
an isosceles triangle, as shown in Figs. 2 through 5. As a result, 
we can use the following isosceles triangle function to 
approximate the distribution related to each tap:  

2
2 2

2
2 2

2

2 ( ) , [ 1/ (2 ), ]
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i i
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h h h
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where h is a variable to optimize the approximation and 2Pih is 
the height of the peak. It is noted that the period of θ2 is 2π. 
Additionally, the PDF of θ2 is approximated as the sum of the 
functions related to all the taps: 

2 2 2 2
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ˆ ˆ( ) ( ), ( ) 1.
f fN N

i
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ip f p d P
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π

θ θ θ θ
= −

= =∑ ∫
1i=
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As can be seen from (18) and (19), h is the only variable to 

Table 1. Optimum variable values for βi=β. 

| |β  h 

0.5 0.34 

0.6 0.43 

0.7 0.57 

0.8 0.78 

0.9 1.19 

Table 2. Optimum variable values for equal power, P1=Pl=0.5, 
φ1=–π/2, and φl=π/2. 

1| |,| |lβ β  h 
0.5, 0.5 0.22 

0.6, 0.6 0.24 

0.7, 0.7 0.26 

0.8, 0.8 0.27 

0.9, 0.9 0.38 

Table 3. Optimum variable values for non-equal power, φ1=–π/2
and φl=π/2. 

h 
1| |, | l |β β  

1 0.6, 0.4lP P= =  1 0.7, 0.3lP P= =

0.5, 0.5 0.22 0.23 

0.6, 0.6 0.24 0.25 

0.7, 0.7 0.26 0.27 

0.8, 0.8 0.27 0.29 

0.9, 0.9 0.37 0.49 

 

 
minimize the approximation error of the approximate PDF in 
(19). For the numerically obtained PDFs in Figs. 2 through 5, 
the optimum value of h can be obtained by minimizing the 
approximation error: 

2 2
1/(2 )

ˆarg min ( ) ( ) ,
π

π π

θ θ
≥ −

= −∫
h

h p p 2θd         (20) 

where the absolute value of the difference between the exact 
and approximate PDFs is used to measure the accuracy of the 
approximation. Other approximation error metrics can also be 
adopted. The approximate distributions are plotted with the 
red line in Figs. 2 through 5, and the corresponding optimum 
values of h under all the scenarios are listed in Tables 1 
through 3. 

V. Adaptive Codebook Design for WBP 

The adaptive nonuniform codebook for narrowband MIMO  
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Fig. 6. Adaptive codebook in the MIMO-OFDM system. 
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systems is proposed in [14]. The spatial correlation coefficient 
is calculated according to the average at the receiver over a 
long period of time and sent back to the transmitter. Then, the 
current codebook is chosen. The use of the adaptive 
nonuniform codebook in the MIMO-OFDM system is 
illustrated in Fig. 6, where the codebook is adaptive to the 
correlation coefficients of the multi-path channel. Compared 
with Fig. 1, a new feedback link from the receiver to 
transmitter is used for the current codebook index. The 
feedback period of the codebook index is much longer than 
that of the codeword index. Hence, the system overhead 
increase due to the new feedback link is acceptable.  

In the adaptive codebook design, θ1 is fixed as π/4; hence, a 
codebook is equivalent to a quantization of θ2. According to the 
approximate precoder distribution in subsection IV.2, adaptive 
quantization of θ2 can be easily implemented. Let ci be the i-th 
precoder (codeword) in codebook C, which comprises M 
precoders. The distance between angles is defined as 

2 21 1Z
( , ) min 2 .

k
d kψ ψ ψ ψ π

∈
= − +         (21) 

For codebook C, the quantized angle of θ2 is obtained through 
minimizing (21) as 

2̂ arg min ( , )
ic C

id cθ
∈

= 2θ

h

,            (22) 

which is the codeword selection in the codebook. The 
quantization error is . The codebook design problem 
with the approximate precoder distribution is equivalent to the 
average quantization error minimization problem below: 

2 2̂( , )d θ θ

2 2̂arg min [ ( , )].E d θ θ=
C

C           (23) 

The adaptive nonuniform codebook designs for two classic 
scenarios are taken as examples to explain the use of adaptive 
codebook design based on the approximate precoder 
distribution in subsection IV.2. 

1. PDF with a Single Peak 

If there is only a single peak in the envelope of the precoder 
distribution, that is, βi=β, the symmetrical axis of p(θ2) is θ2= 
φ=angle(β), as shown in Fig. 2. According to (18) and (19), the 
approximate precoder distribution is given by 

2

2 2
2

2
2

24 ( ) 2 , [ 1/ (2 ), ]ˆ ( ) .
4 ( ) 2 , [ , 1/ (2 )]

i

i

h h h
p

h h
θ ϕ θ ϕ ϕ

θ
θ ϕ θ ϕ ϕ

⎧ − + ∈ −⎪= ⎨− − + ∈ +⎪⎩
  (24) 

If M=2, the quantization of θ2 is also symmetrical around φ 
and the codebook is represented by C2={φ–t, φ+t}. As the 
precoder distribution and the codebook are both insensitive to 
angle rotation, we can assume that φ=0. Based upon this 
knowledge, the quantization error becomes a function of t as  

3
2

2 2
2

8 1ˆ( ) ( , ) 4 .
3 6

R t E d h t ht t
h

θ θ⎡ ⎤= = − + −⎣ ⎦ +    (25) 

The optimum value of t can be obtained as  

2 2arg min ( ) .
4t

t R t
h

−= =           (26) 

The blue dashed line in Fig. 2 shows C2 obtained with (26). As 
can be seen from (26), the distance between the quantization 
orders and the symmetrical axis is related to h, and the product 
of h and t is constant.  

For M=4, the codebook is denoted by C4={φ–t2, φ–t1, φ+t1, 
φ+t2}. The quantization error becomes 

2
2 3 2 3 2 2 2 2

1 2 1 1 2 1 2

2
1 1 22

2
2

7 7( , )
3 3

13 3 2 .
6

R t t h t h t h t t h t t

ht ht ht t t
h

= − − + +

+ + − − +
   (27) 

The optimization problem can be solved with an exhaustive 
search in the interval of [0, 1/(2h)] as 

21 1 2( , ),0 1/(2 )

1
1 2( , ) arg min ( ) (0.08 ,0.27 ).

t t t t h
t t R t h h

< < <

− −= = 1   (28) 

Figure 2 also plots C4, represented by the pink dashed line.  

2. PDF with Multiple Peaks 

For the scenario of P1=Pl=0.5, φ1=–π/2, and φl=π/2, the 
design of C2 is straightforward, that is, C2={φ1, φl}. If M=4 and 
the two peaks of the precoder distribution do not overlap as 
shown in Fig. 3(e), that is, h>1/π, the proposed codebook 
design in subsection V.1 for M=2 can be directly extended to  

4 { / 2 (2 2) / (4 )}hπ= ± ± −C .          (29) 

If the two peaks of the precoder distribution overlap as 
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shown in Figs. 3(a) to 3(d), the codebook can be obtained as 
. The quantization error function contains t as 

a variable. If  
4 /{ 2 tπ= ± ±C }

1
2

t
h

π< − ,                 (30) 

then 

2 3 24( ) 2 ,
3

1
2

R t h t ht t= − + +−        (31) 

where the constant independent of t is ignored. The 
quantization error is minimized as follows: 

2arg min ( ) .2
4t

t R t
h

−= =           (32) 

Integrating (32) into (30) gives rise to the necessary condition 
of the codebook design in (30) as  

24 .
4

h
π

−>                 (33) 

On the other hand, if  

1
2

t
h

π> − ,                 (34) 

then 

2 2 2 2( ) (
2

4 4 4 1) 4 hR t h h t h tπ π π⎛= − + − +⎜
⎝

+ ,⎞
⎟
⎠

  (35) 

where the constant independent of t is ignored. The 
quantization error is minimized when 

2 2

2

8 8 .
16 1

1
6

ht
h

h
h

π π
π

−
−

−=               (36) 

Substituting (36) into (34) gives rise to the necessary condition 
of the codebook design in (34) as 

24 .
4

h
π

−<                 (37) 

Combining (32), (33), (36), and (37), the codebook design 
for the two-peak precoder distribution function can be 
summarized as  

4 2 2

2

2 2
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C

1

4

.  (38) 

As can be seen from (29) and (38), the codebook design for 
(4 ) / )2 (4h π≥ −  is identical. 

VI. Simulation Results 

The system performance of the proposed adaptive 
nonuniform codebook for WBP is evaluated in this section, 
where the conventional fixed uniform codebook is taken as a 
comparative baseline scheme. The proposed adaptive 
nonuniform codebook is adaptive quantization of the precoder 
and related to the correlation coefficients of all the channel taps. 
Therefore, apparent reduction on the quantization error at the 
expense of a slight increase of the feedback overhead can be 
achieved with the proposed adaptive codebook.  

The MIMO-OFDM system with WBP and the adaptive 
codebook is evaluated with the system parameters listed in 
Table 4. The ergodic capacity and BER are adopted as two 
performance metrics. The system ergodic capacity is defined as  

[ 2
1

1 log (1 ) ,
CN

nC
a nC E

N
γ

=

= ∑ ]+

Table 4. System parameters for performance evaluation. 

         (39) 

where γn is the post signal-to-noise ratio (SNR) over the n-th 
subcarrier after maximum ratio combining (MRC).  

In our simulations, each channel tap is generated with an i.i.d. 
channel matrix and the correlation coefficient according to (13) 
and (14) in [14]. According to (5), the channel matrices of all 
the subcarriers can be obtained. Then, the optimum precoder is 
computed with (10), and the corresponding angle  is 
achieved with (17). The quantized angle , that is, the 
precoder in the codebook, is selected with (22). The post SNR 
over each subcarrier can be computed with the selected 
precoder and H

2θ
2̂θ

n. The two-tap channel in section IV is also 
adopted in this part, and l=4. 

1. Equal Power and Correlation Coefficient for All Taps 

Assume P1=Pl=0.5 and β=0.5ejπ/2. Two adaptive codebooks 
 

Sampling frequency (1/Δt) 960 kHz 

DFT size (N) 64 

Number of available subcarriers 64 

OFDM symbol duration Data: 66.67 µs 
CP: 4.56 µs 

Length of subframe 1 ms (14 OFDM symbols)

NT×NR 2 2×  

Mobile speed 3 km/h 

Modulation Binary phase-shift keying

Receiver algorithm MRC 
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Fig. 7. (a) BER performance and (b) capacity performance for
β=0.5ejπ/2. 

F in (10) CF2 C2 C4 

2 4 6 8 10 12 14 
10–3 

10–2 

10–1 

SNR (dB) 

B
ER

 

(a) 

2 4 6 8 10 12 14
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

C
ap

ac
ity

 (b
it/

ch
an

ne
l u

se
) 

SNR (dB) 
(b) 

 
 

 

Fig. 8. (a) BER performance and (b) capacity performance for
β=0.9ejπ/2. 
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Table 5. SNR gains in dB over CF2 for equal correlation 
coefficient (BER=10–2, Ca=3.0 bits/channel use). 

 β BER Capacity 
/20.5e jπ  0.51 0.88 

 2C /20.9e jπ  2.07 2.26 
/20.5e jπ  0.67 0.96 

 4C /20.9e jπ  2.07 2.26 

 
 

are constructed according to subsection V.1: 1) C2={1.14, 2.00} 
and 2) C4={0.78, 1.34, 1.81, 2.36}. The fixed uniform 
quantization codebook (CF2={0, π}) is also taken for 
comparison. Additionally, the results based on (10) are plotted 
in the figures, which are equivalent to a codebook with an 
infinite size.  

The BER and capacity results are given in Fig. 7. Obviously, 
the precoder in (10) performs the best without quantization 
errors. The adaptive nonuniform codebook, C2, outperforms the 
fixed one, CF2, by about 0.6 dB in the BER and 0.9 dB in 
capacity, as shown in Figs. 7(a) and 7(b), respectively. The 
difference between C2 and C4 is less than 0.2 dB.  

The performance with β=0.9ejπ/2 is also evaluated, where  

 

Fig. 9. (a) BER performance and (b) capacity performance for 
β1=0.6e–jπ/2 and βl=0.6ejπ/2. 
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Fig. 10. (a) BER performance and (b) capacity performance for 
β1=0.9e–jπ/2 and βl=0.9ejπ/2. 

F in (10) CF2 C F4 C4

2 4 6 8 10 12 14 

10–3

10–2

10–1

SNR (dB) 

B
ER

 

(a) 

2 4 6 8 10 12 14
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

C
ap

ac
ity

 (b
it/

ch
an

ne
l u

se
) 

SNR (dB) 
(b) 

 
 
C2={1.45, 1.69} and C4={1.34, 1.50, 1.64, 1.80}. The results 
are given in Fig. 8. As can be observed from Fig. 2(e), p(θ2) is 
close to φ=π/2, so that precoding based on C2 and C4 performs 
almost the same as the noncodebook precoder. The feedback 
overhead can be extremely reduced without obvious 
performance loss in this scenario.  

The SNR gains in dB of C2 and C4 over CF2 in Figs. 7 and 8 
are listed in Table 5. The improvement in the capacity with the 
proposed adaptive codebook over the conventional fixed 
codebook is more apparent than that in the BER.  

2. Equal Power and Different Spatial Correlations 

Various tap correlation coefficients are considered in this 
scenario. The BER and capacity results for P1=Pl=0.5,  
β1=0.6e–jπ/2, and βl=0.6ejπ/2 are shown in Fig. 9. The fixed 
codebook  is included for comparison. 
According to (37), we have The 
performance of C

F4 / 4{ , /3 4π π= ± ±C }
4 { 0.96, 2.18}.= ± ±C

F2 is far from the performances of the other 
schemes. As shown in Fig. 9(a), C4 performs closely to CF4 at 
the low SNR region and outperforms it at high SNRs.  

For β1=0.9e–jπ/2 and βl=0.9ejπ/2, the BER and capacity results 
are plotted in Fig. 10, where  is in  4 { 1.19, 1.96}= ± ±C
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Table 6. SNR gains in dB over CF2 and CF4 for different 
correlation coefficient (BER=10–2, Ca=3.0 bits/channel
use). 

 β1, βl BER Capacity 

0.6e–jπ/2, 0.6ejπ/2 1.02 0.63 
CF2 

0.9e–jπ/2, 0.9ejπ/2 2.31 1.14 

0.6e–jπ/2, 0.6ejπ/2 0.10 0 
CF4 

0.9e–jπ/2, 0.9ejπ/2 0.48 0 

 

 
accordance with (29). The capacity results with CF4, C4, and the 
noncodebook precoding are similar. However, C4 outperforms 
CF4 by about 1.4 dB in terms of BER, as shown in Fig. 10(a).  

Similarly, the results in Figs. 9 and 10 are summarized in 
Table 6. For the channels with different correlation coefficients, 
the proposed adaptive nonuniform codebook is capable of 
reducing quantization errors and improving on the system 
reliability and capacity. The SNR gains at the same levels of 
the BER are more apparent than those in capacity, which is 
different from the observation in Table 5. The results in  
Tables 5 and 6 clearly demonstrate the advantage of the 
proposed adaptive codebook over the conventional codebook.  

VII. Conclusion 

In this paper, we studied the precoder distribution with WBP 
under the spatially correlated channel, which was shown to be 
related to the average power and spatial correlation coefficient 
of each channel tap. Then, a unified approximate expression of 
the precoder distribution function was proposed, where the 
PDF related to each tap was approximated by an isosceles 
triangle and the precoder distribution was approximated by the 
overlapped functions of all the taps. Based on the proposed 
approximation, an adaptive nonuniform codebook design for 
WBP was presented. The BER and capacity performances 
obtained via Monte Carlo simulations clearly demonstrated the 
advantage of the proposed adaptive codebook.  
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