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Abstract

We model the evolution of the concentration �eld of macromole�
cules in a symmetric �eld��ow fractionation �FFF� channel by a one�
dimensional advection�di�usion equation� The coe�cients are pre�
cisely determined from the �uid dynamics� This model gives quanti�
tative predictions of the time of elution of the molecules and the width
in time of the concentration pulse� The model is rigorously supported
by centre manifold theory� Errors of the derived model are quanti�ed
for improved predictions if necessary� The advection�di�usion equa�
tion is used to �nd that the optimal condition in a symmetric FFF
for the separation of two species of molecules with similar di�usivities
involves a high rate of cross��ow�
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� Introduction

Consider the transport of some contaminant molecules in the �uid �ow of
a symmetric �eld��ow fractionation �FFF� channel as analysed by Giddings
and others ��	 �
	 e�g�� and sketched in Figure�� The two horizontal parallel
plates above and below the channel are not permeable to the contaminant
molecules but allow for the cross��ow of �uid� This cross��ow distributes
the contaminant preferentially to the lower side of the channel as shown in
Figure �� It is this cross��ow and asymmetric distribution of contaminant
concentration c�x� y� t� that creates a di
erential advection of di
erent molec�
ular species and renders the problem interesting�
Using techniques based upon centre manifold theory ����	 from the con�

tinuum equations �Section �� we deduce that a model for the contaminant
distribution in the channel is the advection�di
usion equation

�C

�t
� �U �C

�x
�D

��C

�x�
� ���

where t denotes time	 xmeasures distance downstream along the channel	 and
C�x� t� � c�x� �� t� is the concentration of the contaminant measured along
the lower plate �the so called accumulating wall�� We derive expressions for
the e
ective advection velocity U as it predominantly determines the time of
e�ux of the contaminant out across the end of the channel	 and the e
ective
di
usivity D as it determines how wide the contaminant spreads by the time
it reaches the end of the channel� in a useful parameter regime �Section ��

U � ��u�
v�b

� D � ���u
���

v��b
�

� ���

where � is the molecular di
usivity	 �u is the mean along�channel velocity	 b is
the channel height	 and v� is the cross��ow velocity� The term D ��C

�x�
models

the so called �zone broadening e
ects� discussed by Litzen and others ��	 �
��
We also quantify the two sources of errors in the model by

� estimating the time it takes for initial transients to die out and the
model to become valid �Section 
��
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x�� Governing equations for symmetric FFF 
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Figure �� Side view of symmetric �eld��ow fractionation �FFF� channel�

� determining higher�order corrections to the advection�di
usion model
�Section ���

This model and its errors may be rigorously justi�ed as discussed in other
applications of centre manifold theory to shear dispersion by Mercer	 Roberts
and Watt ���	 �	 �	 ��	 ����
Field��ow fractionation channels are used to separate species of contam�

inant molecules with di
erent di
usivities� In Section � we use model ��� to
identify that FFF separates molecular species most e�ciently for relatively
high cross��ow� up to

v� � ����
s
�u�

b
� �
�

Consequently	 in describing the governing equations in Section � we introduce
a non�dimensionalisation appropriate for such high cross��ow rates�
Further research in �eld��ow fractionation could model the dynamics of

contaminant molecules in tubular channels ����	 trapezoidal channels ���	 or
in asymmetric FFF channels ���	 as well as the dynamics of non�neutrally
buoyant particles ��
��

� Governing equations for symmetric FFF

Consider a symmetric FFF channel as discussed by Giddings and others
��	 �
	 ��� and depicted schematically in Figure �� The dynamics takes place
between two �at plates located at y � � and y � b� The �uid �ow between
the plates is driven predominantly by a pressure gradient px parallel to the
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x�� Governing equations for symmetric FFF �

Table �� Typical set of physical parameters for FFF and the consequent
parameters �in the second part� appearing in the analysis� The data is for
the Cow Pea Mosaic Virus ��	 p���� in the FFF channel of �����

Parameter Value

Channel width b ���� cm
Kinematic viscosity � ���� cm��s
Mean longitudinal velocity �u ��� cm�s
Cross��ow velocity v� ������ cm�s
Molecular di
usivity � �� ���� cm��s

Boundary layer �BL� thickness � �� ���� cm
Cross�BL di
usion time � ��� s
Longitudinal velocity in the BL u� �� ���� cm�s
Downstream advection distance � �� ���� cm
Prandtl number 	 �� ���
Cross�channel Peclet number V ���
Downstream Peclet number U ���� ���
Velocity ratio K ���

plates� Being that of a Newtonian �uid with kinematic viscosity � and density

	 the velocity �eld is essentially that of parabolic Poiseuille �ow except that
there is a cross��ow	 of velocity �v�	 from the upper plate to the lower �if v�
is positive�� The plates are permeable to the �uid in order for this cross��ow
to occur� but they are impermeable to the contaminant molecules� Within
the �uid the contaminant	 of concentration c�x� y� t�	 is advected by the �ow
and di
uses with coe�cient �� In this section we non�dimensionalise the
governing di
erential equations	 and also deduce the advecting �uid velocity
�eld and con�rm that it is nearly parabolic�
For order of magnitude estimates of quantities we use the geometry of

Wahlund � Giddings ����� the channel width is b � ���� cm� the density of
the �uid	 water	 is 
 � �gm�cm�� and the kinematic viscosity � � ���� cm��s�
The �uid moves so that on average it takes about ���� minutes to traverse
about �� cm so a typical �uid velocity is �u � ��� cm�s and the driving pressure
gradient must be roughly px � � gm�cm��s�� The cross��ow is driven at
rates v� of order � � ���� cm�s� When the contaminant molecules are the
Cow Pea Mosaic Virus ��	 p����	 this con�guration gives parameters as listed
in Table �� We base our analysis on this set being typical of parameters of
interest�
The equations governing the �uid motion are the Navier�Stokes and con�
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x�� Governing equations for symmetric FFF �

tinuity equations
�q

�t
� q � rq � ��



rp� �r�q � ���

r � q � � ���

for the incompressible velocity �eld q � ui� vj and for the pressure p� The
contaminant evolves according to the advection�di
usion equation

�c

�t
� q � rc � �r�c ���

for the concentration �eld c� Herein we assume the molecules are neutrally
buoyant	 though sedimentation e
ects ��
� could be included in further work
by modifying this equation� Note that although we are concerned with
the dynamics of the concentration �eld c	 we only seek the steady and x�
independent �uid �ow governed by the Navier�Stokes and continuity equa�
tions� The boundary conditions on the plates are those of no longitudinal
�ow	

u � � � v � �v� � on y � � and y � b � ���

and no �ux of the contaminant through the plates	

v�c� �
�c

�y
� � � on y � � and y � b � ���

The above equations fully specify the dynamics of the �uid and the contam�
inant molecules in the channel�
The non�dimensionalisation we adopt is chosen to re�ect the fact that for

the regime of most e
ective separation of species �see Section �� the contam�
inant is concentrated near the lower plate due to the cross��ow� Introduce
the following non�dimensional variables denoted by stars�

x� �
x

�
� y� �

y

�
� t� �

t

�
� u� �

u

u�
� v� �

v

v�
� p� �

p


v��
� ���

where � � ��v� is the characteristic thickness of the distribution of contam�
inant in a boundary layer near the lower plate	 � � ��v� � ���� � ��v�

�
is

the cross�boundary layer advection ���v�� or equivalently the cross�boundary
layer di
usion ������ time	

u� � ��
�

�p

�x

b�


�
�
��u

V � ����

is the characteristic downstream velocity in the boundary layer	 �u � � �

��

�p
�x

b�

��

is the mean speed of the Poiseuille �ow in absence of the cross��ow	 � � u��

SA Suslov � AJ Roberts� September ��� ����

Fa
cu

lty
 o

f 
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s 

SC
-M

C
-9

82
3



x�� Governing equations for symmetric FFF �

is the downstream advection distance for the material in the boundary layer
in a cross�boundary layer di
usion time	 and where

	 �
�

�
and V � v�b

�
����

are Prandtl and cross�channel Peclet numbers	 respectively� Typical values
of all these quantities are recorded in Table �� In essence this scaling is that
of the distribution of contaminant molecules which typically are swept to be
near the lower plate with the upper plate �far away� at y � V� Substitute
these scalings into the equations and omit the distinguishing stars hereafter�
The steady �uid �ow is straightforward to determine� The y�momentum

equation determines that v � �� everywhere� The x�momentum equation
for the steady velocity �eld u�y� becomes

V
�

�
�

	

�u

�y
�
��u

�y�

�
� � � � ����

with boundary conditions u��� � u�V� � �� The exact solution for this
velocity component is

u�y� �
�	

V

�
V �� e�y��

�� e�V��
� y

�
��
�

�

�
y � y�

V

�
�

y

	

�V
�
� y

�
�

y�


V

�
�O

�V�

	�

�
� ����

Observe	 as used in earlier analyses ���	 e�g��	 the downstream advection is
nearly parabolic� because the Prandtl number 	 is so large the correction of
O �V�	� is usually negligible�
The dynamics of the contaminant remains nontrivial� Under our nondi�

mensionalisation the advection�di
usion equation becomes

�c

�t
� u

�c

�x
� �c

�y
�

��c

�y�
�K�

��c

�x�
� ����

where

K � v�
u�
�
V
�

v�
�u
�
V�

�U and U � �ub
�

����

are respectively the velocity ratio and the downstream Peclet number based
on the mean longitudinal speed	 see Table �� The non�dimensional boundary
conditions for the contaminant are

c�
�c

�y
� � at y � � and y � V � ����
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x�� The dynamics approach a centre manifold �

We analyse the dynamics described by this non�dimensional equation in
this paper� The main non�dimensional parameter V	 appearing as the non�
dimensional width of the channel	 is typically large	 O �����	 as we expect
cross��ow advection to keep the contaminant close to the bottom plate�

� The dynamics approach a centre manifold

We justify the basis of model ��� using centre manifold theory ��� as adapted
���	 �� to the long thin geometry of the FFF channel� Under the action of
the cross��ow balanced by di
usion the contaminant distribution across the
channel relaxes quickly to an exponential distribution	 c � C exp��y�� The
shear velocity	 di
erent at di
erent y	 will smear this contaminant cloud out
along the channel	 while cross��ow and di
usion continue to act to push the
cross�channel distribution towards the exponential distribution� The net ef�
fect is that the cloud has a concentration that is slowly varying along the
channel and is approximately exponential across it� Thus	 after the quick
decay of cross�stream transients	 we justify the relatively slow long�term evo�
lution of a contaminant cloud for which x derivatives of C	 �nC��xn	 are
small�
An initial �linear� picture of the dynamics is established by assuming

that there are no downstream variations� When downstream gradients are
ignored	 the relaxation across the channel of the contaminant obeys the dy�
namics

�c

�t
� �c

�y
�

��c

�y�
� s�t� c�

�c

�y
� � on y � � and y � V � ����

The neutral solution already mentioned is the exponential c� � C exp��y��
The other solutions	 all decaying	 are

cn � Cn

�
sin

�
n�

V y
�
� �n�V cos

�
n�

V y
��
exp

�
�y

�
� �nt

�
� ����

for n � �� �� � � �	 where Cn are constant coe�cients determined by the initial
condition such that

c�y� �� �
�X
n��

cn�y� �� ����

and the decay rate is

�n � ��
�
� n���

V�
� ����

The slowest rate of decay to the centre manifold will be due to the
n � � mode	 although in many cases the second term in ���� is negligi�
bly small as V is of order ���� As an example	 assume an initially uniform

SA Suslov � AJ Roberts� September ��� ����

Fa
cu

lty
 o

f 
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s 

SC
-M

C
-9

82
3



x�� The dynamics approach a centre manifold �

distribution of contaminant across the channel	 then from ���� expect that
C� � exp�V���� The relaxation process is then dominated by the exponen�
tial decay of exp�V�� � ��t� which e
ectively leads to a relaxation time of
roughly trel � �V������� In dimensional form this cross�channel relaxation
time

trel � �V� � ��� s �
which agrees with the experimental observations of several minutes for macro�
molecules given	 for example	 in ���	 Eqn �
���� Thus expect the decay to a
low�dimensional centre manifold to occur on this time scale�
The presence of downstream x�variations perturbs the contaminant pulse

and results in its non�trivial long�time evolution� Centre manifold theory pro�
vides a powerful rationale for modelling such evolution where the long�term
behaviour is separated from rapidly decaying transients� This was recognised
by Coullet � Spiegel ��� and Carr � Muncaster ��	 
�� see the draft review
by Roberts ���� for an extensive discussion� The application of the theory to
dispersion in channels and pipes has been developed by Roberts	 Mercer and
Watt ���	 �	 �	 ��	 ���� Using the same techniques here	 we seek a solution
to the governing equations in the form

c � h�C� y� such that
�C

�t
� g�C� � ����

Here the function h	 C exp��y� to leading approximation	 describes the de�
tails of the contaminant �eld throughout space and time in terms of the
concentration C of contaminant at the lower plate� Such a solution forms
a model of the dynamics for two reasons� First	 the low�dimensional set of
states described by h�C� are exponentially attractive because of the action of
cross�stream advection and di
usion as seen above� Secondly	 the associated
function g models the e
ective advection and di
usion of the contaminant in
the horizontal by describing the evolution of C�
We �nd approximations to these functions by assuming that the con�

centration �eld is slowly varying in the horizontal	 that is	 ���x is a small
operator� Rigorously	 one would expand in the downstream wavenumber as
introduced by Roberts ����� Formally we express h and g in the following
asymptotic series

g �
�X
n��

gn
�nC

�xn
and h �

�X
n��

hn�y�
�nC

�xn
� ��
�

where for example h� � exp��y� is the leading order approximation to the
contaminant �eld	 �g� � U is the e
ective advection velocity	 and g� � D is
an e
ective horizontal di
usion coe�cient� The advection�di
usion model ���
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x�� The detailed centre manifold model �

is obtained from just the �rst two terms in the expansion for g� In dispersion
problems	 the asymptotic series in ��
� typically converge in a sense discussed
by Mercer	 Roberts and Watt ��	 �	 ����
To �nd the asymptotic expansions ��
� we implement an iterative al�

gorithm �see ����� in computer algebra �see Appendix A�� The results are
assured to be accurate by the approximation theorem of centremanifolds� As�
sume that some approximate solution of the contaminant advection�di
usion
equation ���� with boundary conditions ���� is found in the centre mani�
fold form ����� for example	 the iteration is initiated with the approximation
c � C exp��y� and g � �� We wish to re�ne such an approximation by
�nding a correction h� to the shape of the centre manifold and a correction
g� to the evolution thereon� As established by Roberts ���� the corrections
are found by solving

��h�

�y�
�
�h�

�y
� R � g� exp��y� � ����

where R is the residual of ����	 with boundary conditions

h� �
�h�

�y
� � at y � � and y � V	 and h� � � at y � �� ����

This last boundary condition re�ects that we seek a solution parameterized
by the concentration at the lower plate� C�x� t� � cjy��� The correction to
the evolution g� is chosen to satisfy the solvability condition

Z
V

�

R � g� exp��y� dy � � ����

in order to satisfy boundary conditions ����� Then the di
erential equa�
tion ���� is solved to �nd h�� The iterations continue until the desired terms
are found in the asymptotic approximation to the centre manifold ��
�� Com�
puter algebra	 such as the program listed in Appendix A	 easily performs all
the algebraic details�

� The detailed centre manifold model

Since all the algebraic machinations are handled by the computer algebra
of Appendix A	 here we just record and discuss the results� General results
simplify considerably in the typical case of large V when the contaminant is
held near the lower plate� Then higher order corrections are readily found�
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x�� The detailed centre manifold model ��

From the computer algebra results	 the concentration �eld �the centre
manifold� is to low order

c � Ce�y

� �C

�x

�
� � �

	

��
�me�V � e�y

�
�me�V�y � �� � y�

�
�
y�

V �
y�


V

��

� �

��	

�C

�x

e�yy�

V �V � y�� �O
�
��C

�x�
�
V�

	�

�
� ����

where the evolution of the contaminant concentration along the bottom plate
is described to leading order by

�C

�t
�

�C

�x

��
�� �

	

��
�� �m� �V

�
� V
�	

�
�O

�
��C

�x�
�
V�

	�

�
� ����

where

m �
�
�� e�V

	�� �


� as V ��
��V � ��� as V � �

� ����

The order of error notation O �
� �� is used to denote errors O �
� �O ����
Since the typical cross�channel Peclet number V is of order ��� we take

m � � in presenting further detailed results �for completeness we present
results for weak and moderate cross��ows in Appendix B�� The dominant

error in this approximation is O
�
e�V

	
and so expect it to be acceptable for

V greater than about �� Then ���� simpli�es to

c � Ce�y �
�C

�x
y�
��
�� �

	

��

 � y


V � �
�

�
� �V � y��

��V	

�
e�y

�O
�
��C

�x�
�
V�

	�
� e�V

�
� �
��

This shows the predominantly exponential distribution of the contaminant
as advection towards the lower plate by the cross��ow is counter balanced
by di
usion� The exponential distribution is modi�ed by the interaction of
the shear �ow and the along�channel spatial gradients of the contaminant
as given by the second term in �
�� and shown in Figure �� The above
expressions give the details of the concentration �eld parameterized by its
value C�x� t� � cjy�� at the lower plate�
The associated advection�di
usion equation is ��� with coe�cients

U �
�
�� �

V
�
�
�

	

�V
�
� � � �V

�
�O

�V�

	�
� e�V

�
� �
��

SA Suslov � AJ Roberts� September ��� ����

Fa
cu

lty
 o

f 
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s 

SC
-M

C
-9

82
3



x�� The detailed centre manifold model ��

a)

b)

Figure �� Velocity �eld and an instantaneous concentration �eld near the
accumulating lower plate �a� when the concentration along the wall is given
by the Gaussian �b�� Fields correspond to the parameters given in Table ��
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x�� Species separate best at high cross��ow ��

D �
�
K� � � � ��V �

��

V�

�
�
��V � ��

	

�
� � ��V �

��

V�

�

�O
�V�

	�
� e�V

�
�
��

giving the e
ective advection speed and dispersion coe�cient� The crudest
approximation	 but useful over a reasonable parameter regime	 is that U � �
and D � � leading to the dimensional expressions given in the Introduction�
Running the computer algebra program to higher order in spatial gradi�

ents we �nd that the dynamics of the dispersion is governed by the extended
evolution equation

�C

�t
� �U �C

�x
�D

��C

�x�
� E

��C

�x�
� F

��C

�x�
�O

�
��C

�x�

�
� �

�

where the coe�cients of the third and fourth order derivatives are�

E � ��
�
�� ���V �

���

V�
� ��
�V�

�
�
��

� �
	

�
�V � ��� � ����V � �
���V�

�

����

V�


�
�O

�V�

	�
� e�V

�
�

F � ��
�
�� � ���V �

����

V�
� �����V�

��
������

V�

�

�
��


	

�
��V � ���� � �����V � ������V�

�
�������

V�
� �������V�

�

�O
�V�

	�
� e�V

�
� �
��

The ��

x term in �

� with coe�cient E governs the skewness of the pre�
dictions of the model by modifying the e
ective advection speed of various
spatial modes� The ��

x term with coe�cient F a
ects the decay of the spatial
modes� Note that F is positive for at least large enough V and 	�a fourth
order model may thus be unstable for short enough spatial modes� approxi�
mately the fourth order model is unstable for along channel non�dimensional
wavenumbers jkj � ����p���� Thus although the third�order term may be
used to improve predictions of the advection�di
usion model	 the fourth�order
term should be limited to helping estimate errors in the predictions�

� Species separate best at high cross��ow

The aim of �eld��ow fractionation is to separate as far as possible two or
more di
erent species of contaminant molecules� Di
erent contaminants are
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x�� Species separate best at high cross��ow �


characterised by di
erent di
usivities	 �j say� A contaminant with lower
di
usivity will be pushed closer to the lower plate by the cross��ow� Conse�
quently	 its e
ective advection speed along the channel will be lower� Thus
one collects a contaminant with higher di
usivity at the exit before a contam�
inant with lower di
usivity� Here we identify the operating regime when the
separation is most e
ective between two species of nearly the same di
usivity�
Consider the advection�di
usion predicted by model ��� with di
erent

species identi�ed by the subscript j� In the non�dimensional analysis this
leads to di
erent characteristic scales�

�j �
�j
v��

� �j � u�j�j �
��u��j
v��b

� Vj � v�b

�j
� 	j �

�

�j
� �
��

Thus the advection�di
usion model ��� for the jth species has dimensional
coe�cients

Uj � u�jU�Vj� � Dj �
��j
�j
D�Vj� � �
��

from the leading term in each of �
����
�� upon neglecting terms of order
Vj�	j � In a channel of �xed length L the approximate times of e�ux are

Tj �
L

Uj
�

L

u�jU�Vj� �
L

��u

Vj
U�Vj� � �
��

Then the time interval between the moments when the two contaminant
pulses with di
usivities �� � �� ��� and �� � � �  ���	 injected simul�
taneously at the beginning of the channel	 exit the channel is

 T �
������T�� �

����� � P

�

L

�u

jU�V�� VU ��V�j
U��V�

 �

�
� �
��

The width of the contaminant pulse at the time of e�ux is proportional top
DT 	 and hence the time taken for a contaminant pulse to pass the end is
proportional to � where

�� �
DT

U�
� L

� �

�

D�V�
U��V� �

�

�

L

�u

b�

�V
D�V�
U��V� � ����

To maximise separation of two species with close values of di
usion coe��
cients �j we need to maximise the di
erence in the time of e�ux relative to
the width in time of the pulses at the e�ux� Thus for a given small change
in di
usivity	  � � �	 we wish to maximise

 T

�
�

������T�V
�V
��

�����  �� �
V
�

������T�V
�����  �� �

s
L

�bU
V���jU�V�� VU ��V�jq

D�V�U�V�
 �

�
� ����
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x�� Species separate best at high cross��ow ��

Expect the existence of an optimum cross��ow from the following physical
arguments� Increasing the cross��ow signi�cantly increases the di
erence
in e�ux times� On other hand	 an extremely strong cross��ow would keep
both contaminants close to the plate in a very slow �ow for long enough so
that longitudinal molecular di
usion becomes signi�cant� Thus resolution
will decrease for an excessively strong cross��ow� The optimal separation of
species with given di
usivities in a channel of �xed geometry with a �xed
�uid �ux through it is accomplished when

R�V� � V���jU�V�� VU ��V�jq
D�V�U�V�

�
�UV��V � ��q

�V � �� �V� � 
�U���V� � ��V � ����
����

is maximised� From dR�dV � � we obtain
V�

�
V� � ��V � ��

	
� ��U�

�

V� � ��V� � 

�V� � ���V � ���

	
��
�

with a solution for optimal V of

V� � �
���
p
U � ��



� 
�

��

����pU �O
�
�

U
�
� ����

The leading term of this optimum gives the optimum v� mentioned in the
Introduction� As seen from Figure 
	 for the parameter values listed in
Table � this optimum occurs at V� � ��
 which corresponds to the relatively
high cross��ow velocity v� � ��� � ����cm�s� Then the optimal regime of
two species separation gives

 T

�
�

���	

�

s

L

b

 �

�
U���

�
�

� � ���� �

��
U���� � ����


��

s
�



U�� �O

�
U����

	�� � ����

For the geometry of the channel considered in ���� and parameters given in
Table � the maximum resolution is thus

 T

�
� �
� �

�
� ����

where � � �min� For the regime considered the time necessary for the
contaminant to travel a distance L � �� cm is T � ���� hours�probably
too long to be practical� A suggestion is to reduce the channel length or
increase the longitudinal �ow speed	 while increasing the cross��ow velocity
to be closer to the optimum�
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xA� Computer algebra handles all the details ��

1000800600400200
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Figure 
� Function R�V� characterising e
ectiveness of separation of two
di
erent contaminants for parameters given in Table ��

Acknowledgement We thank the Australian Research Council for a grant
supporting this research	 and Dr Bob Anderssen of CSIRO for introducing
us to this problem�

A Computer algebra handles all the details

Just one of the virtues of this centre manifold approach to modelling is that
it is systematic� This enables relatively straightforward computer programs
to be written to �nd the centre manifold and the evolution thereon ���	 e�g���
For this problem the iterative algorithm is implemented by a computer

algebra program written in reduce � Although there are many details in
the program	 the correctness of the results are only determined by driving to
zero �line ��� the residual of the governing di
erential equation	 evaluated on
line ��	 to the error speci�ed on line 
� and with boundary and amplitude
conditions checked on lines ������ The other details only a
ect the rate of
convergence to the ultimate answer�

�At the time of writing� information about reduce was available from Anthony

C� Hearn� RAND� Santa Monica� CA 	���
����
� USA� E�mail� reduce�rand�org
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xA� Computer algebra handles all the details ��

� COMMENT Use iteration to form the centre manifold model of shear

� dispersion in a channel with a constant cross�flow of velocity �v�

� Flow between y�� and y�V where V�	b v
�k� rsig�k�nu� A�	v�u�

��

� u������ dp�dx 	b k
�	rho nu v
� The centre manifold is parameterized

� with c	x���t
 such that the corrections satisfy c�	x���t
���

� dc�	x���t
�dy�� �

�

� � formating for printed output

� on div� off allfac� on revpri� factor ev�rsig�df�a�

�� � ev	y
 denotes exp	�y


�� operator ev�

�� let � df	ev	y
�y
���ev	y
� ev	�
���� ev	V
��ep��

�� ep������m�

�� � operator for solvability� where m���	��exp	�V



�� operator intv�linear intv�

�� let � intv	��y
 �� V

�� � intv	y�y
 �� V
���

�� � intv	y
�q�y
 �� V
	q��
�	q��


�� � intv	y
�q�ev	y
�y
���V
q�ep�q�intv	y
	q��
�ev	y
�y


�� � intv	y�ev	y
�y
�� ��	��V
�ep

�� � intv	ev	y
�y
�� ��m ��

�� � operator to solve d
�h�dy
��dh�dy � rhs

�� operator linv�linear linv�

�� let�linv	��y
 �� y���ev	y
�

�� linv	y�y
 �� �y�y
������ev	y
�

�� linv	y
�q�y
��y
	q��
�	q��
�q�linv	y
	q��
�y
�

�� linv	ev	y
�y
���	y��
�ev	y
���

�� linv	y�ev	y
�y
���	y
����y��
�ev	y
���

�� linv	y
�q�ev	y
�y
���y
	q��
�	q��
�ev	y
�q�linv	y
	q��
�ev	y
�y
��

�� � linear solution and velocity profile

�� depend c�x�t�

�� let df	c�t
��g�

�� � u�����rsig�V�	y�V�	��exp	�y�rsig

�	��exp	�V�rsig


�

�� u��y�	y�V
�	��y���rsig�V
�rsig���V�

�� h��c�ev	y
�

�� g����

�� � iteration� for small d�dx and small reciprocal Prandtl number

�� let �df	c�x��q
��� when q��� rsig
������

�� m���� � optionally neglect e
	�V
 terms

�� repeat begin

�� eqn��df	h�t
�u�df	h�x
�df	h�y
�df	h�y��
�df	h�x��
�K
��

�� � solvability

�� gd���intv	eqn�y
�m�

�� g��g�gd�

�� � concentration field

�� h��h�linv	eqn�gd�ev	y
�y
�

�� showtime�

�� end until 	eqn��
�

�� � confirm boundary and amplitude conditions
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xB� Weak and moderate cross��ows ��

�� eqn��sub	y���h�df	h�y

�

�� eqn��sub	y�V�h�df	h�y

�

�� eqn��sub	y���h
�c�

�� � output to file

�� off nat� on list� out �sffp�out��

�� cmean��intv	h�y
�V� g��g� h��h�

�� shut �sffp�out�� on nat�

�� showtime�

�� end�

B Weak and moderate cross��ows

For completeness we record here the model for the case of relatively slow
cross��ow	 or equivalently of relatively high di
usivity� This provides results
for all parameters V	 not just the large values described earlier�
The non�dimensionalisation used in the main body of this paper is inap�

propriate in the case of small cross��ow rates� At higher rates the contam�
inant is restricted to the boundary layer	 but in low cross��ow it is spread
over the channel height� Thus in the case of weak cross��ows we adopt the
following scalings typical of those used for shear dispersion ��	 ��	 e�g���

y� �
y

b
� t� �

�t

b�
� x� �

x�

�ub�
� u� �

u

�u
� v� �

bv

�
� p� �

p


�u�	
� ����

Quantities are scaled� y with the channel width� t with a cross�channel dif�
fusion time	 � � b��� � ���� � ��� sec� x with the downstream advection
distance in a cross�channel di
usion time	 � � �u� � ���� � ��� cm� u with
the mean downstream velocity� and v with a cross�stream di
usion speed	
��b � � � ���� cm!s� As before V � v�b�� is the main parameter and is
used to denote a non�dimensional cross��ow velocity	 though it may well be
thought of as an e
ective channel width	 or as the inverse of the molecular
di
usivity�
Then after substituting ���� into the Navier�Stokes and continuity equa�

tions ������� and dropping stars the equation for the steady horizontal ve�
locity component u�y� becomes

� V
	

�u

�y
� �� �

��u

�y�
� s�t� u � � at y � � and y � � ����

with the nearly parabolic solution

u�y� �
��	

V

�
�� e�Vy��

�� e�V��
� y

�

� y��� y�

�
� � �� � �y�V

	
�O

�V�

	�

��
� ����

SA Suslov � AJ Roberts� September ��� ����

Fa
cu

lty
 o

f 
Sc

ie
nc

es
, U

SQ
, W

or
ki

ng
 P

ap
er

 S
er

ie
s 

SC
-M

C
-9

82
3



xB� Weak and moderate cross��ows ��

The advection�di
usion equation for the contaminant becomes

�c

�t
� u

�c

�x
�V �c

�y
�

��c

�y�
�
�

U�

��c

�x�
� ����

where U � �ub�� is a downstream Peclet number as before	 and with boundary
conditions

Vc� �c

�y
� � at y � � and y � �� ����

In the absence of any x�variations the steady solution is

c� � Ce�Vy � ����

where as before C � c�x� �� t� is the concentration of the contaminant at the
lower plate� The other x�independent solutions	 all decaying	 are

cn � Cn �V sin �n�y�� �n� cos �n�y�� exp
�
�Vy
�
� �nt

�
� ��
�

for n � �� �� � � � where the decay rate is

�n � �V
�

�
� n��� � ����

For small V the decay is dominated by the second term above due to cross�
channel di
usion� The slowest rate of decay to the centre manifold comes
from the n � � mode� Using arguments similar to those given in Section 
 we
deduce that in the case of small cross��ow rates C� � � and	 consequently	
the dimensional decay time is expected to be ��j��j � ���� � ��min which
is an order of magnitude larger than that for the strong cross��ows considered
earlier� This rea�rms the existence of an attractive centre manifold for slowly
varying solutions	 albeit attractive on a larger time scale�
As before	 an iterative procedure was implemented in computer �not

listed� to solve the contaminant transport equations ��������� by �nding
the centre manifold and the evolution thereon ����� The resulting expression
for the concentration �eld is

c � Ce�Vy � ��
�C

�x

m� �
V�

�
� � �

	

��
�� e�Vy�� � Vy�

	

�
�C

�x

y�

V�
e�Vy

�
��� 
V � �Vy�

�
�� �

	

�
� V�

�	
�� � y��

�

�O
�
��C

�x�
� 	��

�
� ����
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xB� Weak and moderate cross��ows ��

The general expressions for the coe�cients of the evolution equation �

� are
quite involved and for brevity here we neglect terms inversely proportional
to the Prandtl number 	 since it is typically small �	 � ����� for example��

U �
�

V ��m� ��� ��V�
�O

�
	��

	
� ����

D �
�

U�
� ��m

e�V

V�
� ���m���m� ��e

�V

V�
� ���m

�e�V � �
V�

� ����m � �
V�

�
����

V�
�O

�
	��

	
� ����

E � ���m���m � ��e
�V

V�
�
�
�

�
m�

�
��m�e�V � 


	 e�V
V�

� ����m���m� ��e
��V

V�
� �����m�

e��V

V�

� �����m � ����m
�e��V � �

V�
� ������m

�e�V � ��
V	

� �������m � �
V


�
�������

V��
�O

�
	��

	
� ����

F � ��m�
�
�m�e�V � �

	 e�V
V�

� ����
�

m���m� ��
�
��m�e�V � �

	 e�V
V�

�
���


�
m���m� ��

�
���m�����m�e�V � ���e�V � 
�

	 e�V
V�

� ����m���m� ��
�
��m�

�
��m�e�V � �

	
e�V � �

	 e�V
V�

� ����
�

m�
�
��m�

�
��m�e�V � �

	
e�V � ��

	 e�V
V	

� ����m���m� ��
�
�
�m�e�V � ��

	 e�V
V


� �
���
m�

�
����m�e�V � ���

	
e�V � 



V��

� ��������m � �����m
�e�V � ��

V��
� ��������
m

�e�V � �
�
V��

� �����������m � �
V��

�
����������

V��
�O

�
	��

	
� ����

These coe�cients are plotted in Figure �� All of them eventually decrease
in magnitude with increasing cross��ow� The maximum of the e
ective dif�
fusion coe�cient D is reached at V � 
� Thus the �zone broadening� ���
associated with the dispersion of the contaminant a
ects the distribution of
the contaminant at a greater degree when the cross��ow is relatively weak�
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xB� Weak and moderate cross��ows ��

Figure �� The coe�cients of the evolution equation �

� as functions of the
cross�channel Peclet number V for the in�nite Prandtl number 	�
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xB� Weak and moderate cross��ows ��

The fourth order coe�cient F is negative for V � � and consequently equa�
tion �

�	 in contrast to the case of strong cross��ows reported in Section �	
predicts stable �decaying� in time evolution of the average concentration of
the contaminant for all longitudinal wavenumbers�
The small V expansions of expressions ��������� are

c � C
�
�� Vy � �

�
V�y� � �

�
V�y�

�
�
�C

�x
y�
�
��
�
�y � ���

�
Vy
��

�
��y� � ��y � �� � �

	

�
�y� � ��y � ��

	�

�
V�

���

�
��y� � 
�y� � ��y� � � � �

	

�
��y� � ��y� � ��y� � �

	�

�
V�y

����

�
��y� � ���y� � ��y� � � � �

	

�
��y� � ���y� � �
y� � �

	��

�O
�
��C

�x�
� 	���V�

�
� ����

U � � � V�

��
�

V�

����
� V�

������
�O

�
	���V	

	
� ����

D �
�

U�
�
�

���

�
� �

�

��
V� � ��

����
V� �

�
�


�����
V�

�
�O

�
	���V	

	
� ����

E �
�

��
��

�
� �

���


�
��
V� � �



���
V� �

�����

�������
V�

�
�O

�
	���V	

	
� ��
�

F � � �

�������

�
� � �����

�����
V� �

��
�����

��
�����
V� �

����������

�����������
V�

�

�O
�
	���V	

	
� ����

The expansions for large cross��ow V are
c � Ce�Vy

�
�C

�x
y�e�Vy

�
� �
�	
�y � ��� �

�
�y � 

V �

�

V�

��
�� �

	

��

�O
�
��C

�x�
� 	��� e�V

�
� ����

U �
�

V
�
�� �

V
�
�O

�
	��� e�V

	
� ����

D �
�

U�
�
��

V�

�
� � ��V �

��

V�

�
�O

�
	��� e�V

	
� ����

E � ��
��V�

�
�� ���

�V �
���

�V�
� ��
�
�V�

�
�O

�
	��� e�V

	
� ����

F �
������

V��

�
�� ���

��V �
����

��V�
� �����
��V�

�
�����

��V�

�
�O

�
	��� e�V

	
�����
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The above expressions are equivalent to	 but appear a little di
erent from	
the leading terms in expressions �
����
��	 �
�� and �
�� because of the
di
erent non�dimensionalisation� These large V expressions evidently give
the behaviour of the coe�cients for non�dimensional cross��ow V bigger than
about �����
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