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Abstract: 
In this paper, we will propose a distributable clustering algorithm, called 
Distributed-GridMST (D-GridMST), which deals with large distributed spatial 
databases. D-GridMST employs the notions of multi-dimensional cube to partition 
the data space involved and uses density criteria to extract representative points 
from spatial databases, based on which a global MST of representatives is 
constructed. Such a MST is partitioned according to users’ clustering specification 
and used to label data points in the respective distributed spatial database 
thereafter. Since only the compact information of the distributed spatial databases 
is transferred via network, D-GridMST is characterized by small network 
transferring overhead. Experimental results show that D-GridMST is effective 
since it is able to produce exactly the same clustering result as that produced in 
centralized paradigm, making D-GridMST a promising tool for clustering large 
distributed spatial databases.   

1. Introduction 

With rapid development of techniques in data acquisition and storage, spatial 
databases store an increasing amount of space-related data such as satellite maps, 
remotely sensed images and medical images. These data, if analyzed, can reveal 
useful patterns and knowledge to human users. Clustering is a process whereby a set 
of objects is divided into several clusters in which each of the members in some way 
similar and is different from the members of other clusters [11]. Spatial data 
clustering, aiming to identify clusters, or densely populated regions in a large and 
multi-dimensional spatial dataset, serves as an important task of spatial data mining. 
Though a large number of spatial clustering algorithms have been proposed in 
literature so far, most of them assume the data to be clustered are locally resident in 
centralized scenario, making them unable to cluster inherently distributed spatial data 
sources. 
 
[2] presents a distributed data clustering algorithm that is designed based on a 
classical clustering algorithm PAM and a spanning tree clustering algorithm, called 
Clusterize. [3] proposes an approach to deal with clustering data emanating from 
different sites. It operates in three major steps: (1) find the local clusters of data in 
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each site; (2) find (high) clusters from the union of the distribution data sets at the 
central site; (3) finally compute the associations between the two sets of clusters. In 
[6], three classical clustering methods, namely K-means, K-Harmonic Means (KHM) 
and Maximum Expectation (EM) are modified to parallelise the clustering of 
distributed data sources. More recently, a parallel implementation of K-means based 
on the message-passing model is presented [5]. To deal with heterogeneity of data 
across distributed sites, [9] presents a Collective Hierarchical Clustering (CHC) 
algorithm for analyzing distributed and heterogeneous data. This method first 
generates local cluster models and then combines them to generate the global cluster 
model of the data.        
 
In this paper, we will propose a distributable clustering algorithm, called Distributed-
GridMST (D-GridMST), that deals with large distributed spatial databases. D-
GridMST employs the notions of multi-dimensional cube and grid to partition the 
data space involved and uses density criteria to extract representative points from 
spatial databases, based on which a global MST of representatives is constructed. 
Such a MST is partitioned according to users’ clustering specification and used to 
label data points in the respective distributed spatial database thereafter. Since only 
the compact information of the distributed spatial databases is transferred via 
network, D-GridMST is characterized by small network transferring overhead. 
Experimental results show that both the centralized (GridMST) and distributed (D-
GridMST) versions of our clustering technique are efficient and effective since it is 
able to produce exactly the same clustering result as that produced in centralized 
paradigm. These advantages are believed to make D-GridMST a promising tool for 
clustering large distributed spatial databases.      
 
The remainder of this paper is organized as follows. In Section 2, we will present 
GridMST, our clustering technique for clustering centralized spatial databases. 
Section 3 gives the details of D-GridMST. Experimental results are reported in 
Section 4. The final section concludes this paper.  

2. GridMST 

GridMST is a new approach that aims to address two specific needs in the clustering 
of dynamic spatial databases, namely multi-resolution clustering and incremental 
clustering. GridMST is fast, scalable, robust to noise, and effective in accomplishing 
multi-resolution and incremental clustering. Figure 1 gives an overview of GridMST. 
It consists of three major parts. The first part deals with scaling the algorithm for 
very large spatial databases. The second part deals with extracting the necessary 
information to build a summary structure for multi-resolution clustering and 
incremental clustering. The final part deals how the multi-resolution clustering 
and/or incremental clustering make use of the summary structures to perform 
analysis, respectively. 
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2.1 Sampling Large Spatial Databases 

Similar to BIRCH, CURE, and C2P, GridMST handles with the problem of very 
large spatial databases by sampling the databases. [7] derives a theorem to determine 
the minimum sample size required to ensure that a fraction of the cluster is always 
included in the sample with probability . That is, for a cluster u, if the sample size 
s satisfies 
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then the probability that the sample contains fewer than f|u| points belonging to 
cluster u is less than , where N is the size of the dataset, |u| is the size of the 
cluster u, 0 ≤ f ≤ 1, 0 ≤ ≤ 1. 

 
GridMST uses this theorem to determine the sample size and performs uniform 
sampling on the large spatial database to obtain a sample database. We observe that 
this sample database could still be too large to fit entirely into the main memory. In 
this case, GridMST will divide the sample database into several smaller partitions, 
each of which can be loaded into the main memory. The partitions are read in one at 
a time and processed for their density information. When all the partitions have been 
scanned, the grid cells occupied by the whole sampling dataset are obtained (the grid 
structure will be discussed later in this paper). The size of occupied grid cell is small 
enough to be stored in the main memory. Representative points can now be 
generated based on the density information of these grid cells. Note that these 
representative points are for the entire sample database. This makes GridMST 
flexible and yet effective in handling samples of all sizes. 

3.2 Constructing the R-MST 

In GridMST, a number of representative points of the database are picked using the 
density criterion. A minimum spanning tree of these representative points, denoted as 
R-MST, is built. GridMST constructs R-MST in a number of steps. First, a grid data 
structure is constructed whereby each point in the dataset is assigned to one and only 
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one cell in the grid. The density of each grid cell is then computed. If the density of a 
grid cell exceeds some user-specified threshold, then the cell is considered to be 
dense and the centroid of the points in the dense cell is selected as the representative 
point of this cell. Once the representative points have been selected, a graph-
theoretic based algorithm is used to build the R-MST. We now introduce some basic 
definitions that are used in the algorithm to construct the R-MST. 

 
3.2.1 Definitions 
 
Definition 1: Relative Density of a grid cell 
Let g be some cell in a grid structure G. Let n be the number of points in g and avg 
be the average number of points in a cell in G. Then, the Relative Density of g, 
denoted as RD(g), is defined as the ratio n / avg. 

 
A grid cell is a neighbor of some grid cell g if it is directly connected to g. Hence, a 
center grid cell will have 8 neighboring grid cells, an edge grid cell will have 5 
neighboring grid cells, and a corner grid cell will have only 3 neighboring grid cells. 
 

                                                  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

  4XY/N    

      

  3XY/N    

       

      

      

      

      

      

      

      

      

          

 0 0 0       

 0 1 0       

 0 0 0   1 1 1  

      1 1 1  

      1 1 1  

          

Figure 2. Relative density of grid cells 

Figure 3. Two grid cells that have the same RD but different ND 
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Definition 2: Neighborhood Density of a grid cell 
Let g be some cell in a grid structure G and Neighbor be the set of neighboring grid 
cells of g. The Neighborhood Density of g, denoted as ND(g), is defined as the 
average of the densities of g and its neighboring grid cells. ND(g) is given by the 
following formula: 
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where t =1+ the number of neighboring grid cells of g. Specifically, 
 

 

                   

 
 
 
Definition 3: Dense vs. Non-dense grid cells 
Let g be some cell in a grid structure G. g is a dense grid cell if ND(g) is greater than 
or equal to some user specified density threshold, Td, otherwise g is a non-dense grid 
cell. 

 
Suppose X and Y are the horizontal and vertical number of grid cells in grid structure 
and N is the size of the dataset. Then the average number of points in the cells of the 
grid is given by N/XY. Figure 2 shows the densities of the non-empty grid cells in the 
grid structure. Note that from Definition 3, a grid cell is considered dense if its 
neighborhood density, ND, exceeds some user-specified threshold. The reason for 
using ND rather than RD to determine the denseness of a grid cell is that ND 
measures not only its own density, but it also reflects the density of its neighboring 
area. This actually compensates for the effect of outliers. 

 
Figure 3 highlights two grids. Although the center grid cells of these two grids have 
the same RD of XY/N, these cells have different ND values. The ND of the left center 
grid (which is most likely an outlier) is XY/5N, while the ND of the right center grid 
is XY/N. This example clearly shows that ND of a grid cell is more effective in 
limiting the effect of an outlier than RD. After the dense grid cells have been 
identified, we compute the centroid of data points falling into each dense cell. These 
centroids will form the set of representative points that well reflects the approximate 
distribution of the data points in the entire dataset. 

 
Definition 4: R-MST 
Suppose A = <V, E> is an undirected graph, where V is the set of vertices denoting 
the set of representative points and E is the set of edges connecting these 
representative points. R-MST is a connected acyclic subgraph of A that has the 
smallest total cost (or length), which is measured as the sum of the costs of its edges. 

 
3.2.2 Generating Representative Points 

6    if g is an edge grid cell  
4    if g is a corner grid cell 
9    otherwise 
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To generate the representative points, all the grid cells are examined in order to 
extract the dense cells. We devise an efficient algorithm to extract the dense cells and 
generate representative points. The steps of the algorithm are shown in Figure 4. 
Steps 1-6 perform the grid cell mapping, i.e. assign each data point into one and only 
one grid cell. Once a point has been assigned, the density of its corresponding cell is 
incremented by 1. Steps 7-13 extract dense cells based on some pre-specified density 
threshold, Td. A cell is a dense grid cell if its Neighborhood Density is greater than 
or equal to Td, otherwise it is a non-dense grid cell. The representative points are 
generated using the centroids of all the points in the dense cells and are added to the 
list of representative points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
3.2.3 Constructing the R-MST  
The algorithm for constructing the R-MST is as follows: 
(1) Compute all the pair-wise Euclidean distances of representatives and sort them in 
ascending order. This forms a pool of potential R-MST edges; 
(2) Pick edges from the pool of potential edges obtained in (1), starting with the 
shortest edge. Only those edges that do not create a cycle with the edges that have 
already been chosen are picked. The process terminates when the number of such 
edges is equal to (Nr - 1), where Nr is the number of representative points. 

2. 3 Using R-MST for Spatial Clustering 

After the R-MST has been constructed, multi-resolution clustering can be easily 
achieved. Suppose a user wants to find k clusters. A graph search through the R-
MST is initiated, starting from the largest cost edge, to the lowest cost edge. As an 
edge is traversed, it is marked as deleted from the R-MST. The number of partitions 
resulting from the deletion is computed. The process stops when the number of 
partitions reaches k. Any change in the value of k simply implies re-initiating the 
search-and-marked procedure on the R-MST. Once the R-MST has been divided into 

Procedure Repr_Generation (Dataset D) 
Begin 
1. For each point p in D Do 
2.{ 
3. Cell (p)=Map(p); 
4.        j = Hash (Cell(p)); 
5. Count [j]++; 
6. }   
7. For each cell i in the hash table do 
8. { 
9. ND=Neighborhood_Den(i); 
10. If (ND >=Td) Then { 
11.  Cell i is a dense cell; 
12         Repr_List=Repr_List ∪CentroidOfPoints(i); 
13.  } } 
End 

Figure 4. Algorithm to extract representative points. 
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k partitions, we can now propagate this information to the original dataset so that 
each point in the dataset is assigned to one and only one partition/cluster. A naive 
approach is to go through the dataset once, and compute the distance between each 
point to all the representative points. The data point is then assigned to the cluster 
whose representative point it is closest to. However, we observed that if a data point 
falls into a dense cell, say dc, then the nearest representative point is the 
representative point of dc. Thus, we can immediately assign the data point the same 
cluster label as the representative point of cell dc. For those data points that fall into 
non-dense cells, we use an indexing structure for high dimensional data, the X-tree 
[1], to speedup the search for the closest representative point. Once the closest 
representative point is found, the corresponding data point will be assigned the same 
cluster label as this its closest representative point. 

 
Figure 5 illustrates the multi-resolution clustering in GridMST. GridMST operates in 
two modes for multi-resolution clustering: a manual mode and an automatic mode. In 
the manual mode, the user will specify the value of k. In the automatic mode, the 
system automatically searches for the optimal number of clusters based on some pre-
defined inter-cluster distance threshold. 

 

            
(a) k=3              (b) k=4                 (c)k=5 

 

3.  D-GridMST (Distributed GridMST) 

After discussing the technique of GridMST that is mainly applicable in clustering 
spatial database in the centralized paradigm, we, in this section, will present D-
GridMST, the distributed version of GridMST that works with distributed spatial 
databases. The adaptation from GridMST to D-GridMST mainly involves (i) 
Generation of global data model by combining local data models in centralized site, 
and (ii) Local data clustering analysis in each of the distributed sites.  

 
In order to produce the clustering result of these distributed databases that is 
comparable to result of a centralized database in D-GridMST, globalization of local 
data model is entailed to obtain global data model that captures the cluster features 
for the whole dataset. The local data model we use in D-GridMST is simple and 
small in size, which contributes to the small network transfer through the network. 
Specifically, the globalization of local data model in D-GridMST involves:  

 
(1) Globalize range of every dimension of data in each distributed site 

Figure 5. Multi-resolution clustering 
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Global range of every dimension of the data is required to construct a structure of 
global multi-dimensional cube. Here, we assume the all the spatial data reside in the 
distributed databases are homogenous in nature, which ensures that such 
combination can be performed meaningfully. The object of obtaining global range of 
every dimension is to ensure that the grid constructed is able to encapsulate all the 
data points stored in the distributed sites. To this end, all distributed sites are 
required to provide the central site with the information regarding the maximum and 
minimum values, i.e. the range, of every dimension of local data points. Upon the 
receipt of such information from all distributed sites, the central site will commence 
to produce the global range information. Specifically, in a d dimensional dataset, let 
Lmax(i) and Lmin(i) be the local maximum and minimum values of dimension i, the 
global maximum and minimum values of dimension i, denoted as Gmax(i) and Gmin(i), 
are produced as follows: 
 

G min(i)=min(Lmin (1), Lmin (2), …Lmin (d)) 
 G max(i)=max(Lmax (1),Lmax (2), …Lmax (d)) 

 
The range of ith

 dimension, denoted as R(i) can be computed as  
 

R(i)= Gmax(i)-Gmin(i)  (1 ≤ i ≤ d) 
 

(2) Globalize local occupied cells in each distributed site 
Here, the occupied cells refer to the cells that occupied by the data points in the 
database. In other words, the occupied cells are those whose density is at least 1. 
Local occupied cells are those cells occupied by the local data points in the 
distributed site, and global occupied cells are those cells occupied by all the data 
points. The global occupied cells serve as the potential pool for the selection of dense 
cells: the dense cells are only the occupied cells whose neighborhood density 
exceeds some threshold.  
 
The global occupied cells are the union of local occupied cells. Suppose there are S 
distributed sites and LOC(i) denotes the local occupied cells of the ith distributed site. 
The global occupied cells, denoted by GOC, can be generated as follows: 
 

GOC=LOC(1) ∪ LOC(2)… ∪ LOC(S) 

3. 1 D-GridMST Algorithm 

In this section, we will give D-GridMST the algorithm that performs clustering of 
distributed spatial databases. The algorithm of D-GridMST is presented in Table 1.   
 
3. 2 The Complexity of D-GridMST 
 
The complexity analysis in the subsection includes the analysis of its computational 
complexity, space complexity and transfer overhead. The notation that will be used 
in the analysis are first presented below: 
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Step Transfer/ 

Location 
Operation 

1 DS    CS Transfer local range of every dimension of data 
2 CS Globalize local range to global range 
3 CS    DS Transfer global range and create global multi-dimensional 

cube C 
4 DS Assign local points into C and compute the density 
5 DS     CS Transfer local occupied cells and their densities 
6 CS Globalize local occupied cells of the cube 
7 CS Generate representative points and construct MST 
8 CS Perform multi-resolution clustering using MST 
9 CS   DS Transfer clustering result of representative points 

10 DS Label local data points 
 
 
 
Table 2 gives the annotation of the notations used in the Transfer/location field in 
Table 1.  
 

Value Meaning 
CS Clustering operations in centralized site 
DS Clustering operations in all the distributed sites 

CS to DS Data are transferred from centralized site to all the distributed sites 
DS to CS Data are transferred from all distributed sites to the centralized site 
 

 
 
 
Let      N  be the total size of spatial databases in all distributed sites 

d be the number of dimension of each spatial database 
S be the total number of the distributed sites 
Nc be the number of cells in the multi-dimensional cube 
Nr be the number of the global representative points  

(a) Computational complexity:  

The computational for D-GridMST involves Step 2, 4, 6, 7, 8 and 10 of the 
algorithm. Globalizing the local range to the global one in Step 2 requires a 
complexity of O(d). Assigning local points into the multi-dimensional cube C and 
compute the density in Step 4 requires a complexity of O(N), where 
N=N1+N2+…+Nd. In Step 6, Globalizing local occupied cells of the cube involves 
the union of occupied cells in the cube of all distributed sites, whose complexity is at 
most O(d*Nc). Generation of representative points and construction of MST requires 
O(Nc+Nr

2). Using MST to cluster the representatives only requires O(Nr). Finally, 
labeling all points has a complexity of O(N). In sum, the computational complexity is 
O(d+N+d*Nc+Nc+Nr

2+ Nr+N). Given d<<N, Nc<<N and Nr<<N, thus the 
computational complexity of D-GridMST is O(N).  

Table 2. Annotations of the Transfer/location field in Table 1. 

Table 1. Algorithm of D-GridMST 
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(b) Space Complexity 

The storage requirements for the centralized and distributed sites are different in D-
GridMST: the centralized site has to store the range of each dimension of all 
distributed sites (O(d*S)), the occupied cells of all distributed sites (O(Nc*S)) and the 
MST generated (O(Nr)). Because d<<Nc and Nr<<Nc for most spatial datasets, thus 
the space complexity of D-GridMST is O(Nc*S). As for each distributed site, it will 
have to store the global range of data across all the sites and clustering result of 
representative points in addition to the original data in this site, therefore the storage 
requirement for distributed site Si is O(Ni+Max(d*S, Nr)) (1 ≤ i ≤ S).  

(c) Transferring Overhead 

The data transferring between the centralized and distributed sites occurs in Step 1,3, 
5,and 9, respectively. The overhead of transferring the local range of each dimension 
of distributed data and the global data range between the centralized and distributed 
sites is O(2*d*S). Transferring local occupied cells and their densities from 
distributed sites to centralized site has a overhead of O(2*S*Nc) at most. Finally, the 
overhead of transferring the clustering result of representative points from 
centralized site to distributed sites is O(Nr). Therefore, the total transferring overhead 
is O(2*d*S +2*S*Nc+ Nr).  

Remarks: 
From the above analysis, we can see that D-GridMST is promising in the sense that: 
(1) It is efficient because that the computational time is linear with respect to the 

total size of the distributed data; 
(2) It is space economic because D-GridMST only imposes small space requirements 

on both centralized and distributed sites;  
(3) It has small transferring overhead since the overhead of O(2*d*S +2*S*Nc+ Nr) is 

definitely much smaller than that of the strategy that all the data is first 
centralized before clustering is performed.    

4. Experimental Results 

We divide the experimental results in this section into two major parts. We will first 
evaluate the effectiveness and efficiency of GridMST, followed by study of 
effectiveness and efficiency of D-GridMST.   
 
In the first part, we compare the performance of GridMST against three related 
clustering techniques, i.e. DBSCAN[4], C2P[10] and DENCLUE[8]. DBSCAN is a 
widely used density-based clustering algorithm. C2P is the latest agglomerative 
hierarchical clustering algorithm using the notion of representative points of dataset. 
[10] has shown experimentally that C2P outperforms BIRCH and CURE in terms of 
efficiency in multi-resolution clustering with comparable clustering results as CURE. 
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DENCLUE, which models density of the data points using a kernel method, provides 
multi-resolution view of data clusters.  
 

In the second part, we will study the effect of the size of spatial databases in each 
distribute site and the number of distributed sites on the efficiency of D-GridMST. 
Also, we will propose a metric for measuring the similarity of between the clustering 
results of using the same clustering algorithm in clustering the centralized and 
distributed datasets.   
 

4.1  Effectiveness of Clustering Centralized Databases Using GridMST 

Figures 6 to 8 show the results of clustering Datasets 1-3 (different colors are used to 
denote the different clusters). We see that GridMST works well for all the datasets. 
DBSCAN and DENCLUE are unable to cluster Dataset 1 and Dataset 3 correctly. 
C2P generates the correct clustering results for all datasets except Dataset 3. On 
closer examination, we note that C2P does not work well on datasets that are 
concave. According to merge method of C2P, when two clusters are merged, a 
subset of points that are closest to the cluster center is selected and used as the 
representative points of the new cluster. The choice of these “closest” points reduces 
the effectiveness of these points being able to reflect the true shape and size of the 
cluster. From this experiment, we can clearly see than GridMST outperforms other 
methods in clustering concave clusters and dealing with effects resulting from 
outliers.   

  
 

Figure 6. Clustering result for Dataset 1 

 

  
 

Figure 7. Clustering result for Dataset 2 

 

GridMST         C2P        DBSCAN        DENCLUE 

GridMST        C2P         DBSCAN        DENCLUE 
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Figure X. Clustering result for Dataset 1 

Figure 8. Clustering result for Dataset 3 

4.2 Efficiency of Clustering Centralized Databases Using GridMST 

In this experiment, we evaluate the execution time of GridMST, DBSCAN, C2P and 
DENCLUE on different sizes of datasets. The sizes of these datasets range from 
100,000 to 1,000,000 points. Figure 9 shows that GridMST is scalable to large 
datasets and outperforms other three methods. DBSCAN carries out clustering on the 
entire dataset. Therefore, the execution time goes up rapidly when the dataset size 
increases. In C2P, a number of sub-clusters are obtained first and clustering is 
performed on these sub-clusters followed by a labeling process. This strategy helps 
somewhat but its time complexity of O(NlogN+M2logM) where M is the number of 
sub-clusters, is still much higher than GridMST whose time complexity is 
approximately linear with respect to the dataset size. Since the complexity analysis 
of DENCLUE reveals that it has a linear complexity with respect to the size of 
dataset, the time of DENCLUE is the closest to that of GridMST among all the 
methods yet still slightly high than that of GridMST. GridMST achieves speedup by 
extracting the representative points of the dataset and clustering these representative 
points before labeling the whole original dataset. The clustering of representatives 
turns out to be very efficient since the number of these representative points is 
normally far less than the number of points in the whole dataset.    

 
 Figure 9. Execution time of clustering centralized datasets on varying dataset size 

GridMST     C2P      DBSCAN        DENCLUE 
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4.3 Efficiency of Clustering Distributed Databases Using D-GridMST 

Apart evaluating the efficiency of GridMST on Centralized databases, we will also 
study the efficiency of D-GridMST on distributed databases. We will study the effect 
of the size of spatial databases in each distribute site and the number of distributed 
sites on the efficiency of D-GridMST. For the sake of simplicity, we set of the spatial 
databases in each distributed sites in this experiment as of each equal size. The size 
of the database in each distributed site ranges from 100,000 to 500,000 and the 
number of distributed sites varies from 10 to 30 in the experiments. The results are 
shown in Figures 10 and 11. The two basic findings of the experiments are: (i) The 
execution time of clustering is approximately linear with respect to the size of 
databases residing in the distributed sites. This is because the assignment of each 
point in the database into the multi-dimensional cube and the labeling of all the 
points in the database will dominate the execution time of D-GridMST, thus the 
complexity of D-GridMST is linear with respect to the total size of databases it 
works on; (ii) The execution time is nearly not affected by the factor of S. This is 
because local clustering in each distributed site can inherently be paralleled.    
 

 
 

 

4.4  Effectiveness of Clustering Distributed Databases Using D-GridMST 

As far as effectiveness of a distributed clustering algorithm is concerned, we are 
interested whether the clustering result is consistent with that of the centralized 
version of the algorithm. To measure this, we devise a metric that, to some extent, 
reflects the closeness of the two clustering results of centralized and distributed 
versions of the algorithm. This metric, termed as Clustering Similarity (CluSim for 
short), is defined as follows: 
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Figure 10. Execution time of D-
GridMST on varying dataset size in 
each distributed site 

Figure 11. Execution time of D-
GridMST on varying number of the 
distributed sites 
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where labelcen(pi) and labelcen(pi) denote the cluster label of the point pi using the 
centralized and distributed versions of clustering algorithm, respectively. labelcen(pi) 
=labelcen(pi) returns 1 when point pi is assigned the same cluster label under the two 
algorithms and returns 0 otherwise. Given that the cluster labels of two algorithms 
might not be consistent (the same cluster may have different cluster labels in the two 
clustering results). Therefore, we have to first make the cluster labeling of the two 
algorithms consistent before CluSim can be computed. This can be achieved by 
finding the best-matched pairs of centriods of clusters in the two results by 
computing their distance. The points in the clusters whose centriods are a best-
matched pair have the same clustering labels.  
 
Using above formula, we compute CluSim of D-GridMST and two exiting 
distributed clustering algorithms K-means and EM. The result are D-
GridMST(100%), K-means (93%) and EM(90%). Clearly, D-GridMST outperforms 
the other two algorithms and is able to produce exactly the same clustering result as 
that produced by working on the centralized data from all distributed sites.  

5. Conclusion 

In this paper, we will propose a distributable clustering algorithm, called Distributed-
GridMST (D-GridMST), which deals with large distributed spatial databases. D-
GridMST employs the notions of multi-dimensional cube to partition the data space 
involved and uses density criteria to extract representative points from spatial 
databases, based on which a global MST of representatives is constructed. Such a 
MST is partitioned according to users’ clustering specification and used to label data 
points in the respective distributed spatial database thereafter. Since only the 
compact information of the distributed spatial databases is transferred via network, 
D-GridMST is characterized by small network transferring overhead. Experimental 
results show that D-GridMST is effective since it is able to produce exactly the same 
clustering result as that produced in centralized paradigm.  
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