
D-GridMST: Clustering Large Distributed
Spatial Databases

Ji Zhang

Department of Computer Science
University of Toronto

Toronto, Ontario, M5S 3G4, Canada
Email: jzhang@cs.toronto.edu

Abstract:
In this paper, we will propose a distributable clustering algorithm, called
Distributed-GridMST (D-GridMST), which deals with large distributed spatial
databases. D-GridMST employs the notions of multi-dimensional cube to partition
the data space involved and uses density criteria to extract representative points
from spatial databases, based on which a global MST of representatives is
constructed. Such a MST is partitioned according to users’ clustering specification
and used to label data points in the respective distributed spatial database
thereafter. Since only the compact information of the distributed spatial databases
is transferred via network, D-GridMST is characterized by small network
transferring overhead. Experimental results show that D-GridMST is effective
since it is able to produce exactly the same clustering result as that produced in
centralized paradigm, making D-GridMST a promising tool for clustering large
distributed spatial databases.

1. Introduction

With rapid development of techniques in data acquisition and storage, spatial
databases store an increasing amount of space-related data such as satellite maps,
remotely sensed images and medical images. These data, if analyzed, can reveal
useful patterns and knowledge to human users. Clustering is a process whereby a set
of objects is divided into several clusters in which each of the members in some way
similar and is different from the members of other clusters [11]. Spatial data
clustering, aiming to identify clusters, or densely populated regions in a large and
multi-dimensional spatial dataset, serves as an important task of spatial data mining.
Though a large number of spatial clustering algorithms have been proposed in
literature so far, most of them assume the data to be clustered are locally resident in
centralized scenario, making them unable to cluster inherently distributed spatial data
sources.

[2] presents a distributed data clustering algorithm that is designed based on a
classical clustering algorithm PAM and a spanning tree clustering algorithm, called
Clusterize. [3] proposes an approach to deal with clustering data emanating from
different sites. It operates in three major steps: (1) find the local clusters of data in

 2

each site; (2) find (high) clusters from the union of the distribution data sets at the
central site; (3) finally compute the associations between the two sets of clusters. In
[6], three classical clustering methods, namely K-means, K-Harmonic Means (KHM)
and Maximum Expectation (EM) are modified to parallelise the clustering of
distributed data sources. More recently, a parallel implementation of K-means based
on the message-passing model is presented [5]. To deal with heterogeneity of data
across distributed sites, [9] presents a Collective Hierarchical Clustering (CHC)
algorithm for analyzing distributed and heterogeneous data. This method first
generates local cluster models and then combines them to generate the global cluster
model of the data.

In this paper, we will propose a distributable clustering algorithm, called Distributed-
GridMST (D-GridMST), that deals with large distributed spatial databases. D-
GridMST employs the notions of multi-dimensional cube and grid to partition the
data space involved and uses density criteria to extract representative points from
spatial databases, based on which a global MST of representatives is constructed.
Such a MST is partitioned according to users’ clustering specification and used to
label data points in the respective distributed spatial database thereafter. Since only
the compact information of the distributed spatial databases is transferred via
network, D-GridMST is characterized by small network transferring overhead.
Experimental results show that both the centralized (GridMST) and distributed (D-
GridMST) versions of our clustering technique are efficient and effective since it is
able to produce exactly the same clustering result as that produced in centralized
paradigm. These advantages are believed to make D-GridMST a promising tool for
clustering large distributed spatial databases.

The remainder of this paper is organized as follows. In Section 2, we will present
GridMST, our clustering technique for clustering centralized spatial databases.
Section 3 gives the details of D-GridMST. Experimental results are reported in
Section 4. The final section concludes this paper.

2. GridMST

GridMST is a new approach that aims to address two specific needs in the clustering
of dynamic spatial databases, namely multi-resolution clustering and incremental
clustering. GridMST is fast, scalable, robust to noise, and effective in accomplishing
multi-resolution and incremental clustering. Figure 1 gives an overview of GridMST.
It consists of three major parts. The first part deals with scaling the algorithm for
very large spatial databases. The second part deals with extracting the necessary
information to build a summary structure for multi-resolution clustering and
incremental clustering. The final part deals how the multi-resolution clustering
and/or incremental clustering make use of the summary structures to perform
analysis, respectively.

 3

Building minimum
spanning tree of
representatives

2.1 Sampling Large Spatial Databases

Similar to BIRCH, CURE, and C2P, GridMST handles with the problem of very
large spatial databases by sampling the databases. [7] derives a theorem to determine
the minimum sample size required to ensure that a fraction of the cluster is always
included in the sample with probability . That is, for a cluster u, if the sample size
s satisfies

)
1

log(||2))
1

(log(
||

)
1

log(
||

2

δδδ
uf

u
N

u
N

fNs +++≥

then the probability that the sample contains fewer than f|u| points belonging to
cluster u is less than , where N is the size of the dataset, |u| is the size of the
cluster u, 0 ≤ f ≤ 1, 0 ≤ ≤ 1.

GridMST uses this theorem to determine the sample size and performs uniform
sampling on the large spatial database to obtain a sample database. We observe that
this sample database could still be too large to fit entirely into the main memory. In
this case, GridMST will divide the sample database into several smaller partitions,
each of which can be loaded into the main memory. The partitions are read in one at
a time and processed for their density information. When all the partitions have been
scanned, the grid cells occupied by the whole sampling dataset are obtained (the grid
structure will be discussed later in this paper). The size of occupied grid cell is small
enough to be stored in the main memory. Representative points can now be
generated based on the density information of these grid cells. Note that these
representative points are for the entire sample database. This makes GridMST
flexible and yet effective in handling samples of all sizes.

3.2 Constructing the R-MST

In GridMST, a number of representative points of the database are picked using the
density criterion. A minimum spanning tree of these representative points, denoted as
R-MST, is built. GridMST constructs R-MST in a number of steps. First, a grid data
structure is constructed whereby each point in the dataset is assigned to one and only

Sampling

Multi-resolution
Clustering

Clustering
Results

Figure 1. Overview of GridMST

Large
Spatial Database

Sample
Database

GridMST

 4

one cell in the grid. The density of each grid cell is then computed. If the density of a
grid cell exceeds some user-specified threshold, then the cell is considered to be
dense and the centroid of the points in the dense cell is selected as the representative
point of this cell. Once the representative points have been selected, a graph-
theoretic based algorithm is used to build the R-MST. We now introduce some basic
definitions that are used in the algorithm to construct the R-MST.

3.2.1 Definitions

Definition 1: Relative Density of a grid cell
Let g be some cell in a grid structure G. Let n be the number of points in g and avg
be the average number of points in a cell in G. Then, the Relative Density of g,
denoted as RD(g), is defined as the ratio n / avg.

A grid cell is a neighbor of some grid cell g if it is directly connected to g. Hence, a
center grid cell will have 8 neighboring grid cells, an edge grid cell will have 5
neighboring grid cells, and a corner grid cell will have only 3 neighboring grid cells.

 4XY/N

 3XY/N

 0 0 0

 0 1 0

 0 0 0 1 1 1

 1 1 1

 1 1 1

Figure 2. Relative density of grid cells

Figure 3. Two grid cells that have the same RD but different ND

 5

t =

Definition 2: Neighborhood Density of a grid cell
Let g be some cell in a grid structure G and Neighbor be the set of neighboring grid
cells of g. The Neighborhood Density of g, denoted as ND(g), is defined as the
average of the densities of g and its neighboring grid cells. ND(g) is given by the
following formula:

))()((*
1

)(�
∈

+=
gi Neighborgg

igRDgRD
t

gND

where t =1+ the number of neighboring grid cells of g. Specifically,

Definition 3: Dense vs. Non-dense grid cells
Let g be some cell in a grid structure G. g is a dense grid cell if ND(g) is greater than
or equal to some user specified density threshold, Td, otherwise g is a non-dense grid
cell.

Suppose X and Y are the horizontal and vertical number of grid cells in grid structure
and N is the size of the dataset. Then the average number of points in the cells of the
grid is given by N/XY. Figure 2 shows the densities of the non-empty grid cells in the
grid structure. Note that from Definition 3, a grid cell is considered dense if its
neighborhood density, ND, exceeds some user-specified threshold. The reason for
using ND rather than RD to determine the denseness of a grid cell is that ND
measures not only its own density, but it also reflects the density of its neighboring
area. This actually compensates for the effect of outliers.

Figure 3 highlights two grids. Although the center grid cells of these two grids have
the same RD of XY/N, these cells have different ND values. The ND of the left center
grid (which is most likely an outlier) is XY/5N, while the ND of the right center grid
is XY/N. This example clearly shows that ND of a grid cell is more effective in
limiting the effect of an outlier than RD. After the dense grid cells have been
identified, we compute the centroid of data points falling into each dense cell. These
centroids will form the set of representative points that well reflects the approximate
distribution of the data points in the entire dataset.

Definition 4: R-MST
Suppose A = <V, E> is an undirected graph, where V is the set of vertices denoting
the set of representative points and E is the set of edges connecting these
representative points. R-MST is a connected acyclic subgraph of A that has the
smallest total cost (or length), which is measured as the sum of the costs of its edges.

3.2.2 Generating Representative Points

6 if g is an edge grid cell
4 if g is a corner grid cell
9 otherwise

 6

To generate the representative points, all the grid cells are examined in order to
extract the dense cells. We devise an efficient algorithm to extract the dense cells and
generate representative points. The steps of the algorithm are shown in Figure 4.
Steps 1-6 perform the grid cell mapping, i.e. assign each data point into one and only
one grid cell. Once a point has been assigned, the density of its corresponding cell is
incremented by 1. Steps 7-13 extract dense cells based on some pre-specified density
threshold, Td. A cell is a dense grid cell if its Neighborhood Density is greater than
or equal to Td, otherwise it is a non-dense grid cell. The representative points are
generated using the centroids of all the points in the dense cells and are added to the
list of representative points.

3.2.3 Constructing the R-MST
The algorithm for constructing the R-MST is as follows:
(1) Compute all the pair-wise Euclidean distances of representatives and sort them in
ascending order. This forms a pool of potential R-MST edges;
(2) Pick edges from the pool of potential edges obtained in (1), starting with the
shortest edge. Only those edges that do not create a cycle with the edges that have
already been chosen are picked. The process terminates when the number of such
edges is equal to (Nr - 1), where Nr is the number of representative points.

2. 3 Using R-MST for Spatial Clustering

After the R-MST has been constructed, multi-resolution clustering can be easily
achieved. Suppose a user wants to find k clusters. A graph search through the R-
MST is initiated, starting from the largest cost edge, to the lowest cost edge. As an
edge is traversed, it is marked as deleted from the R-MST. The number of partitions
resulting from the deletion is computed. The process stops when the number of
partitions reaches k. Any change in the value of k simply implies re-initiating the
search-and-marked procedure on the R-MST. Once the R-MST has been divided into

Procedure Repr_Generation (Dataset D)
Begin
1. For each point p in D Do
2.{
3. Cell (p)=Map(p);
4. j = Hash (Cell(p));
5. Count [j]++;
6. }
7. For each cell i in the hash table do
8. {
9. ND=Neighborhood_Den(i);
10. If (ND >=Td) Then {
11. Cell i is a dense cell;
12 Repr_List=Repr_List ∪CentroidOfPoints(i);
13. } }
End

Figure 4. Algorithm to extract representative points.

 7

k partitions, we can now propagate this information to the original dataset so that
each point in the dataset is assigned to one and only one partition/cluster. A naive
approach is to go through the dataset once, and compute the distance between each
point to all the representative points. The data point is then assigned to the cluster
whose representative point it is closest to. However, we observed that if a data point
falls into a dense cell, say dc, then the nearest representative point is the
representative point of dc. Thus, we can immediately assign the data point the same
cluster label as the representative point of cell dc. For those data points that fall into
non-dense cells, we use an indexing structure for high dimensional data, the X-tree
[1], to speedup the search for the closest representative point. Once the closest
representative point is found, the corresponding data point will be assigned the same
cluster label as this its closest representative point.

Figure 5 illustrates the multi-resolution clustering in GridMST. GridMST operates in
two modes for multi-resolution clustering: a manual mode and an automatic mode. In
the manual mode, the user will specify the value of k. In the automatic mode, the
system automatically searches for the optimal number of clusters based on some pre-
defined inter-cluster distance threshold.

(a) k=3 (b) k=4 (c)k=5

3. D-GridMST (Distributed GridMST)

After discussing the technique of GridMST that is mainly applicable in clustering
spatial database in the centralized paradigm, we, in this section, will present D-
GridMST, the distributed version of GridMST that works with distributed spatial
databases. The adaptation from GridMST to D-GridMST mainly involves (i)
Generation of global data model by combining local data models in centralized site,
and (ii) Local data clustering analysis in each of the distributed sites.

In order to produce the clustering result of these distributed databases that is
comparable to result of a centralized database in D-GridMST, globalization of local
data model is entailed to obtain global data model that captures the cluster features
for the whole dataset. The local data model we use in D-GridMST is simple and
small in size, which contributes to the small network transfer through the network.
Specifically, the globalization of local data model in D-GridMST involves:

(1) Globalize range of every dimension of data in each distributed site

Figure 5. Multi-resolution clustering

 8

Global range of every dimension of the data is required to construct a structure of
global multi-dimensional cube. Here, we assume the all the spatial data reside in the
distributed databases are homogenous in nature, which ensures that such
combination can be performed meaningfully. The object of obtaining global range of
every dimension is to ensure that the grid constructed is able to encapsulate all the
data points stored in the distributed sites. To this end, all distributed sites are
required to provide the central site with the information regarding the maximum and
minimum values, i.e. the range, of every dimension of local data points. Upon the
receipt of such information from all distributed sites, the central site will commence
to produce the global range information. Specifically, in a d dimensional dataset, let
Lmax(i) and Lmin(i) be the local maximum and minimum values of dimension i, the
global maximum and minimum values of dimension i, denoted as Gmax(i) and Gmin(i),
are produced as follows:

G min(i)=min(Lmin (1), Lmin (2), …Lmin (d))
 G max(i)=max(Lmax (1),Lmax (2), …Lmax (d))

The range of ith

 dimension, denoted as R(i) can be computed as

R(i)= Gmax(i)-Gmin(i) (1 ≤ i ≤ d)

(2) Globalize local occupied cells in each distributed site
Here, the occupied cells refer to the cells that occupied by the data points in the
database. In other words, the occupied cells are those whose density is at least 1.
Local occupied cells are those cells occupied by the local data points in the
distributed site, and global occupied cells are those cells occupied by all the data
points. The global occupied cells serve as the potential pool for the selection of dense
cells: the dense cells are only the occupied cells whose neighborhood density
exceeds some threshold.

The global occupied cells are the union of local occupied cells. Suppose there are S
distributed sites and LOC(i) denotes the local occupied cells of the ith distributed site.
The global occupied cells, denoted by GOC, can be generated as follows:

GOC=LOC(1) ∪ LOC(2)… ∪ LOC(S)

3. 1 D-GridMST Algorithm

In this section, we will give D-GridMST the algorithm that performs clustering of
distributed spatial databases. The algorithm of D-GridMST is presented in Table 1.

3. 2 The Complexity of D-GridMST

The complexity analysis in the subsection includes the analysis of its computational
complexity, space complexity and transfer overhead. The notation that will be used
in the analysis are first presented below:

 9

Step Transfer/

Location
Operation

1 DS CS Transfer local range of every dimension of data
2 CS Globalize local range to global range
3 CS DS Transfer global range and create global multi-dimensional

cube C
4 DS Assign local points into C and compute the density
5 DS CS Transfer local occupied cells and their densities
6 CS Globalize local occupied cells of the cube
7 CS Generate representative points and construct MST
8 CS Perform multi-resolution clustering using MST
9 CS DS Transfer clustering result of representative points

10 DS Label local data points

Table 2 gives the annotation of the notations used in the Transfer/location field in
Table 1.

Value Meaning
CS Clustering operations in centralized site
DS Clustering operations in all the distributed sites

CS to DS Data are transferred from centralized site to all the distributed sites
DS to CS Data are transferred from all distributed sites to the centralized site

Let N be the total size of spatial databases in all distributed sites

d be the number of dimension of each spatial database
S be the total number of the distributed sites
Nc be the number of cells in the multi-dimensional cube
Nr be the number of the global representative points

(a) Computational complexity:

The computational for D-GridMST involves Step 2, 4, 6, 7, 8 and 10 of the
algorithm. Globalizing the local range to the global one in Step 2 requires a
complexity of O(d). Assigning local points into the multi-dimensional cube C and
compute the density in Step 4 requires a complexity of O(N), where
N=N1+N2+…+Nd. In Step 6, Globalizing local occupied cells of the cube involves
the union of occupied cells in the cube of all distributed sites, whose complexity is at
most O(d*Nc). Generation of representative points and construction of MST requires
O(Nc+Nr

2). Using MST to cluster the representatives only requires O(Nr). Finally,
labeling all points has a complexity of O(N). In sum, the computational complexity is
O(d+N+d*Nc+Nc+Nr

2+ Nr+N). Given d<<N, Nc<<N and Nr<<N, thus the
computational complexity of D-GridMST is O(N).

Table 2. Annotations of the Transfer/location field in Table 1.

Table 1. Algorithm of D-GridMST

 10

(b) Space Complexity

The storage requirements for the centralized and distributed sites are different in D-
GridMST: the centralized site has to store the range of each dimension of all
distributed sites (O(d*S)), the occupied cells of all distributed sites (O(Nc*S)) and the
MST generated (O(Nr)). Because d<<Nc and Nr<<Nc for most spatial datasets, thus
the space complexity of D-GridMST is O(Nc*S). As for each distributed site, it will
have to store the global range of data across all the sites and clustering result of
representative points in addition to the original data in this site, therefore the storage
requirement for distributed site Si is O(Ni+Max(d*S, Nr)) (1 ≤ i ≤ S).

(c) Transferring Overhead

The data transferring between the centralized and distributed sites occurs in Step 1,3,
5,and 9, respectively. The overhead of transferring the local range of each dimension
of distributed data and the global data range between the centralized and distributed
sites is O(2*d*S). Transferring local occupied cells and their densities from
distributed sites to centralized site has a overhead of O(2*S*Nc) at most. Finally, the
overhead of transferring the clustering result of representative points from
centralized site to distributed sites is O(Nr). Therefore, the total transferring overhead
is O(2*d*S +2*S*Nc+ Nr).

Remarks:
From the above analysis, we can see that D-GridMST is promising in the sense that:
(1) It is efficient because that the computational time is linear with respect to the

total size of the distributed data;
(2) It is space economic because D-GridMST only imposes small space requirements

on both centralized and distributed sites;
(3) It has small transferring overhead since the overhead of O(2*d*S +2*S*Nc+ Nr) is

definitely much smaller than that of the strategy that all the data is first
centralized before clustering is performed.

4. Experimental Results

We divide the experimental results in this section into two major parts. We will first
evaluate the effectiveness and efficiency of GridMST, followed by study of
effectiveness and efficiency of D-GridMST.

In the first part, we compare the performance of GridMST against three related
clustering techniques, i.e. DBSCAN[4], C2P[10] and DENCLUE[8]. DBSCAN is a
widely used density-based clustering algorithm. C2P is the latest agglomerative
hierarchical clustering algorithm using the notion of representative points of dataset.
[10] has shown experimentally that C2P outperforms BIRCH and CURE in terms of
efficiency in multi-resolution clustering with comparable clustering results as CURE.

 11

DENCLUE, which models density of the data points using a kernel method, provides
multi-resolution view of data clusters.

In the second part, we will study the effect of the size of spatial databases in each
distribute site and the number of distributed sites on the efficiency of D-GridMST.
Also, we will propose a metric for measuring the similarity of between the clustering
results of using the same clustering algorithm in clustering the centralized and
distributed datasets.

4.1 Effectiveness of Clustering Centralized Databases Using GridMST

Figures 6 to 8 show the results of clustering Datasets 1-3 (different colors are used to
denote the different clusters). We see that GridMST works well for all the datasets.
DBSCAN and DENCLUE are unable to cluster Dataset 1 and Dataset 3 correctly.
C2P generates the correct clustering results for all datasets except Dataset 3. On
closer examination, we note that C2P does not work well on datasets that are
concave. According to merge method of C2P, when two clusters are merged, a
subset of points that are closest to the cluster center is selected and used as the
representative points of the new cluster. The choice of these “closest” points reduces
the effectiveness of these points being able to reflect the true shape and size of the
cluster. From this experiment, we can clearly see than GridMST outperforms other
methods in clustering concave clusters and dealing with effects resulting from
outliers.

Figure 6. Clustering result for Dataset 1

Figure 7. Clustering result for Dataset 2

GridMST C2P DBSCAN DENCLUE

GridMST C2P DBSCAN DENCLUE

 12

Figure X. Clustering result for Dataset 1

Figure 8. Clustering result for Dataset 3

4.2 Efficiency of Clustering Centralized Databases Using GridMST

In this experiment, we evaluate the execution time of GridMST, DBSCAN, C2P and
DENCLUE on different sizes of datasets. The sizes of these datasets range from
100,000 to 1,000,000 points. Figure 9 shows that GridMST is scalable to large
datasets and outperforms other three methods. DBSCAN carries out clustering on the
entire dataset. Therefore, the execution time goes up rapidly when the dataset size
increases. In C2P, a number of sub-clusters are obtained first and clustering is
performed on these sub-clusters followed by a labeling process. This strategy helps
somewhat but its time complexity of O(NlogN+M2logM) where M is the number of
sub-clusters, is still much higher than GridMST whose time complexity is
approximately linear with respect to the dataset size. Since the complexity analysis
of DENCLUE reveals that it has a linear complexity with respect to the size of
dataset, the time of DENCLUE is the closest to that of GridMST among all the
methods yet still slightly high than that of GridMST. GridMST achieves speedup by
extracting the representative points of the dataset and clustering these representative
points before labeling the whole original dataset. The clustering of representatives
turns out to be very efficient since the number of these representative points is
normally far less than the number of points in the whole dataset.

 Figure 9. Execution time of clustering centralized datasets on varying dataset size

GridMST C2P DBSCAN DENCLUE

 13

4.3 Efficiency of Clustering Distributed Databases Using D-GridMST

Apart evaluating the efficiency of GridMST on Centralized databases, we will also
study the efficiency of D-GridMST on distributed databases. We will study the effect
of the size of spatial databases in each distribute site and the number of distributed
sites on the efficiency of D-GridMST. For the sake of simplicity, we set of the spatial
databases in each distributed sites in this experiment as of each equal size. The size
of the database in each distributed site ranges from 100,000 to 500,000 and the
number of distributed sites varies from 10 to 30 in the experiments. The results are
shown in Figures 10 and 11. The two basic findings of the experiments are: (i) The
execution time of clustering is approximately linear with respect to the size of
databases residing in the distributed sites. This is because the assignment of each
point in the database into the multi-dimensional cube and the labeling of all the
points in the database will dominate the execution time of D-GridMST, thus the
complexity of D-GridMST is linear with respect to the total size of databases it
works on; (ii) The execution time is nearly not affected by the factor of S. This is
because local clustering in each distributed site can inherently be paralleled.

4.4 Effectiveness of Clustering Distributed Databases Using D-GridMST

As far as effectiveness of a distributed clustering algorithm is concerned, we are
interested whether the clustering result is consistent with that of the centralized
version of the algorithm. To measure this, we devise a metric that, to some extent,
reflects the closeness of the two clustering results of centralized and distributed
versions of the algorithm. This metric, termed as Clustering Similarity (CluSim for
short), is defined as follows:

100%*))()((
1

1 ii plabelplabel
N

CluSim dis

N

i cen == � =

Figure 10. Execution time of D-
GridMST on varying dataset size in
each distributed site

Figure 11. Execution time of D-
GridMST on varying number of the
distributed sites

 14

where labelcen(pi) and labelcen(pi) denote the cluster label of the point pi using the
centralized and distributed versions of clustering algorithm, respectively. labelcen(pi)
=labelcen(pi) returns 1 when point pi is assigned the same cluster label under the two
algorithms and returns 0 otherwise. Given that the cluster labels of two algorithms
might not be consistent (the same cluster may have different cluster labels in the two
clustering results). Therefore, we have to first make the cluster labeling of the two
algorithms consistent before CluSim can be computed. This can be achieved by
finding the best-matched pairs of centriods of clusters in the two results by
computing their distance. The points in the clusters whose centriods are a best-
matched pair have the same clustering labels.

Using above formula, we compute CluSim of D-GridMST and two exiting
distributed clustering algorithms K-means and EM. The result are D-
GridMST(100%), K-means (93%) and EM(90%). Clearly, D-GridMST outperforms
the other two algorithms and is able to produce exactly the same clustering result as
that produced by working on the centralized data from all distributed sites.

5. Conclusion

In this paper, we will propose a distributable clustering algorithm, called Distributed-
GridMST (D-GridMST), which deals with large distributed spatial databases. D-
GridMST employs the notions of multi-dimensional cube to partition the data space
involved and uses density criteria to extract representative points from spatial
databases, based on which a global MST of representatives is constructed. Such a
MST is partitioned according to users’ clustering specification and used to label data
points in the respective distributed spatial database thereafter. Since only the
compact information of the distributed spatial databases is transferred via network,
D-GridMST is characterized by small network transferring overhead. Experimental
results show that D-GridMST is effective since it is able to produce exactly the same
clustering result as that produced in centralized paradigm.

References

[1] S. Berchtold, D. A. Keim and H. Kriegel. The X-tree: An Index Structure for
High-Dimensional Data. Proc. 22nd International Conference on Very Large
Data Base (VLDB’96), Mumbai, India, 1996.

[2] D. K. Bhattacharyya and A. Das. A New Distributed Algorithm for Large Data
Clustering. IDEAL’2000, pp.29-34, 2000.

[3] A. Bouchachia. Distributed Data Clustering. CAiSE, 2003.
[4] M. Charikar, C. Chekuri, T.Feder, and R. Motwani. Incremental Clustering and

Dynamic Information Retrieval. ACM Symposium on Theory of Computing,
1997.

[5] I. S. Dhillon and D. S. Modha. A Data-clustering Algorithm on Distributed
Memory Multiprocessors. Large-Scale Parallel Data Mining, pp 245-260,
2002.

 15

[6] G. Forman and B. Zhang. Distributed Data Clustering Can be Efficient and
Exact. SIGKDD Explorations, Vol.2 Issue 2, pp 34-38, 2000.

[7] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Clustering
Large Datasets in Arbitrary Metric Spaces. Proc. 15th International Conference
on Data Engineering (ICDE’99), Sydney, Australia, 1999.

[8] J. He, A. H. Tan, C. L. Tan, and S.Y. Sung. On Quantitative Evaluation of
Clustering Systems. Information Retrieval and Clustering, Kluwer Academic
Publishers, 2002.

[9] E. L. Johnson and H. Kargupta. Collective Clustering from Distributed
Heterogeneous Data. Large-Scale Parallel Data Mining, pp 221-244, 2000.

[10] J. MacQueen. Some methods for classification and analysis of multivariate
observations. Proc. 5th Berkeley Symposium on Math, Statistics and
Probability, 1, pages 281-297, 1967.

[11] M. Zait and H. Messatfa. A Comparative Study of Clustering Methods. Future
Generation Computer Systems, Vol.13, pp. 149-159, 1997.

