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A B S T R A C T   

Background and Objective: Sleep staging is an essential step for sleep disorder diagnosis, which is time-intensive 
and laborious for experts to perform this work manually. Automatic sleep stage classification methods not only 
alleviate experts from these demanding tasks but also enhance the accuracy and efficiency of the classification 
process. 
Methods: A novel multi-channel biosignal-based model constructed by the combination of a 3D convolutional 
operation and a graph convolutional operation is proposed for the automated sleep stages using various phys
iological signals. Both the 3D convolution and graph convolution can aggregate information from neighboring 
brain areas, which helps to learn intrinsic connections from the biosignals. Electroencephalogram (EEG), elec
tromyogram (EMG), electrooculogram (EOG) and electrocardiogram (ECG) signals are employed to extract time 
domain and frequency domain features. Subsequently, these signals are input to the 3D convolutional and graph 
convolutional branches, respectively. The 3D convolution branch can explore the correlations between multi- 
channel signals and multi-band waves in each channel in the time series, while the graph convolution branch 
can explore the connections between each channel and each frequency band. In this work, we have developed the 
proposed multi-channel convolution combined sleep stage classification model (MixSleepNet) using ISRUC 
datasets (Subgroup 3 and 50 random samples from Subgroup 1). 
Results: Based on the first expert’s label, our generated MixSleepNet yielded an accuracy, F1-score and Cohen 
kappa scores of 0.830, 0.821 and 0.782, respectively for ISRUC-S3. It obtained accuracy, F1-score and Cohen 
kappa scores of 0.812, 0.786, and 0.756, respectively for the ISRUC-S1 dataset. In accordance with the evalu
ations conducted by the second expert, the comprehensive accuracies, F1-scores, and Cohen kappa coefficients 
for the ISRUC-S3 and ISRUC-S1 datasets are determined to be 0.837, 0.820, 0.789, and 0.829, 0.791, 0.775, 
respectively. 
Conclusion: The results of the performance metrics by the proposed method are much better than those from all 
the compared models. Additional experiments were carried out on the ISRUC-S3 sub-dataset to evaluate the 
contributions of each module towards the classification performance.   

1. Introduction 

High-quality sleep helps human beings to rejuvenate and relieve 
fatigue, while low-quality sleep affects their physical and mental health 
[1]. Most populations suffer from sleep disorders, including insomnia, 
obstructive sleep apnea, and disruptions in circadian rhythm synchro
nization [2]. Sleep scoring is a critical approach to identifying problems 
related to sleep rhythm disruption [3]. To classify sleep stages, experts 

collect biosignals by placing electrodes in different locations on human 
heads and analyzing those signals. Electroencephalography (EEG), 
electromyography (EMG), and electrooculography (EOG) constitute the 
principal polysomnographic (PSG) methodologies for the examination 
of cerebral activities [4]. According to the American Academy of Sleep 
Medicine (AASM) standards [5], the process of visual inspection ne
cessitates experts to categorize every sleep epoch into five distinct 
stages, specifically, wakefulness (W), rapid eye movement (REM), and 
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three non-rapid eye movement (NREM) stages denoted as N1, N2, and 
N3 [6–8]. Although manual sleep scoring can help the experts to analyze 
and diagnose sleep-related problems effectively, the high workload of 
sleep stages identification and subjectivity of experts limits their clinical 
applications. Therefore, semi-automatic and automatic sleep staging 
systems have increasingly drawn attention [9–11]. 

Many researchers have employed machine learning techniques to 
analyze PSGs [12–15]. Shallow classifiers, including decision trees [16], 
support vector machines [17–19], and random forests [20], etc. have 
demonstrated satisfactory classification performance. However, one of 
the drawbacks of these shallow classifiers is that the feature extraction 
process is required, whose classification performance depends on the 
selected features and feature selection algorithms. Although researchers 
have tried to extract features from multiple perspectives [21], compared 
with deep learning methods, there is still a lot of space to improve. Deep 
learning models possess the capability to directly extract intricate fea
tures from raw data, leading to significant advancements in sleep stage 
classification [22–24]. Convolutional neural networks (CNN) [25,26], 
including 1D-CNN [27–29], 2D-CNN [30,31] have shown promising 
results in sleep stage classification tasks. Even though CNNs can learn 
features from time series in each epoch, the correlations among neigh
boring epochs can be easily ignored. To address this limitation, recurrent 
neural networks (RNNs) [32], particularly long short-term memory 
(LSTM) networks, have been introduced. [33–35]. The LSTM module 
has both long-term and short-term memories of inputs, which means 
that the transition rules of epochs can be learned comprehensively, 
while the intrinsic connection among different channels remains unex
plored. Unlike CNNs or RNNs, the inputs of graph convolutional net
works (GCNs) are non-Euclidean structures, and this characteristic 
allows GCNs to learn the functional connections and spatial connections 
among brain areas [36–38]. Even though GCNs can extract spatial fea
tures effectively, their high computing complexity limits their applica
tions in times series, whose density of data points is higher than other 
tasks. As a result, all existing GCN models in sleep stage classifications 
use frequency features or extracted high-level features from CNNs as 
inputs. In contrast, 3D convolutional neural networks (3D-CNNs) can 
extract intricate spatial features and temporal features simultaneously, 
allowing them to investigate the correlations of channels in the temporal 
dimension, while the correlations of the frequency domain are easily 
ignored. 

1.1. Related work 

Automatic sleep staging has advanced rapidly in recent years and the 
classification algorithms can be divided into three categories, namely, 
rule-based algorithms, traditional machine learning models and deep 
learning methods. The rule-based algorithms classify sleep epochs into 
five or six categories according to the AASM standards or the R&K rules, 
respectively. Experts focus on the characteristics of waves, like ampli
tude ranges, wavelet power spectrum ranges and spectral coefficient 
ratio and establish some rules to classify sleep stages [39]. However, 
because of the insufficient extracted features, the classification accuracy 
is quite low and unacceptable. Compared with rule-based algorithms, 
machine learning methods have significantly improved classification 
performances. Support vector machines (SVMs) stand out as one of the 
extensively utilized classifiers across various classification tasks, 
exhibiting notable efficacy in the identification of sleep stages. For 
instance, Zhu et al [40], extracted features from the graph domain using 
a visibility graph similarity technique. This approach was employed to 
achieve a five-state classification based on single-channel EEG data. 
Ignacio et al [17] used multitapers with a convolution method to extract 
time-frequency features from two EEG channels for the general features 
and muscle movement features, extracted from two EEG channels and 
two EOG channels as the supplementary features. The extracted features 
were fed into a support vector machine classifier with a quadratic 
equation for the final classification. Other forms of shallow machine 

learning approaches, like Naive Bayes [41], random forest (RF) [20,42], 
complex networks [43], and ensemble learning-based classifiers [44], 
have similarly demonstrated credible classification outcomes. Although 
experts have tried to find more comprehensive features from the time 
domain [45,46], frequency domain [47–50], time-frequency domain 
[51–54], or even the graph domain, there is still a lot of space to improve 
the classification performance. 

Due to their achievements in many fields, such as image recognition 
and natural language processing, several deep learning algorithms have 
been reported in biosignals processing. DeepSleepNet [33] is a CNN 
model with two branches, where a larger filter captures the frequency 
information and a smaller filter captures the temporal information. The 
two-step training model is first trained with a pre-training on shuffled 
balanced data and then it is fine-tuned with imbalanced data for the final 
classification. In the training process, a Bi-LSTM layer is employed to 
acquire an understanding of the transition patterns among adjacent 
epochs. Akara and Yike [34] designed a more efficient CNN model 
named TinySleepNet based on the DeepSleepNet model. In the repre
sentation learning part, raw signals are fed into a single branch of 
several convolutional layers instead of two branches as in the Deep
SleepNet, and the Bi-LSTM is replaced by a LSTM to learn the transition 
rules. Compared with CNNs, GCNs are more advantageous in repre
senting brain connections and their activities. Jia et al [36] designed a 
GCN model named GraphSleepNet for sleep stage classification tasks. 
This model incorporates both a spatial attention layer and a temporal 
attention layer, facilitating the capture of significant spatial information 
from each channel and crucial temporal information from adjacent 
epochs. The multi-view spatial-temporal graph convolutional networks 
[37] improve the performance of GraphSleepNet through domain 
generalization. The jumping knowledge-based spatial-temporal graph 
convolutional networks [38] further improve the classification accuracy 
and execution efficiency through the jumping knowledge module. 
However, a limitation of GCNs is that they take a lot of computational 
resources than CNNs. Therefore, the existing GCNs do not work on 
temporal data directly, where a feature extraction step is required to 
transfer temporal data to the frequency domain or extract temporal data 
first. The U2-Net model proposed in [55] incorporates a multi-scale 
extraction module and demonstrates satisfactory performance in sleep 
stage classification tasks. 

1.2. Contributions 

In this study, we proposed a combined model that utilizes graph 
convolutional networks (GCN) and 3D-CNN to address the challenges of 
automatic sleep stage classification. Unlike pure GCNs or 3D-CNN 
models, the proposed model captures not only spatial features but also 
frequency features and temporal features from the GCN and 3D-CNN 
branches, respectively. 

The principal contributions of this paper are delineated as follows:  

• A novel deep learning model that integrates GCN and 3D-CNN is 
introduced for the task of automated sleep stage classification. The 
differential entropy, a frequency domain feature, is extracted for the 
graph convolution branch to explore the correlation between fre
quency bands and channels in the spatial dimension. Additionally, 
the time domain feature is extracted from down-sampled time series 
and fed into the 3D convolution branch to investigate the correlation 
between frequency bands and channels in the temporal dimension.  

• Classification experiments were conducted on two datasets, namely, 
ISRUC-S3 and 50 randomly selected subjects from ISRUC-S1 
(https://sleeptight.isr.uc.pt/) to evaluate the classification perfor
mances. The obtained results indicate that the proposed model at
tains a cutting-edge performance when the first expert’s labels are 
used, with an accuracy, F1-score, and Cohen’s kappa of 0.830, 0.821, 
and 0.782, on ISRUC-S3, respectively; and 0.813, 0.787, and 0.757, 
on ISRUC-S1, respectively. On the other hand, based on the second 
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expert’s labels, the proposed model achieves an accuracy, F1-score, 
and Cohen’s kappa of 0.837, 0.820, and 0.789 on ISRUC-S3, and 
0.829, 0.791, and 0.775 on 50 randomly selected subjects from 
ISRUC-S1, which are outperformed all the compared models [18,33, 
34,36-38,42,55].  

• To delve deeper into the individual contributions of each module 
within the proposed model, a series of incremental experiments were 
executed using the ISRUC-S3 dataset. The experimental results 
indicate that when the graph convolutional branch and 3D con
volutional branch are added, the model outperformed other varia
tions. Furthermore, the incorporation of partial-dot attention layers 
into the 3D convolutional branch leads to the attainment of the 
highest performance by the proposed model. 

The subsequent sections of this paper are structured as follows: In 
Section II, an exposition of shallow classifiers and deep learning models 
employed in sleep stage classification tasks is presented. Section III 
outlines the comprehensive architecture of the proposed model. The 
dataset adopted for this study is introduced in Section IV, which also 
encompasses the delineation of the experimental setup, resultant find
ings, and model analysis. Ultimately, Section V encapsulates the drawn 
conclusions. 

2. Methods 

Fig. 1 depicts the overall structure of the proposed MixSleepNet 
model. The MixSleepNet model consists of two branches one is a graph 
convolutional module with the inputs of frequency domain features and 
another branch is a 3D-CNN convolution with the inputs of time domain 
features. The graph convolutional module aims to uncover the relations 
among different channels in the frequency domain, whereas the 3D-CNN 
module aims to capture the effects of different signals in the time series. 

2.1. Feature extraction 

Inputs originating from the frequency domain are represented in 2D, 
while inputs stemming from the time domain take the form of spatial- 
temporal 3D representations of biosignals. Fig. 2 illustrates the gener
ation of the spatial-temporal 3D representation of multi-channel bio- 
signals. Original bio-signals of N channels can be denoted by S = (s1,s2,

…, sN) ∈ RN×L, where si ∈ RL(i ∈ {1,2,…,N}) is the i-th channel with L 
data points in total. For each channel, M bandpass filters are used to 
filter one channel signal into M frequency band waves. As a result, 
Nchannel signals filtered by M filters with L data points are defined as S′ 

= (s′
1, s′

2, …, s′
N) ∈ RN×M×L, where s′

i ∈ RM×L(i ∈ {1,2,…,N}) the i-th 
filtered channel. An epoch containing Nchannel signals can be defined as 
E = (e1, e2, …, eN) ∈ RN×M×T. The ei is the i-th channel consists of M 
frequency bands of T data points in that epoch. Temporal features are 
extracted on an epoch-by-epoch basis, which are down-sampled from E. 
The new length of down-sampled signals is denoted byτ. Therefore, the 
3D representation of the t-th epoch with τ data points can be χt = (x1,x2,

…, xτ) ∈ RN×M×τ. Frequency features are also extracted from E, where 
differential entropy is calculated for each frequency band in each 
channel [36]. 

2.2. Convolution 

The process of 3D convolution is executed by convolving a 3D kernel 
with the cube formed through the stacking of numerous temporally 
contiguous 2D feature maps. Compared with 1D-CNN and 2D-CNN, 
which only focus on temporal information or multi-dimensional tem
poral information, 3D-CNN can capture brain connections and their 
activities by simultaneously aggregating spatial information and multi- 
dimensional temporal information. Let Pi, Qi and Ri be the size of the 3D 
kernels along the three dimensions and (x, y, z) be the position of con
volutional to be calculated on the j-th feature map in the i-th layer. The 
convolutional value vxyz

ij can be calculated by [56]: 

vxyz
ij = σ

(

bij +
∑

m

∑Pi − 1

p=0

∑Qi − 1

q=0

∑Ri − 1

r=0
wpqr

ijm v(x+p)(y+q)(z+r)
(i− 1)m

)

(1)  

where wpqr
ijm is the (p, q, r)-th value of the kernel connected to the m-th 

Fig. 1. The holistic structure of MixsleepNet encompasses the incorporation of time domain and frequency domain features, which are input into the model. Time 
domain features are acquired through the down-sampling of the initial signals, while frequency domain features are derived via differential entropy calculations. 

Fig. 2. For each of the N channels, M filters are applied to extract pertinent 
band waves. Subsequently, 3D temporal features are extracted from the filtered 
band waves by means of down-sampling. 
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feature map in the previous layer, and σ is an activation function. 

2.3. Pseudo-3D convolution 

Pseudo-3D convolutional operation [57] takes inspiration from Re
sidual Networks and aims to reduce the computational complexity by 
splitting a 3D convolution operation into two separate convolution op
erations. Therefore, a standard 3D convolutional kernel defined by (P, Q, 
R) is decoupled into a 2D convolutional kernel with the size of P × Q × 1 
and a 1D convolutional kernel with the size of 1 × 1 × R. Let ΦP × Q × 1 

and Φ1 × 1 × R be a 2D spatial convolution and a 1D temporal convo
lution, respectively. The output of the l-th Pseudo-3D convolution layer 
is obtained by: 

Ol = Φ1×1×R(ΦP×Q×1(Ol− 1)) (2)  

where Ol − 1 is the input of the l-th layer. 

2.4. Partial Dot-Product Attention 

Motivated by the success of the attention mechanism in time series 
problems, a straightforward yet impactful attention layer named partial 
dot-product attention is devised to capture the most important infor
mation from temporal inputs. Let χ ∈ RN×M×T be the input of the 
attention layer, the partial dot-product attention is defined as 

Att = χ ⊗ σ((χ⋅M1)⋅M2 + b) (3)  

where M1 ∈ RT×M, M2 ∈ RM×T, b ∈ RN×M×T are learnable parameters, 
the sign ⋅ denotes the inner product, ⊗ refers to the element-wise 
multiplication, and σ is a softmax function. 

2.5. Adaptive Graph Learning 

Adaptive graph reflects the dynamic connections and activities 
among brain areas, which makes a great contribution to improving the 
classification performance in sleep staging. Within the graph convolu
tional branch, two distinct adaptive graph learning approaches are 
employed to create dynamic adjacency matrices for the JK-Net module. 
The first adaptive graph learning is based on brain functions [36]. Let Eij 
be the edge between electrodes, i and j, in a brain graph and it can be 
obtained by: 

Eij = g
(
xi, xj

)

=
exp
(
ReLU

(
ωT
⃒
⃒xi − xj

⃒
⃒
))

∑N
j=1exp

(
ReLU

(
ωT
⃒
⃒xi − xj

⃒
⃒
))

(4)  

where xi and xj are extracted features from channel i and channel jand 
the activation function ReLu keeps Eij non-negative. The learnable pa
rameters ω = (ω1,ω2,…,ωF)

T
∈ RF×1 are iteratively updated by mini

mizing the ensuing loss function: 

L adaptive graph =
∑N

i,j=1
‖ xi − xj ‖

2
2Aij + λ‖ A ‖

2
F (5)  

where λ ≥ 0 is a regularization parameter. The other graph learning is 
obtained through simplifying temporal-information-based graph 
learning in [38], and it can be obtained by: 

A = X⋅W (6)  

where X = (x1, x2,…, xN) ∈ RN×F is the feature matrix with N channels 
and xj ∈ RF(j ∈ {1,2,…,N}) is the features extracted from channel j. W 
is a learnable parameter set, which is updated by minimizing the overall 
loss function: 

L overall loss = L cross entropy + L adaptive graph + β‖ A ‖2 (7)  

where the parameterβ represents the strength of L2 regularization 
applied to the adjacency matrix A. L adaptive graph denotes the loss func
tion defined in equation (5) and L cross entropy is the cross-entropy loss 
function. 

2.6. Jumping Knowledge Graph Convolution 

The JK-Net [38] was motivated by the ResNet model [58], which 
adds residual modules to enhance the overall performance. The output 
of the l-th JK-Net layer can be obtained by: 

Ol = σ
(
Gθ(χ(l− 1)))+σ′(G′

θ′
(
χ(l− 2))) (8)  

where Gθ and G′θ′ signify the results of graph convolutional operations 
with kernels θ applied to the output of the l − 1-th layer and θ′ applied to 
the output of the l − 2-th layer, respectively. The adaptive graphs 
employed in these graph convolutional operations stem from equations 
(4) and (6) correspondingly. 

3. Experiments and results 

3.1. Materials and experimental settings 

The evaluation experiments are carried out on ISRUC-S1 and ISRUC- 
S3, which are subsets from the ISRUC-Sleep database [59]. The complete 
database encompasses three distinct subsets: ISRUC-S1, ISRUC-S2, and 
ISRUC-S3. These subsets comprise 100 subjects (55 male and 45 female), 
8 subjects (6 male and 2 female), and 10 subjects (9 male and 1 female), 
respectively. All polysomnograms (PSGs), encompassing signals such as 
EOG, EEG, EMG, ECG, snore, and body position, were acquired through 
non-invasive means, adhering to the international 10-20 standard 
electrode placement. The collected data were pre-processed by the data 
provider, which means that all EOG, EEG, EMG, and ECG signals un
derwent filtration with a 50 Hz notch filter to eradicate electrical noise 
and 30 epochs at the tail of each channel were removed to reduce noise. 
Furthermore, different bandpass butter filters were applied to clear 
useless noise in channels based on the types of bio-signals. The detailed 
cutoff of frequency and description of the used channels are listed in 
Table 1. 

In this study, we assessed the classification performance by calcu
lating several evaluation metrics, including Accuracy (ACC), F1-score 
(F1), Cohen’s kappa (κ) and confusion matrix based on the values of true 
positives (TP), true negatives (TN), false positives (FP), and false nega
tives (FN). 

The specific parameter configurations of the proposed model for all 
datasets can be found in Table 2. All experiments were conducted on a 
computer equipped with an Intel I9-12900KF CPU, 128 GB of memory, 
and an Nvidia 3090 GPU. The software environment was tailored to 
meet the specifications of each compared model. The source code will be 
made available on GitHub (https://github.com/XiaopengJi-USQ) upon 
publication of the paper. 

Table 1 
Detailed channel information of isurc.  

Signal type Label ButterWorth 

EOG LOC-A2 0.3-35 Hz  
ROC-A1  

EEG F3-A2 0.3-35 Hz  
C3-A2   
O1-A2   
F4-A1   
C4-A1   
O2-A1  

Chin EMG X1 10-70 Hz 
ECG X2 -  

X. Ji et al.                                                                                                                                                                                                                                        



Computer Methods and Programs in Biomedicine 244 (2024) 107992

5

3.2. Feature extraction 

Since different signals have different roles in sleep classification 
tasks. As a result, signal selections are seriously considered. For 
example, EEGs are the most crucial channels to be analyzed and the 
correlations are influenced by brain activities, thus all the six EEG 
channels (F3-A2, C3-A2, O1-A2, F4-A1, C4-A1 and O2-A1) are selected 
for feature extraction. EOGs, including left eye movements (LOC-A2) 
and right eye movements (ROC-A1), help to distinguish REM and non- 
REM. One EMG channel (Chin-EMG) and one ECG channel are also 
selected to help classify sleep stages. 

All the 10 original signals are filtered by 9 crossed frequency bands: 
0.5-4 Hz, 2-6 Hz, 4-8 Hz, 6-11 Hz, 8-14 Hz, 11-22 Hz, 14-31 Hz, 22-40 
Hz and 31-49 Hz. These filtered band waves are down-sampled from 200 
Hz to 10 Hz to obtain time domain features. The frequency domain 
features are obtained by calculating the differential entropy of the 9 
mentioned frequency bands above for each channel in every epoch. This 
down-sampling of time series results in the loss of high-frequency 
components [60]. Nonetheless, the incorporation of frequency domain 
features offsets this limitation. Our experiments additionally reveal that 
this approach has minimal adverse impact on the classification out
comes, while significantly reducing the training duration. 

3.3. Experimental results 

Drawing on labels provided by two experts, we conducted a 
comparative analysis of the proposed model’s performance against 

several baseline models featuring diverse architectures. This assessment 
was carried out on both the ISRUC-S3 dataset and a subset of 50 subjects 
chosen at random from ISRUC-S1. All experiments conducted on these 
two subsets employed subject-independent validation. This validation 
involved a 10-fold cross-validation for ISRUC-S3 and a 25-fold cross- 
validation for ISRUC-S1. 

Based on the first expert’s labeling, the 10-fold cross-validation on 
ISRUC-S3 achieved an overall accuracy of 0.830, an F1-score of 0.821, 
and a Cohen kappa of 0.782. Additionally, experiment on ISRUC-S1 
yielded an overall accuracy of 0.812, an F1-score of 0.786, and a 
Cohen kappa of 0.756. 

When considering the second expert’s labeling, the overall accuracy, 
F1-score, and Cohen kappa for ISRUC-S3 and ISRUC-S1 are as follows: 
ISRUC-S3 - 0.837, 0.820, 0.789, and ISRUC-S1 - 0.829, 0.791, 0.775, 
respectively 

4. Discussion 

4.1. Comparison with State-of-the-Art Methods 

The comparison results, presented in Table 3 and Table 4, evince that 
shallow classifiers reliant on feature engineering can classify most 
samples into correct categories. Nevertheless, despite the extraction of 
hundreds of features from multiple perspectives, numerous samples 
remain misclassified. One plausible explanation for this phenomenon is 
that the constrained classification performance can be attributed to in
adequacies in the extracted features. 

Compared with traditional deep learning algorithms, deep learning 
methods have made significant progress in improving classification ac
curacy. The reasons for this improvement may vary depending on the 
technology used in these deep leaning models. 1D-CNNs can aggregate 
temporal information from neighboring data points, allowing for the 
exploration of correlations in the time series of an epoch at a deeper 
level. Therefore, CNN models can achieve superior results even when 
raw data are inputted. Furthermore, the use of the Bi-LSTM or LSTM 
layers enables the CNNs to learn transition rules among neighboring 
epochs, thereby further improving their performance. As a result, CNN 
models, such as DeepSleepNet and TinySleepNet improve in accuracy by 
0.01 and 0.06 on the ISRUC-S3 subgroup. However, a notable limitation 
of 1D-CNNs is that they only concentrate on data in the temporal 
dimension, whereas the spatial dimension, specifically the in
terconnections among brain activity, may be easily overlooked due to 
the limitation of filter dimensions. Although pure 1D convolution 
models might not attain exceedingly high classification accuracies, 

Table 2 
Hyperparameters used in out Mixsleepnet Model  

Parameter Value 

Temporal input dim (10, 9, 300) 
Frequency input dim (10, 9) 
Pseudo 3D Conv.kernel size (3, 3, 1) & (1, 1, 3) 
3D Conv.kernel size (3, 3, 3) 
Filter size 25, 50, 100, 200 
3D pooling kernel size (2, 2, 2) 
Filter size 25, 50, 100, 200 
Layers of graph convolution 2 
Order of Chebyshev polynomials 7 
Number of training epochs 30 
Batch size 16 
Optimizer Adam 
Learn rate 0.0001 
Dropout 0.5  

Table 3 
overall results among mixsleepnet and other methods on ISRUC-S3 and 50 random subjects from SISRUC-S1 subgroup (EXPERT 1).  

Subset Model Parameter Overall Metrics Per-class F1-score (F1)    
ACC F1 κ W N1 N2 N3 REM 

ISRUC-S3 SVM [18] <0.1 M 0.714 0.672 0.626 0.824 0.428 0.724 0.815 0.569  
RF [42] <0.1 M 0.702 0.685 0.616 0.838 0.470 0.671 0.763 0.684  
DeepSleepNet [33] 21 M 0.719 0.696 0.643 0.831 0.463 0.742 0.851 0.595  
TinySleepNet [34] 1.3 M 0.753 0.737 0.682 0.809 0.533 0.758 0.851 0.734  
SalientSleepNet [55] 0.9 M 0.807 0.791 0.751 0.867 0.581 0.808 0.895 0.805  
GraphSleepNet [36] - 0.786 0.770 0.724 0.864 0.540 0.782 0.869 0.793  
MSTGCN [37] 0.4 +1.5 M 0.818 0.803 0.765 0.898 0.581 0.808 0.880 0.848  
JK-STGCN [38] - 0.831 0.814 0.782 0.900 0.598 0.826 0.901 0.845  
This work 2.4 M 0.830 0.821 0.782 0.899 0.625 0.819 0.899 0.860 

ISRUC-S1 SVM [18] <0.1 M 0.684 0.608 0.583 0.793 0.242 0.708 0.808 0.490  
RF [42] <0.1 M 0.699 0.649 0.607 0.841 0.307 0.705 0.750 0.640  
DeepSleepNet [33] 21 M 0.730 0.691 0.654 0.850 0.385 0.739 0.830 0.648  
TinySleepNet [34] 1.3 M 0.764 0.745 0.695 0.846 0.548 0.729 0.830 0.794  
SalientSleepNet [55] 0.9 M 0.816 0.800 0.764 0.903 0.577 0.801 0.886 0.832  
GraphSleepNet [36] - 0.780 0.751 0.715 0.889 0.463 0.763 0.825 0.813  
MSTGCN [37] 0.4 + 1.5 M 0.808 0.787 0.752 0.885 0.539 0.799 0.876 0.838  
JK-STGCN [38] - 0.820 0.798 0.767 0.895 0.550 0.811 0.883 0.850  
This work 2.4 M 0.813 0.787 0.757 0.908 0.512 0.799 0.871 0.844 

* W=awake. N1, N2 and N3 are sleep stage 1, 2, 3, separately, and are non-rapid eye movement. REM= rapid eye movement. PD = patient dependent. 
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Table 4 
Ovearll results among mixsleepnet and other methods on ISRUC-S3 and 50 random subjects from SISRUC-S1 subgroup (EXPERT 2).  

Subset Model Overall Metrics Per-class F1-score (F1)   
ACC F1 κ W N1 N2 N3 REM 

ISRUC-S3 SVM [18] 0.714 0.666 0.624 0.820 0.375 0.739 0.819 0.578  
RF [42] 0.709 0.693 0.623 0.837 0.475 0.681 0.762 0.708  
DeepSleepNet [33] 0.724 0.693 0.645 0.842 0.422 0.759 0.853 0.590  
TinySleepNet [34] 0.778 0.760 0.714 0.792 0.519 0.798 0.891 0.799  
SalientSleepNet [55] 0.810 0.792 0.756 0.895 0.566 0.802 0.896 0.802  
GraphSleepNet [36] 0.809 0.795 0.754 0.881 0.565 0.797 0.876 0.853  
MSTGCN [37] 0.831 0.813 0.781 0.893 0.585 0.821 0.891 0.876  
JK-STGCN [38] 0.833 0.819 0.784 0.897 0.617 0.824 0.896 0.859  
This work 0.838 0.820 0.790 0.891 0.620 0.833 0.904 0.853 

ISRUC-S1 SVM [18] 0.693 0.583 0.585 0.789 0.08 0.719 0.809 0.515  
RF [42] 0.702 0.651 0.610 0.841 0.307 0.708 0.752 0.645  
DeepSleepNet [33] 0.742 0.693 0.663 0.860 0.364 0.749 0.815 0.679  
TinySleepNet [34] 0.788 0.759 0.725 0.895 0.498 0.775 0.843 0.786  
SalientSleepNet [55] 0.811 0.783 0.755 0.900 0.515 0.802 0.867 0.830  
GraphSleepNet [36] 0.792 0.740 0.725 0.888 0.356 0.784 0.815 0.857  
MSTGCN [37] 0.825 0.796 0.770 0.891 0.525 0.819 0.878 0.868  
JK-STGCN [38] 0.827 0.793 0.773 0.898 0.537 0.819 0.869 0.868  
This work 0.829 0.791 0.775 0.903 0.482 0.826 0.878 0.864 

* W=awake. N1, N2 and N3 are sleep stage 1, 2, 3, separately, and are non-rapid eye movement. REM= rapid eye movement. 

Table 5 
Confusion matrix of compared models obtained from 10-FOLD validation on ISRUC-S3 dataset.  

Model Labels Prediction Per-class Metrics   
W N1 N2 N3 REM PR RE 

SVM [18] W 1484 71 105 7 7 0.769 0.886  
N1 255 442 413 1 106 0.520 0.363  
N2 86 132 2161 186 51 0.645 0.826  
N3 28 3 422 1546 17 0.869 0.767  
REM 77 202 251 40 496 0.733 0.465 

RF [42] W 1415 137 106 5 11 0.831 0.845  
N1 208 490 317 6 196 0.565 0.403  
N2 53 120 1844 354 245 0.641 0.705  
N3 5 0 501 1473 37 0.798 0.731  
REM 22 120 109 7 808 0.623 0.758 

DeepSleepNet [33] W 1268 258 30 22 96 0.920 0.757  
N1 84 617 188 4 324 0.427 0.507  
N2 18 274 1821 294 209 0.795 0.696  
N3 2 4 228 1733 49 0.842 0.860  
REM 7 293 24 4 738 0.521 0.692 

TinySleepNet [34] W 1199 346 78 28 23 0.929 0.716  
N1 76 680 286 11 164 0.509 0.559  
N2 12 166 2033 328 77 0.740 0.777  
N3 1 0 228 1782 5 0.821 0.884  
REM 3 145 122 22 774 0.742 0.726 

SalientSleepNet [55] W 1361 215 48 10 8 0.909 0.829  
N1 93 710 250 4 135 0.568 0.596  
N2 31 184 2105 208 33 0.795 0.822  
N3 3 0 186 1786 3 0.888 0.903  
REM 9 141 60 4 813 0.820 0.792 

GraphSleepNet [36] W 1436 151 43 4 17 0.858 0.870  
N1 164 629 261 2 159 0.564 0.518  
N2 44 225 2144 138 58 0.747 0.822  
N3 6 0 349 1659 0 0.920 0.824  
REM 23 111 75 0 851 0.784 0.803 

MSTGCN [37] W 1491 97 47 10 6 0.893 0.903  
N1 136 631 311 3 134 0.661 0.519  
N2 24 144 2231 170 40 0.765 0.855  
N3 1 1 283 1729 0 0.902 0.858  
REM 17 82 44 5 912 0.835 0.860 

JKSTGCN [38] W 1499 106 30 8 8 0.891 0.908  
N1 143 656 273 3 140 0.670 0.540  
N2 30 142 2258 138 41 0.790 0.865  
N3 3 1 234 1776 0 0.921 0.882  
REM 7 74 62 3 914 0.829 0.862 

This work W 1490 143 30 8 3 0.908 0.890  
N1 118 783 212 2 102 0.608 0.643  
N2 16 245 2156 168 31 0.815 0.824  
N3 6 1 217 1791 1 0.910 0.888  
REM 11 116 31 0 908 0.869 0.852 

*W=awake. N1, N2 and N3 are sleep stage 1, 2, 3, separately, and are non-rapid eye movement. REM= rapid eye movement. PR=precision and RE=recall. 
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models based on the U-Net architecture that employ 1D convolution 
layers manage to achieve slight performance enhancements. This 
improvement is attributed to their intricate architecture, which is 
composed of multiple nested U-units to detect the salient waves. The 
multi-scale extraction module for transition rule learning is another 
reason leading to this improvement. GCNs, like GraphSleepNet, 
MSTGCN and JK-STGCN further enhance the classification performance. 
One reason to explore this phenomenon is that GCNs extract spatial 
features from graph convolutional layers and temporal features from 
standard convolutional layers, allowing these models to learn brain 
activities and sleep transition rules. Compared to these algorithms, the 
MixSleepNet model outperforms all classifiers based on the second ex
pert’s labels and achieves similar performance based on the first expert’s 
labels. The proposed model extracts spatial features from both graph 
convolutional layers and 3D convolutional layers, and temporal features 
are extracted through 3D convolutional layers. As a result, the Mix
SleepNet model achieves an acceptable result that is no worse than pure 
GCN models. Furthermore, the classification outcomes observed for both 
ISRUC-S3 and ISRUC-S1 underscore that the proposed model excels in 
classifying sleep stages with high accuracy, exhibiting strong perfor
mance across both healthy subjects and cases involving health issues. 

Table 5 illustrates the confusion matrix displaying the classification 
results of all models evaluated on ISRUC-S3. It can be observed that the 
N1 stage consistently exhibits the lowest accuracy among all the various 
sleep stages. It is believed that stage N1 is a transitional stage between 
Wake and N2, which means that the N1 stage has the characteristics of 
both Wake and N2 and this leads to misclassification. On the other hand, 
all models perform exceptionally well in identifying the Wake stage, 
which can be explained by the distinct characteristics of brain waves 
during wakeful hours compared to sleep. The remaining three cate
gories, namely, N2, N3 and REM stay at a similar level, hovering around 
85%. Nonetheless, no definitive evidence exists to support the superi
ority of one stage over the other two in terms of classification accuracy. 
Table 5 also highlights an intriguing phenomenon that the precision and 
recall of the proposed model consistently converge to the outcomes of 
the more effective model categories. For example, the precision of the 
awake stage of all CNN-based models, including DeepSleepNet, Tiny
SleepNet, and SalientSleepNet, achieves 0.920, 0.929, and 0.909, 
respectively, overperforming all GCN models, whose best result is 0.893. 
While the proposed model achieves 0.908, which is closer to the CNNs 
results than GCNs. For the N3 stage, GCNs have a better result than CNNs 
but the proposed model also overperforms all CNNs. It is believed that 
the MixSleepNet model combines the advantages of both GCNs and 
CNNs. 

Fig. 3 shows an instance of a hypnogram obtained through the expert 
one and its corresponding generated sleep hypnogram by our method for 
subject one from the ISRUC-S3 subset. The comparison shows that most 
of the classifications are overlapped, except for those parts that have 
frequent transitions among stages. Fig. 4 shows an example of a training 

curve on the ISRUC-S3 subset, where 30 training epochs are set to avoid 
overfitting. 

The comparison results among various machine learning methods 
[19,23,32,50,53,54,61,62] on additional public datasets [63–66] are 
presented in Table 6. In contrast to these algorithms, the accuracy of the 
proposed model on ISRUC-S3, ISRUC-S1, and Sleep-EDF-153 dataset 
(153 Sleep Cassette files) [64] are 0.830, 0.813 and 0.891, respectively, 
which are close to the level of other methods. The proposed model has 
the highest classification performance for the N1 stage, N3 stage, and 
REM stage on ISRUC-S3, compared to other models, while the N2 and 
Wake stages are slightly lower than the two models. Due to the limited 
channels used on the Sleep-EDF-153 dataset, the classification results on 
this dataset indicate that the performance of the proposed model may be 
affected by the number of channels and the types of channels used. 

4.2. Model analysis 

Several experiments are conducted on ISRUC-S3 to assess the sig
nificance of the selected channels and compare their impact on classi
fication performance. The detailed channel selections for each 
experiment are listed in Table 7. The classification performance of each 
experiment is presented in Table 7 and Fig. 5. The single channel se
lections are excluded since the 3D-CNN branch will become a 2D-CNN 
branch and the graph in the GCN branch will become a node, which 
means that the architecture of the proposed model is fully changed, if a 
single channel data is input only. 

Experiment i, ii and iii demonstrates that the contribution of ECG, 
EMG and EOG for the classification performance is different, among 
which, the ECG channel makes the least contribution to the 

Fig. 3. Comparison between manual score annotated by expert 1 (blue) and automated scoring generated by the proposed model (red) for subject one from the 
ISRUC-S3 dataset. 

Fig. 4. An example of training curve and validation curve on the ISRUC-S3.  
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performance, while the EOG channel makes the most contribution for 
almost all stages, especially the REM stage. The explanation for the 
significance of EOG is that the REM stage is an eye-movement-related 
stage, where EOG signals play an important role. The comparisons, iv 
vs iii and ix vs viii demonstrate that the EMG and ECG channels may 
improve the overall classification performance (ACC, >0.02), especially 
for the N1 stage (F1, >0.04) and the REM stage (F1, >0.06), while the 
comparison ii vs i shows that EMG may have more effects on these 
stages. An important point here is that the improvement of the REM 
stage is from the improvement of the N1 stage, which means that more 
N1 stages are classified correctly from the REM stage, leading to the 
improvement of REM, and this conclusion can be easily obtained by the 
experiment ii, which has higher F1 score of N1 and lower F1 score of 
REM than the experiment iii. The comparison, vi vs v, indicates that the 
proposed model has similar performance if pure EEGs or EOGs are used 

with two channels. The pure EEGs overperform the pure EOGs on the N3 
stage (F1, >0.03), while pure EOGs perform better on the REM stage (F1, 
>0.04). However, the combination of EEG and EOG can make up for 
each other’s shortcomings (iii). The performance also can be improved 
by adding more EEG channels (vii vs v). The improvements are from all 
stages except the N3 stage, while this problem can be solved by adding 
other channels (ix). 

To comprehensively validate the individual impact of each module 
within the MixSleepNet model, five variant models are designed and 
tested on the ISRUC-S3 dataset. The specifics of these models are 
expounded upon below:  

1. variant a (simplified JK-STGCN model): A simplified jumping- 
knowledge-based graph convolutional model is selected as a 
variant model. Unlike the complete JK-STGCN model, which takes 
the output of a CNN extractor as the input, this variant model takes 
DE features as input and removes the convolutional layer for tem
poral information.  

2. variant b (pure 3D-CNN model): A pure 3D-CNN variant is designed 
without any attention layers.  

3. variant c (variant b + partial dot-product attention): The original 3D- 
CNN model is enhanced by the inclusion of partial dot-product 
attention layers.  

4. variant d (variant a +variant b): This variant model combines the 
simplified JK-STGCN model and the original 3D-CNN model as two 
branches without any attention layers.  

5. variant e (variant a +variant c): Partial dot-product attention layers 
are added to the combined model. 

Fig. 6 illustrates the classification performance of the above variant 
models on the ISRUC-S3 dataset. The simplified JK-STGCN model has 
obtained the lowest performance since only input DE features are fed 
and the standard convolutional layers are removed, which leads to 
ignoring correlations among and within epochs. As a result, the classi
fication performance heavily decreased from the complete JK-STGCN 
model. The original 3D-CNN model improved significantly because 
both spatial information and temporal information are aggregated by 3D 

Table 6 
Classification performance of different methods on different datasets.  

Methods Datasets Cross-validation Overall Metrics Per class F1 score (F1)    
ACC F1 κ W N1 N2 N3 REM 

RF [19] ISRUC Patient dependent 0.86 ± 0.02 - - - - - - - 
Complex-valued unsupervised [23] UCD 5-fold 0.87 - 0.8 - - - - - 
CNN+RNN [32] CAP 5-fold 0.788 0.727 0.71 0.841 0.402 0.783 0.817 0.789 
Ensemble bagged trees [50] SOF 10-fold 0.813 - 0.752 0.92 0.04 0.79 0.74 0.66 
SVM [53] SleepEDF-153 10-fold 0.917 - - - - - - - 
CNN [61] SleepEDF-153 10-fold 0.825 0.761 0.76 0.924 0.481 0.846 0.738 0.816 
Ensemble bagged trees [62] ISRUC-S1 10-fold 0.774 - - - - - - - 
CNN+GRU SHHS1-700 - 0.832 - 0.760 0.897 0.311 0.850 0.781 0.808 
This work SleepEDF-153 10-fold 0.891 0.685 0.770 0.970 0.227 0.815 0.760 0.652 
This work ISRUC-S3 10-fold 0.830 0.821 0.782 0.899 0.625 0.819 0.899 0.830 
This work ISRUC-S1 (50) 25-fold 0.813 0.787 0.757 0.908 0.512 0.799 0.871 0.813  

Table 7 
Comparison of classification performance using different channels.  

Experiment Channels Overall Metrics Per-class F1-score (F1)   
ACC F1 κ W N1 N2 N3 REM 

i 1 EEG, 1 ECG 0.678 0.612 0.582 0.793 0.442 0.710 0.840 0.277 
ii 1 EEG, 1 EMG 0.751 0.730 0.679 0.858 0.537 0.741 0.866 0.649 
iii 1 EEG, 1 EOG 0.775 0.751 0.710 0.866 0.500 0.783 0.873 0.736 
iv 1 EEG, 1 EOG, 1 EMG, 1 ECG 0.795 0.784 0.736 0.889 0.581 0.779 0.857 0.815 
v 2 EEG 0.768 0.735 0.701 0.856 0.471 0.776 0.882 0.692 
vi 2 EOG 0.761 0.737 0.690 0.842 0.477 0.771 0.851 0.743 
vii 6 EEG 0.785 0.766 0.723 0.869 0.579 0.784 0.865 0.733 
viii 6 EEG, 2 EOG 0.802 0.786 0.745 0.877 0.582 0.801 0.875 0.797 
ix 6 EEG, 2 EOG, 1 EMG, 1 ECG 0.830 0.821 0.782 0.899 0.625 0.819 0.899 0.860  

Fig. 5. Comparison of performance for different experiments.  
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filters. Since attention layers have the capacity to focus on valuable 
information, the added attention layers on the original 3D-CNN model 
can further improve its performance. The combined model without 
attention layers overperforms all the single-branch classifiers. In the 
future, we intend to explore the possibility of using explainable artificial 
intelligence (XAI) to visualize the features responsible for various sleep 
stages and disorders using a huge database [67]. 

5. Conclusion 

This study presents an automated multi-channel sleep stage classi
fication model rooted in the fusion of 3D convolution and graph 
convolution techniques. Based on DE features, the simplified JK-STGCN 
branch with two adaptive graph learning methods explores the corre
lation of brain areas, while the 3D convolution branch with partial dot- 
product attention layers investigates brain activities in time series. Our 
experimentation on both ISRUC-S1 and ISRUC-S3 datasets reveals the 
remarkable capability of the proposed MixSleepNet model to effectively 
classify sleep stages for both healthy individuals and patients suffering 
from sleep disorders. Our proposed MixSleepNet outperformed all 
baselines on the second expert’s labels and achieved competitive results 
on the first expert’s labels. Incremental experiments conducted on the 
ISRUC-S3 dataset reveal that the combined branches with partial dot- 
product layers achieved the best performance. However, there is still 
some space to further improve our model. One of the limitations is its 
huge storage requirements. The feature extraction step increases the 
volume of the data by almost ten times, which also increases both 
computational resources and time. Although pseudo-3D convolution 
methods and K-1 order Chebyshev polynomials are adopted to address 
the computational complexity, this multi-channel-based classifier re
quires large memory and computing resources. In the future, one 
possible related research is to explore novel 3D representations of sig
nals to reduce both the data size and computational resource re
quirements. The new implementation of the proposed model in other 
EEG-related fields, like Alzheimer’s disease detection [13] and 
emotion prediction [15]. 
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