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ABSTRACT This paper presents a new high-order embedded-/immersed-boundary method,

based on point collocation, smooth extension of the solution and integrated radial basis func-

tions (IRBFs), for solving the elliptic partial differential equation (PDE) defined in a domain

with holes. The PDE is solved in the domain without holes, where the construction of the

IRBF approximations is based on a fixed Cartesian grid and local five-point stencils, and

the inner/immeresed boundary conditions are included in the discretized equations. More

importantly, nodal values of the second-, third- and fourth-order derivatives of the field vari-

able are incorporated into the IRBF approximations, and the forcing term defined in the

holes is constructed in a form that gives a globally smooth solution. These features enable

the proposed scheme to achieve high level of sparseness of the system matrix, and high

level of accuracy of the solution together. Numerical verification is carried out for problems

with smooth and non-smooth inner boundaries. Highly accurate results are obtained using

relatively coarse grids.
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equation, multiply connected domain, high-order discretization

1 Introduction

In the context of numerical solution of elliptic PDEs, the development of efficient and robust

methods for nontrivial domains has still received a great deal of attention. Various mesh-

based discretizations were developed and they can be classified into boundary-fitted-mesh

and embedded-/immersed-boundary methods.

In the boundary-fitted-mesh category including the finite-element and boundary-element

methods, unstructured meshes are typically used. Boundary-fitted meshes can be used to

accurately represent a geometrically complex domain. However, generating a high-quality

mesh is a time-consuming process.

In the embedded-/immersed-boundary category, the physical domain is first embedded in

a simpler domain and the PDE is then solved by using efficient and robust structured-grid

discretizations. For the Immersed Interface [1], Ghost Fluid [2] and Volume Penalty [3]

methods, the embedded boundary conditions are directly introduced into the discretized

equations. For the Immersed Boundary (IB) method, which was proposed by Peskin [4] for

fluid flows with immersed elastic bodies, the effect of the IB on the fluid flow is imposed by the

introduction of a forcing term into the continuous governing equations, which is a singular

function with support only along the IB. Its advantages include the ability to effectively

handle moving boundaries and straightforward extension to higher dimensions. However,

the method is only first-order accurate. To carry out the discretization on a rectangular

domain, effective strategies based on the smooth extension of the forcing function or the

solution were proposed (e.g. [5,6,7]).

Radial basis functions (RBFs) have become an important tool in numerical analysis, particu-

larly in areas of function approximation and numerical solution of PDEs (e.g. [8,9,10,11,12,13,14]).

Examples of RBFs that are of particular interest in practice are the multiquadric, inverse
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multiquadric and Gaussian functions. For interpolating data, these types of RBFs are capa-

ble of having a spectral convergence rate. In the conventional approach, a function is first

represented by a linear combination of RBFs, and its derivatives are then obtained by differ-

entiating the RBFs. In the integral (IRBF) approach, the RBFs are employed to represent

a derivative and then integrated to obtain approximations for lower-order derivatives and a

function itself. The integral approach enables the RBF approximations to avoid a reduction

in the convergence rate caused by differentiation. In addition, the presence of the integration

constants allows for the exact imposition of extra information such as nodal derivative values

in the system of converting the RBF space into the physical space. Recently, we proposed

new approximations for one-dimensional 3-point and two-dimensional 5-point IRBF stencils

for solving second-order differential problems [15,16]. The second-order derivatives of the

field variable at the central node of a stencil are expressed in terms of the nodal values of

not only the variable and but also its derivatives of second order and higher ones at the end

nodes. The inclusion of nodal derivative values of orders up to 4 or higher can bring several

benefits: a significant improvement in accuracy and independency of the solution accuracy

from the RBF width. The latter helps overcome the challenging issue of finding the optimal

value of the RBF width. Since the approximations are based on RBFs, these stencils can

work with non-constant intervals, which allows for the discretization being carried out on

non-rectangular domains, and enables the grid density to be higher in areas where the slopes

of the solution are steep The high-order IRBF stencils were then successfully applied for

the solution of the first biharmonic equation using the non-coupled approach [17] and the

coupled-equation approach [18]. Our previous IRBF works about the use of high-order IRBF

stencils for arbitrarily shaped domains [15,16,17,18] were all based on boundary-fitted grids.

In this study, the elliptic PDE is solved on a Cartesian grid that covers the physical multiply-

connected domain and the region of the holes. It can be seen that the grid generally does not

conform to the geometry of the holes. In order to achieve high-order accuracy, apart from

applying the high-order IRBF stencils [15], we also adopt the smooth extension approach [6]

to convert problems defined in multiply connected domains into those in rectangles, where

the solution in the computational domain is forced to be globally smooth. The focus of

this study lies in the handling of inner boundaries in the context of embedded-boundary
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methods..

The remainder of the paper is organized as follows. In Section 2, the proposed method is

presented, including the mathematical formulation for the smooth extension approach, the

IRBF discretization on a Cartesian grid, the modification of the discretized equations to

account for the IB presence, and the construction of a smooth extension of the solution into

the computational domain. In Section 3, numerical verification is carried out, where test

problems with analytic solutions and no exact solutions are considered. Section 4 gives some

concluding remarks.

2 Proposed method

2.1 Problem formulation

Consider the second-order elliptic problem with Dirichlet boundary conditions

Lū = f in Ω, (1)

ū = g on Γ, (2)

where L is a second-order elliptic operator, f and g are some smooth functions, Ω is the

physical multiply-connected domain and Γ is its boundary. Let H be the region of the holes,

called the extension domain, and C be the domain that is comprised of Ω and H, called the

computational domain.

Let up and uh be the approximate solution in Ω and H, respectively. The approximate

solution u in C is then defined to be

u = χΩu
p + χHu

h, (3)

where χX denotes the characteristic function of the domain X. The solution u reduces to up
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when restricted to the physical domain Ω and uh when restricted to the extension domain

H.

To achieve high-order accuracy, the solution uh in a hole should be constructed to be smooth

across the hole’s boundary. Assume that up is a known function that is Ck continuous in

Ω. In the smooth extension approach [6], the solution uh is found by solving the following

Kth-order PDE in a hole  H
Kuh = 0,

∂juh

∂nj
= ∂jup

∂nj
,

(4)

where j = (0, 1, . . . , k), K = 2(k + 1) and ∂ju/∂nj is the jth normal derivative of u on

the hole’s boundary. As discussed in [6], the system matrix becomes ill-conditioned for

large k. In this study, the differential problem is solved iteratively. The solution at the

previous iteration is known and we utilize it to derive the boundary conditions for the

smooth extension problem (4). We also investigate the case of using K < 2(k + 1) and it

will be shown that high-order accuracy is still achieved for K = 4 when k ≥ 2. The lower

the value of K the better the matrix condition number will be. After solving (4), we can

compute a forcing function Fh associated with uh:

Fh = Luh. (5)

The extended forcing function f̃ becomes

f̃ = χΩf + χHFh. (6)

The problem to be solved is now defined as

Lu = χΩf + χHFh in C, (7)

u = g on Γ. (8)

When x ∈ Ω, the new problem (7)-(8) reduces to the physical problem of interest.
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2.2 IRBF approximations

We describe the proposed method for its use in solving the Poisson equation

∂2ū

∂x2
+
∂2ū

∂y2
= f, (9)

with the physical domain being a square with several holes (Figure 1). Cartesian grids are

used to represent the computational domain C (the square without holes). The approxima-

tions used in the proposed method are based on one-dimensional IRBFs. Let η represent the

independent variables x and y, and v the dependent variables u and uh. In the η direction,

the variable v along a grid line is represented by using the following IRBF scheme

∂qv(η)

∂ηq
=

Nη∑
k=1

wkGk(η) =

Nη∑
k=1

wkI
(q)
k (η), (10)

∂q−1v(η)

∂ηq−1
=

Nη∑
k=1

wkI
(q−1)
k (η) + c1, (11)

∂q−2v(η)

∂ηq−2
=

Nη∑
k=1

wkI
(q−2)
k (η) + c1η + c2, (12)

. . . . . . . . .

∂v(η)

∂η
=

Nη∑
k=1

wkI
(1)
k (η) + c1

ηq−2

(q − 2)!
+ c2

ηq−3

(q − 3)!
+ · · ·+ cq−1, (13)

v(η) =

Nη∑
k=1

wkI
(0)
k (η) + c1

ηq−1

(q − 1)!
+ c2

ηq−2

(q − 2)!
+ · · ·+ cq−1η + cq, (14)

where Nη is the number of RBF centers (grid points) under consideration, Gk(η) is the RBF,

I
(q−1)
k (η) =

∫
I

(q)
k (η)dη, I

(q−2)
k (η) =

∫
I

(q−1)
k (η)dη, . . . , I

(0)
k (η) =

∫
I

(1)
k (η)dη, (w1, w2, . . . , wNη)

the RBF coefficients, and (c1, c2, . . . , cq) the integration constants. For the multiquadric func-

tion, Gk(η) =
√

(η − ηk)2 + a2
k, where ηk is the center and ak is the width/shape-parameter.

In (10)-(14), RBFs are integrated q times and we refer to it as an IRBF scheme of order q,

denoted by IRBFq.

Figure 2 shows a flowchart describing the numerical procedure of the proposed method.
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The constants arising from the process of integrating the RBFs provide an effective means

of including nodal derivative values of the field variable into the approximations. This

inclusion can bring many benefits. For local stencils used in discretizing the PDE, it results

in a significant improvement in the solution accuracy and enables the IRBF solution to be

not influenced much by the RBF width. For the smooth extension problem, it enables the

high-order PDE to be enforced at every interior grid node.

It should be pointed out that the goal of the extension problem is to achieve some level of

smoothness of the solution across the IB rather than the solution itself, and thus one can

have some flexibility. For example, for easy implementation, the boundary nodes used in

solving the extension problem (4) can be chosen to be grid nodes near the IB rather than

points on the actual boundary, and the cross derivative terms in the high-order PDE can be

set aside. Since the solution in a hole is not part of the solution to the physical problem,

such implementations are expected not to affect much the accuracy of the solution of the

physical problem.

2.2.1 Discretizing the PDE without regard to the immersed boundary

Consider an interior node and its associated four neighbouring nodes (Figure 3). We apply

the 1D IRBF scheme (10)-(14) to compute ∂2u/∂x2 and ∂2u/∂y2 at the central node (xi, yj).

In the η direction, the IRBF approximation involves a set of 3 grid points (ηi−1, ηi, ηi+1)

(Nη = 3). For IRBFq, there are q integration constants and we utilise them to add q extra

equations to the conversion of the RBF space into the physical space. It was shown in [17]

that the IRBF solution is not influenced much by the RBF width when q ≥ 6. In this work,

q = 6 is implemented. In the following conversion system, the equations are employed to

impose (∂2u/∂η2, ∂3u/∂η3, ∂4u/∂η4) at the two end-nodes.

û = Cŵ, (15)
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where

û =

(
ui−1, ui, ui+1,

∂2ui−1

∂η2
,
∂2ui+1

∂η2
,
∂3ui−1

∂η3
,
∂3ui+1

∂η3
,
∂4ui−1

∂η4
,
∂4ui+1

∂η4

)T
,

ŵ = (w1, w2, w3, c1, c2, c3, c4, c5, c6)T ,

and C is the matrix of size 9-by-9 (called the conversion matrix)

C =



I
(0)
1 (ηi−1) I

(0)
2 (ηi−1) I

(0)
3 (ηi−1)

η5i−1

5!

η4i−1

4!

η3i−1

3!

η2i−1

2
ηi−1 1

I
(0)
1 (ηi) I

(0)
2 (ηi) I

(0)
3 (ηi)

η5i
5!

η4i
4!

η3i
3!

η2i
2

ηi 1

I
(0)
1 (ηi+1) I

(0)
2 (ηi+1) I

(0)
3 (ηi+1)

η5i+1

5!

η4i+1

4!

η3i+1

3!

η2i+1

2
ηi+1 1

I
(2)
1 (ηi−1) I

(2)
2 (ηi−1) I

(2)
3 (ηi−1)

η3i−1

3!

η2i−1

2
ηi−1 1 0 0

I
(2)
1 (ηi+1) I

(2)
2 (ηi+1) I

(2)
3 (ηi+1)

η3i+1

3!

η2i+1

2
ηi+1 1 0 0

I
(3)
1 (ηi−1) I

(3)
2 (ηi−1) I

(3)
3 (ηi−1)

η2i−1

2
ηi−1 1 0 0 0

I
(3)
1 (ηi+1) I

(3)
2 (ηi+1) I

(3)
3 (ηi+1)

η2i+1

2
ηi−1 1 0 0 0

I
(4)
1 (ηi−1) I

(4)
2 (ηi−1) I

(4)
3 (ηi−1) ηi−1 1 0 0 0 0

I
(4)
1 (ηi+1) I

(4)
2 (ηi+1) I

(4)
3 (ηi+1) ηi+1 1 0 0 0 0



.

Solving (15) yields

ŵ = C−1û. (16)

The second derivative of u at ηi is thus calculated by

∂2ui
∂η2

= D2ηû, (17)

where D2η is a row matrix of 9 coefficients that is defined as

D2η =

[
I

(2)
1 (ηi) I

(2)
2 (ηi) I

(2)
3 (ηi)

η3i
3!

η2i
2

ηi 1 0 0

]
C−1.

In practice, the coefficient set D2η is acquired by using Gaussian elimination to solve the

following algebraic equation set:

CTDT2η =

(
I

(2)
1 (ηi), I

(2)
2 (ηi), I

(2)
3 (ηi),

η3
i

3!
,
η2
i

2
, ηi, 1, 0, 0

)T
. (18)
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2.2.2 Modifying the discretized system to account for the presence of the im-

mersed boundary

The stencils near the immersed boundary are modified to account for its presence. In each

direction, we construct the approximation based on 4 nodes (three grid nodes: (ηi−1, ηi, ηi+1)

and one boundary node: ηb) by also using IRBF6 (i.e. q = 6). Two configurations of nodes

are shown in Figure 4; they share a common feature: there are two grid nodes in Ω and one

grid node in H. The conversion system takes the form

Û = CbŴ . (19)

where

Û =

(
ui−1, ui, ui+1, ub,

∂2ui−1

∂η2
,
∂2ui+1

∂η2
,
∂3ui−1

∂η3
,
∂3ui+1

∂η3
,
∂4ui−1

∂η4
,
∂4ui+1

∂η4

)T
,

Ŵ = (w1, w2, w3, w4, c1, c2, c3, c4, c5, c6)T ,

and Cb is the matrix of size 10-by-10

C =



I
(0)
1 (ηi−1) I

(0)
2 (ηi−1) I

(0)
3 (ηi−1) I

(0)
4 (ηi−1)

η5i−1

5!

η4i−1

4!

η3i−1

3!

η2i−1

2
ηi−1 1

I
(0)
1 (ηi) I

(0)
2 (ηi) I

(0)
3 (ηi) I

(0)
4 (ηi)

η5i
5!

η4i
4!

η3i
3!

η2i
2

ηi 1

I
(0)
1 (ηi+1) I

(0)
2 (ηi+1) I

(0)
3 (ηi+1) I

(0)
4 (ηi+1)

η5i+1

5!

η4i+1

4!

η3i+1

3!

η2i+1

2
ηi+1 1

I
(0)
1 (ηb) I

(0)
2 (ηb) I

(0)
3 (ηb) I

(0)
4 (ηb)

η5b
5!

η4b
4!

η3b
3!

η2b
2

ηb 1

I
(2)
1 (ηi−1) I

(2)
2 (ηi−1) I

(2)
3 (ηi−1) I

(2)
4 (ηi−1)

η3i−1

3!

η2i−1

2
ηi−1 1 0 0

I
(2)
1 (ηi+1) I

(2)
2 (ηi+1) I

(2)
3 (ηi+1) I

(2)
4 (ηi+1)

η3i+1

3!

η2i+1

2
ηi+1 1 0 0

I
(3)
1 (ηi−1) I

(3)
2 (ηi−1) I

(3)
3 (ηi−1) I

(3)
4 (ηi−1)

η2i−1

2
ηi−1 1 0 0 0

I
(3)
1 (ηi+1) I

(3)
2 (ηi+1) I

(3)
3 (ηi+1) I

(3)
4 (ηi+1)

η2i+1

2
ηi−1 1 0 0 0

I
(4)
1 (ηi−1) I

(4)
2 (ηi−1) I

(4)
3 (ηi−1) I

(4)
4 (ηi−1) ηi−1 1 0 0 0 0

I
(4)
1 (ηi+1) I

(4)
2 (ηi+1) I

(4)
3 (ηi+1) I

(4)
4 (ηi+1) ηi+1 1 0 0 0 0



.

The only difference between Û in (19) and û in (15) is that the former contains an extra

value, ub, which is the boundary condition on the IB. The second-order derivative of u at the
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central node of the stencil, i.e. ∂2ui/∂η
2, is now expressed in terms of u at (ηi−1, ηi, ηi+1, ηb)

and its nodal derivatives at only (ηi−1, ηi+1). When compared to (17), there is an additional

term associated with ub, which represents the effect of the IB on the discretization in the

entire computational domain.

2.2.3 Constructing a smooth extension of the solution u into the computational

domain C

Two configurations of nodes representing the hole are considered: one involving the phys-

ical boundary points and grid nodes, and the other involving only grid nodes (Figure 5).

The boundary nodes used in solving (4) are chosen to be the physical boundary points for

the former, and outside grid points adjacent to the boundary for the latter. It is easier to

implement the discretization for the latter. It is noted that (i) the extension problem is

solved in the same way for the two node configurations, and (ii) the boundary conditions

for the physical problem are already imposed at the physical boundary points in the process

of discretizing the PDE in the computational domain. For the global Ck regularity, the

boundary values of uh and its derivatives (∂uh/∂η, . . . , ∂kuh/∂ηk) are imposed. It is noted

that (∂uh/∂x, . . . , ∂kuh/∂xk) are for the horizontal grid lines, while (∂uh/∂y, . . . , ∂kuh/∂yk)

are for the vertical grid lines. These boundary values are obtained after the IRBF approxi-

mations of u on the entire grid lines are carried out.

For each grid line in the extension domain, we employ IRBFq with q = 2k to accommodate

2k boundary derivative values at the two end-nodes of the grid line. The conversion system

takes the form

ûh = Chŵh. (20)

For k = 1,

ûh =

(
uh1 , u

h
2 , . . . , u

h
Nη ,

∂uh1
∂η

,
∂uhNη
∂η

)T

,

ŵh =
(
w1, w2, . . . , wNη , c1, c2

)T
,
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and Ch is the matrix of size (Nη + 2)-by-(Nη + 2)

Ch =



I
(0)
1 (η1) I

(0)
2 (η1) . . . I

(0)
Nη

(η1) η1 1

I
(0)
1 (η2) I

(0)
2 (η2) . . . I

(0)
Nη

(η2) η2 1

. . . . . . . . . . . . . . . . . .

I
(0)
1 (ηNη) I

(0)
2 (ηNη) . . . I

(0)
Nη

(ηNη) ηNη 1

I
(1)
1 (η1) I

(1)
2 (η1) . . . I

(1)
Nη

(η1) 1 0

I
(1)
1 (ηNη) I

(1)
2 (ηNη) . . . I

(1)
Nη

(ηNη) 1 0


.

For k ≥ 2

ûh =

(
uh1 , u

h
2 , . . . , u

h
Nη ,

∂uh1
∂η

,
∂uhNη
∂η

, . . . ,
∂kuh1
∂ηk

,
∂kuhNη
∂ηk

)T

,

ŵh =
(
w1, w2, . . . , wNη , c1, c2, . . . , c2k−1, c2k

)T
,

and Ch is the matrix of size (Nη + 2k)-by-(Nη + 2k)

Ch =



I
(0)
1 (η1) I

(0)
2 (η1) . . . I

(0)
Nη

(η1)
η2k−1
1

(2k−1)!
. . . η1 1

I
(0)
1 (η2) I

(0)
2 (η2) . . . I

(0)
Nη

(η2)
η2k−1
2

(2k−1)!
. . . η2 1

. . . . . . . . . . . . . . . . . . . . . . . .

I
(0)
1 (ηNη) I

(0)
2 (ηNη) . . . I

(0)
Nη

(ηNη)
η2k−1
Nη

(2k−1)!
. . . ηNη 1

I
(1)
1 (η1) I

(1)
2 (η1) . . . I

(1)
Nη

(η1)
η2k−2
1

(2k−2)!
. . . 1 0

I
(1)
1 (ηNη) I

(1)
2 (ηNη) . . . I

(1)
Nη

(ηNη)
η2k−2
Nη

(2k−2)!
. . . 1 0

. . . . . . . . . . . . . . . . . . . . . . . .

I
(k)
1 (η1) I

(k)
2 (η1) . . . I

(k)
Nη

(η1)
ηk−1
1

(k−1)!
. . . 0 0

I
(k)
1 (ηNη) I

(k)
2 (ηNη) . . . I

(k)
Nη

(ηNη)
ηk−1
Nη

(k−1)!
. . . 0 0



.

Solving (15) yields

ŵh = C−1
h ûh. (21)

It is noted that value of Nη employed here is typically much smaller than the number of

grid nodes of the entire grid line. Making use of (21), the derivatives of any order of the

variable uh with respect to x and y can be computed in terms of the nodal values of uh and

the boundary values of its derivatives. In solving (4), the Kth-order derivatives are required.

11



In this study, we consider K in range of 4 to 2(k + 1). The advantage of incorporating the

boundary conditions into the IRBF approximations is that it allows the equation in (4) to be

enforced at every interior node. For 1D problems, the extension problem (4) can be directly

solved in the RBF space. Since the high-order ordinary differential equation can be enforced

at the two boundary nodes, there are two additional equations needed and we employ IRBFq

with q = 2(k + 1) for the global Ck regularity.

2.2.4 Solving the resultant algebraic system

We apply the Newton method with finite-difference Jacobian to solve the resultant algebraic

system. At each iteration, we carry out the following calculation tasks: (i) computes nodal

values of derivatives of second order and higher ones along the grid lines using the 1D IRBF

scheme [16], from which the boundary conditions (i.e. continuity conditions) for the Kth-

order PDE in the extension domain are acquired; (ii) solves the extension problem for uh,

from which the forcing function in the extension domain (i.e. Fh) is derived; (iii) modifies the

forcing function by including new Fh; and (iv) updates the solution u in the computational

domain. The approximation of the derivatives along a grid line involves only its grid nodes

and thus the differentiation matrices stay the same whatever the number of holes inside the

domain.

3 Examples

We test the proposed method in several 1D and 2D problems. For the latter, both smooth and

non-smooth inner boundaries are considered. The RBF width is simply chosen as 0.0001 for

all IRBF calculations. Let h be the grid size. We employ M uniform grids, (h1, h2, · · · , hM),

to represent the computational domain. For each grid, the solution accuracy is measured in

the form of relative L2-norm

Ne =

√∑N
i=1 (upi − ūi)

2√∑N
i=1(ūi)2

, (22)
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where N is the number of grid points in the physical domain, and ū is the exact solution.

We fit power function Ne = bhm, where m and b are the two coefficients, to the obtained

data (i.e. (hi, Nei), i = (1, 2, · · · ,M)). The value of m is considered as the (average) rate of

convergence. The computations are carried out using MATLABrR2022a on a laptop with

Processor: Intel(R) Core(TM) i7-10610U CPU @ 1.80 GHz 2.30 GHz, and 16GB RAM.

3.1 Example 1

Consider the following one-dimensional problem

d2ū

dx2
= −4π2 sin(2πx) in Ω = [xA, xB] \ [xC , xD], (23)

ū = 0 on Γ = (xC , xD), (24)

drūA
dxr

=
drūB
dxr

, (25)

where r = (0, 1, 2, . . . ), xA = 0, xB = 1, xC = 0.3 and xD = 0.7 (Figure 6).

First, we analytically solve the equation in the physical domain Ω and in the extension

domain H, separately. The latter takes the same forcing function as the former. Figure

7 displays the two obtained analytical solutions. It can be seen that the direct use of

a given forcing function in the non-physical portion [xC , xD] produces a solution in the

computational domain that is not smooth across the interfaces C and D, which leads to

low-order convergence in numerical schemes.

To achieve high-order accuracy, we construct a smooth extension of the solution into the

computational domain. Different levels of the global regularity (i.e. different values of k in

Ck) are considered. Figure 8 shows a forcing function in [xC , xD] for k = 2. The solution u

is seen to be globally smooth in the computational domain, while the corresponding forcing

function is no longer smooth across the interfaces.

Figure 9 shows IRBF solutions in the computational domain obtained with k = (0, 1, 2, 3, 4).

13



It can be seen that the solutions produced in the non-physical portion are quite different in

terms of the peak value.

To study the convergence of the proposed method with respect to grid size, several uniform

data sets, namely Nx = (30, 40, . . . , 160), are employed. Figures 10 and 11 show the be-

haviour of the solution error for two different ways of choosing the inner boundary nodes in

solving the extension problem (4). In the first approach, the continuity conditions are di-

rectly imposed at xC and xD. The solution up converges as O(h1.0), O(h2.0), O(h2.9), O(h3.6),

O(h4.4) for the C0-, C1-, C2-, C3- and C4-continuity impositions, respectively (Figure 10).

In the second approach, the continuity conditions are imposed at the grid nodes adjacent

to xC and xD. The solution up converges as O(h1.0), O(h2.0), O(h2.9), O(h3.6), O(h4.2) for

the C0-, C1-, C2-, C3- and C4-continuity impositions, respectively (Figure 11). The two

approaches yield similar rates of convergence. It is easier to carry out the discretization for

the second approach. From now on, only the second approach is considered.

Figure 12 shows the first-, second-, third- and fourth-order derivatives of the solution u in

the computational domain for k = 4. They are all continuous across the interfaces C and D

as expected.

Figure 13 shows the second derivatives of the solution u in the computational domain when

different values of k are imposed. The solution u is discontinuous for k = 1 and continuous

for k ≥ 2 as expected. The smoothness of the solution is improved with an increase in k.

3.2 Example 2

The PDE is chosen as

∂2ū

∂x2
+
∂2ū

∂y2
= −4 (26)
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defined in the square 0 ≤ x, y ≤ 2π with one circular hole located at (π, π) and of radius

0.4. The exact solution to this problem is a second-order polynomial

ū = 4− (x− π)2 − (y − π)2, (27)

which is a C∞ function with ∂rū/∂xr = ∂rū/∂yr = 0 for r ≥ 3. The boundary values of ū

are derived from (27).

The problem is solved with different uniform grids, Nx×Ny = (11×11, 21×21, . . . , 91×91),

and different values of k (different levels of the global regularity). The obtained results

are shown in Figure 14. The solution in the physical domain converges as O(h2.1), O(h6.4),

O(h6.4), O(h6.4) and O(h6.4) for the C0-, C1-, C2-, C3- and C4-continuity impositions, re-

spectively. Since the exact solution is a polynomial of order 2, the method is able to achieve

a high rate of convergence with k = 1, and higher values of k only give similar results.

In solving for the smooth extension of the solution, there are different ways of solving the

extension problem [6]. K = 2(k + 1) is sufficient for standard discretization schemes to

impose the Ck continuity condition. For the proposed method, the presence of the integra-

tion constants allows for the addition of nodal derivative values into the conversion system.

Making use of it, the Ck-continuity condition (k ≥ 2) can be imposed with K = 4. Here, we

also investigate the case of using K < 2(k + 1), i.e. K = (4, . . . , 2k). The obtained results

are shown in Figure 15. For this problem, it can be seen that the order K does not affect

the solution accuracy. The sixth-order accuracy is achieved for K = 4.

3.3 Example 3

The PDE and the exact solution are respectively given by

∂2ū

∂x2
+
∂2ū

∂y2
= exp(sin(x))(cos(x)2 − sin(x))− cos(y), (28)

ū = exp(sin(x)) + cos(y). (29)
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Unlike Example 2, the exact solution here is a function involving exponential and trigono-

metric functions. The domain of interest is the square 0 ≤ x, y ≤ 2π with 9 holes located

at

(π/2− π/10, π/2− π/10), (π/2, π − π/20), (π/2− π/10, 3π/2 + π/20),

(π − π/20, π/2 + π/20), (π + 3π/40, π + π/20), (π + π/20, 3π/2 + 3π/40),

(3π/2− π/20, π/2− π/20), (3π/2 + 3π/40, π − π/20), (3π/2 + π/20, 3π/2− π/20),

and of radius 0.4 (Figure 16).

This problem is also solved with different uniform grids, Nx×Ny = (21×21, 31×31, . . . , 91×

91), and different values of k (different levels of the global regularity). The obtained results

are shown in Figure 17. The solution in the physical domain converges as O(h2.4), O(h3.9),

O(h6.0), O(h8.1) and O(h7.9) for the C0-, C1-, C2-, C3- and C4-continuity impositions, re-

spectively. For a given grid size, an increase in k results in a better accuracy of the solution.

We also study the effect of the order K of the PDE in the extension domain. The obtained

results are shown in Figures 18 and 19. With a decrease in K, one has a less accurate solution

(Figure 18) but better condition number of matrix HK (Figure 19). Nevertheless, the fifth-

order accuracy is still achieved for K = 4. It should be pointed out that the condition

number of the system matrix associated with the computational domain is low, in range of

O(101) to O(104) (Figure 20). It appears that the error does not reduce smoothly with a

decrease in grid size. The reason for it could be that the boundary nodes used to account

for the presence of the holes do not coincide with the grid nodes. When compared with 1D

problems, the proposed method yields a much faster rate of convergence for the same level

of the global regularity.

To study the effect of the number of holes on the solution accuracy, we put 9 holes into 3

sets, namely set 1: holes (1,2,3), set 2: holes (1, 2 . . . , 6) and set 3: holes (1, 2 . . . , 9). The

obtained results are shown in Figure 21. The solution accuracy is not influenced by the

number of holes. For k = 4 and K = 10, all cases yield O(h7.7).
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3.4 Example 4

Consider the following PDE

∂2ū

∂x2
+
∂2ū

∂y2
= sin(x) sin(y), (30)

defined in the square 0 ≤ x, y ≤ 2π with 9 holes of radius 0.4 (Figure 16), and subjected

to the boundary condition ū = 0. For this problem, the analytical solution is not available.

Our results are compared with the one produced by the finite element method (FEM). We

use the Matlab PDE toolbox (version R2022a); the FEM solution, where the mesh consists

of 3356 triangles and 1795 mesh points, is shown in Figure 22. Figure 23 displays IRBF

solutions obtained with four grids, (41×41, 46×46, 51×51, 61×61). The smoothness of the

contour lines is improved with an increase in the grid density. It can be seen that the two

methods yield similar results. Unlike the FEM case, the IRBF solution is defined everywhere

in the square as shown in Figures 23 and 24.

3.5 Example 5

This example is concerned with finding the electrostatic potential in an air-filled annular

quadrilateral frame. This problem is one of the examples considered in the Matlab PDE

Toolbox (version R2022a). The governing equation is

∂

∂x

(
ε
∂V̄

∂x

)
+

∂

∂y

(
ε
∂V̄

∂y

)
= −ρ, (31)

where ρ is the space charge density, and ε is the absolute dielectric permittivity of the

material. Assuming that there is no charge in the domain, the Poisson equation simplifies to

the Laplace equation. The electrostatic potential is specified as 1000V at the inner boundary

and 0V at the outer boundary.

Unlike previous examples, the hole here is a square (convex polygon, non-smooth immersed
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boundary). It is noted that traditional fixed grid methods can suffer from poor performance

when applied to non-smooth boundaries [7]. Since the analytical solution is not available,

our results are compared with the one produced by the FEM. Figure 25 displays the FEM

solution using a grid of 1292 nodes and 596 quadratic triangles, and the IRBF solution using

a uniform grid of 30× 30. It can be seen that the IRBF method performs well for the non-

smooth boundary case with convex holes. There is no special treatment required. Unlike

the FEM solution, the IRBF solution is also defined in the square hole.

3.6 Example 6

The non-smooth immersed boundary case is further considered in this example. Here, the

PDE is the Poisson equation with f = −5 sin(x/2π) cos(y/2π) defined in the square 0 ≤

x, y ≤ 1, and subjected to the boundary condition ū = 0. The hole is of L shape (non-

convex polygon) located at (0.3, 0.3) and having outer sides of 0.4 and width 0.1 (Figure

26). There is no exact solution to this problem. Figure 26 compares the IRBF solution

using a uniform grid of 45× 45 with the FEM solution using a mesh of 2484 nodes and 4736

triangular elements. It can be seen that the two solutions are in good agreement, indicating

that the proposed method performs well for the non-smooth boundary case with concave

holes.

Discussion: All problems in this study are linear; however, due to the presence of derivative

terms in the IRBF formulation, it is necessary to employ an iterative procedure to solve the

resultant algebraic systems of the proposed method. Numerical results show that the Newton

method needs a few iterations to get a converged solution. Table 1 shows the number of

iterations as well as the CPU times of the IRBF method and FEM for Example 1 (1D

problem), Example 4 (2D problem, 9 circular holes) and Example 6 (2D problem, L-shaped

hole). In case of IRBFs, the function tolerance is set to 10−6, and grids chosen are a uniform

set of 40 points for Example 1, 41 × 41 for Example 4 and 45 × 45 for Example 6. It can

be seen that most of the CPU time was spent on solving the algebraic system in the IRBF

method, and generating a FE mesh in FEM. It can also be seen that the IRBF method and
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FEM yielded efficient solutions; the CPU times of the IRBF method are larger than those of

FEM as the former requires the employment of an iterative procedure to find nodal derivative

values. When coming to nonlinear problems such as a suspension of rigid particles in a non-

Newtonian fluid and the flow past a set of cylinders over a range of Reynolds numbers, an

iterative scheme is needed for any numerical method, and the computation of derivatives

in the IRBF 5-point stencils can be simply embedded in those iterative steps without extra

loop required. It is expected that the two main advantages of the proposed method, namely

high-order accuracy and efficient pre-processing, can become very helpful – the proposed

method particularly suits such nonlinear problems.

4 Concluding remarks

We have developed a new high-order discretization scheme, based on point collocation, im-

mersed boundary smooth extension and integrated RBFs, for solving the elliptic equation

in a multiply connected domain. The discretization is based on a Cartesian grid, which

does not conform to the geometry of the holes; the resultant algebraic systems have only

5 nonzero entries per row. High-order accuracy is achieved by including nodal derivative

values in the local IRBF approximations, and forcing the solution to be globally smooth

in the entire computational domain. Since the proposed IRBF discretization is based on

only one-dimensional approximations, the process of obtaining the discretized equations is

relatively simple. In solving for the smooth extension of the solution, the constants arising

from the process of integrating the RBFs are utilized to include the boundary values of the

derivatives in the IRBF approximations, which enables the high-order PDE in the extension

domain to be enforced at every interior node. Numerical experiments shows that for a high

level of the global regularity, high-order accuracy (≥ 4) is still achieved by simply considering

the fourth-order PDE in the extension domain. It is also observed that the method performs

better for 2D problems than for 1D problems. This works further shows a great potential

of compact RBF stencils in solving differential problems defined on geometrically complex

domains.
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Table 1: Number of iteration (niter) and CPU time.

IRBF FEM
CPU time (seconds) CPU time (seconds)

Generating Constructing Solving Generating Solving
Example niter a grid the system the system niter a mesh the system

1 4 negligible < 1 < 1
4 3 negligible < 1 10.86 0 4.84 < 1
6 2 negligible < 1 8.69 0 2.99 < 1
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collocation points for PDE

collocation points for BCs

Figure 1: A multiply connected domain: embedded boundaries, Cartesian grid and collo-
cation points. The problem is solved in the domain without holes. Collocation points for
enforcing the PDE are all grid nodes inside the outer boundary (blues points), while collo-
cation points for imposing the boundary conditions are points where the grid lines cross the
outer and inner boundaries (magenta squares).
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START

Specifies the geometry, PDE and boundary conditions

Generates a Cartesian grid representing the domain without holes

Discretises the PDE using the high-order IRBF 5-point stencils

Modifies the stencils near the immersed boundary to account for its presence

Iteratively solves the algebraic system in which the forcing function in the holes
is updated by solving smooth-extension problems

Outputs the results

END

Figure 2: A flowchart of the numerical procedure of the proposed method.
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(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

Figure 3: A five-point stencil.
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i-1 i i+1

b

boundary

i-1 i i+1

b

boundary

Figure 4: Two possible configurations for a stencil near the immersed boundary
((ηi−1, ηi, ηi+1): grid nodes and ηb: boundary node). They share a common feature: there
are two grid nodes in the physical domain and one grid node in the extension domain.
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Figure 5: Two configurations of nodes representing the hole considered: one involving the
physical boundary points and grid nodes (left) and the other involving only grid nodes
(right). The boundary nodes (filled squares) are the physical boundary points for the former
and outside grid points adjacent to the boundary for the latter. It is easier to implement
the discretization for the latter.
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Physical domain

Extension domain

Figure 6: A one-dimensional domain and its associated discretization. The computational
domain is comprised of the physical and extension domains. A,B,C and D are boundary
points.
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Figure 7: 1D problem, d2u/dx2 = −4π2 sin(2πx): analytic solution for the case of using a
given smooth forcing function f(x) in the entire computational domain. It can be seen that
the analytic solution is not smooth across the interfaces C and D.
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Figure 8: 1D problem, d2u/dx2 = −4π2 sin(2πx), Nx = 50: A forcing function in the exten-
sion domain is modified to give a solution that is C2 continuous across the two interfaces.
It can be seen that the forcing function is no longer smooth across the interfaces.
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Figure 9: 1D problem, Nx = 100: Approximate solutions for the case of using non-smooth
forcing functions. A forcing function on the extension domain is modified to give solutions
that are C0, C1, C2, C3 and C4 continuous across the two interfaces. The exact solution in
the physical domain is also included for comparison purposes.
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Figure 10: 1D problem, Nx = (30, 60, · · · , 160): Error versus grid size for different levels of
continuity of the solution across the interfaces. The solution in the physical domain converges
as O(h1.00), O(h2.0), O(h2.9), O(h3.6), O(h4.4) for the C0-, C1-, C2-, C3- and C4-continuity
impositions, respectively. For these results, the continuity conditions are imposed at the
inner boundary points.
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Figure 11: 1D problem, Nx = (30, 60, · · · , 160): Error versus grid size for different levels of
continuity of the solution across the interfaces. The solution in the physical domain converges
as O(h1.0), O(h2.0), O(h2.9), O(h3.6), O(h4.2) for the C0-, C1-, C2-, C3- and C4-continuity
impositions, respectively. For these results, the continuity conditions are imposed at the grid
nodes adjacent to the inner boundary.
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Figure 12: 1D problem, Nx = 160: the first-, second-, third- and fourth-order derivatives of
the solution in the computational domain when the global C4 regularity is imposed.
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Figure 13: 1D problem, Nx = 160: the second-order derivatives of the solution in the
computational domain for different levels of the global regularity. The smoothness of the
solution is improved with an increase in the level of the global regularity.
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Figure 14: Example 2, 0 ≤ x, y ≤ 2π, one hole of radius 0.4, (11×11, 21×21, . . . , 91×91): the
solution in the physical domain converges as O(h2.1), O(h6.4), O(h6.4), O(h6.4) and O(h6.4)
for the C0-, C1-, C2-, C3- and C4-continuity impositions, respectively.
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Figure 15: Example 2, 0 ≤ x, y ≤ 2π, one hole of radius 0.4, (11× 11, 21× 21, . . . , 91× 91),
global C4 regularity: the solution in the physical domain converges as O(h6.4), O(h6.4),
O(h6.4) and O(h6.4) when the order of the PDE in the hole is chosen as 4, 6, 8 and 10,
respectively.
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Figure 16: 2D problems, 0 ≤ x, y ≤ 2π: a domain with 9 holes of radius 0.4
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Figure 17: Example 3, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, (21×21, 31×31, . . . , 91×91): the
solution in the physical domain converges as O(h2.4), O(h3.9), O(h6.0), O(h8.1) and O(h7.9)
for the C0-, C1-, C2-, C3- and C4-continuity impositions, respectively.
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Figure 18: Example 3, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, global C3 regularity, (21 ×
21, 31× 31, . . . , 91× 91): the solution in the physical domain converges as O(h4.7), O(h5.9),
and O(h8.1) when the order of the PDE in the extension domain is chosen as 4, 6 and 8,
respectively.
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Figure 19: Example 3, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, (21 × 21, 31 × 31, . . . , 91 × 91),
global C4 regularity: the condition number of the system matrix associated with Hole 1
when the order of the PDE in the extension domain is chosen as 4, 6, 8 and 10, respectively.
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Figure 20: Example 3, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, (21×21, 31×31, . . . , 91×91): the
condition number of the system matrix associated with the entire computational domain.
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Figure 21: Example 3, 0 ≤ x, y ≤ 2π, 21× 21, . . . , 91× 91, global C4 regularity, tenth-order
PDE in the extension domain: error versus grid size for the domain with 3, 6 and 9 holes of
radius 0.4. They have similar performances, achieving O(h7.7).
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Figure 22: Example 4, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4: Finite-element (FE) results
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Figure 23: Example 4, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, global C4 regularity, fourth-order
PDE in the extension domain: contour plots of the solution in the computational domain
with different grids.
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FE solution IRBF solution

Figure 24: Example 4, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, global C4 regularity, fourth-order
PDE in the extension domain: FE and IRBF solutions. The solution is smooth in the entire
computational domain for the latter but not defined in the holes for the former.
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Figure 25: Example 5, −0.25 ≤ x, y ≤ 0.25, square hole of −0.1 ≤ x, y ≤ 0.1, 30×30, global
C2 regularity, fourth-order PDE in the extension domain, non-smooth immersed boundary:
FE and IRBF solutions. The solution is smooth in the entire computational domain for the
latter but not defined in the square hole for the former.
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Figure 26: Example 6, 0 ≤ x, y ≤ 1, L-shaped hole, 45 × 45, global C1 regularity, fourth-
order PDE in the extension domain, non-smooth immersed boundary: FE (left) and IRBF
(right) solutions. The solution is smooth in the entire computational domain for the latter
but not defined in the hole for the former.
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