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ABSTRACT
Helicity is a fundamental property of a magnetic field but to date it has only been possible to
observe its evolution in one star – the Sun. In this paper, we provide a simple technique for
mapping the large-scale helicity density across the surface of any star using only observable
quantities: the poloidal and toroidal magnetic field components (which can be determined
from Zeeman–Doppler imaging) and the stellar radius. We use a sample of 51 stars across a
mass range of 0.1–1.34 M� to show how the helicity density relates to stellar mass, Rossby
number, magnetic energy, and age. We find that the large-scale helicity density increases with
decreasing Rossby number Ro, peaking at Ro � 0.1, with a saturation or decrease below that.
For both fully and partially convective stars, we find that the mean absolute helicity density
scales with the mean squared toroidal magnetic flux density according to the power law: |〈h 〉|
∝ 〈Btor

2 〉0.86 ± 0.04
. The scatter in this relation is consistent with the variation across a solar

cycle, which we compute using simulations and observations across solar cycles 23 and 24,
respectively. We find a significant decrease in helicity density with age.

Key words: methods: analytical – stars: magnetic field – Sun: magnetic fields.

1 IN T RO D U C T I O N

The helicity of a magnetic field is one of its most powerful measures.
As an invariant of the ideal MHD equations (Woltjer 1958; Taylor
1974), it is a fundamental ingredient in our understanding of
magnetic field generation and evolution. It relates the large and
small scales within a magnetic field and constrains the evolution
of that field towards a lowest energy state. Helicity that has been
captured by stars during their formation may be enhanced by the
stellar dynamo and returned to the interstellar medium by the action
of stellar winds and ejecta (Berger & Ruzmaikin 2000; Zhang &
Low 2005; Zhang 2013; Blackman 2015).

Measuring the helicity (H) of an astronomical magnetic field
is, however, extremely challenging, as it is inherently a three-
dimensional (3D) quantity that measures the linkage of fields. It can
be defined in terms of the vector potential (A) and the corresponding

� E-mail: kblg@st-andrews.ac.uk

magnetic field (B = ∇×A) as (Woltjer 1958)

H =
∫

A · BdV, (1)

where V is volume. This reveals one of the challenges inherent in
determining helicity – that it is defined only for a given gauge. The
transformation A → A + ∇ψ gives the same magnetic field B but
a different helicity. This problem is resolved in a closed magnetic
volume where the helicity is well defined, but if some flux penetrates
the boundary, we can only define the helicity relative to a given field,
normally chosen to be the potential field with the same boundary
flux (Berger & Field 1984).

To date helicity has been measured for the Sun, but not other stars.
There are many areas of current solar research where helicity plays
a significant role and thus we limit our discussion to a few examples
of its application. Magnetic helicity is central to the understanding
of the evolution and generation of magnetic fields, i.e. solar dynamo
theory (Brandenburg & Subramanian 2005; Chatterjee, Guerrero &
Brandenburg 2011), as well as to characterizing the topology of
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coronal magnetic fields (Berger & Field 1984). Active regions on
the Sun, where the magnetic fields are especially strong, frequently
give rise to explosive events such as solar flares and coronal mass
ejections (CMEs). Rust (1994) proposed CMEs are a direct result
of the conservation of helicity, necessary in order to remove excess
helicity from the Sun. Subsequently, helicity has been studied
extensively as a diagnostic of solar eruptivity (Zhang, Flyer & Low
2006; Zhang & Flyer 2008; Zhang, Flyer & Chye Low 2012; Nindos
2013). Attempting to improve space weather predictions Pariat et al.
(2017) linked the build-up of magnetic helicity to the likelihood
of a solar eruption, and Hawkes & Berger (2018) used helicity
flux to predict overall solar activity. Studies such as these have
motivated numerous authors to attempt measurements of magnetic
helicity in the solar atmosphere [see reviews by Démoulin (2007)
and Démoulin & Pariat (2009)].

Magnetic helicity in stellar research is not as well studied. Most
recently, Warnecke & Peter (2019) have modelled the impact of
helicity on stellar X-ray emission, suggesting that the rise in X-
ray emission with increasing rotation rate may be related to the
underlying variation in the helicity.

In this paper, we use observations of magnetic fields at stellar
surfaces to extend the study of helicity from the Sun to a large sample
of stars. Mapping magnetic fields across stellar surfaces has been
made possible by the Zeeman–Doppler Imaging (ZDI) technique
(Semel 1989) that has now been applied to a large range of stars (see
e.g. Donati & Landstreet 2009). Many surveys, such as MagIcS,1

Bcool,2 MaTYSSE,3 Toupies4 and MaPP,5 have explored magnetic
field behaviour in a range of stars. One of the most intriguing
early results was that for stars of similar mass to the Sun, field
geometries are largely toroidal below Rossby number Ro ≈1 (Donati
& Landstreet 2009), prompting interest in exploring dynamo models
that allow for strong surface toroidal fields (Bonanno 2016).

The ratio of toroidal-to-poloidal magnetic energies is well recov-
ered by ZDI (Lehmann et al. 2019) and appears to be different for
stars that are fully convective and those that are only convective in
the outer regions of their interiors (Donati et al. 2008b; Gregory
et al. 2012; See et al. 2015). Fully convective stars tend to be those
that are either very young, or have low masses. Since they do not
possess a tachocline at the interface between an inner radiative and
outer convective zones, they cannot support a deep-seated interface
dynamo. The nature of dynamo activity (and hence the types of
field geometries produced) may therefore be different for these
two different types of interior structure. A transition from strong,
axisymmetric fields to weaker, more complex fields appears to occur
in young stars when the radiative core forms (e.g. Donati et al. 2011;
Folsom et al. 2016). Studies of main-sequence M dwarfs also show
that for masses below ∼ 0.5 M� there is an apparent transition from
weaker, complex fields to stronger, simpler fields (Donati et al.
2008c; Morin et al. 2008b; Donati & Landstreet 2009; Morin et al.
2010). This may be related to a change in the nature of the dynamo
across the fully convective boundary.

Berger (1985) and Berger & Hornig (2018) describe in detail
how the poloidal–toroidal magnetic field decomposition allows for
a simple expression of helicity, as the net linking of toroidal and
poloidal fields. This particular field decomposition has the added

1http://www.ast.obs-mip.fr/users/donati/magics/v1/
2http://bcool.ast.obs- mip.fr/Bcool/Bcool cool magnetic stars.html
3https://matysse.irap.omp.eu/doku.php
4http://ipag.osug.fr/Anr Toupies/
5http://cfht.hawaii.edu/Science/MAPP/

advantage of simplifying the treatment of the gauge. Since the
corresponding potential field with the same boundary flux is purely
poloidal and therefore has zero helicity, calculating the helicity in
this decomposition is straightforward. In the context of ZDI maps
however, which only provide surface magnetic fields, there is not
enough information available to calculate magnetic helicities, as
this is a property within a volume. Consequently, in our work, we
consider the surface magnetic helicity density instead.

In a similar way, Pipin et al. (2019) used poloidal and toroidal field
components to calculate the evolution of the Sun’s magnetic helicity
density across solar cycle 24. They showed the relationship between
the small-scale (active region) and large-scale (polar) fields through
the solar cycle. According to their results, the large-scale and small-
scale helicities started off with opposite signs at the beginning of the
solar cycle, and then evolved to show the same sign in the declining
phase. Furthermore, they measured the helicity of large-scale fields
to be an order of magnitude smaller than the helicity of small-scale
fields.

One of the limitations of the ZDI technique is that it is insensitive
to small-scale magnetic flux elements whose polarities cancel out
(Reiners & Basri 2009; Morin et al. 2010; Kochukhov & Shulyak
2019; See et al. 2019). We are therefore unable to explore the
evolution of helicity across a large range of length scales in the
way that is possible for the Sun. What we observe is rather the
imprint of that helicity evolution on the largest scales. This may
improve when moving to nIR data, e.g. using SPIRou, thanks to the
larger Zeeman effect. By applying our technique to both observed
and simulated solar magnetograms, however, we can place the Sun
in the context of other stars and use this to help interpret stellar
observations. We can determine the role of different length scales
by expressing the poloidal and toroidal magnetic field components
(B = Bpol + Btor) as a sum of spherical harmonics of different l
modes, where the smaller l modes describe the larger-scale field
and higher l modes describe the smaller scale field. Truncating the
sum at some maximum l value mimics the lack of sensitivity to
small-scale fields.

In this paper, we provide the reader with a simple equation for
helicity density, given the poloidal and toroidal decomposition of
any stellar magnetic field. We use this expression to study the large-
scale helicity density of 51 stars. Our sample includes both fully and
partially convective stars. Our aim is to discover how the helicity of
these fields relates to fundamental stellar properties and to interpret
these results in the context of the evolution of the large-scale helicity
density of the Sun.

The paper is outlined as follows. Section 2 describes the deriva-
tion of the magnetic helicity density in terms of poloidal and toroidal
magnetic field components. In Section 3, we calculate the helicity
density of the Sun, as well as our sample of stars. Section 4 presents
our discussion of the results. A summary of our results along with
our conclusions are given in Section 5.

2 MAG NETI C HELI CI TY DENSI TY

The magnetic helicity density is given by the integrand of equa-
tion (1):

h = A · B. (2)

We expand the magnetic field and the vector potential field into
their poloidal and toroidal components as follows:

h = (Apol + Ator) · (Btor + Bpol). (3)
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An expression for the magnetic field is derived in Section 2.1,
a corresponding vector potential is calculated in Section 2.2, and
we combine them to obtain an expression for the helicity density in
Section 2.3.

2.1 Poloidal and toroidal magnetic field components

We decompose the stellar magnetic field in terms of a poloidal
and toroidal component following appendix III of Chandrasekhar
(1961):

Bpol = ∇×[∇×[�r̂]], (4)

Btor = ∇×[� r̂]. (5)

In a spherical coordinate system6 the scalars � and � can be written
in terms of spherical harmonics as

� = S(r)clmPlmeimφ (6)

and

� = T (r)clmPlmeimφ. (7)

S(r) and T(r) are functions describing the radial behaviour of the
field, Plm is short for the Legendre Polynomial Plm(cos θ ) of mode
l and order m, and clm is the associated normalization constant:

clm =
√

2l + 1

4π

(l − m)!

(l + m)!
. (8)

Expanding the poloidal and toroidal field components gives the
following expressions:

Bpol(r, θ, φ) =
∑
lm

l(l + 1)

r2
S(r)clmPlmeimφ r̂

+
∑
lm

1

r

dS(r)

dr
clm

dPlm

dθ
eimφ θ̂

+
∑
lm

im

r sin θ

dS(r)

dr
clmPlmeimφ φ̂, (9)

Btor(r, θ, φ) =
∑
lm

T (r)im

r sin θ
clmPlmeimφ θ̂

−
∑
lm

T (r)

r
clm

dPlm

dθ
eimφφ̂. (10)

The sums
∑

lm run from mode l = 1 to l = lmax, and from order m =
−l to m = l, where the maximum mode depends on the resolution
of the data available.

2.2 Vector potential fields

Having determined a general magnetic field expression, next we
require the corresponding vector potential field A:

B = ∇×A. (11)

Given equations (4) and (5), it follows that the poloidal and toroidal
components of the vector potential field are

Apol = ∇×[�r̂], (12)

6We use a spherical coordinate system where a positive radial field
component points towards the observer, the meridional (θ ) component is
positive pointing from North to South and the azimuthal (φ) component is
positive in the clockwise direction as viewed from the North pole.

and

Ator = � r̂. (13)

Substituting equations (6) and (7) for � and � and expanding results
in

Apol =
∑
lm

im

r sin θ
S(r)clmPlmeimφ θ̂

−
∑
lm

1

r
S(r)clm

dPlm

dθ
eimφ φ̂, (14)

Ator =
∑
lm

T (r)clmPlmeimφ r̂. (15)

2.3 Calculating the helicity density

When expanding equation (3), we find that both Apol · Bpol and Ator ·
Btor are zero. Consequently, the helicity density equation simplifies
to

h = Apol · Btor + Ator · Bpol. (16)

By inserting the magnetic field from Section 2.1 (equations 9 and
10) and the vector potential from Section 2.2 (equations 14 and 15),
the real part of the magnetic helicity density is given by7

h(r, θ, φ) = �
(∑

lm

∑
l′m′

1

r2
S(r)T (r)clmcl′m′eiφ(m+m′)

×
(

PlmPl′m′

(
l(l + 1) − mm′

sin2 θ

)
+ dPlm

dθ

dPl′m′

dθ

))
.

(17)

As the helicity density is calculated by taking the dot product of
sums running between the same limits, the toroidal components
have been denoted with a prime in order to distinguish the different
sums.

The radial functions S(r) and T(r) are the only terms in equa-
tion (17) that require information about the specific star considered.
Using the ZDI technique (Semel 1989), large-scale magnetic fields
can be determined at stellar surfaces (r = R�), which provides values
for S(R�) and T(R�). Unfortunately, it is unknown how the stellar
magnetic field extends beyond this, hence the magnetic helicity
density can only be evaluated at the stellar surface.

The surface fields are decomposed into poloidal and toroidal
components (e.g. Donati et al. 2006; Vidotto 2016):

Bpol(θ, φ) =
∑
lm

αlmclmPlmeimφ r̂

+
∑
lm

βlm

(l + 1)
clm

dPlm

dθ
eimφ θ̂

+
∑
lm

βlmim

(l + 1) sin θ
clmPlmeimφφ̂, (18)

Btor(θ, φ) =
∑
lm

γlmim

(l + 1) sin θ
clmPlmeimφ θ̂

−
∑
lm

γlm

(l + 1)
clm

dPlm

dθ
eimφ φ̂, (19)

7The given expression for magnetic helicity density is derived using a left-
handed coordinate system, it can be converted to a right-handed coordinate
system simply by flipping the sign.
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which are characterized by αlm, β lm, and γ lm coefficients. A
detailed description of how these coefficients are determined given
radial, meridional, and azimuthal magnetic field components can
be found in Vidotto (2016). Equating this surface field with the
full magnetic field (equations 9 and 10) evaluated at r = R�;
B(θ, φ) = B(R�, θ, φ), gives

S(R�) = αlmR2
�

l(l + 1)
, (20)

T (R�) = γlmR�

(l + 1)
. (21)

Having established expressions for S(R�) and T(R�), equation (17)
can be evaluated at r = R�, which gives the magnetic helicity density
at any point (θ , φ) on the stellar surface:

h(R�, θ, φ) = �
(∑

lm

∑
l′m′

αlmγl′m′R�

(l′ + 1)l(l + 1)
clmcl′m′eiφ(m+m′)

×
(
PlmPl′m′

(
l(l + 1) − mm′

sin2 θ

)
+ dPlm

dθ

dPl′m′

dθ

))
.

(22)

This expression for helicity density can be applied to any star given
only its stellar radius and the αlm and γ lm coefficients characterizing
its poloidal and toroidal magnetic field components.

We note that β lm does not appear in the helicity density equation.
This is due to helicity being the linking of toroidal and poloidal
fields. The toroidal field lines lie on spherical surfaces, and the
poloidal field lines pass through these surfaces. However, only the
radial component of the poloidal field links through the toroidal
field, the θ and φ components lie on the same spherical surfaces
as the toroidal field and so provide no ‘linkage’. Since the radial
part of the poloidal field depends only on αlm, and the toroidal field
depends only on γ lm, β lm is not needed.

When comparing the helicity density of different stars, or at
different times, rather than considering the helicity density at
specific points (θ , φ) on the stellar surface, it is more convenient to
calculate an average helicity density value across some surface area
A:

〈h〉 =
∫

h(R�, θ, φ) dA

A
. (23)

3 A PPLICATION

3.1 Observational and simulated data

In this paper, we calculate the large-scale helicity density of the Sun,
as well as 51 additional stars listed in Table 1. The magnetic maps
we use for each star are referenced in the last column of the table.
From left to right, the remaining columns show the name of the star,
stellar mass, stellar radius, rotation period, Rossby number, age,
absolute helicity density (l ≤ 4) averaged across the visible stellar
hemisphere, the maximum l mode and the number of magnetic maps
used. For references to the stellar parameters listed, as well as a more
detailed table with further information on these stars (see Vidotto
et al. 2014). The stellar sample consists of stars with spectral types
F, G, K, and M, with masses ranging from 0.1 to 1.34 M�. The
resolutions of the magnetic maps of the stellar sample range from
lmax = 4 to 25, with higher modes indicating a higher resolution,
meaning smaller scale magnetic fields are detected. The stars with
lmax < 8, which comprise the majority of the M-dwarfs and hot
Jupiter hosts in Table 1, will be omitted for part of the analysis in

Section 3.3 where we choose to consider stars with lmax = 8 to allow
for a larger range of l-modes.

In order to place the Sun in context, we include it in our study.
The solar magnetic maps we use come from observations taken by
the Helioseismic and Magnetic Imager (HMI) on board the Solar
Dynamic Observatory (Pesnell, Thompson & Chamberlin 2012;
Scherrer et al. 2012). We also use surface magnetograms taken from
the 3D non-potential magnetic field simulation presented in Yeates
& Mackay (2012). Together the data spans almost two whole solar
cycles; the observed solar data covers most of solar cycle 24, and the
simulation is over solar cycle 23. There is a slight overlap in time
between the two data sets, which proves useful when checking for
consistency between the simulated and observed data. The ability
to follow variations in helicity density through a cycle may provide
insights into the sources of the scatter in stellar values.

Throughout Section 3.2 the solar helicity will be calculated up to
l = 8 only, as this is a reasonable resolution for most of the other
stars in our sample. Both the observed and simulated Sun can be
recovered to a higher lmax, but this large-scale helicity density is
a reasonable approximation of what we would detect if we could
observe the Sun as a star. Only the helicity captured on the largest
scales is shown – the contribution from smaller scale features such
as active regions is omitted. For the sake of consistency, we compare
the stellar and solar data using the same number of l modes. The
lowest resolution used will be l ≤ 4, as this is the highest common
mode of the stellar sample in Table 1.

3.2 Large-scale solar helicity densities

We calculate the longitudinally averaged helicity density for every
observed and simulated magnetic map and plot it as a function
of time in Fig. 1. We use Gaussian smoothing to remove small
variations and highlight the overall trends. The helicity densities in
the plots are limited to ±4 × 1012 Mx2cm−3 (left-hand panel) and
±4 × 1011 Mx2cm−3 (right-hand panel) which results in saturation,
but reveals more structure towards the equator. The resulting pattern
is consistent with the large-scale magnetic helicity density presented
by Pipin et al. (2019) in their paper exploring the evolution of the
solar magnetic helicity density throughout solar cycle 24 (see their
Fig. 5a). Our plot has the opposite polarity to theirs, which may
be due to differing sign conventions; using a different coordinate
system can change the sign of the helicity density.

The helicity density at the poles of the simulated Sun is ap-
proximately a full order of magnitude stronger than that of the
observed Sun. However, apart from the magnitude, the two plots
show consistent results and match up nicely in the overlapping year
(∼2010–2011), showing a positive south pole and a negative north
pole. In both cases, the strong signal at the poles overshadows most
structure around the equator and the sign of the helicity density flips
across the equator. The helicity is pre-dominantly negative in the
Northern hemisphere and positive in the Southern hemisphere until
∼2014, when it reverses. A much shorter sign reversal can also
be seen around 2000. It is perhaps worthwhile to note that 2000
and 2014 are the years with the highest sunspot activity during
solar cycles 23 and 24, respectively8; we cannot confidently state
whether this is coincidence or consequence.

Calculating the average helicity density across both hemispheres
allows us to compare the two more quantitatively. The top panel

8Sunspot data from the World Data Center SILSO, Royal Observatory of
Belgium, Brussels.
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Table 1. Our stellar sample. From left to right the columns show: star name, mass, radius, rotation period, Rossby number, absolute helicity density calculated
up to l ≤ 4 averaged across the visible hemisphere (a mean value if more than one magnetic map is available), lmax, number of magnetic maps used and
references to those magnetic maps. A more comprehensive table can be found in Vidotto et al. (2014).

Star ID M� R� Prot Ro Age |〈h 〉|l≤4 lmax No. of Ref.
(M�) (R�) (d) (Myr) (Mx2cm−3) maps

Solar-like stars
HD 3651 0.88 0.88 43.4 1.916 8200 1.938e+11 10 1 1
HD 9986 1.02 1.04 23.0 1.621 4300 7.552e+09 10 1 1
HD 10476 0.82 0.82 16.0 0.576 8700 8.060e+09 10 1 1
HD 20630 1.03 0.95 9.30 0.593 600 3.108e+13 10 1 2
HD 22049 0.86 0.77 10.3 0.366 440 8.056e+11 10 1 3
HD 39587 1.03 1.05 4.83 0.295 500 2.379e+12 10 1 1
HD 56124 1.03 1.01 18.0 1.307 4500 2.889e+11 10 1 1
HD 72905 1 1 5.00 0.272 500 1.634e+13 10 1 1
HD 73350 1.04 0.98 12.3 0.777 510 3.771e+11 10 1 1
HD 75332 1.21 1.24 4.80 >1.105 1800 1.230e+12 15 1 1
HD 78366 1.34 1.03 11.4 >2.781 2500 1.305e+12 10 3 4
HD 101501 0.85 0.9 17.6 0.663 5100 3.267e+12 10 1 1
HD 131156A 0.93 0.84 5.56 0.256 2000 2.539e+13 10 7 5, 6
HD 131156B 0.99 1.07 10.3 0.611 2000 1.302e+13 10 1 1
HD 146233 0.98 1.02 22.7 1.324 4700 9.357e+08 10 1 7
HD 166435 1.04 0.99 3.43 0.259 3800 5.368e+12 10 1 1
HD 175726 1.06 1.06 3.92 0.272 500 2.139e+12 10 1 1
HD 190771 0.96 0.98 8.80 0.453 2700 5.472e+12 10 1 7
HD 201091A 0.66 0.62 34.2 0.786 3600 9.288e+10 10 1 8
HD 206860 1.10 1.04 4.55 0.388 260 3.108e+13 10 1 9
Young Suns
AB Dor 0.76 0.96 0.5 0.026 120 2.318e+14 25 6 10
BD-16351 0.9 0.83 3.39 − 30 6.257e+13 15 1 11
HII 296 0.8 0.74 2.61 − 130 3.731e+13 15 1 11
HII 739 1.08 1.03 2.7 − 130 1.249e+12 15 1 11
HIP 12545 0.58 0.57 4.83 − 21 5.216e+14 15 1 11
HIP 76768 0.61 0.6 3.64 − 120 4.058e+14 15 1 11
TYC
0486-4943-1

0.69 0.68 3.75 − 120 4.847e+12 15 1 11

TYC
5164-567-1

0.85 0.79 4.71 − 120 4.150e+13 15 1 11

TYC
6349-0200-1

0.54 0.54 3.39 − 21 2.305e+13 15 1 11

TYC
6878-0195-1

0.65 0.64 5.72 − 21 5.125e+13 15 1 11

Hot Jupiter hosts
τ Boo 1.34 1.42 3 >0.732 2500 1.722e+11 8,5 6 12, 13, 14, 15
HD 73256 1.05 0.89 14 0.962 830 3.619e+11 4 1 15
HD 102195 0.87 0.82 12.3 0.473 2400 2.687e+12 4 1 15
HD 130322 0.79 0.83 26.1 0.782 930 1.277e+11 4 1 15
HD 179949 1.21 1.19 7.6 >1.726 2100 6.133e+10 6 1 16
HD 189733 0.82 0.76 12.5 0.403 600 8.669e+12 5 2 17
M dwarf stars
GJ 569A 0.48 0.43 14.7 <0.288 130 1.807e+14 5 1 18
GJ 410 0.58 0.52 14 <0.267 710 1.532e+14 5 2 18
GJ 182 0.75 0.82 4.35 0.054 21 5.905e+14 8 1 18
GJ 49 0.57 0.51 18.6 <0.352 1200 2.494e+13 5 1 18
GJ 494A 0.59 0.53 2.85 0.092 – 1.644e+14 8 2 18
GJ 388 0.42 0.38 2.24 0.047 – 1.238e+14 8 2 19
EQ Peg A 0.39 0.35 1.06 0.02 – 4.550e+14 4 1 19
EQ Peg B 0.25 0.25 0.4 0.005 – 4.724e+14 8 1 19
GJ 873 0.32 0.3 4.37 0.068 – 8.771e+14 8 2 19
GJ 9520 0.55 0.49 3.4 0.097 – 2.173e+14 8 2 18
V374 Peg 0.28 0.28 0.45 0.006 – 9.861e+13 10 2 20
GJ 1111 0.1 0.11 0.46 0.0059 – 1.533e+13 6 3 21
GJ 1156 0.14 0.16 0.49 0.0081 – 1.076e+13 6 3 21
GJ 1245 B 0.12 0.14 0.71 0.011 – 1.565e+13 4 2 21
WX UMa 0.1 0.12 0.78 0.01 – 1.599e+15 4 2 21

Notes. 1: Petit et al. (in preparation); 2: do Nascimento et al. (2016); 3: Jeffers et al. (2014); 4: Morgenthaler et al. (2011); 5: Morgenthaler et al. (2012); 6: Jeffers
et al. (in preparation); 7: Petit et al. (2008); 8: Boro Saikia et al. (2016); 9: Boro Saikia et al. (2015); 10: Donati et al. (2003); 11: Folsom et al. (2016); 12: Catala
et al. (2007); 13: Donati et al. (2008a); 14: Fares et al. (2009); 15: Fares et al. (2013); 16: Fares et al. (2012); 17: Fares et al. (2010); 18: Donati et al. (2008b); 19:
Morin et al. (2008b); 20: Morin et al. (2008a); 21: Morin et al. (2010).

MNRAS 493, 1003–1012 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/1/1003/5721531 by U
niversity of Southern Q

ueensland user on 10 D
ecem

ber 2020



1008 K. Lund et al.

Figure 1. The evolution in time of the average solar helicity density for l ≤ 8 at each latitude, using simulated data (left) and observational data (right).
Gaussian smoothing has been applied to remove small variations and highlight overall trends. The colour tables saturate at ±4 × 1012 Mx2cm−3 (left) and
±4 × 1011 Mx2cm−3 (right).

Figure 2. Top: The evolution in time of the average solar helicity density for l ≤ 8 across the Southern (orange) and Northern (yellow) hemispheres. Bottom:
The mean squared magnetic flux density for l ≤ 8 (light teal) and l = 1 (dark teal) across the same time period. The triangles and circles correspond to results
based on simulated and observational data respectively.

of Fig. 2 shows the helicity density over time averaged across the
Southern (orange) and Northern (yellow) hemispheres, respectively.
The triangles correspond to the simulated Sun, and the circles corre-
spond to the HMI observations. Despite having already established
that the helicity density flips signs across the equator, this plot
reveals more clearly that the overall helicity density of the Sun is
never exactly zero. In the case of the simulated Sun, the helicity
density is approximately mirrored across the equator, and over time
it will average to more or less zero. For the observed Sun on the other
hand, the helicity density in the Southern hemisphere dominates
throughout the second half of the time period. This could be due
to computational errors, or there could be a real imbalance. Yang
& Zhang (2012) showed an asymmetry between the large-scale
magnetic helicity fluxes in the Northern and Southern hemisphere

across solar cycle 23, which would lead to different amounts of
helicity accumulating in each hemisphere. We propose, due to the
sign change across the equator, the helicity density averaged across
a single hemisphere provides a more meaningful result than an
average across the entire sphere, which represents a residual value.

The bottom panel of Fig. 2 shows how the solar magnetic energy
for l = 1 and l ≤ 8 behaves throughout the same time period over
which we are presenting the helicity density in the top panel. The
mean squared magnetic flux density across the Sun, 〈B2 〉, represents
a proxy for magnetic energy. The energies of both the simulation
and the real Sun follow a similar pattern. On the approach to cycle
maximum, the total energy (summed up to mode l = 8) increases,
while the dipole energy decreases. In the declining phases, as the
total energy decreases, the dipole energy first grows, then decreases

MNRAS 493, 1003–1012 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/1/1003/5721531 by U
niversity of Southern Q

ueensland user on 10 D
ecem

ber 2020



Stellar magnetic helicity density 1009

Figure 3. Absolute helicity densities averaged across a single hemisphere
as a function of stellar mass. The orange shades show the Sun across the
Southern hemisphere between ∼2010 and 2018, and the teal shades show
the remaining stars in the stellar sample. The helicity densities are calculated
up to different modes, which are represented by different sizes and colours.
lmax increases from small and light to large and dark. Symbols without an
outline represent multiple measurements for the same stars, and the symbols
with black edges are average values.

slowly to reach another minimum at cycle maximum. The helicity
density also follows a cyclic pattern, although shifted later than the
total energy by about one quarter in phase.

3.3 Large scale stellar helicity densities

Based on the exploration of solar helicity density in the previous
section, we choose to compare the helicity densities of our stellar
sample in terms of their averages across a single hemisphere. We
choose the hemisphere pointing towards the observer, noting that
the other is partially obscured, and even partially invisible. Because
the sign of the helicity can change across hemispheres or over time,
once we have calculated the average we take its absolute value. In the
case of the observed solar data, we select the Southern hemisphere.
When the Sun is plotted for comparison throughout this section,
we are using the observations of the real Sun between ∼2010 and
2018, not the simulated data.

To explore the importance of the chosen resolution, we plot the
absolute average helicity density calculated up to three different
l-mode limits as a function of stellar mass in Fig. 3. The different
colours correspond to l = 1 (dipole), l ≤ 2 (quadrupole), and l ≤ 8.
Consequently, the stars in Table 1 with lmax < 8 are excluded from
this plot. The points without black outlines show multiple values for
the same star, and the points with black outlines represent average
values. An example of this is the Sun, shown in orange shades,
where the points with outlines are the average values across ∼2010–
2018. We find that the helicity densities recovered using dipole or
quadrupole fields alone result in good representations of the l ≤ 8
helicity density. On average, the l = 1 and l ≤ 2 points deviate by
∼ 40 and 13 per cent from the l ≤ 8 points. Including higher order
modes changes the magnitude of the helicity density only slightly,
and the general trend across stellar masses remains the same. Hence,
for the remainder of this paper we limit ourselves to l ≤ 4 in order
to increase the number of eligible stars and particularly capture the
hot Jupiter hosts and M dwarfs better.

From Fig. 3, we find the absolute helicity density increases with
decreasing stellar mass, reaching a plateau for stars of M� � 0.5 M�.

Figure 4. Absolute helicity density (l ≤ 4) averaged across a single
hemisphere versus Rossby number. The colour of the symbols correspond to
stellar mass, and the diamonds represent stars with M� < 0.5 M�. Symbols
without an outline represent multiple measurements for the same stars, and
the symbols with black edges are average values. The orange circles show
the range of solar values, for the Southern hemisphere, between ∼2010 and
2018.

In fact, a number of magnetic field properties have been discovered
to change across this 0.5 M� boundary (Donati et al. 2008b; Morin
et al. 2008b, 2010; See et al. 2015). The authors suggest it is related
to the onset of the sharp transition in internal stellar structure from
partially convective stars with inner radiative interiors out to ∼
0.5R� (at 0.5 M�) to fully convective stars (at 0.3 M�). As noted
by See et al. (2015), there is a correlation between stellar mass and
rotation period for our ZDI sample. Generally, the more massive
stars in our sample tend to be spinning slower (there are exceptions;
we do have some high-mass stars that rotate very fast e.g. AB Dor).
This makes it hard to say whether the helicity trend is with mass or
rotation. In an attempt to shed light on this, we consider the Rossby
number, Ro; a parameter that encapsulates information about both
mass and rotation period.

Fig. 4 shows the absolute average helicity density versus Rossby
number. We use the Rossby numbers listed in Table 1, originally
calculated and published in Vidotto et al. (2014). Stars for which
we lack Rossby number estimates are omitted from this plot. Stellar
mass is denoted by the colour of the symbols. The sample of stars
is divided at 0.5 M�; circles represent stars with masses higher than
0.5 M� and diamonds represent stars with lower masses. The orange
circles show the range of solar values, assuming a solar Rossby
number of 1.96 (Cranmer & Saar 2011). As in Fig. 3, the black
outlines indicate average values. The helicity density increases, as
the Rossby number decreases until a maximum is reached around
Ro ∼ 0.1. Whether this is a true maximum, or simply a saturation is
not clear. The same behaviour and saturation point has been reported
for other stellar properties such as the ratio of X-ray to bolometric
luminosities (Wright et al. 2011) and the toroidal and poloidal mag-
netic energy densities (See et al. 2015). The stars with masses below
0.5 M� are all grouped together in the saturated region, alongside
one higher mass, rapidly rotating star at Ro = 0.026 (AB Dor).
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1010 K. Lund et al.

Figure 5. Absolute helicity density for l ≤ 4 averaged across a single hemisphere versus the mean squared toroidal (left) and poloidal (right) magnetic
flux densities across the star. The symbols are the same as in Fig. 4. Mean values of the solar data are given for the periods ∼2010–2012, 2012–2015, and
2015–2018, labelled 1, 2, and 3, respectively. The dashed lines show the best fit of |〈h 〉| ∝ 〈B2 〉α calculated using the average values only. In the toroidal case,
one fit is given for all the stars, which results in α = 0.86 ± 0.04. In the poloidal case, using all stars would produce a similar value of α = 0.85 ± 0.06, but
every star with M� < 0.5 M� would fall below the line and the overall fit would not be as tight. Consequently, best-fitting lines of stars with M� < 0.5 M� and
M� > 0.5 M� are shown separately, resulting in α = 0.77 ± 0.18 and α = 1.11 ± 0.07, respectively.

See et al. (2015) found that the toroidal magnetic energy density
increases faster with Rossby number than the poloidal magnetic
energy density. We therefore plot the absolute average helicity
density separately against toroidal and poloidal magnetic energy
(see Fig. 5). Again the mean squared magnetic flux density across
the star, 〈B2 〉, acts as a proxy for magnetic energy. The shades of
blue correspond to stellar mass, and the diamonds indicate stars with
M� < 0.5 M�. The symbols without an outline represent multiple
measurements of the same star, and the symbols with a black outline
are average values. Values for the Sun spanning ∼2010–2018 are
shown in orange, with the circles labelled 1, 2, and 3 being mean
values for the periods ∼2010–2012, 2013–2015, and 2015–2018,
denoting approximately the rising, maximum and declining phases
of the cycle. These points show broadly how the Sun’s position on
the plot evolves in time. It is notable that the solar cyclic variation
is within the scatter in values for other stars.

We find that when the helicity density is plotted against the
toroidal magnetic energy; all stars follow the relation |〈h 〉| ∝
〈B2

tor 〉0.86 ± 0.04
regardless of their interior structure. In contrast, when

helicity density is plotted against the poloidal magnetic energy, there
is a much larger scatter, and the low-mass (largely convective) stars
appear to lie on a different slope to those that have a radiative
interior.

The evolution with time of the solar field appears to be different
for the poloidal and toroidal components. The toroidal field moves
from one side to the other of the best-fitting line, whereas the
poloidal field mainly stays to the right of the best-fitting line. This
can be understood by considering the variation of the large-scale
poloidal and toroidal fields plotted against time in Fig. 6. The two
components are shown to vary together, but out of phase.

As stellar age is known to affect the magnetic properties of stars
we plot the absolute average helicity density against age in Fig. 7.
We use the ages listed in Table 1, more information and references
for these can be found in Vidotto et al. (2014). We lack ages for
some of the M dwarfs in our sample; hence, these are omitted from

the plot. Despite a large spread of values, the figure shows a clear
decline in helicity density with age. Given the correlation outlined
earlier between helicity density and magnetic field strength, this
result reflects the decline of field strength with age.

4 D ISCUSSION

By truncating our spherical harmonic expansion of the solar
magnetic field at low l values we have explored the variation in
the solar helicity density that could be detected if the Sun were
observed as a star. While this does not give us a complete picture
of the Sun’s helicity density, it allows us to determine the imprint
left on the largest scales of the cyclic growth and decay in the solar
helicity. This also provides a context within which to view the values
we measure for other stars.

Fig. 3 demonstrates clearly the rise in helicity density with
decreasing mass that would be expected in light of the high-field
strengths of many of the lowest mass stars (Donati et al. 2008b;
Morin et al. 2008b, 2010; See et al. 2015). At first glance, the
Sun appears to show an anomalously low-helicity density for its
mass. Showing the variation with Rossby number instead (Fig. 4)
clarifies this however. The Sun is simply a slower rotator than many
other stars in our sample of similar mass. Its variation through
its cycle is entirely within the scatter of the other stars. What is
perhaps more intriguing about this figure, however, is the possible
existence of a peak in the helicity density at around Ro ≈ 0.1.
This may of course be a plateau, rather than a peak. It is possible
that the apparent maximum is a manifestation of bi-stability within
the dynamo, leading to two possible regimes; one of weak field
and one of strong field (Morin et al. 2011). Further observations
are required to confirm this. Several other activity indicators also
appear to peak in this parameter range. Super-saturation in X-ray
emission (James et al. 2000) has already been suggested for G
and K dwarfs, although its existence in M dwarfs is not confirmed
(Jeffries et al. 2011; Wright et al. 2011) and more recently the
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Stellar magnetic helicity density 1011

Figure 6. The mean squared magnetic flux density (l ≤ 4) of the poloidal (dark grey) and toroidal (light grey) magnetic field components through the solar
cycle. The triangles and circles correspond to results based on simulated and observational data, respectively.

Figure 7. Absolute helicity density (l ≤ 4) averaged across a single
hemisphere versus stellar age. Symbols are the same as in Fig. 4.

possibility of a peak in the rate of large M-dwarf flares at Ro ≈
0.1 has been suggested (Mondrik et al. 2019). This is also the
regime in which See et al. (2017) find the maximum mass and
angular momentum loss rates. This may mark a transition in the
geometry of the magnetic fields with some of the lowest Rossby
number stars lying in the ‘bi-stable’ regime (Morin et al. 2011;
Schrinner, Petitdemange & Dormy 2012; Gastine et al. 2013), where
stars with similar parameters may exhibit either strong, simple
fields, or weaker, more complex ones. A cyclic variation between
these two states has also been proposed (Kitchatinov, Moss &
Sokoloff 2014).

Fig. 5 shows a very tight correlation between the large-scale
helicity density and toroidal energy density. Since helicity measures
the linkage of the poloidal and toroidal fields, this suggests that a
common process governs the field geometry of stars in the mass
range of 0.1–1.34 M�, despite their different internal structures and
possibly different dynamos. In contrast, plotting helicity density
against poloidal energy density appears to separate stars into two
families. At a given helicity density, the stars with mass below
0.5 M� appear to have excess poloidal energy density. Is it possible
that they have an excess of poloidal field that does not link
with the toroidal field and so does not contribute to the helicity?
Alternatively, as the differential rotation rate is very low for these

stars, they might be covered with randomly oriented small-scale
fields that are not organized at large scales. Such small-scale fields
would not contribute to the helicity, but might explain the excess of
poloidal field. In order to answer these questions, we would need to
map the variation in the fields of the lowest mass stars through their
cycles, but this has not yet been done. Indeed, it is not yet clear on
what time-scale these stars may show cycles, if at all.

Given the apparent link between energetic and eruptive phenom-
ena on the Sun with its magnetic helicity, it is interesting to see the
decline in helicity density with age (Fig. 7). This suggests active
phenomena in stars may decline in time. Unfortunately, as we do
not have ages for the lowest mass stars in our sample, we cannot
investigate the possible role of bifurcation.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have derived a general expression for calculating
the magnetic helicity density of any star given its poloidal and
toroidal magnetic field components and radius. Subsequently, we
presented solar helicity densities along with the first helicity
densities at the surfaces of 51 stars other than the Sun. Our main
results are as follows, and all refer to the absolute average helicity
density across the visible hemisphere only:

(i) The helicity density rises and reaches a plateau with decreas-
ing stellar mass. The saturation occurs at ∼ 0.5 M�. This is the
result of the corresponding variation of the toroidal field.

(ii) The helicity density rises with decreasing Rossby number Ro

and reaches a maximum at Ro ∼ 0.1. At lower Rossby numbers,
there is some evidence of a subsequent decrease.

(iii) For our mass range of 0.1–1.34 M�, the helicity density
relates to the toroidal magnetic energy density according to |〈h 〉|
∝ 〈B2

tor 〉0.86 ± 0.04
with a scatter consistent with the Sun’s variation

through its cycle.
(iv) The variation of the helicity density with the poloidal energy

density separates the lower- and higher-mass stars into two families
indicated by different slopes similar to the results of See et al.
(2015).

(v) There is an overall decay of helicity density with age.

We conclude that the helicity density of stars with masses lower
or higher than 0.5 M� are different if plotted against stellar mass,
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1012 K. Lund et al.

Rossby number, or poloidal magnetic energy. The fact that the
helicity density of a star of any mass can be determined by the
strength of its toroidal magnetic field shows us that the change in
behaviour for low-mass stars is due to their relatively strong poloidal
fields (See et al. 2015).

When comparing our stars to the Sun we find that, in terms of
helicity density, the Sun appears to be a normal example of a star
of its mass. Consequently, we suspect the spread in stellar helicity
values (for M� > 0.5 M�) may be due to other stars undergoing
cycles similar to the Sun, with their helicity density varying in
time. We note however that Lehmann et al. (2019) showed a spread
in values due to different stellar inclination angles, which may
contribute to the scatter in stellar helicity values. In the future,
given magnetic maps of the same star over a longer time period,
we will investigate how its stellar helicity density evolves in time,
compared to the solar case.
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