

University of Southern Queensland

The Ontological Evaluation of the Requirements

Model When Shifting From a Traditional To a
Component-Based Paradigm in Information

Systems Re-Engineering

A dissertation submitted by

Raul Valverde M.Eng M.B.A.

For the award of
Doctor of Business Administration

2008

 i

ABSTRACT

The vast majority of present legacy information systems were implemented using
the traditional paradigm. The traditional paradigm consists of modeling techniques
used by system analysts such as System Flow Charts and Data Flow Diagrams
(DFD) to capture, during the analysis phase, the activities within a system.
However, with recent developments, particularly trends towards e-Commerce
applications, platform independence, reusability of pre-built components, capacity
for reconfiguration and higher reliability, many organizations are realizing they will
need to re-engineer their systems into new component based systems that meet these
trends given the limitations of legacy systems to adapt to these new technical
requirements.

There is a high degree of interest and concern in establishing whether or not a full
migration to a more portable and scalable component-based architecture will be able
to represent the legacy business requirements in the underlying requirements model
of the re-engineered information systems.

As a result, this study poses the question: Is the resulting component-based
requirements model ontological equivalent to the legacy requirements model when
shifting paradigms in the re-engineering process?

After a literature review, the research study is justified given the differences in
requirements modeling between component-based and traditional paradigms, which
give an indication that the resulting component model might not represent the same
business requirements represented in the legacy system requirements model.

The study evaluated the requirements models generated by the component-based
and traditional approaches when shifting paradigms in the re-engineering process in
order to verify that the re-engineered component-based requirements model was
capable of representing the same business requirements of the legacy system.
Design science and an ontological evaluation using the Bunge-Wand-Weber
(BWW) model were the central research methodologies for this study.

A legacy system was selected as part of the case study and re-engineered by using
the component-based paradigm with the help of UML diagrams. The requirements
model of the legacy system was recovered using reverse engineering and compared
to the component-based requirements model using normalized reference models
generated with the help of BWW transformation maps. These maps revealed that the
re-engineered requirements models were capable of representing the same business
requirements of the legacy system. A set of rules was suggested when re-
engineering legacy into component-based information systems to ensure the same
representation of legacy system’s requirements in the re-engineered requirements
model.

Finally, this research included directions of future research that put emphasis on the
development of automated software tools for systems re-engineering that could
implement the rules suggested in this study and the ontological methodology
approach used.

 ii

CERTIFICATION OF DISSERTATION

I certify that the ideas, experimental work, results, analyses, software and
conclusions reported in this dissertation are entirely my own effort, except where
otherwise acknowledged. I also certify that the work is original and has not been
previously submitted for any other award, except where otherwise acknowledged.

_____________________________ _____________

 Signature of Candidate Date

ENDORSEMENT

_____________________________ _____________

 Signature of Supervisor Date

_____________________________ _____________

 Signature of Supervisor Date

 iii

ACKNOWLEDGMENTS

I would like to thank the Computer Institute of Concordia University for their support
in my research.

I would like to thank the faculty of the Department of MIS and Decision Sciences at
Concordia University for their advice in the preparation of this dissertation.

Special thanks also to my Academic Supervisor Professor Mark Toleman for
his patience, guidance and insight throughout this research project.

For my parents, Tirso and Esther and my wife France.

 iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION TO THE RESEARCH STUDY1
1.1 Background and significance of the study... 1
1.2 Research question and objective .. 2
1.3 Justification for the research ... 3
1.4 Research Methodology ... 4
1.5 Structure of dissertation .. 6
1.6 Summary ... 7

CHAPTER 2 LITERATURE REVIEW ...8
2.1 Introduction.. 8
2.2 Legacy Systems .. 8
2.3 Requirements model ... 10

2.3.1 Business processes ... 11
2.4 Traditional modeling approach .. 11
2.5 Component Based Modeling ... 14

2.5.1 UML Component Based modeling approach... 15
2.5.2 Catalysis approach to Component Based Modeling .. 16
2.5.3 UML vs. Catalysis ... 19

2.6 Traditional Vs. Component-Based Modeling... 21
2.7 System Re-engineering... 22

2.7.1 The Deursen Methodology for System Re-engineering... 24
2.7.2 The Draco Methodology for System Re-engineering .. 27
2.7.3 The Jacobson and Lindstrom Methodology for System Re-engineering 30

2.8 Ontologies ... 32
2.8.1 Bunge-Wand-Weber model ... 34
2.8.2 Ontological Evaluation of Requirements models... 39
2.8.3 BWW mapping for process modeling.. 43
2.8.4. BWW mapping for component based requirements models.................................. 45

2.9 Templates for the transformation of requirements models into ontological models 49
2.9.1 Opdahl and Henderson-Sellers template model for enterprise modeling.............. 49
2.9.2 The Green and Rosemann BWW meta-model... 54

2.10 Conclusions .. 56

CHAPTER 3 RESEARCH METHODOLOGY..58
3.1 Introduction.. 58
3.2 Research outline for this dissertation .. 59
3.3 Methodologies applied to the Design Science Framework 60
3.4 Justification of the Case Study Research Methodology.. 62

 v

3.5 Justification of the Jacobson and Lindstrom Methodology for Information Systems
Re-engineering and legacy system requirements model recovery 63

3.6 Justification of the Fettke and Loos methodology for Ontological Evaluation of
Requirements models ... 64

3.7 Justification of the Rosemann and Green meta-models for normalized reference
models ... 64

3.8 Procedures ... 65
3.8.1 Data Collection (Build).. 65
3.8.2 Requirements model Recovery (Build)... 67
3.8.3 Component-based requirements model generation (Build).................................... 69
3.8.4 Ontological Evaluation (Evaluation) ... 71

3.9 Validity and Reliability ... 72
3.10 Ethical Considerations... 74
3.11 Conclusions ... 75

CHAPTER 4 RESULTS ..76
4.1 Case Study Description... 76

4.1.1 Sub-system selection... 77
4.1.2 Description of the Offer and Application Sub-System ... 77

4.2 Legacy requirements model recovery .. 78
4.2.1 Case Study’s System Architecture... 79
4.2.2 Use cases.. 84
4.2.3 Legacy requirements model construction .. 87

4.3 Re-engineering of legacy systems ... 94
4.4 Ontological Evaluation... 104

4.4.1 Developing a transformation mapping... 105
4.4.2 Identifying ontological modeling deficiencies.. 112
4.4.3 Generation of normalized ontological meta-models ... 115

4.5 Conclusions ... 126

CHAPTER 5 ANALYSIS AND CONCLUSIONS...................................127
5.1 Introduction.. 127
5.2 Conclusions on the research issues.. 128

5.2.1 Conclusion to the research issue 1: “Conflict” .. 128
5.2.2 Conclusion to the research issue 2: “Grammar accommodation”........................ 132
5.2.3 Conclusion to the research issue 3: “Complementary”.. 133
5.2.4 Conclusions to research question... 135

5.3 Implications for theory .. 136
5.4 Contributions of this study ... 137
5.5 Implications to Information Systems Practice ... 138
5.6 Limitations ... 138
5.7 Implications for Methodology... 139
5.8 Directions for future research .. 140

 vi

5.9 Summary ... 140

APPENDIX B USE CASES ..155

APPENDIX C EVENT-RESPONSE TABLES...166

APPENDIX D DFDS FOR LEGACY SYSTEM OF CASE STUDY174

APPENDIX E UML DIAGRAMS FOR RE-ENGINEERED SYSTEM OF
CASE STUDY..179

APPENDIX F BWW MODEL..190

APPENDIX G CONSENT LETTER ...194

APPENDIX H INTERVIEW PROTOCOL...196

 vii

LIST OF FIGURES

Figure 2.1 Forecasts for numbers of programmers (worldwide) and distribution

of their Activities .. 9
Figure 2.2 Sample ERD ... 11
Figure 2.3 A sample data flow diagram... 13
Figure 2.4 Context and functional hierarchy diagrams...................................... 14
Figure 2.5 An Example Type Model ... 17
Figure 2.6 An Example Domain Model... 18
Figure 2.7 An Example Component Specification Architecture 19
Figure 2.8 Analysis and transformation of legacy systems 26
Figure 2.9 A domain-oriented approach .. 27
Figure 2.10 Strategy of Component-Oriented Software Re-engineering using

Transformations.. 28
Figure 2.11 Use Case, Sequence Diagram and Class Diagram of the Reprojected

System .. 29
Figure 2.12 Preparing an analysis model ... 31
Figure 2.13 UML class diagram of the instantiation level entry 50
Figure 2.14 UML class diagram extended to show the class entity..................... 51
Figure 2.15 UML class diagram extended to show the property entry................ 52
Figure 2.16 UML class diagram extended to show the ontological descriptions of

properties .. 53
Figure 2.17 UML class diagram extended to show the lifetime entry................. 54
Figure 2.18 The application of Green and Rosemann (1998) metamodel for

ontologies comparison.. 55
Figure 3.1 Preparation of the analysis model... 70
Figure 4.1 Legacy System Architecture... 80
Figure 4.2 On-line interface processing... 81
Figure 4.3 Batch processing in the legacy system ... 82
Figure 4.4 Screen layout sample for procedural model 83
Figure 4.5 Screen flow structure.. 84
Figure 4.6 DFD notation .. 89
Figure 4.7 Context diagram for the Offer and Application sub-system 91
Figure 4.8 Offer Figure 4-8 Offer and Application sub-system DFD 92
Figure 4.9 Completed E-R data model .. 93
Figure 4.10 Use case model for the case study's sub-system............................... 96
Figure 4.11 Subsystems relationships.. 99
Figure 4.12 Interface relationships .. 99
Figure 4.13 Control Package.. 100
Figure 4.14 Process Offer Head Office Sequence Diagram 101
Figure 4.15 Loan generation activity diagram... 102
Figure 4.16 State diagram of the Income test object ... 103
Figure 4.17 Normalized ontological model for the ERD of the legacy system. 117
Figure 4.18 Normalized BWW meta-model for the context diagram of the legacy

system... 118
Figure 4.19 Normalized BWW meta-model DFD for the Process Offer Head

Office use case.. 119
Figure 4.20 BWW meta-model for the use case diagram for the re-engineered

system... 120

 viii

Figure 4.21 BWW model for the sequence diagram of the Process Offer Head
Office use case.. 121

Figure 4.22 BWW meta-model for the class diagram of the database package for
the process offer by head office use case for the re-engineered system
.. 122

Figure 4.23 BWW meta-model for the package diagram for the Process Offer by
Head Office use case for the re-engineered system........................ 123

Figure 4.24 BWW meta-model for the state diagram of the
ProcessOfferHOfficePanel object .. 124

Figure 4.25 BWW meta-model for the activity diagram of the Process Offer Head
Office.. 125

 ix

LIST OF TABLES

Table 2.1 Summary of Evaluation of UML vs. Catalysis 20
Table 2.2 Summary of Evaluation of Re-engineering methodologies 32
Table 2.3 Constructs of the BWW-model .. 37
Table 2.4 BWW interpretation of UML constructs .. 45
Table 2.5 BWW Representation Model Analysis for Dynamic Aspects of UML

.. 47
Table 3.1 Research activities based on the Design Science Framework.......... 60
Table 3.2 Methodologies used in this research... 61
Table 3.3 Research methodologies used for the Design Science Framework.. 62
Table 4.1 Offer by regional office Use case ... 85
Table 4.2 Possible events for the Process Application use case....................... 88
Table 4.3 Sub-system Actors.. 94
Table 4.4 Possible Classes and interfaces for the Sub-System......................... 97
Table 4.5 Mapping of Component Analysis models into Description Elements

.. 104
Table 4.6 Mapping between traditional and BWW constructs....................... 106
Table 4.7 Mapping between UML diagrams and BWW constructs............... 108
Table 4.8 Elements of meta language for Normalized Ontological Models .. 116
Table 5.1 Mapping of ERD into UML Class diagrams.................................. 129
Table 5.2 Potential conflict in the representation of data flows in the re-

engineered component model... 131
Table 5.3 Mapping of Context Diagrams onto UML Use Case diagrams 131
Table 5.4 Traditional diagrams representation in UML component diagrams133
Table 5.5 UML constructs that complement traditional requirements models

.. 134

 1

Chapter 1 Introduction to the research study

1.1 Background and significance of the study

The vast majority of information systems (IS) were implemented in the early days
of computing by using the traditional paradigm and implemented with a structured
computer language such as COBOL (Longworth 2003). The traditional paradigm
defines the programming process as a sequence of commands leading to the
manipulation of data to produce a result (Brookshear 2000).

The traditional paradigm consists of modeling techniques such as System Flow
Charts and Data Flow Diagrams (DFD) used by system analysts to capture, during
the analysis phase, the activities within a system. The strengths of these models
provided a means of identifying input, processes and output. These particular
models have been used since the early times of computers and were considered, for
the most part, the documentation of legacy systems (Longworth 2003).

However, with recent developments, particularly the trends towards e-Commerce
applications and platform independence, many companies are realizing they will
have to migrate their systems to new improved systems in order to meet these trends
as legacy systems are not capable of coping with these new challenges.

The migration of a legacy system to a new target system is a process of re-
engineering that requires its examination and alteration to reconstitute it in a new
form (Chikofsky & Cross 1990). This new form may result in the need for a shift in
the information systems paradigm serving the architecture and the business domain.

Modern computer languages such as Java, offer many advantages in such a re-
engineering process; in particular, good web-application development capabilities,
platform independence for applications and security. However, Java is an object-
oriented language and changing from a procedural to an object-based language
represents a fundamental paradigm shift.

Although object technology has become the vogue for re-engineering information
systems, many projects regarded as being object-oriented have failed in recent years
due to organizational and technical troubles. Wolfgang (1997) mentions some the
problems associated with the object-oriented paradigm as: classes/objects
implemented in one programming language cannot interoperate with those
implemented in other languages, some object-oriented languages require the same
compiler version, composition of objects is typically done on the language level and
composition support is missing, that is, visual/interactive tools that allow the
plugging together of objects.

On the other hand, ten years ago the component-based paradigm was heralded as the
next wave to fulfill the technical troubles that object technology could not deliver
(Wolfgang 1997). In addition, the component-based paradigm allows a fast delivery
of information systems due to its capacity of reconfiguring and reassembling pre-
built business components, easy maintainability and higher quality due to the
reusability of pre-tested components (Szyperski 1999).

 2

However, regardless of the systems paradigm used in the development of
information systems, requirements models need to be created in order to describe
the requirements collected by the system analyst (Jacobson et al. 1994). These
models can be constructed by using a grammar that provides a set of constructs and
rules to represent these requirements (Wand & Weber 2002).

These requirements models can be used as the blueprint for information systems
development, however, they can become quite different depending on whether the
project team uses the traditional or the component-based paradigm.

Component-based differs from the traditional analysis as it is an approach to model
a system around a set of interacting components containing objects. These objects
encapsulate data and behavior while the traditional analysis approach maintains a
process-oriented view of systems, providing a decomposition based on processes
(namely, data flow diagrams) and provides a view that models process and data.

Information systems under the traditional paradigm were developed when the
prevalent systems development life-cycle was the ‘waterfall’ life-cycle while a
component-based paradigm almost necessarily implies an iterative and incremental
life-cycle (Satzinger, Jackson & Burd 2002).

Within the context of an information systems paradigm shift, the continuity,
robustness and integrity of the business processes and functions of the system are of
prime concern when re-engineering legacy systems. This means that the
requirements model of the re-engineered information system should represent the
same business requirements as the original legacy system in order to preserve this
integrity.

Although the traditional and component-based approaches have different grammars
for representing requirements models, these models can be compared for
equivalency of representation of business requirements (Wand & Weber 1993). An
evaluation of requirements models would reveal the limitations of representing the
legacy system business requirements in the component-based re-engineered model.

Knowing these limitations would be helpful to assist information systems
professionals in the development of automated tools for re-engineering information
systems and identification of any business rules in case of conflicts. It will also help
to evaluate if the re-engineered systems would be able to satisfy the legacy business
requirements.

1.2 Research question and objective

During the life-cycle of the information system, changes can occur that would
require a change of scope in the information system. One of these changes is the
availability of better technology (Whitten, Bentley & Dittman 2000). Change
management of information systems is an ongoing function in the life-cycle of the
information systems that deal with these changes so they can be prioritized and
implemented at optimal times (Whitten, Bentley & Dittman 2000).

 3

If a better technology becomes available, this could generate a new technical
requirement that would require a change in the system. As part of the change
management, a decision analysis would need to be performed to assess if the new
technology would be feasible in the system (Whitten, Bentley & Dittman 2000). If
the analysis reveals that the implementation is not feasible, the information systems
will require re-engineering to adapt them to the new technology requirement.

This re-engineering of a legacy information system would require a paradigm shift.
However, there is a high degree of interest and concern in establishing whether or
not a full migration to a more portable and scalable component-based architecture
will be able to represent the legacy business requirements in the underlying
requirements model of the re-engineered information systems.

The aim of the research therefore becomes an evaluation of the requirements models
of the traditional and component-based information systems when re-engineering
information systems in order to verify that both models are ontological equivalent
and represent the same business requirements.

The main purpose of this research is to investigate the following research question:
 Is the resulting component-based requirements model ontological equivalent to the
legacy requirements model when shifting paradigms in the re-engineering process?

This will require answering the following research questions:

Research issue 1: Are the compared models in conflict?
Research issue 2: Can the business component model accommodate all

the grammar constructs of the legacy requirements
model?

Research issue 3: Are the compared models complementary?

A substantial information systems evolution can be a major concern of any company
considering a paradigm shift as this represents the ability of the new information
systems to accommodate the company’s essential business processes. In addition,
there is the possibility that the component requirements model would not only be
able to accommodate all the grammar constructs of the legacy requirements model
but complement it with more constructs that were not able to be represented in the
original requirements models. In short, this research will focus mainly on the
evaluation of the re-engineered requirements models and their capability to
represent the same business requirements as the legacy requirements models.

1.3 Justification for the research

The proposed study can be justified on the following grounds:

• Differences in requirements modeling between component and traditional
based paradigms

• Possible conflicts when representing business requirements in the re-
engineered business component model

• The relevance of this evaluation when constructing re-engineering
methodologies

 4

• Gaps in literature on information systems re-engineering that this research
project is intended to fill

• The costs/benefits of the paradigm shift
• The high value of legacy systems to business.

Although traditional and component-based paradigms have similarities, both have
requirements models that might not be ontological equivalent when re-engineering
information systems. As these models capture the business requirements, if the re-
engineered requirements model is not ontological equivalent to the legacy
requirements model, this can have an impact on the functionality of the final system
and its ability to satisfy the original business requirements. If requirements are not
met with the new system, this will have an impact on the cost of the information
systems as future modifications to meet requirements will be more costly than
building a system that meets the requirements in the first place.

Further, if conflicts are found when representing requirements in the re-engineered
component requirements model, this could help in the development of re-
engineering methodologies as business rules can be created in the case that these
conflicts are identified.

Little research has been undertaken on the systematic evaluation of requirements
models (Fettke & Loos 2003). Requirements model comparison is also
acknowledged as an area that has not been explored as a possible application of
ontological evaluation of reference models (Fettke & Loos 2003). This observation
therefore highlights the relevance of the research presented in this dissertation.

1.4 Research Methodology

In order to address the research questions, the design-science research methodology
is chosen as a framework for the study given the applied nature of the research. This
methodology has a history of providing good results in the evaluation of constructs
and models in information systems (Hevner et al. 2004). This is in line with
Nunamaker and Chen (1990) who classify design science in IS as applied research
that applies knowledge to solve practical problems.

Design science in information systems is defined by March and Smith (1995) as an
attempt to create things that serve human purposes, as opposed to natural and social
sciences, which try to understand reality. March and Smith (1995) identify build
and evaluate as the two main research activities in design science. Build refers to the
construction of constructs, models, methods and artifacts demonstrating that they
can be constructed. Evaluate refers to the development of criteria and the
assessment of the output's performance against those criteria. Parallel to these two
research activities in design science, March and Smith (1995) add the natural and
social science couple, which are theorize and justify. This refers to the construction
of theories that explain how or why something happens. In the case of IT and IS
research this is often an explanation of how or why an artifact works within its
environment. Justify refers to theory proving and requires the gathering of scientific
evidence that supports or refutes the theory (March & Smith 1995).

 5

As part of the design evaluation process in the design-science methodology, the case
study methodology is chosen to evaluate the capacity of the re-engineered
component requirements model for representing the same requirements as the
legacy traditional requirements model (Benbasat, Goldstein & Mead 1987). The
research will start with a description of the case-study company, its organizational
structure, main business services and client base.

The building part of the research will be done by using re-engineering and reverse
engineering methodologies that will help to generate the requirements models
required for the research. There are many re-engineering methodologies that help to
cope with the problem of transforming legacy systems originally developed with
traditional methodologies into component-based systems. However, the Jacobson
and Lindstrom (1991) approach for re-engineering of legacy systems was chosen for
the following reasons:

• It contemplates cases of a complete change of implementation technique and
no change in the functionality, which is the case of this research.

• It does not require the use of source code. In the case study used for this
research there is no access to the source code used to develop the system.

• It also covers reverse engineering. This is useful for this research given the
need to capture the original requirements model for the legacy system.

• It is relatively simple to use.

Although the original methodology was proposed for object-oriented systems, it can
be easily adapted for component-based systems as components can be viewed as a
higher level of abstraction based on object-oriented methodology.

In order to capture the requirements model of the legacy system, the researcher will
apply reverse engineering as specified in the Jacobson and Lindstrom (1991)
methodology.

Once the legacy system and re-engineered requirements models are generated as
part of the building part of the research, they will be evaluated based on the
ontological evaluation of grammars (Wand & Weber 1993). As part of the
evaluation research, an analysis will be done using the Bunge-Wand-Weber model
(BWW-model). The BWW model is an ontological theory initially developed by
Bunge (1977; 1979) and adapted and extended by Wand and Weber (1989; 1995;
1997).

The use of the BWW-model is justified on two grounds. First, the model is well
founded on mathematical concepts. Second, prior research on the evaluation of
grammars shows that the BWW model has been used successfully in information
systems research (Evermann & Wand 2001b; Green & Rosemann 2000; Opdahl &
Henderson-Sellers 2002a; Weber & Zhang 1996).

A methodology by Fettke and Loos (2003) is used to compare both legacy and re-
engineered requirements models for equivalency of representation of business
requirements. The methodology is justified for the following reasons:

• It provides a mechanism for the comparison of requirements models

 6

• Requirements models can be compared based of their normalized referenced
models

• Its simplicity

The ontological normalization of a reference model consists of four steps (Fettke &
Loos 2003):

• Developing a transformation mapping,
• Identifying ontological modeling deficiencies,
• Transforming the reference model, and
• Assessing the results.

In the first step of this method, it is necessary to develop a transformation mapping
for the grammar used for representing the requirements model. This transformation
mapping allows converting the constructs of the grammar used to the constructs of
the BWW model. The first step is based on the method for the ontological
evaluation of grammars proposed by Wand and Weber (1993).

The transformation mapping consists of two mathematical mappings. First, a
representation mapping describes whether and how the constructs of the BWW
model are mapped onto the grammatical constructs. Second, the interpretation
mapping describes whether and how the grammatical constructs are mapped onto
the constructs of the BWW model (Fettke & Loos 2003).

In the third step, the reference model will be transformed to an ontological model.
The outcome of this step is an ontologically normalized reference model. The
objective of both techniques is to represent the domain of interest in a normalized
way by applying specific transformation patterns (Fettke & Loos, 2003). The two
models will be compared based on their ontologically normalized models. The
result of the comparison will be that the compared models are ontological
equivalent, complementary or in conflict. These results will justify the theory that
will explain how constructs originally represented in traditional requirements
models are represented in the re-engineered component models.

In order to generate these normalized reference models in BWW terms, the
Rosemann and Green (2002) BWW meta-models will be used. This meta-model is
based on the original Entity Relationship (E-R) specification from Chen (1976) with
extensions made by Scheer (1998). This version is called the extended ER-model
(eERM).

1.5 Structure of dissertation

In the first stage of the dissertation, a comprehensive literature review will isolate
the body of knowledge available and identify any additional information gaps (Perry
1998). Identified information gaps will be documented as open research issues (Yin
1994).

After a literature review in chapter 2, the research methodology will be justified and
explained in chapter 3. The results of the case study re-engineering and
requirements models ontological evaluation will be presented in chapter 4. Finally, a

 7

summary of the study, contribution to theory and the answer to the research question
will be presented in chapter 5.

1.6 Summary

The research conducts an evaluation of the requirements models generated by the
component-based and traditional approaches when shifting paradigms in the re-
engineering process. This evaluation will reveal if the re-engineered requirements
model is capable of representing the same business requirements of the legacy
system. If this is identified, it can help to evaluate if the re-engineered component-
based system will be able to satisfy the original business requirements.

Further, this research will help in the development of re-engineering methodologies
as business rules can be created for conflicts identified in the requirements models.
The design science research methodology is used for the study. The case study and
ontological evaluation using the Bunge-Wand-Weber model are the central
evaluation methodologies for this study. The building part of the research is
conducted by re-engineering the case study’s legacy system and by recovering the
requirements model of the legacy system by using reverse engineering that is
compared to the component-based requirements model using the Bunge-Wand-
Weber model in order to address the research questions.

 8

Chapter 2 Literature Review

2.1 Introduction

First, an overview of the size of the problem of legacy systems is provided in order
to understand the justification of the research problem. Second, the requirements
model that represents the business requirements of an information system is covered
in the context of this research in order to understand better the research objective.
Central to establishing any possible consequences of such a paradigm shift are the
fundamental differences in the paradigms themselves. In order to understand these
differences, traditional and component-based paradigms are discussed and
compared as part of this literature review. Additionally, the concepts of system
engineering and re-engineering that are central for the research, are covered in this
literature review with the comparison and contrast of several re-engineering
methodologies. Finally, the Bunge-Wand-Weber Model (Wand & Weber 1989) is
discussed in the context of requirements modeling representation and as a tool for
requirements model evaluation.

2.2 Legacy Systems

Legacy information systems are the brittle, inflexible and poorly understood, yet
stable and mission-critical systems that exist in the vast majority of established
organizations (Warrel & Stevens 2003). They present risks to their host organization
in their current state (primarily strategic business risks associated with their expense
and inflexibility), but attempts to modernize them may also be fraught with a range
of difficulties (Warrel & Stevens 2003).

Zou and Kontogiannis (2002) suggest some of the reasons why legacy systems are
undesirable when they describe legacy systems as “mission critical software systems
that are still in operation, but their quality and expected operational life is constantly
deteriorating due to prolonged maintenance and technology updates” (p.1). Seacord
et al. (2003) claim “software systems become legacy systems when they begin to
resist evolution and modification” (p.5). Cormella-Dorda et al. (2000) neatly sum up
the legacy system dilemma by drawing an analogy between the legacy information
system and the brain (p.1):

“In many ways, these information systems are to an enterprise what
a brain is to the higher species – a complex, poorly understood mass
upon which the organism relies for its very existence.”

Common to most discussions on legacy systems is an acknowledgement of their
inflexibility in terms of functionality and integration with other systems, and a
“brittleness” introduced by years of maintenance and enhancements (Warrell &
Stevens 2003). Also identified are the high levels of expense incurred in order to
maintain the legacy applications and the obsolete hardware required to run them. As
the systems age, finding individuals with an understanding of the systems and
experience with the technologies involved becomes increasingly difficult (Warrell
& Stevens 2003).

 9

Despite these problems, legacy systems have two very important advantages:

• They have been in operation for so long that they are very stable
• They are often crucial to the operations of the business

One of the major problems concerning legacy systems is that they count for the vast
majority of the current information systems and the size of these systems tends to
increase with the years. Indicators provided by Jones (1991) and Deursen et al.
(2000) show that the total volume of all software world-wide is 7 x 10 9 function
points. The majority of software is written in old, inflexible languages such as
COBOL. For example, 80 percent of the mainframe applications are written in
COBOL. Erlikh (2000) indicates that there are more than 10,000 large IBM
mainframe sites worldwide with 200 billion lines of legacy code still in use.

Moreover, when an industry approaches 50 years of age, it takes more workers to
perform maintenance than to build new products (Deursen et al. 2000). Figure 2.1
shows extrapolations for the number of programmers working on new projects,
enhancements and repairs. In the current decade, four out of seven programmers are
working on enhancement and repair projects. The forecasts predict that by 2020
only one third of all programmers will be working on projects involving the
construction of new software. These figures show that maintenance and renovation
of existing software, is an activity of major economic importance. Because the total
amount of software will only grow, the importance of maintenance and software re-
engineering will grow accordingly.

The aim of software re-engineering is to understand, transform and regenerate a
legacy system in such a way that its alignment with new business objectives and
new technological developments is facilitated (Deursen et al. 2000).

Figure 2.1 Forecasts for numbers of programmers (worldwide) and distribution of their

Activities

Year Percentage in New
Percentage

in
Maintenance

1950
1960
1970
1980
1990
2000
2010
2020

90
85
65
60
43
40
36
33

10
15
35
40
57
60
64
67

(Source: Deursen et al. (2000) p. 2)

Given the size, stability and importance to business operations of legacy systems, it
is important to be able to transfer all the requirements that these systems have
captured during many years of operation when re-engineering these systems. These

 10

business requirements are captured in requirements models and the re-engineered
requirements models should be able to represent the same requirements.

The requirements model is therefore the central part of this dissertation and before
more literature review is covered, it is important to understand the nature of
requirements models and their use in the information systems context.

2.3 Requirements model

A useful way to define the business domain is by the use of a requirements model.
Hoffman (1997) defines a requirements model as the requirements set of a business.
It provides the broad view or perspective necessary to identify solutions. The
requirements model can be thought of as a representation of how a business
functions and works. The model needs to be created in such a way that it can be
productively used to simulate the real world business (Hyperion Solutions
Corporation 2001). A thorough requirements model should provide a complete end-
to-end view of the business processes, from initial ideas and reasons behind the
processes to their final implementation. Such a model will hold information about
the business goals, geographic locations, organizational structure, parameters,
activities, time, cost and resources involved in the business. This information needs
to be centrally stored and accessible to all stakeholders in the business. This
business documentation will contribute to the understanding of the what, why and
how of the functions of a business. Many stakeholders in a business do not have this
understanding largely due to the absence of a thorough requirements model (Bloor
Research 2001).

The requirements model can help eliminate gaps between the strategic vision of the
company and the day-to-day operational execution, between the business and the
information systems department, as well as individual duties and organizational
requirements (Wreden 1998).

Many legacy systems are poorly documented (Bennett 1995). A poor understanding
of the functionality of the legacy system will result in an inaccurate specification of
requirements for the target system (Bisbal et al. 1999). Consulting a well maintained
requirements model can assist in the understanding of the intended functionality of
the legacy system.

During the development of an information system, requirements models are created
in order to describe the requirements (Jacobson et al. 1993) collected by the system
analyst. These models help to communicate the complexity of the system to the
development team members (Satzinger, Jackson & Burd 2002) and to document
what was done for the future maintenance or enhancement of it.

These requirements models for a new system created during the analysis phase
become quite different depending on whether the project team uses traditional
approaches or the more contemporary component-based approach. The primary
purpose of the next sections is to review the traditional and component-based
modeling techniques, advantages and disadvantages of these approaches and the
comparison of the modeling of a real world simplified business process using both
techniques.

 11

2.3.1 Business processes

The description of the business process, business events and responses is essential in
recovering the requirements model (Whitten et. al 2000). One of the most popular
and successful approaches for documenting business processes, events and
responses is a technique called use cases developed by Dr. Ivar Jacobson (Jacobson
et al. 1993). Use cases describe the business process, and document how the
business works and the business goals of each interaction with the system. These
use cases are then extended to show how the system will support the business goals.
Use cases are not just useful to document business processes, they can also be used
to generate the target component-based requirements model.

The interactions within the use case should be contained, initiated and seen through
to completion by an actor. The use case should further result in achieving a business
goal and leaving the system in a stable state (Reed 2002). The nature of a use case is
to define the "what" of a system. As such, representing the use cases is essential to
the recovery of the legacy system requirements model.

2.4 Traditional modeling approach

The traditional methodologies develop two separate models in order to describe
information systems: a data model and a process model of the organization's data.

Data models are used for organizing and documenting a system’s data (Whitten et.
al 2000). The actual model is frequently called an entity relationship diagram (ERD)
because it depicts data in terms of the entities and relationships described by the
data (Figure 2.2).

Figure 2.2 Sample ERD

(Source: Whitten et. al 2000 p. 258)

An entity is a class of persons, places, objects, events, or concepts about which we
need to capture and store data. An attribute is a descriptive property or
characteristic of an entity.

 12

A relationship is a natural business association that exists between one or more
entities. The relationship may represent an event that links the entities or merely a
logical affinity that exists between the entities. Cardinality defines the minimum
and maximum number of occurrences of one entity that may be related to a single
occurrence of the other entity. Because all relationships are bi-directional,
cardinality must be defined in both directions for every relationship.

The traditional approach to information systems development describes activities as
processes carried out by people or computers. These processes can be modeled
using data flow diagrams (DFD) that help to organize and document the structure
and flow of data through a system’s processes, and/or the logic, policies, and
procedures to be implemented by a system’s processes (Whitten et. al 2000). A
sample DFD is provided as Figure 2-3.

A process in a DFD is work performed on, or in response to, incoming data flows or
conditions (Whitten et. al 2000).

 The simplest process model of a system is based on inputs, outputs, and the system
itself – viewed as a process. The process symbol defines the boundary of the
system. The system is inside the boundary; the environment is outside that
boundary. The system exchanges inputs and outputs with its environment.

An external agent defines a person, organization unit, other system, or other
organization that lies outside the scope of the project, but which interacts with the
system being studied (Whitten et. al 2000). External agents provide the net inputs
into a system, and receive net outputs from a system (Satzinger, Jackson & Burd
2002). External agents on a logical data flow diagram may include people, business
units, other internal systems or external organizations with which the system must
interact.

Whitten et al. (2000) propose several types of DFDs as part of the traditional
paradigm. A context diagram defines the scope and boundary for the system and
project.

A functional decomposition diagram is required to partition the system into
subsystems. It shows the top-down functional decomposition or structure of a
system. It provides the beginnings of an outline for drawing data flow diagrams.
Figure 2-4 shows a context diagram and a functional decomposition diagram.

 13

Figure 2.3 A sample data flow diagram

(Source: Whitten et. al 2000 p. 213)

The traditional approach has the advantage of being easy to use and understand.
Also, because these models are process oriented, they are suitable for
implementation with structured languages such as COBOL, the dominant
programming language of legacy systems. The traditional approach was the natural
transition to legacy systems implementation. However, current component-based
languages such as Microsoft .Net require the description of business processes in
terms of components and objects in order to facilitate the implementation and
maintenance of information systems. In the next section, the component-based
requirements modeling paradigm will be discussed in detail.

 14

Figure 2.4 Context and functional hierarchy diagrams

(Source: Whitten et. al 2000 p. 238)

2.5 Component Based Modeling

Component-based development focuses on the use of encapsulated and pluggable
components as units of deployable code (Szyperski 1998). Before the
implementation of component-based software, component models need to be
defined in order to specify the behavior, construction and interaction between the
different components in the system.

Component models operate at two levels. First, a component model defines how to
construct an individual component. For example, Microsoft’s Component Object
Model (COM) requires each COM component to provide an IUnknown interface.
Second, a component model can enforce global behavior on how a set of
components in a component-based system will communicate and interact with each
other. A component model enables composition by defining an interaction standard
that promotes unambiguously specified interfaces (Councill & Heineman 2001).
Because components are known almost exclusively by their interfaces these
interfaces must be clearly specified, trusted and useful (Digree 1998). The focus of
this dissertation is on models that operate at this second level.

Component models are of vital importance when constructing and integrating
components with other systems. D’Souza and Wills (1999) observe that “plug-in
compatibility” only succeeds if a component can accurately declare its expectations
of the other component to which it is connected in its component model.

Houston and Norris (2001) differentiate between the logical and implementation
models. The logical representation of a component is concerned with its logical

 15

abstraction, its representation, its relationship with other logical elements, and its
assigned responsibilities. The implementation representation of a component defines
how its logical representation is implemented in the chosen environment (Houston
& Norris 2001).

The logical component model is in fact the requirements model of the system as it
captures the business rules of the system without any concern about physical
implementation details such as programming languages or deployment issues.
Brown (2000, p. 160) mentions that two component-based modeling approaches
stand out as offering the most to say about interface-based techniques and their use
in building component based systems: the Unified Modeling Language (UML) and
Catalysis.

2.5.1 UML Component Based modeling approach

UML is a notation for describing software systems founded on an underlying set of
concepts and techniques for developing software-intensive systems. The logical
representation of a component is modeled using a UML subsystem, which can be
thought of as the design view of a component (Houston & Norris 2001).

In the UML meta-model a subsystem is shown as a subtype of a UML classifier.
Therefore, it can realize interfaces as well as have its own operations; these together
define the subsystem’s specification (Houston & Norris 2001).

A subsystem is modeled as a UML package annotated with the special keyword
<<subsystem>>. Packages are containers to organize and manage object model
elements, such as classes (Yun-Tung 2001). In comparison to an object-oriented
approach, a component package includes definitions of interfaces it requires as well
those it provides (Henderson-Sellers 2001).

As for the type of UML diagrams required to prepare a component model, UML
does not impose a set of specific diagrams that are required to specify components.
However, there are a few recommendations made by several authors for UML
diagrams for component modeling. Houston and Norris (2001) propose using the
following UML diagrams for specific reasons:

• Class diagrams show the major relationships between internal subsystem
elements as well as between other subsystems or packages.

• Statecharts or activity diagrams show important behavioral aspects of the
subsystem as a whole.

• Interaction (that is sequence or collaboration) diagrams show how the
subsystem elements implement the major interface operations.

A slightly different view is provided by Brown (2000) who justifies the use of the
following UML diagrams for component modeling:

• Use case diagrams define how objects outside of a system (called actors)
interact with the system’s intended functions (called use cases).

• Sequence diagrams show interactions among objects to affect a desired
operation or result.

 16

• Class diagrams show the static structure of the system via its interfaces,
classes, their internal structure, and their relationship via its interfaces,
classes, their interface structure, and their relationship with each other.

• Component diagrams show the organization and dependencies among a set
of components. These components are physical elements of a system,
including source code, binary code, or executable files.

• Deployment diagrams show the deployment of the physical components to
execute on particular nodes in the system considered.

One of the major differences between the Houston and Norris (2001) and Brown
(2000) proposed UML diagram set for component modeling is their view of
representation of components in UML diagrams. While Houston and Norris (2001)
identify logical components as subsystem UML packages in class diagrams, Brown
(2000) suggests that components should be represented in component diagrams.
Although component diagrams are more suitable for representing component
interaction, they clearly represent physical components implemented as source code,
binary code or executables. The idea behind requirements models is to model
requirements from the logical point of view and free of any physical aspect of the
implementation. The idea of subsystems as logical components included in class
diagrams seems to be closer to the concept of requirements modeling. The same can
be said about deployment diagrams that specify the deployment of physical
components.

On the other hand, Houston and Norris (2001) did not include use case diagrams as
part of the component model. Use case diagrams are clearly part of the requirements
model as they help to visualize the interaction of the system with the external world
and this is crucial in representing business requirements. Houston and Norris (2001)
included activity diagrams as part of the component representation while Brown’s
(2000) list did not. Although the object interaction in activity diagrams can be
modeled with interaction diagrams, activity diagrams model internal object
processes that are not possible to represent in interaction diagrams.

In the next section, the Catalysis approach is discussed as a possible alternative for
this study.

2.5.2 Catalysis approach to Component Based Modeling

The Catalysis approach developed by D’Souza and Wills (1999) to component
requirements modeling has the following goals:

• Systems can be modeled as collections of interacting components.
• System behavior can be analyzed in terms of component interfaces.
• Component specifications can be described independently of the

components’ implementations.
• A precise, formal notation is available for describing component

specifications, sufficient for rigorous analysis of those specifications against
a user’s needs.

In the Catalysis approach, a user describes the static behavior within a domain as a
set of related types within a type model, an abstraction of the UML class concept

 17

(Brown 2000). The structural relationships among types represent the static
constraints that exist among elements of the domain (Brown 2000).

This is illustrated in Figure 2-5 where the boxes represent types and the arcs
represent static type relationships. Unlike the traditional use of class diagrams for
describing the design of a single implementation, in Figure 2-5 the model captures
constraints that must be true in any conforming implementation (Brown 2000).

Figure 2.5 An Example Type Model

(Source: Brown 2000 p. 174)

The dynamic behavior in a domain can be modeled in Catalysis as interactions
among types, and recorded as type collaborations (an abstraction of the UML (class)
collaboration concept). Changes of state in a domain occur through interactions
among behavior bearing types in that domain. These interactions are represented as
collaborations in which types play roles to initiate or respond to requests to carry out
actions. This is illustrated in Figure 2-6 where the boxes represent roles, and the
ellipses represent joint actions among identified roles (Brown 2000).

 18

Figure 2.6 An Example Domain Model

(Source: Brown 2000 p. 175)

For each type in a domain the user continues by describing its features (attributes
and operations) in detail. Particularly important are the pre- and post-conditions that
define the semantics of each operation by describing the state that must exist before
the operation can take place, and the state that will result having executed the
operation. Informal definitions of the pre- and post-conditions can be given. In
Catalysis an interface type model is used to define the concepts and constraints
referenced by the conditions, and any interface-wide constraints.

Components have dependencies based on interactions among their constituent
interfaces. The collection of components and their dependencies can be viewed as a
component specification architecture for the application. A component specification
architecture identifies all the design constraints in that software structure. This is in
contrast to the UML form of component dependency diagrams which show physical
dependencies among components such as executables, libraries, tables, and files. A
component specification diagram is illustrated in Figure 2-7 where the boxes denote
component specifications with attached interfaces shown as “lollipops”. Dashed
arrows between boxes or lollipops indicate dependencies.

 19

Figure 2.7 An Example Component Specification Architecture

(Source: Brown 2000 p.176)

2.5.3 UML vs. Catalysis

UML has strengths when modeling component-based systems. The major one is that
it allows modeling the logical representation or requirements model of the
component-based system. It also gives the ability to document the context in which
component interfaces are used, as well as how those interfaces are realized
internally.

However, there are difficulties in using or adopting UML’s notions of aggregation
and composition (Henderson-Sellers & Barbier 1999). A major weakness is that
UML does not propose any specific modeling approach for components and the
choice of diagrams is left to the designer. Another limitation is the fact that
subsystems as they currently stand in UML are not required to completely
encapsulate their contents and do not provide any formal enforcement of outgoing
interfaces which is required to represent components in the requirements model.

Interface behavior can be difficult to model in UML as it does not support the
definition of interface behavior at the required level of precision (Brown 2000). To
model interfaces, component specifications, and other key component concepts, the
user is required to make use of extension mechanisms in UML, such as stereotypes
and naming conventions (Brown 2000).

In spite of UML difficulties with component modeling, Houston and Norris (2001)
mentioned that there is a proposal to improve UML and introduce the semantics that
will allow UML to be more precise in both external definitions of an interface’s
responsibilities and internal definition of its realization within a subsystem.
However, this is still not included in UML version 2.0.

UML 2.0 proposal defines new user level constructs that will improve UML support
for the component-based development, architectural specifications, and advanced

 20

behavioral modeling techniques using interactions, state machines and activity
diagrams.

On the other hand, the Catalysis method defines a behavioral approach to
component modeling that allows the behavior within a domain to be more
accurately described and then partitioned into appropriate components offering
access to behavior through well defined interfaces (Brown 2000).

However, there are some problems with the Catalysis approach. Unlike UML,
Catalysis requires a detailed description of the attributes and operations of each
type. This could be difficult to establish at the requirements model level because this
level of detail is normally not so clear when defining business requirements.

In this section, strengths and weakness of the UML and Catalysis support for
component modeling were discussed as well as the UML 2.0 proposal that will
enhance UML’s ability to model components by improving support for component-
based development, architectural specifications, and advanced behavioral modeling
techniques.

In conclusion, business component models can be modeled either by using the UML
or Catalysis approach. By using the UML methodology, UML subsystems and their
associated interfaces are used to model the logical representation of a component.
Different types of UML collaboration diagrams are used for documenting the
internal business rules of the components. With the Catalysis method, the
component requirements models define a behavioral approach to component
modeling that allows the behavior within a domain to be more accurately described
and then partitioned into appropriate components offering access to behavior
through well-defined interfaces. For this research, UML is used given the
availability of software tools for this grammar and its ability to represent better
requirements models. A summary of the evaluation of UML versus Catalysis is
presented in table 2-1.

Table 2.1 Summary of Evaluation of UML vs. Catalysis

UML Catalysis
Allows modeling of
requirements of
component-based
systems

Allows the definition of behaviors of components and
interfaces

Simple consistent
approach Difficult to use to model business requirements

Supported by a large
variety of commercial
software tools

Supported by a limited amount of commercial
software tools

 21

2.6 Traditional Vs. Component-Based Modeling

The difference between the traditional approach and the component-based approach
to systems development is not in the phases of the Systems Development Life Cycle
(SDLC), but in the set of models used. The SDLC for each approach has the same
phases: planning, analysis, design, and implementation. The activities within the
phases are also the same. The traditional approach focuses on identifying and
modeling processes, while the component-based approach emphasizes components
and their interactions. As the individual tasks within the activities are focused on
building models, they will be different. For example, instead of building DFDs, the
analysts build UML interaction diagrams (Houston & Norris 2001) or Catalysis type
model and domain model diagrams (Brown 2000).

The ERD and the business type model (Catalysis) or class diagram (UML) use
different notations but share many concepts. As entities in the ERD, types
(Catalysis) and classes (UML) also have attributes, relationships and cardinalities.
Although many ideas are shared, the main difference between the two approaches is
that the diagrams, or models, used to represent the processes or system activities are
quite different.

The traditional and component-based approaches to system development differ in
what happens when an event occurs. The traditional approach views a system as a
collection of processes, some done by people and some done by computers.
Computer processes are much like conventional computer programs – they contain
instructions that execute in a sequence. When the process executes, it interacts with
data, reading data values and writing other data values back to the data file. The
process might also interact with people, such as when an instruction asks the user to
input a value or it displays information to the user on the computer screen
(Satzinger, Jackson & Burd 2002).

The traditional approach to systems, then, involves processes, data, inputs, and
outputs. When modeling what the system does in response to an event, the
traditional approach includes processing models that emphasize these elements
(Satzinger, Jackson & Burd 2002). In contrast, the component-based approach
views a system as a collection of interacting components. Components have
interfaces that allow them to interact with each other and with people using the
system. Component instances may contain multiple object instances that can
communicate between each other by sending messages. There are not conventional
computer processes or data files per se. Components carry out the activities and
remember the data values. When modeling what the system does in response to an
event, the component-based approach includes models that show components, their
interface, and their objects’ interactions.

Although data models are encapsulated in business component models and ERDs,
the difference with the component-based approach is that component models also
represent the appropriate behavior that is associated with the data (Carey & Carlson
2001). The traditional approach maintains a process-oriented view of systems,
providing a decomposition based on processes (namely, data flow diagrams),
whereas the component-based approach decomposes the problem domain based on a
classification of entities (types in Catalysis or classes in UML).

 22

The identification of events and things are the starting points in the modeling
process for both approaches. The traditional approach takes the event table and
creates a set of data flow diagrams (DFDs) based on these events and the data used
and produced by the event, including the context diagram, DFD fragments and
detailed DFDs (Satzinger, Jackson & Burd 2002). The entity-relationship diagram
(ERD) defines the data storage requirements that are included in the DFDs. The
component-based approach takes the event table and creates a series of use case
diagrams. The type model (Catalysis) or class diagram (UML) and use case
diagrams are used to create additional models and component behavior, including
sequence diagrams, interface diagrams, and other models.

In the traditional approach, inputs and outputs are shown as data flows on the
context diagram, system diagram and primitive diagrams. In the component-based
approach, inputs and outputs are defined by messages entering or leaving the
system; this message exchange can be seen in the interaction diagram and use case
diagram.

Structured approaches were developed when the prevalent systems development
life-cycle was the ‘waterfall’ life-cycle (Satzinger, Jackson & Burd 2002) while the
component-based approach almost necessarily implies an iterative and incremental
life-cycle (D’Souza & Wills 1999).

Although both traditional and component-based approaches have similarities, the
first is poorly suited to the requirements of component-based systems because it
offers little in the way of techniques and guidance for defining and using interfaces
as key design abstractions (Brown 2000).

Traditional methodologies are not comprehensive enough to accurately model large
and complex systems. Also, businesses are increasingly incorporating third-party
components as an integral part of solutions as vendors and businesses work in
increasing cooperation. This movement has its ultimate expression in the form of
the virtual enterprise and underlines the need for a component-based approach. The
trend towards the use of third-party software components in the development of
Information Systems is supported by the work of Hawthorne and Perry (2005) and
Desmet et al. (2003).

Traditional methodologies are notoriously weak in the key area of the software
process. A clearly defined process, adaptable to both solution and component
development can be difficult to model with traditional methods.

The next part of the review will discuss the re-engineering process in the context of
component-based systems.

2.7 System Re-engineering

In this section, the background of systems re-engineering will be covered and the
main tendencies will be discussed in order to understand the role of re-engineering
in legacy system renovation.

 23

Sommerville (2001) recognizes that one of the most difficult aspects of re-
engineering a legacy system is that the legacy systems are often not structured in a
way that identification and separation of the basic architectural components is made
possible. The user interface logic, business service logic and data access logic are
often intermingled. In response to these problems, amongst others, a number of
solutions have been proposed. These solutions can be classified into three
categories, re-development, wrapping, and migration (Bisbal et al. 1999).

Re-development involves redeveloping a legacy system from scratch using a more
modern architecture with tools and databases all operating on a new platform. This
approach may be suitable for companies seeking platform independence for their
systems. In such a case, the whole application needs to be redesigned to meet new
platform independent requirements. The only transferable part of the redevelopment
is the requirements model.

For many companies, the re-development of their legacy systems is not an option
due to high risk and cost (Bisbal et al. 1999). As a result, many solutions adopt the
concept of wrapping. Wrapping involves surrounding the various components of the
legacy system such as data, programs and interfaces so that external clients can re-
use these trusted components through a middleware layer. The wrapped system acts
as a server for external clients to re-use the core components without needing to
know how the service is implemented (Bisbal et al. 1999). A popular
implementation of wrapping is called screen scraping which involves the replacing
of character-based front ends of legacy systems with a client-based Graphical User
Interface. Screen scraping does not however solve many of the original problems
inherent in legacy systems (Wu et al. 1997).

The third solution involves the migration of a legacy system to an open system. This
solution involves the moving of a system to a new platform while retaining the
functionality of the system and causing as little disruption to the operational and
business environment as possible. The migration is concerned with the cutover from
the old system to the target system. Two main methodologies are dominant within
legacy system migration, the Chicken Little methodology (Brodie 1995, cited by
Wu et al. 1997) and the Butterfly methodology developed by the Milestone project
(Wu et al. 1997).

The Chicken Little Methodology aims to allow the legacy and target systems to
interoperate (especially in terms of data access and manipulation) during the
migration process (Wu et al. 1997). This interoperation is made possible by a series
of gateways. A gateway in this context is a software module designed to mediate
between the two systems components. In this way, legacy applications are gradually
rebuilt onto the target platform (Bisbal et al. 1999). The Butterfly Methodology does
not need the two systems to be interoperable during the life of the migration
process. Instead, this methodology employs an engineered data migration approach
to ensure the development of the target system is totally separate from the migration
of the data.

Irrespective of the methodology used, Bisbal et al. (1999) recognize the migration of
a system should involve the following phases:

 24

• Justification for the new system
• Understanding of the legacy system
• Development of the target system
• Testing
• Migration

These re-engineering phases form the backbone of many of the case studies
presented in the literature documenting migrations. Works include a study by
Babiker et al. (1997) who developed a model and method to reengineer non-object-
oriented systems into an object-oriented architecture. The model was judged
effective when used to migrate a legacy system to an object-oriented system. Part of
the model involves the merging of existing business requirements with new
requirements. Another example is a study carried out by Serrano et al. (2001). In
this study, a re-engineering environment was developed to assist with the migration
of a legacy system to a distributed object environment.

Although there have been many attempts to create methodologies to migrate legacy
systems into object-oriented systems, very little research has been conducted to
develop methodologies that would help information systems professionals to
migrate legacy systems into component-based information systems. Although most
of the object-oriented re-engineering methodologies can be adapted to component-
based, the latter requires the creation of components and interfaces that sometimes
are not so evident when re-engineering legacy systems.

Software re-engineering techniques for component-based software must be based
both on static and dynamic information (Fevre et al. 2003). Static information must
be extracted from a wide range of sources, including source code, but also
configuration files, deployment descriptors, etc. Once the problem of information
extraction is solved, almost all techniques available in software re-engineering could
be reviewed and adapted to the context of component-based software (Fevre et al.
2003).

Although most of the object-oriented re-engineering methodologies can be adapted
for component-based systems, specific component-based software re-engineering
transformations start from traditional software and produce component-based
entities. In this case, much of the work done on traditional software could probably
be reused after some adaptation, because only the target of transformation changes.
For instance, a large body of work in recent years involved methods to
discover/recover "components" (Koschke 2000). These units of functionality could
be wrapped into components as defined by component models.

In the next sections, specific examples of different re-engineering methodologies
will be covered and analyzed.

2.7.1 The Deursen Methodology for System Re-engineering

One component-based specific re-engineering methodology is that developed by
Deursen et al. (1999). This methodology seems to be one of the few that deals with
the transformation of legacy systems originally programmed by using the traditional

 25

approach into component-based systems. In this section, a detailed description and
discussion of this approach will be covered.

Deursen et al. (2000) propose three technical approaches to software re-engineering:

1. Analysis of legacy sources: the goal is to inspect the sources of the
legacy system and extract information to reveal their structure,
purpose and architecture. Analysis is non-intrusive as the legacy
sources are only inspected and not modified.

2. Transformation of legacy sources: the goal is to systematically
restructure and improve the sources of the legacy system.
Transformation is intrusive because the legacy sources are modified.

3. Generation: the goal is to identify potential reusable assets in the
legacy system by explicitly introducing and structuring domain
knowledge in such a way that major parts of the legacy system can
be regenerated. Generation is also intrusive because (parts of) the
legacy sources are replaced by generated code.

Analysis and transformation of legacy systems are closely related as shown in
Figure 2-8. By reference to the figure, it is possible to appreciate that the analysis
step gathers information that can be used for transformation. The goal of analysis is
to extract information from legacy systems that reveals their structure, purpose, and
architecture.

Transformation techniques perform intrusive, systematic modifications of the legacy
system in order to enable their maintenance and increase their flexibility (Deursen et
al. 2000).

With the insights gained by applying analysis techniques, Figure 2-8 shows that the
source code of the legacy system will be transformed in order to achieve the
following objectives (Deursen et al. 2000):

• Globaly restructure the whole system;
• Restructure the code of individual components;
• Apply uniform comment conventions;
• Eliminate obsolete language features;
• Convert to a new language version;
• Translate to another language.

Generation based on domain engineering is a higher level approach that uses
information from the analysis phase and can exploit transformation techniques to
achieve its goals.

 26

Figure 2.8 Analysis and transformation of legacy systems

(Source: Deursen et al. 2000 p.12)

The output of transformation is the renovated system; the most sophisticated
technical approach to renovation is to decompose the legacy system into
components in such a way that these components become reusable across different
applications. Customized versions of these components can then be used in different
configurations. In order to achieve these goals a deeper understanding of the
application domain is needed. Domain engineering attempts to distill domain
knowledge from legacy systems (Deursen et al. 2000).

First, the legacy system has to be reorganized to provide the domain knowledge at
the proper level of abstraction. Second, a notation tailored towards the domain—a
Domain-Specific Language (DSL)—has to be provided to enable the easy
composition of components into a workable system. Finally, as shown in Figure 2-9,
the DSL will be used as input for a generator (the DSL compiler) (Deursen et al.
2000).

 27

Figure 2.9 A domain-oriented approach

(Source: Deursen et al. 2000)

One of the strengths of the Deursen et al. (2000) methodology is the analysis of
legacy sources. With the help of this analysis, it is possible to recover the
requirements model of a legacy system from its source code. This is valuable when
reverse engineering requirements models from information systems as these are
normally not kept up to date by legacy system owners. On the other hand, one
weakness of the Deursen et al. (2000) methodology is the use of concept and cluster
analysis for object identification in legacy source code analysis. These methods
besides being difficult to use, can only generate classes if used by a software
engineer with knowledge of the application domain and the legacy system. This
could be a limitation because the results depend on a sound knowledge of the legacy
system.

Another important limitation is its lack of component requirements models.
Although the methodology helps to identify components for the target re-engineered
system, it does not deal with the generation of the re-engineered system’s
requirements models required for this research.

An important transformation system that has been used in this area is Draco
(Fontanette et al. 2002). Usually, a transformation system restructures a program A
into a program B, applying a set of well-defined transformations preserving the
semantics of A in B.

According to Prado (1992), it is possible to do the software reconstruction by the
direct “load” of language source code to languages of other domains. This
methodology will be discussed in more detail in the next section.

2.7.2 The Draco Methodology for System Re-engineering

The strategy of the Draco approach (Fontanette et al. 2002) for component-based
software re-engineering using transformations is accomplished in four steps as
shown in Figure 2-10:

1. Organize Legacy Code

 28

2. Recover Project
3. Reproject
4. Reimplement.

In the first step, Organize Legacy Code, the software engineer with Draco
transformation system support organizes the legacy code, obtaining code still in the
same language, however organized according to object-oriented principles
(Fontanette et al. 2002).

In the second step, Recover Project, the software engineer starts off with the
organized source code and again with the Draco support obtains the system MDL
(Modeling Domain Language) description (Fontanette et al. 2002). Using the
MVCase tool, an object-oriented CASE tool designed for this specific methodology,
the software engineer imports the MDL description to obtain the current system
recovered project. This recovered project would reveal the class diagram of the
system with the system classes, their respective attributes, methods and relationships
(Fontanette et al. 2002).

Figure 2.10 Strategy of Component-Oriented Software Re-engineering using

Transformations

(Source: Fontanette et al. 2002 p.3)

In the third step, Reproject, the software engineer, using the MVCase tool, does the
component-based re-engineering of the recovered current system,. The initial
modeling obtained in the previous step is used as a base for the specification and

 29

project of components. The component specification is based on the Java/EJB
technology, using Catalysis as a development method. The Problem Domain level,
says "what" the system should do to solve the problem. The software engineer
identifies the object and action types, gathering them in different views by business
areas, and models use case diagrams, indicating the actors' relationships with the
system (Fontanette et al. 2002).

The component specification level refines the specifications, from the previous
level, emphasizing the component’s identification, behavior and responsibilities.
New more detailed models are obtained, but without worrying about the
implementation. Sequence diagrams, which have as their objective to show the
operation execution scenerios along the time, are built. Figure 2-11 shows an
example of these component-based specification models.

Figure 2.11 Use Case, Sequence Diagram and Class Diagram of the Reprojected System

(Source: Fontanette et al. 2002 p.6)

Finally, in the fourth step of this re-engineering strategy, Reimplement, the MVCase
tool automatically implements the project recovered and specified in UML to the
object-oriented language Java. The software engineer uses the MVCase tool as a
mechanism of code generation, starting from class diagrams with their attributes and
prototypes of specified methods.

One major advantage of this Draco approach is that it helps to identify the
component requirements models necessary for the requirements model evaluation.
On the other hand, this methodology does not analyze the legacy source code for
requirements model recovery.

Although the Draco approach can be used to generate the required component
requirements models for this study, it also requires a mastery of the Draco machine
and the MVCase tool. These tools are available to the researcher as they are
accessible via Internet.

 30

However, the methodology is technology dependent on the tools mentioned and not
a general approach that can be used with other types of re-engineering CASE tools.
This could be seen as a limitation as there is no guarantee that the tools would be
supported in the long term. It also limits the possibility of reproducing the research
of this dissertation as the availability of these tools is not assured.

Another major limitation of this approach is that the MVCase tool is based on the
Catalysis approach of component-based requirements models and not only on UML.
This could be a limitation if the researcher decides to use the UML approach as the
framework for this research. Furthermore, the MVCase tool only supports the Java
language and this can be considered as another important limitation as many
information systems require the combination of several computer languages.
Finally, it needs access to source code and this might not be available for all the re-
engineering projects.

2.7.3 The Jacobson and Lindstrom Methodology for System Re-engineering

Jacobson and Lindstrom (1991) proposed a re-engineering methodology which
assumes that the legacy requirements models are not available and can be recovered
with the help of a reverse engineering methodology. This reverse engineering can be
applied by following these steps:

• Develop a concrete graph that describes the components of the system and
their interrelationship.

• Prepare an abstract graph showing the behavior and the structure of the
system.

• Construct a mapping between the two, i.e. how something in the abstract
graph relates to the concrete graph and vice versa.

The abstract graph should be free of implementation details. For example,
mechanisms for persistent storage or partitioning into processes should not appear
on this graph. The concrete graph must, on the other hand, show these details. The
mapping between the two should tell how the ideal world of analysis is
implemented by way of the concrete graph (Jacobson & Lindstrom 1991).

This abstract graph is in fact the requirements model. Once the requirements model
is reverse engineered from the legacy system, the legacy system can be re-
engineered by using the following steps (Jacobson & Lindstrom 1991):

• Prepare an analysis model
• Map each analysis object to the implementation of the old system.

In order to prepare the analysis model step, it is important to assimilate the existing
information about the system as illustrated in Figure 2-12. The existing information
has many different forms, e.g. requirements specifications, user operating
instructions, maintenance manuals, training manuals, design documentation, source
code files, and database schema descriptions. These are called description elements
(Jacobson & Lindstrom 1991).

 31

From the set of description elements, an analysis model can be prepared. After the
analysis model is completed, a map of each analysis object to the implementation of
the old system is required. The map must show that all analysis objects and
dependencies must be motivated by at least one primitive description element. This
can be expressed with is-motivated-by, a mapping from the analysis model to the set
of primitive description elements. All the dependencies in the analysis model must
be motivated by at least one primitive description element. The use of guidance
from experts in the legacy system should also be used to prepare the map as they
can help to interpret the existing information and link it to the analysis model.

Figure 2.12 Preparing an analysis model

(Source: Jacobson & Lindstrom 1991)

The Jacobson and Lindstrom (1991) re-engineering methodology covers the case of
a complete change of implementation technique with no change in functionality.
This means that the legacy information systems can be re-engineered without
adding any extra requirements. This is relevant for this research as the requirements
models from the legacy and re-engineered component-based system need to be
compared for equivalency of requirements representation.

The methodology also allows the recovery of the legacy requirements model from a
set of description elements. This can be seen as a strength of this research as legacy
systems normally do not carry updated documentation that reflects current
requirements models and the reverse engineering capability of the methodology
allows the recovery of the current requirements model of the legacy systems
regardless of the updates that the system has experienced during its life cycle.

The methodology is also not dependent on specific software technologies making it
more flexible than other methodologies that are technology dependent. This also
allows the study to be reproduced for future research without worrying about
specific technologies.

On the other hand, the methodology is based on object-oriented models while the
objective of the research is to re-engineer component-based systems. However, it
could be easily adapted for component-based systems to make it suitable for this
research. The adaptation is not an issue as the component-based model is a higher
level of abstraction of the object-oriented model as components are based on
objects.

 32

In this section, the re-engineering process was discussed and several methodologies
presented. Although most of the existing re-engineering methodologies are object-
oriented, they could be easily adapted to component-based provided that the legacy
requirements model can be recovered (Fevre et al. 2003). The Deursen et al. (2000)
methodology was discussed in the context of component-based systems re-
engineering, and although it provides a good way of recovering the legacy
requirements model, it does not generate the re-engineered business component
models. On the contrary, the Draco methodology (Fontanette et al. 2002) is able to
generate the business component models but unable to recover the legacy
requirements model. The Jacobson and Lindstrom (1991) methodology was
presented as a good fit for this research because it allows the recovery of the legacy
requirements model and generation of object-oriented models. Although this was
originally designed for object-oriented re-engineering, it can be easily adapted to the
component-based paradigm.

Table 2-2 summarizes the evaluation criteria applied to the re-engineering
methodologies reviewed and the justification for the selection of the Jacobson and
Lindstrom methodology for this research.

Table 2.2 Summary of Evaluation of Re-engineering methodologies

Jacobson and Lindstrom Draco Deursen

It allows the recovery of the
legacy requirements model
from a set of description
elements.

It helps to identify the
component requirements
models.

It allows the recovery
of the legacy
requirements model.

It is not dependent on
specific software
technologies.

It is dependent on specific
software technologies.

Too complex to use
because it relies on the
analysis of source
code.

It allows the study to be
reproduced for future
research without worrying
about specific technologies.

It limits the possibility of
reproducing the research
since the availability of the
software tools required is
not assured.

Concentrated in the
development of
software models and
not requirements
models.

It supports the UML
language.

It supports only the
Catalysis grammar.

In the next section the concept of ontologies will be introduced as this research is
based on this concept for the evaluation of requirements models in the re-
engineering process.

2.8 Ontologies

Before ontological evaluation is introduced, it is important to define ontology.
Ontology is a well-established theoretical domain within philosophy dealing with
models of reality. Over the years, many different ontologies have emerged.
Mylopoulos (1998) suggests that ontologism can be classified into four categories:
static, dynamic, intentional, and social. Each of these categories focuses on different

 33

concepts in the real world. Ontologies that fall into the static category focus on
things and their properties. Dynamic ontologies extend static ontologies to focus on
such concepts as events and processes, that is, how concepts in the real world
change over time. Intentional ontologies attempt to explain abstract concepts such as
goals and objectives while social ontologies emphasize the concepts of values and
beliefs.

Today however, interest in, and applicability of ontologies, extends to areas far
beyond metaphysics. Two general ontologies have been frequently applied for the
evaluation of modeling methods in Systems Analysis and Design. First, much work
has focused on a set of ontological models known as the BWW (Bunge-Wand-
Weber) models. Weber (1997) has taken, and extended, ontology presented by
Bunge (1977) and applied it to the modeling of information systems.

Second, Chisholm’s ontology (1976) has been used to evaluate a representative
range of data modeling languages (grammars) with a view to gain insight into those
languages (Milton et al. 2001).

Also, special enterprise and IS ontologies, e.g., the enterprise ontology (Uschold et
al. 1998) and the framework of information systems concepts (FRISCO) (Verrijn-
Stuart et al. 2001) have been developed for the evaluation of IS modeling methods.

Their fundamental premise is that any Systems Analysis and Design modeling
grammar (set of modeling symbols and their construction rules) must be able to
represent all things in the real world that might be of interest to users of information
systems. Otherwise, the resultant model is incomplete. If the model is incomplete,
the analyst/designer will somehow have to augment the model(s) to ensure that the
final computerized information system adequately reflects that portion of the real
world it is intended to simulate.

The BWW model is not the only ontology available to evaluate information systems
as alternatives exist both in the form of general philosophical ontologies such as the
Chisholm ontology (1996), or special enterprise and IS ontologies such as the
enterprise ontology (Uschold et al. 1998) and FRISCO (Verrijn-Stuart et al. 2001).
However, the use the BWW model is justified for two reasons. First, the model is
based on concepts that are fundamental to the computer science and information
systems domains (Wand & Weber 1993). Second, it has already been used
successfully to analyze and evaluate the modeling constructs of many established IS
and enterprise modeling languages such as dataflow diagrams, ER models, OML
and UML (Evermann & Wand 2001; Green & Rosemann 2000; Opdahl &
Henderson-Sellers 2002a; Weber & Zhang 1996) and for the evaluation of
enterprise systems (Green et al. 2005) and business component frameworks (Fettke
and Loos 2003b).

In addition, the following arguments of Wand and Weber (1993) support its use:

• Better developed and formalized than alternative philosophical ontologies.
The BWW ontology has been formalized with a representation model and
constructs (Wand & Weber 1988, 1993, 1995).

 34

• Based on concepts that are fundamental to the computer science and
information systems domains. Constructs were developed with the intention
of representing information and computer systems.

• Productive, in the sense that it has given useful results. Research shows that
the model has been useful for the evaluation of information systems
methodologies (Wand & Weber 1988, 1993, 1995).

The BWW models consist of the representation model, the state-tracking model, and
the decomposition model. The work reported in this dissertation uses the BWW
representation model and its constructs. The representation model defines a set of
constructs that, at this time, are thought to be necessary and sufficient to describe
the structure and behavior of the real world.

In the next section, the BWW model will be discussed in detail and its constructs
described.

2.8.1 Bunge-Wand-Weber model

The Bunge-Wand-Weber representation model (Wand & Weber 1988, 1993, 1995)
has been used to analyze and evaluate the modeling constructs of many established
IS and enterprise modeling languages such as dataflow diagrams, ER models, OML
and UML (Opdahl & Henderson-Sellers 2004).

According to Bunge’s ontology and the BWW model, there is a world that exists
independently of human observers, and it consists of things that possess properties.
Examples of BWW things are “atoms, fields, persons, artifacts and social systems”
(Opdahl & Henderson-Sellers 2002a, p. 47), whereas “properties of things (e.g.,
energy), changes in them, and ideas considered in themselves” are non-things
(Opdahl & Henderson-Sellers 2002a, p. 47). In particular, concepts are not BWW
things. Bunge’s ontology and the BWW model also remind us that we only know
about things via models of things we create in our minds, and that we ascribe
attributes to those models of things to stand for the properties we believe the
corresponding things possess. In the BWW model, an attribute (that stands for a
BWW property) is represented as a property function of time, which maps the
property onto different property values in a property co-domain for different points
in time.

The BWW model distinguishes between properties in several different ways. An
intrinsic property belongs to only a single thing, whereas a mutual property belongs
to two or more things. BWW mutual properties are represented by relationships or
similar constructs in many modeling languages.

A whole-part relation is a property that relates an aggregate thing to one of its
component things. A resultant property belongs to a BWW aggregate and is derived
from one or more properties of its components, whereas an emergent property
belongs to a BWW aggregate but not to any of its components. A law property
restricts other properties of the same thing.

A BWW law is either a state law or a transition law. An individual property (or
property of a particular) is a specific such as “being 25 years old” and “having grey

 35

hair,” whereas the corresponding general properties are “having an age” and
“having a hair color.” Bunge (1977) also distinguishes between BWW-properties
that are permanent and those that are variable.

BWW properties may be complex because they may have other properties as
constituents. A BWW property precedes a second BWW-property if and only if:

• Either (a) the second property is complex (or compound) and the first
property is one of its constituents,

• Or (b) a BWW law states that all BWW things that possess the second
property must also possess the first.

According to (a), “having a ZIP-code” precedes “having a postal address” because
every postal address includes a ZIP-code and, according to (b), “being a human
being” precedes “being married”.

Things with a property in common form BWW classes. A class contains all the
things, and only those things, that possess one or more characteristic properties for
the class. In other words, every BWW class is defined by a nonempty set of
characteristic properties of the things in the class. The most general BWW class is
the class of all things, which is defined by the universal property of being able to
associate with other things (Bunge, 1977). Because characteristic properties may be
complex, it is sometimes possible to say that a BWW class is defined by a group of
characteristic BWW properties.

One BWW class may be defined by a group of characteristic properties that is
contained in a larger group of properties that defines a second class. We then say
that the second BWW class is a subclass of the first.

A BWW thing has time-dependent states that are determined by the values of the
thing’s property functions over time. A change of BWW state in a thing is an event,
hence a BWW event can be described as a pair of BWW states. Consecutive BWW
events form complex events, or processes if they occur in the same thing. The
sequence of consecutive BWW states undergone by a thing (or, alternatively, the
sequence of consecutive BWW events) is called its history. A BWW thing acts on a
second thing if and only if the BWW history of the second thing would have been
different had the first thing not existed. The first thing is called an active thing. Two
BWW things are coupled if and only if (at least) one of them acts on the other.
BWW couplings are caused by certain BWW mutual properties that are said to be
binding. A BWW aggregate whose BWW components are coupled is a system.

Systems are things that are made up of other things that satisfy two conditions.
First, every thing in the system must be coupled to at least one other thing. Second,
it must not be possible to divide the things that make up the system into two subsets
such that the history of one subset of things is independent of the other subset of
things (in other words, the subsets are not coupled) (Wand & Weber 1995).

The composition of a system is the set of things that are in the system. The
environment of a system is the set of things that are not in the system’s composition

 36

but interact with (are coupled to) at least one other thing in the system’s
composition (Wand & Weber 1995).

The structure of a system is the set of internal couplings (between things in the
composition of the system) and external couplings (between things in the
composition of the system and things in the environment of the system) (Wand &
Weber 1995).

A subsystem is a system that satisfies the following conditions ((Wand & Weber,
1995):

Its composition is a subset of another system’s composition. In other words, all
things in the subsystem are also things in another system.

Its environment is a subset of the environment of the other system joined with the
difference between the composition of the other system and composition of the
subsystem.

In other words, first we take the things that are in the environment of the system. To
these we add the things that are in the composition of the system but not in the
composition of the subsystem. The things in the environment of the subsystem will
be a subset of this newly formed set of things. Its structure is a subset of the other
system’s structure. In other words, all internal couplings and all external couplings
in the subsystem are also internal couplings and external couplings of the other
system.

The input of a thing is the set of state changes (events) to a thing that have arisen by
virtue of the actions of things in its environment. In the same way, we define the
output of a thing as the set of all events that occur to things in the environment of
the thing by virtue of the action of the thing. In other words, if we identify those
events that have occurred to things in the environment of a thing only because they
are coupled to the thing, we have the output of the thing (Wand & Weber 1995).

A set of things may be a subtype of a type (subclass of a class) if the things possess
the property of the type plus at least one other property that is not possessed by all
instances of the type. Subtypes may also be disjoint and have a rigid property which
is essential for its type (Wand & Weber 1995).

The hereditary properties of a thing are properties that also belong to things in the
thing’s composition. The emergent properties of a thing are properties that are not
properties of any of its components (Weber & Zhang 1996). Emergent properties
are always functions of other properties, although often we cannot clearly articulate
the nature of the relationship that exists. Simple emergent properties are aggregates.

A special relationship exists between systems and emergent properties. All systems
must have an emergent property of some kind. The only reason for our conceiving a
set of things as a system is that the composite thing (system) possesses at least one
emergent property that is of interest to us for some purpose.

 37

A thing is called a composite thing if it is composed of (made up of) things other
than itself (has proper parts). Things in the composite are part-of the composite.

Table 2-3 summarizes the main constructs of the BWW model.

Table 2.3 Constructs of the BWW-model

Ontological Construct Description

THING The elementary unit in the ontological model. The real
world is made up of things. A composite thing may be
made up of other things (composite or primitive).

PROPERTY Things possess properties. A property is modeled via a
function that maps the thing into some value. A
property of a composite thing that belongs to a
component thing is called a hereditary property.
Otherwise it is called an emergent property. A
property that is inherently a property of an individual
thing is called an intrinsic property. A property that is
meaningful only in the context of two or more things
is called a mutual or relational property.

STATE The vector of values for all property functions of a
thing.

CONCEIVABLE
STATE SPACE

The set of all states that the thing might ever assume.

STATE LAW Restricts the values of the property functions of a
thing to a subset that is deemed lawful because of
natural laws or human laws.

EVENT A change of state of a thing. It is effected via a
transformation (see below).

EVENT SPACE The set of all possible events that can occur in the
thing.

TRANSFORMATION A mapping from a domain comprising states to a Co-
domain comprising states.

PROCESS An intrinsically ordered sequence of events on, or
state of, a thing.

LAWFUL
TRANSFORMATION

Defines which events in a thing are lawful.

HISTORY The chronologically ordered states that a thing

 38

Ontological Construct Description

traverses.

ACTS ON A thing acts on another thing if its existence affects
the history of the other thing.

COUPLING A thing acts on another thing if its existence affects
the history of the other thing. The two things are said
to be coupled or interact.

SYSTEM A set of things is a system if, for any bi-partitioning of
the set, couplings exist among things in the two
subsets.

SYSTEM
COMPOSITION

The things in the system.

SYSTEM
ENVIRONMENT

Things that are not in the system but interact with
things in the system.

SYSTEM
STRUCTURE

The set of couplings that exist among things in the
system and things in the environment of the system.

SUBSYSTEM A system whose composition and structure are subsets
of the composition and structure of another system.

SYSTEM
DECOMPOSITION

A set of subsystems such that every component in the
system is either one of the subsystems in the
decomposition or is included in the composition of
one of the subsystems in the decomposition.

LEVEL STRUCTURE Defines a partial order over the subsystems in a
decomposition to show which subsystems are
components of other subsystems or the system itself.

STABLE STATE A state in which a thing, subsystem or system will
remain unless forced to change by virtue of the action
of a thing in the environment (an external event).

UNSTABLE STATE A state that will be changed into another state by
virtue of the action of transformation in the system.

EXTERNAL EVENT An event that arises in a thing, subsystem or system
by virtue of the action of some thing in the
environment on the thing, subsystem or system. The
before-state of an external event is always stable. The
after-state may be stable or unstable.

 39

Ontological Construct Description

INTERNAL EVENT An event that arises in a thing, subsystem, or system
by virtue of lawful transformations in the thing,
subsystem, or system. The before-state of an internal
event is always unstable. The after state may be stable
or unstable.

WELL DEFINED
EVENT

An event in which the subsequent state can always be
predicted given the prior state is known.

POORLY DEFINED
EVENT

An event in which the subsequent state cannot be
predicted given the prior state is known.

CLASS A set of things that possess a common property.

KIND A set of things that possess two or more common
properties.

(Source: (Wand & Weber 1993; Weber & Zhang 1996))

In this section, the BWW model was discussed as an ontological tool to evaluate
information systems models. The BWW model has been used in the past to evaluate
representation grammars in information systems and it can also be used as an
ontological framework for this study.

2.8.2 Ontological Evaluation of Requirements models

A major component of this dissertation is the evaluation of legacy and re-engineered
component systems requirements models in order to verify that both represent the
same business requirements. In the past, Mišic and Zhao (2000) and Schütte (1998)
developed a framework for the evaluation of requirements models. Although they
could have been used to compare the legacy and re-engineered requirements
models, the problem with these feature-based evaluation approaches is that the
development and selection of a specific feature set is often a subjective issue that is
not based on sound theory.

Fettke and Loos (2003) proposed an approach to the ontological evaluation of
requirements models based on the Bunge-Wand-Weber ontology theory. The main
idea of this approach is the ontological normalization of a requirements model. An
ontological normalization is comparable with the normalization of a database
schema. The objective of both techniques is to represent the domain of interest in a
normalized way by applying specific transformation patterns. Normalization of a
database schema aims at eliminating problems of information representation and
processing in database management systems (e.g. avoiding data redundancies,
problems of lost update, dirty read etc.). In contrast, the ontological normalization
aims to achieve a unified representation of facts represented by a requirements
model with respect to the structure of reality.

 40

The ontological normalization of a reference model consists of four steps (Fettke &
Loos 2003):

1. Developing a transformation mapping,
2. Identifying ontological modeling deficiencies,
3. Transforming the reference model, and
4. Assessing the results.

In the first step of this method, it is necessary to develop a transformation mapping
for the grammar used for representing the requirements model. This transformation
mapping allows conversion of the constructs of the used grammar to the constructs
of the BWW model (Wand and Weber 1993). The transformation mapping consists
of two mathematical mappings. First, a representation mapping describes whether
and how the constructs of the BWW model are mapped onto the grammatical
constructs. Second, the interpretation mapping describes whether and how the
grammatical constructs are mapped onto the constructs of the BWW model (Fettke
& Loos 2003).

With respect to both mappings, four ontological deficiencies can be distinguished
(Fettke & Loos 2003).

• Incompleteness: A grammar is incomplete if the representation mapping is
not defined in total. Otherwise a grammar is complete.

• Redundancy: A grammar is redundant if the representation mapping is
ambiguous.

• Excess: A grammatical construct is excessive if it cannot be mapped onto an
ontological construct. A grammar is excessive if at least one of its constructs
is excessive.

• Overload: A grammatical construct is overloaded if it can be mapped onto
more than one ontological construct. A grammar is overloaded if at least one
of its constructs is overloaded. This can be seen as a modeling deficiency
and will be explained below in more detail.

To prepare the ontological normalization of the requirements model, all ontological
deficiencies of the requirements models have to be identified. This is the objective
of the second step. The second step is based on the former constructed
transformation mapping. It is possible that one ontological deficiency is resolvable
in various ways or even not resolvable at all. Hence, it is useful to separate the
identification of ontological modeling deficiencies from the transforming step of the
requirements model (the next step) (Fettke & Loos 2003).

To identify the ontological deficiencies of the requirements model all constructs of
the requirements model must be reviewed. Each construct of the requirements
model must be examined with respect to whether the construct is used correctly
regarding the interpretation mapping. One of the following situations can arise
(Fettke & Loos 2003):

• Adequacy: The grammatical construct is ontologically adequate.
• Excess: Construct excess is a modeling deficiency in general and needs

special handling in the transformation step. Construct excess occurs if

 41

implementation specific aspects are represented in the requirements model,
e.g. the technical concepts of message passing or polymorphism cannot be
represented with ontological constructs.

• Overload: Construct overload is a modeling deficiency in general and needs
special handling in the transformation step. This construct should be marked
as overloaded in the requirements model. For instance, using UML, UML
object can represent a BWW thing (UML object “Mr. Miller” is an instance
of the UML class customer) or a BWW class (UML objects “a class
journal”, “b class journal” etc. are instances of the UML class “journal
categories”). So, the construct UML object is ontological overloaded.

The described identification step of modeling deficiencies relies on the
interpretation mapping. In addition, the representation mapping supports an indirect
means to identify modeling deficiencies. Based on the representation mapping it can
be decided whether the used grammar is incomplete or redundant. An incomplete
grammar leads to the trend that specific facts of reality cannot be adequately
represented in the requirements model. (Fettke & Loos 2003).

In the third step, the requirements model will be transformed to an ontological
model. The outcome of this step is an ontologically normalized requirements model.
More formally, an ontologically normalized requirements model is a mapping from
the constructs of the requirements model to the constructs of an ontological model.
While mapping a construct of the requirements model onto an ontological construct,
four cases can arise (Fettke & Loos 2003):

• Adequacy: The construct of the requirements model is marked as adequate.
It is possible to map this construct in a straightforward way onto a construct
of the ontological model.

• Inadequacy: The construct of the requirements model is marked as
inadequate. It is necessary to interpret the representation in the reference
model in a sensible manner. The result of this interpretation may be that it is
possible to represent this construct by a specific construct of the ontological
model.

• Excess: The construct of the requirements model cannot be mapped onto a
construct of the ontological model with respect to the interpretation
mapping. Nevertheless it should be examined whether it is possible to
represent this construct by a specific construct of the ontological model.

• Overload: The construct of the reference model can be mapped onto several
constructs of the ontological model with respect to interpretation mapping. It
is necessary to decide which interpretation mapping is preferable regarding
the representation in the reference model. The result of this decision may be
that it is possible to represent this construct by exactly one construct of the
ontological model.

The resolution of the ontological deficiencies of constructs should be guided by the
intention of these constructs. This step relies on the interpretation of the subject
performing the evaluation. The result of this transformation is an ontological model
representing the requirements model in an ontologically normalized way. The
ontologically normalized model is assessed regarding different aspects in the next
step (Fettke & Loos 2003).

 42

In the last step, the requirements model can be evaluated regarding the results of the
three mentioned steps above (Fettke & Loos 2003):

• Assessing the transformation mapping in general,
• Assessing the ontological deficiencies of constructs in particular, and
• Assessing the ontologically normalized reference model.

First, the transformation mapping can be assessed in general. Based on the
representation and interpretation mappings it is possible to determine the ontological
clarity and adequacy of the used grammar. This assessment gives an idea as to
whether the used grammar is suitable to represent the facts of reality with regard to
the intended application in general (Fettke & Loos 2003).

Second, the ontological deficiencies of constructs of the reference model can be
assessed in particular. While the ontological deficiencies of excess and overload
have their roots in the definition of the grammar, the cause of an ontologically
inadequate construct of the reference model is the specific application of a
grammatical construct employed by the person who developed the model. Note that
an ontologically adequate construct of the reference model is not ontological
equivalent to a correct modeling (in a syntactical meaning). Instead, the high usage
of inadequate constructs may be a sign of representing many implementation
aspects in the reference model (Fettke & Loos 2003).

Third, the ontologically normalized reference model can be assessed. In this case,
two different evaluation aspects are reasonable (Fettke & Loos 2003):

• Isolated assessment: Different metrics can be used for an isolated assessment
of the ontological model.

• Comparative assessment: Comparative evaluations of reference models can
be undertaken if further ontological models of the application domain are
given. In this manner, it is possible to evaluate a reference model with
respect to its completeness. Such an evaluation is possible only with respect
to another ontological model.

The Fettke and Loos (2003) methodology can be a useful research tool given its
capacity of comparing requirements models based on their normalized reference
models. These normalized requirements models are the ontological representation of
the requirements models in the comparison. If two requirements models are
ontological equivalent, their normalized reference models should be ontological
equivalent.

However, the transformation of the requirements models into ontologically
normalized requirements models can be quite difficult as transformation mapping
can be challenging without an appropriate methodology. Although Fettke and Loos
(2003) identify this mapping as a step in the ontological business evaluation, they do
not provide mappings of grammar constructs for UML or traditional models.
Furthermore, the details about the implementation of the normalized reference
models are not presented in their published research.

 43

In the next sections of this chapter, the major attempts to map information systems’
traditional and UML grammars into BWW constructs are presented and analyzed in
the context of this research.

2.8.3 BWW mapping for process modeling

Traditional requirements models are constructed by the use of Data Flows. There
are two types of modeling in DFDs: 1) Physical DFDs – where the diagram
describes the physical components of the information system and 2) Logical DFDs –
that describe the meaning or the ‘what’ of the components of the information
systems (Wand & Weber 1989).

As this research deals only with the requirements models, only logical DFDs will be
analyzed. Wand and Weber (1989) developed an interpretation of DFDs to BWW
constructs. According to their interpretation, data stores represent state information,
and data flows represent external and internal events. Properties of real things may
be represented by data elements described in data dictionaries but not in data flows
and data stores.

There is no explicit representation of the states of the real system in a DFD. Rather,
the possible and allowed states of the information systems are defined implicitly in
terms of possible and allowed values of the data elements described in the data
dictionary and therefore not represented in the DFDs (Wand & Weber 1989).

External events of the information system are represented by data flows coming
from a source while internal events are represented by internal data flows that are
generated because the system responds to an external event. Data linked to a
process, a process linked to another process and a process linked to an external
agent may be interpreted as coupling (Wand & Weber 1989).

A DFD represents a proper system if and only if there is a path between every pair
of processes. If this is not the case, then the DFD represents two or more
disconnected information systems. External agents and data stores are represented
by things and they form part of the environment in the BWW model (Wand &
Weber 1989).

In DFDs, decomposition involves breaking a process “bubble” into a number of
sub-processes. DFDs conform to the BWW model notion of a good decomposition
(Wand & Weber 1989).

Another process modeling interpretation comes from the work of Green and
Rosemann (1999). This work presents the mapping between one of the most
successful grammars for process modeling, that is, the event-driven process chains
(EPC) and the BWW model. This grammar is embedded in the Architecture of
Integrated Information Systems (ARIS) (Scheer 1998).

In the process view of ARIS, the thing as an elementary ontological construct is not
a part of the original meta-model of event-driven process chains. Because a function
type within an event driven process chain can be seen as the transformation of a
business relevant object, an EPC function type can be interpreted to represent a

 44

property in general of that object. Attribute types in EPC represent attributes in the
BWW representation model. The ontological construct class, however, is not
represented in the EPC-grammar. As opposed to grammars that depict the structure
of a system (e.g., the Entity Relationship (E-R) model), process modeling languages
focus on the behavioral aspects of what is being modeled. Consequently, the
ontological constructs state, transformation, and event are most relevant.
Transformations are represented by function types in the event-driven process
chains while states are depicted as event types. Accordingly, the triple, ‘event type –
function type – event type’, in an EPC represents the ontological construct event,
and usually internal events that are well defined. The homonym between the EPC
event type and the ontological event requires careful attention during the analysis.
Similarly, a state law can be represented by the triple, ‘function type – connector –
event type’, while a lawful transformation can be represented by the pattern, ‘event
type – connector – function type’. An external event may be represented by the start
event type at the beginning of an EPC while the final stable state (of an object) may
be represented by the end event type at the bottom of an EPC (Green & Rosemann
1999).

Although Green and Rosemann (2000) developed a transformation map of ARIS to
BWW constructs that could be used for ontological evaluations of legacy
requirements models, most legacy systems were not built based on the ARIS
framework but by using DFDs that differ from the ARIS framework for process
modeling. In the case of the ARIS framework, EPCs are used to model business
processes while DFDs are used by the traditional approach for the same
representation.

However, the work of Green and Rosemann (2000) can be used to complement and
compare some of the work of Wand and Weber (1989) as both approaches use
ERDs and context diagrams.

Entity-relationship diagrams (ERD) are interpreted by both Wand and Weber (1989)
and Green and Rosemann (2000). Although Wand and Weber’s (1989)
interpretation that entities and relationships can be viewed as representing things of
a real system, the interpretation of Green and Rosemann (2000) of the entity
representing a class seems more accurate as entities can represent multiple instances
of things. Properties are represented directly in the entity relationship diagram via
the notion of attributes in both interpretations. Coupling between things can be
represented by the relationships between entities (Wand & Weber 1989).

Another limitation of Wand and Weber’s approach is the lack of interpretation of
functional decomposition diagrams that are interpreted by Green and Rosemann’s
(2000) work. Also Wand and Weber (1989) did not include the transformation
construct mapping as this was added to the BWW model after the publication of
their analysis.

Limitations of process modeling are acknowledged by Rosemann et al. (2005) and
Green and Rosemann (2000). Functional decomposition diagrams are ontologically
redundant when compared to the combination of DFDs, ERDs, and context
diagrams.

 45

The result of the interpretation of Wand and Weber (1989) and Rosemann et al.
(2005) is that no ontological representations exist for conceivable state, state space,
lawful state space, conceivable event space, lawful transformation or lawful event
space BWW constructs.

Accordingly, problems may be encountered in capturing all the potentially
important business rules of the situation.

Also, no representations exist for stable state, unstable state, well defined event and
poorly-defined event. Again, the usefulness of traditional diagrams for defining the
scope and boundaries of the system being analyzed is undermined.

2.8.4. BWW mapping for component based requirements models

Component-based models can be represented by using several approaches including
UML and Catalysis. Although specific component-based frameworks have been
proposed for the specification of business components (Ackermann et al. 2002), not
all of them are ontologically capable of representing business requirements. Fettke
and Loos (2004) showed that this last mentioned framework was ontologically
incomplete and weak for representing business components.

In spite of the difficulties of different grammars for the representation of the
business requirements, the UML grammar has been used as a standard for the
specification of requirements models for many years and has been evaluated and
mapped into BWW constructs by several authors. Perhaps the most complete
analysis was by Opdahl and Henderson-Sellers (2002b) as they included in their
research a complete map of UML to BWW constructs as seen in table 2-4.

Table 2.4 BWW interpretation of UML constructs

UML construct Interpretation

UML object BWW thing
UML active object BWW thing that acts on another thing
UML swimlane BWW thing that acts on another things
UML actor BWW thing that acts on the proposed system thing
UML object lifeline A segment of a BWW history
UML type BWW natural kind
UML supertype BWW natural kind that has a subkind
UML subtype Subkind
UML generalization Natural kind/sub kind relationship
UML actor class BWW natural kind of things that act on the proposed

system thing
UML active class BWW natural kind of things that act on another things
UML property BWW intrinsic property
UML attribute-of a class BWW characteristic intrinsic property
UML multiplicity BWW characteristic state law
UML data type BWW co-domain of a property function
UML operation BWW transformation
UML precondition Subtype of BWW intrinsic state law

 46

UML construct Interpretation

UML postcondition Subtype of BWW intrinsic transformation law
UML responsibility (of
class)

Subtype of BWW complex law property

UML link BWW eventual property of two or more things
UML association BWW characteristic mutual property
UML-link object BWW composite thing
UML association class BWW natural thing
UML communication
association

BWW characteristic binding mutual property

UML aggregate BWW composite thing
UML aggregate class BWW natural kind of composite things
UML aggregation BWW whole part relation
UML composition BWW whole part relation
UML container Subtype of BWW thing
UML physical system BWW system composition
UML state
UML object flow state
UML event
UML sender
UML-focus on control
UML-use case instance
UML use case class
UML-extend
UML-include

BWW state
Subtype of BWW state of a BWW thing
BWW event
BWW thing that acts on another thing
Sequence of BWW unstable states in a thing
BWW process in the proposed system thing
A group of BWW processes in the proposed system
thing
Subtype of BWW binding mutual property
Subtype of BWW binding mutual property

UML-scenario BWW process in the proposed system thing
UML timing mark
UML time event

Element in the domain of any BWW property
Subtype of BWW event

(Source: Opdahl and Henderson-Sellers 2002b p.51)

Although this work presents UML as a strong grammar from the ontological point
of view, UML has been criticized by Irwin and Turk (2005) as ontologically
incomplete. Irwin and Turk (2005) argue that UML is incomplete with respect to
representing the system structure or decomposition. There are no clearly-defined
constructs for representing systems at different levels of detail such that no
information is lost between levels (Irwin & Turk 2005). Also, the definitions of
actor, use case, association, and generalization are ontologically overloaded and the
<<include>> and <<extend>> constructs overlap with other UML constructs, such
as aggregation (Irwin & Turk 2005).

Although Opdahl and Henderson-Sellers (2002b) presented an analysis of all UML
constructs, Dussart et al. (2004) conducted an ontological analysis of UML from the
diagram perspective. They prepared a study of three UML diagrams used for the
specification of component based systems: the activity, the state and the sequence
diagrams. In their study, a mapping was created to map UML constructs into the
BWW model. The results of this mapping are shown in Table 2-5.

 47

Table 2.5 BWW Representation Model Analysis for Dynamic Aspects of UML

Ontological construct Activity Diagram State Diagram Sequence diagram Other Views

Thing Object Swimlane Object Object

Property Actvity Swimlane

Class Class (Diagram)

Kind Generalization
(Class diagram)

State State of
Object

State

Conceivable State Space State Machine

State Law State→transition→State

Lawful State Space Substates

Process Activity Diagram
Activity

Event Activity Trigger

Conceivable Event Space All triggers

Transformation Activity

Lawful transformation Guard conditions on
transitions

Lawful event state

 48

Ontological construct Activity Diagram State Diagram Sequence diagram Other Views

History Shallow history state
construct

Acts on

Coupling Messages

System Sequence diagram Package with
<<System>>

System composition Object

Subsystem Package with
<<subsystem>>

System Decomposition Composition

Level structure Generalizations

External Event <<Stereotype>>

Stable state Final State

Unstable state Initial State

Internal Event <<Stereotype>>

Well defined Event Trigger

Poorly defined Event
(Source: Dussart et al. 2004 p.85)

 49

The work of Dussart et al. (2004) revealed that the activity diagram overlaps
ontologically with the state diagram. As both state diagrams and activity diagrams
represent the behavior of objects (Evermann & Wand 2001) such overlap seems to
be justifiable. As part of the analysis of ontological completeness, Dussart et al.
(2004) showed that there are several constructs that cannot find representation in the
BWW model: lawful event space, acts on and poorly defined event.

Although UML could be considered incomplete, this incompleteness has been
minimized to only four constructs that are not necessarily essential to workflow
modeling (Dussart et al. 2004), and this could confirm a conclusion by Green and
Rosemann (1999) who raised the question of a possible over-engineering of the
BWW model and a need for a contextual individualization of the model.

In this section the ontological analysis of UML made by several authors has been
introduced and their maps to BWW constructs presented. Although the UML has
been shown as ontologically incomplete, it has enough constructs to represent
business information systems requirements and therefore a strong grammar to
generate component requirements models.

2.9 Templates for the transformation of requirements models

into ontological models

In the third step of the Fettke and Loos (2003) methodology for ontological
evaluation of requirements models, requirements models need to be transformed to
ontological models in order to compare them for equivalence. Although Fettke and
Loos (2003) mentioned this as part of the methodology, they did not mention how to
accomplish this.

This is a major issue when it comes to the implementation of this methodology.
However, there are at least two template models that can help with this problem.
The first one is the template for defining enterprise modeling constructs proposed by
Opdahl and Henderson-Sellers (2004) and the second is the Green and Rosemann
(1999) BWW meta-model for the description of ontological models in BWW
construct terms. This first template will be explained in the section below.

2.9.1 Opdahl and Henderson-Sellers template model for enterprise modeling

The main idea behind the Opdahl and Henderson-Sellers (2004) template is to
provide a standard way of defining enterprise and IS modeling constructs in terms of
the BWW model, in order to make the definitions cohesive and, thus, learnable,
understandable and as directly comparable to one another as possible. When all
construct definitions are directly comparable, it becomes easier to translate models
from one language to another (Opdahl & Henderson-Sellers 2004). This could be
used to transform legacy systems and re-engineered systems models into BWW
models for ontological evaluation of business requirements equivalency.

 50

The template is used to define each modeling construct separately by filling in four
types of top-level entries, some of which have sub-entries (Opdahl & Henderson-
Sellers 2004):

• The instantiation level entry type is used to define whether the modeling
construct represents the enterprise at the type level, at the instance level or at
either level. This is the simplest type of top-level entry.

• The class entry type is used to define which class of things (or classes of
things) in the enterprise that the modeling construct may represent.

• The property entry type is used to define which property (or properties) in
the enterprise the construct may represent. It may be repeated and may have
several subentries.

• The lifetime entry type is used to define whether the modeling construct
represents events in, states of, processes in or the whole lifetime of one or
more things.

• Each type of top-level entry can be represented separately by using
constructs from UML. The first and simplest entry type is used to define the
instantiation level of a modeling construct. The construct is at the type level
if it represents BWW classes (or their characteristic properties, etc.) and it is
at the instance level if it represents BWW things (and/or their properties,
states, events, histories, etc.) (Opdahl & Henderson-Sellers 2004).

Figure 2-13 shows the first part of a UML class diagram for the template, according
to which a ConstructDefinition has a constructName and an instLevel has attributes.
In the UML, when multiplicities are not shown for attributes, the default is one to
one, so each ConstructDefinition has exactly one instLevel attribute (Opdahl &
Henderson-Sellers 2004).

The second type of entry is used to define which class of things the modeling
construct may represent. For a modeling construct at the type level, this means that
the construct may only represent subclasses of the specified class. For a modeling
construct at the instance level, this means that the construct may only represent
things that belong to the specified class (Opdahl & Henderson-Sellers 2004).

Figure 2.13 UML class diagram of the instantiation level entry

(Source: Opdahl & Henderson-Sellers 2004)

Figure 2-14 extends the UML class diagram to show that a ConstructDefinition
consists of one or more RepresentedClasses, each of which is defined, according to
the BWW model, by one or more CharacteristicProperties (Opdahl & Henderson-
Sellers 2004). According to Figure 2-14, the template allows repeated class entries
for modeling constructs that may represent several different classes of things (at the

 51

type level) or several things of different classes (at the instance level) (Opdahl &
Henderson-Sellers 2004).

Figure 2.14 UML class diagram extended to show the class entity

(Source: Opdahl & Henderson-Sellers 2004)

The third type of entry is used to define which properties of things the modeling
construct may represent. Sometimes different modeling constructs may represent
the same class of things but not the same properties of those things (Opdahl &
Henderson-Sellers 2004).

Figure 2-15 extends the UML class diagram to show that a ConstructDefinition also
consists of zero or more RepresentedProperties, which specialize the Properties that
characterize RepresentedClasses.

 52

Figure 2.15 UML class diagram extended to show the property entry

(Source: Opdahl & Henderson-Sellers 2004)

The BWW model has concepts that describe properties in even greater detail and
that are also used in the template. Figure 2-16 extends the UML class diagram to
show the additional attributes of Properties and RepresentedProperties.

Most importantly, according to the BWW model, a RepresentedProperty has an
attribute that defines whether the modeling construct represents (a) the property per
se, i.e., the BWW property itself; (b) the property datatype, i.e., the BWW property
co-domain; (c) a property value, i.e., a value in the BWW property co-domain; or
(d) some combination of these.

A Property has an attribute that defines whether the modeling construct represents a
non-law, a state law or a transition law according to the BWW model. A Property
that is a law is described by an oclExpression. A Property also has an attribute that
defines whether the modeling construct represents a wholepart relation or not
according to the BWW model.

Figure 2-16 also shows the additional attributes of the ClassPropertyAssociation
class. The first of these defines whether the RepresentedProperty is intrinsic,
nonbinding mutual or binding mutual with respect to a particular RepresentedClass.

 53

Figure 2.16 UML class diagram extended to show the ontological descriptions of properties

(Source: Opdahl & Henderson-Sellers 2004)

The fourth type of entry is used to define which part of the lifetime of a thing that
the modeling construct may represent. Sometimes different modeling constructs
may represent the same class of things and the same properties of those things but
different segments of the lifetimes of those things. For example, one construct may
represent an event, another a state and a third a process, although all three constructs
represent the same property of the same thing. This becomes obvious when we see
that constructs that are as different as UML-state and UML-event have identical
instantiation level, class and property entries. Both constructs represent the type
level, may represent any subclass of the class of ChangingThings and may represent
any non-law properties of those subclasses. However, they are distinguished by their
lifetime entries (Opdahl & Henderson-Sellers 2004).

Figure 2-17 extends the UML class diagram to show RepresentedSegments of the
lifetimes of things and classes. A ConstructDefinition has exactly one
RepresentedSegment, which is either the whole lifetime of the thing or class, a
process, a state or an event. RepresentedSegments that are states or events must also
have a RepresentedState and/or a RepresentedEvent as parts. A RepresentedState is
described by an oclExpression that involves RepresentedProperties. A
RepresentedEvent is defined in terms of its from- and toStates. BWW processes are
represented as chains of RepresentedStates and -Events (Opdahl & Henderson-
Sellers 2004).

Although the Opdahl and Henderson-Sellers (2004) template does not account for
all the BWW-concepts presented in other papers (e.g., Wand & Weber, 1988, 1993,
1995), it accounts for all the basic concepts, so that modeling constructs defined in
terms of the template should also be implicitly related to the rest of the BWW
model. However, the need for further research in order to extend the template with

 54

more BWW concepts is acknowledged as part of Opdahl and Henderson-Sellers
(2004) research.

Figure 2.17 UML class diagram extended to show the lifetime entry

(Source: Opdahl & Henderson-Sellers 2004)

Another alternative to generate normalized reference models in BWW terms is the
Green and Rosemann (1999) BWW meta model. This will be discussed in detail in
the next section.

2.9.2 The Green and Rosemann BWW meta-model

The Green and Rosemann (2000) BWW meta-model is based on the original E-R
specification from Chen (1976) with extensions made by Scheer (1998). This
version is called the extended ER-model (eERM). The meta-model identifies 28
main constructs in the BWW model (Green & Rosemann 2000).

The Green and Rosemann meta-model has been already used for the comparison of
ontologies (Davies et al. 2002) and it has been proposed as a tool to generate
normalized reference models (Rosemann & Green 1999).

Davies et al. (2002) proposed a set of information objects that can be useful when
comparing reference models built with the Green and Rosemann meta-model
(1999):

 55

• Entity types: The comparison of the number and kind of entity types
provides the most essential information for the comparison of meta-models.
Within a given degree of abstraction, the width of an ontology increases with
the number of entity types in the meta-model.

• Relationship types: Another metric concerning the integration within an
ontology is the number of relationship types. The structural density of an
ontology increases with the number of relationship types if the number and
kind of entity types stay the same.

• Beyond entity and relationship types, the comparison of cardinalities and
attributes typically provides further information.

Independent from entity types and relationship types, three different situations can
be distinguished when comparing meta-models (Davies et al. 2002):

• Between two corresponding elements in two ontologies there might be a 1-1
relationship. This case describes ontological equivalence.

• It might also be the case that one element in an ontology is further specified
by two or more elements in the other ontology.

• Finally, it might be the case that one element in one ontology does not have
any correspondence in the other ontology at all.

• The meta-model has also been used to model the ARIS process modeling
grammar (Rosemann & Green 2002) so there is previous work that could be
used to build upon for this dissertation.

Figure 2.18 The application of Green and Rosemann (1998) metamodel for ontologies

comparison

6) Enables ontology
engineering

4) Enables ontology-based
method engineering

Ontology B

Ontology C

5) Streamlines the
comparison of ontologies

Meta Model for
ontological constructs

Meta Model for
ontological constructs

2) Clarif ies inconsistencies
and anomalies

New Grammar

1a) Facilitates communication
about the ontology

1b) Simplif ies teaching
the ontology

Q

Grammar A

Grammar B

3) Streamlines the
ontological analysis

of grammars

New Ontology

6) Enables ontology
engineering

4) Enables ontology-based
method engineering

Ontology B

Ontology C

5) Streamlines the
comparison of ontologies

Ontology B

Ontology C

5) Streamlines the
comparison of ontologies

Meta Model for
ontological constructs

Meta Model for
ontological constructs

2) Clarif ies inconsistencies
and anomalies

New GrammarNew Grammar

1a) Facilitates communication
about the ontology

1b) Simplif ies teaching
the ontology

QQ

Grammar A

Grammar B

3) Streamlines the
ontological analysis

of grammars

Grammar A

Grammar B

3) Streamlines the
ontological analysis

of grammars

New OntologyNew Ontology

(Source: Davies et al. 2002)

The Green and Rosemann (1998) meta-model seems to be a better fit for this
dissertation. Although the Opdahl and Henderson-Sellers (2004) model is able to
represent IS models in BWW terms, it does not account for all the BWW-concepts

 56

(Opdahl & Henderson-Sellers 2004) while the Green and Rosemann (1998) meta-
model identifies 28 main constructs in the BWW model (Green & Rosemann 2000).
Also, the Green and Rosemann meta-model (1998) has been used to generate
normalized reference models (Rosemann & Green 1999) and the methodology to
compare Green and Rosemann (1998) meta-models for ontological equivalence has
been developed by Davies et al. (2002), making it an attractive option as this
foundation is required for this dissertation research (Figure 2-18).

2.10 Conclusions

The literature review started with the concept of legacy systems and their
importance to business given their size, stability and importance to business
operations. As these legacy systems are crucial to the operation of business, it is
important to be able to transfer all the requirements that these systems have captured
during many years of operation when re-engineering these systems in order to adapt
them to component based architectures that can cope with more modern
technologies.

The definition of a requirements model and its role to represent the business
requirements of an information system were covered as part of this literature review.

The traditional approach of requirements modeling and component-based modeling
were covered and the two major approaches (UML and Catalysis) for component
model generation were compared and contrasted. Component-based modeling was
also compared and contrasted with the traditional approach of requirements
modeling.

Component-based re-engineering was explained and three re-engineering
methodologies were reviewed and compared. The Deursen et al. (2000) re-
engineering methodology was highlighted as a strong way of recovering legacy
systems requirements models but weak to generate component-based models. On
the other hand, the Draco methodology (Fontanette et al. 2003) is able to generate
the component-based models necessary for this research by using case tools but
unable to recover legacy requirements models. Finally, the Jacobson and Lindstrom
(1991) approach for re-engineering of legacy systems was proposed as a good fit for
this research because it includes cases of a complete change of implementation
technique and no change in the functionality and covers reverse engineering.
Although this last one was originally designed for object-oriented re-engineering, it
could be easily adapted to component- based (Fevre et al. 2003).

The BWW model was detailed and its relevance to information systems was
explained. The Fettke and Loos (2003) approach to the ontological evaluation of
reference models was described and its relevance to compare requirements models
was explained. Mappings for process modeling and UML models to BWW
constructs were introduced and analyzed.

One of the biggest weaknesses of the Fettke and Loos (2003) methodology is its
lack of methodology for transformation of requirements models into BWW models.
Although this is essential to compare two requirements models for equivalency of
representation, Fettke and Loos (2003) did not include this in any detail.

 57

Two major approaches for transforming information systems models into BWW
models were reviewed and contrasted. Although the Opdahl and Henderson-Sellers
(2004) template could be used as a platform for model comparison in the Fettke and
Loos (2003) methodology, the Green and Rosemann (1998) meta-model is a better
fit for this research given the previous research work that shows its use for
requirements model comparison (Davis et al 2002).

The presented literature review described all the necessary elements to conduct the
research for this dissertation. Also, this review justifies this study given the size of
the legacy systems in the present economy that require re-engineering in order to
adapt to modern needs. The literature review also reveals a gap of research dealing
with ontological evaluation of re-engineered systems: although many researchers
have found many uses of ontological evaluation in the modern information systems,
very little research has been conducted on the use of ontologies for evaluation of re-
engineered systems.

In the next section, the research methodologies used for this study are introduced
and justified. In addition, issues with validity and reliability are also discussed.

 58

Chapter 3 Research Methodology

3.1 Introduction

This research is applied in nature. Instead of building new theoretical constructs, this
research has the objective of using existing component-based constructs in order to
compare their capability of representing the same requirements in component-based
requirements models when re-engineering legacy systems modeled with traditional
constructs. Very few research frameworks for applied research in information
systems have been developed in the past. However, design science, a scientific
research method applied to information systems (March & Smith 1995) can be used
in developing an evaluation of requirements models framework.

Applied to this dissertation, design science means designing an evaluation of
requirements models’ frameworks that helps IS specialists in the verification of
representation of the business requirements in re-engineered component-based
requirements models originally represented in legacy requirements models.

March and Smith (1995) define design science as an attempt to create things that
serve human purposes, as opposed to natural and social sciences, which try to
understand reality (Au 2001).

March and Smith outline a design science framework with two axes, namely
research activities and research outputs. Research outputs cover constructs, models,
methods and instantiations. Research activities comprise building, evaluating,
theorizing on and justifying artifacts.

Constructs or concepts form the vocabulary of a domain. They constitute a
conceptualization used to describe problems within a domain. A model is a set of
propositions or statements expressing relationships among constructs. In design
activities, models represent situations as problem and solution statements. A method
is a set of steps (an algorithm or guideline) used to perform a task. Methods are
based on a set of underlying constructs (language) and a representation (model) of
the solution space. An instantiation is the realization of an artifact in its
environment. Instantiations operationalize constructs, models and methods.

Concerning research activities, March and Smith (1995) identify build and evaluate
as the two main issues in design science. Build refers to the development of
constructs, models, methods and artifacts demonstrating that they can be
constructed. Evaluate refers to the development of criteria and the assessment of the
output's performance against those criteria. Parallel to these two research activities
in design science, March and Smith add the natural and social science couple, which
are theorize and justify. This refers to the construction of theories that explain how
or why something happens. In the case of IT and IS research this is often an
explanation of how or why an artifact works within its environment. Justify refers to
theory proving and requires the gathering of scientific evidence that supports or
refutes the theory (March & Smith 1995).

The use of the design science research framework is justified for this research for
the following reasons:

 59

• It provides a framework that can be used for information systems applied

research. This is in line with Nunamaker, et al. (1990) who classify design
science in IS as applied research that applies knowledge to solve practical
problems.

• It provides a framework for evaluation of models. The objective of this
research is the evaluation of the capacity of component-based requirements
models to represent business requirements of legacy requirements models.
This framework seems to be aligned with this objective.

• The framework can be used to extend the scope of this research. Although
the objective of this research is not to create new theory based on the
findings, the framework provides that possibility and could be used for
future research.

3.2 Research outline for this dissertation

The research in this dissertation is based on the design science framework detailed
above and essentially covers the build and some evaluate research activities and has
a research output of constructs and models. Instantiations are not covered as the
scope of this research is limited to requirements models. Requirements models do
not include any implementation details that can be used for instantiation.

As illustrated in Table 3-1, March and Smith (1995) propose a four by four
framework that produces sixteen cells describing viable research efforts. The
different cells have different objectives with different appropriate research methods.
A research project can cover multiple cells, but does not necessarily have to cover
them all.

The build part of the framework will be used as part of this research as requirements
models need to be created for ontological evaluation. The main activity of this
research will be the evaluation as it will allow us to identify metrics to compare the
performance of constructs and models.

Table 3-1 illustrates which cells at the intersection of research activities and research
outputs of March and Smith's (1995) framework are covered by this dissertation.
Each cell/intersection contains a specific research objective of the overall research.
The build column covers the recovery of a requirements model for a legacy system
and the generation of a re-engineered component-based requirements models.
Construct building is not required as existing constructs for both traditional and
component-based will be used.

The evaluate column includes evaluating the completeness of the component-based
constructs (UML) in terms of ontological deficiencies that the constructs could have
to model traditional constructs. Requirements models need to be evaluated in order
to measure the component-based requirements model capacity of representing the
same requirements as the legacy requirements model.

 60

Table 3.1 Research activities based on the Design Science Framework

 Build Evaluate Theorize Justify

Constructs Not required Identifying
ontological
modeling
deficiencies of
component-
based
constructs in
terms of
traditional
construct
representation

Not required Not required

Model Recover the
legacy
requirements
model of the
case study

Generate the
re-engineered
component-
based
requirements
model for the
legacy system

Evaluate the
capacity of the
re-engineered
component-
based for
representing
the same
business
requirements
embedded in
the legacy
requirements
model

Not required Not required

Method Not required Not required Not required Not required

Instantiation Not required Not required Not required Not required

3.3 Methodologies applied to the Design Science Framework

In the previous section we explained the research objectives in the different cells of
March and Smith's (1995) framework covered by this dissertation. March and Smith
warn that every cell and research objective may call for a different methodology.
This makes it necessary to identify an adequate method for each specific research
objective, resulting in an overall method mix. To achieve this, several
methodologies were identified as part of the literature review. These methods are
identified in Table 3-2.

 61

Table 3.2 Methodologies used in this research

Methodology Definition

Case Study Study of a single phenomenon (e.g., an application, a
technology, a decision) in an organization over a logical time
frame.

Jacobson &
Lindstrom (1991)

Methodology for information systems re-engineering and
legacy system requirements model recovery

Fettke & Loos
(2003)

Methodology for ontological evaluation of requirements
models

Interviews Research in which information is obtained by asking
respondents questions directly.

Direct observation This occurs when a field visit is conducted during the case
study

Secondary Data

A study that utilizes existing organizational and business
data, e.g., document, diagrams, etc.

Rosemann & Green
(2002)

Meta-models methodology for Normalized Reference
Models generation and comparison

Table 3-3 illustrates which of the retained methodologies was applied to each cell
and accordingly to which research objective.

The research starts with a description of the case study company, its organizational
structure, main business services and client base. Further, the output of this research
involves three main parts: requirements model recovery, system re-engineering and
ontological evaluation.

The requirements model recovery of the case study is one of the major challenges in
the research because most of the legacy systems have very poor documentation in
terms of requirements models and technical design. In order to address this problem,
the researcher captured the requirements model of the legacy system by applying a
reverse engineering approach as specified in the Jacobson and Lindstrom (1991)
methodology. This methodology uses data collection methods including interviews,
direct observation and secondary data.

Once the requirements models from the legacy system are recovered, the system
was re-engineered using the Jacobson and Lindstrom (1991) approach for re-
engineering of legacy systems. The output of this step is the re-engineered
component-based requirements model.

After the legacy system and re-engineered requirements models are generated, they
are evaluated based on their ontological evaluation of grammars (Wand & Weber
1993). An ontological normalization for the original and re-engineered requirements
models is generated. The two models are evaluated using the Fettke and Loos
(2003) methodology based on their ontologically normalized models generated
using the Rosemann and Green (2000) methodology. The resulting comparison is
that the compared models are ontological equivalent, complementary or in conflict
(Fettke & Loos 2003).

 62

In the following section, the justification and contribution for each of the chosen
methodologies is explained in detail.

Table 3.3 Research methodologies used for the Design Science Framework

 Build Evaluate

Constructs Fettke & Loos

Model Case Study

Interviews

Secondary Data

Direct Observation

Jacobson & Lindstrom

Case Study

Fettke & Loos

Rosemann & Green

3.4 Justification of the Case Study Research Methodology

Case study methodology is appropriate for this research given its “exploratory
nature” (Benbasat et al. 1987) and because it is the most commonly applied
qualitative, positivist, method in information systems research (Orlikowski &
Baroudi 1991; Alavi & Carlson 1992).

Also, case studies are “especially useful in situations in which a complicated series
of variables interact to produce the problem” (Kinnear & Taylor 1996 p. 176).
Information systems re-engineering is complex and it does not have a predefined set
of controlled variables that can be identified for all the possible cases. This makes
quantitative research almost impossible and case study research more viable as a
research methodology because the investigator may not specify the set of
independent and dependent variables in advance (Benbasat et al. 1987).

A case study enables the researcher to deeply study information systems in the real
environment of the study object rather than in a simulated environment. Another
characteristic of case study research is that data is collected by multiple means
(Benbasat et al. 1987). This is relevant for this research because data is collected
from user documentation, observation and open interviews with the maintainers.
This multiple data source also makes the study more reliable.

Only one or few entities (person, group or organization) are examined in a case
study (Benbasat et al. 1987). This makes case study methodology a good option for
information systems re-engineering research as it simplifies the research and allows
the researcher to concentrate on one organization. By concentrating on only one
organization, the researcher can study the complexity of the re-engineering process
intensively.

Finally, the focus of case study research is on contemporary events (Benbasat et al.
1987) and systems re-engineering is current and expected to grow rapidly.

 63

In summary, the case study methodology is appropriate for this research because it
is suitable for exploratory research, allows multiple sources of data collection to
improve the validity of the study and allows the natural study of information system
re-engineering.

3.5 Justification of the Jacobson and Lindstrom Methodology for

Information Systems Re-engineering and legacy system
requirements model recovery

One of the major challenges of this research is to reconstruct the legacy
requirements model so it can be compared with the re-engineered requirements
model. The Jacobson and Lindstrom (1991) methodology is relevant for this
research as it covers the reverse engineering techniques necessary to recover the
original requirements model for the legacy system.

Although other re-engineering methodologies such as the Deursen et al. (2000)
methodology allow the recovery of the legacy requirements model based on the
analysis of source code, this can represent a problem for information systems that
consist not only of software developed in-house but also involve the integration of
off-the-shelf software packages and custom software development. Furthermore, the
source code analysis for legacy requirements model recovery is a complex process
that requires a sound knowledge of the legacy system that sometimes is not
available in the organization. One of the main reasons for the selection of the
Jacobson and Lindstrom (1991) methodology is that it does not rely exclusively on
the analysis of source code but on other description elements such as the
requirements specifications, user operating instructions, maintenance manuals,
training manuals, design documentation and database schema descriptions. This
makes the recovered requirements model more reliable given the different sources
required for its generation.

One of the constraints of this research is to compare requirements models from the
legacy and re-engineered system for the case of no change in functionality as this
allows the comparison of ontological equivalent models that should reflect exactly
the same requirements. The Jacobson and Lindstrom (1991) methodology considers
the case of no change in functionality, which is the case of this research.

Reduction of complexity of the research is another reason for using the Jacobson
and Lindstrom (1991) methodology. Most of the reverse engineering and re-
engineering methodologies rely on complex methods such as cluster analysis and
source code analysis while the research methodology chosen here is straightforward
and does not require complex calculations and analysis tools.

There is also documented evidence that this methodology has worked well for
several industries such as the telecommunications, aerospace and defense industries
(Jacobson & Lindstrom 1991).

In summary, the Jacobson and Lindstrom (1991) approach for re-engineering of
legacy systems is selected because it contemplates cases of a complete change of

 64

implementation technique and no change in the functionality, it does not rely solely
on the source code, it covers reverse engineering and it is relatively simple to use.

3.6 Justification of the Fettke and Loos methodology for

Ontological Evaluation of Requirements models

The objective of the research is to evaluate the requirements models of the legacy
and re-engineered information systems for equivalency of representation of business
requirements. Several research methodologies for evaluation of requirements
models have been developed in the past for this purpose. Fettke and Loos (2003)
classified research methods for requirements model evaluation into analytical and
empirical approaches. Analytical approaches are based on logical conclusions while
empirical approaches are based on experiences. Both approaches can be
differentiated by quality criteria, these criteria can be either ad hoc or theory driven.
Theory-driven quality criteria are derived from and founded on a specific reference
theory (Vessey et al. 2004) whereas ad hoc quality criteria are introduced for the
purpose of the evaluation approach without referring to a specific theory.

Although approaches to evaluate requirements models such as those of Mišic and
Zhao (2000) and Schütte (1998) could have been used to compare the legacy and re-
engineered requirements models, the problem with these feature-based evaluation
approaches is that the development and selection of a specific feature set is often a
subjective issue as they are driven by the ambiguous ad hoc quality criteria. On the
other hand, the Fettke and Loos (2003) approach is based on the Bunge-Wand-
Weber ontology theory and therefore a much better choice for requirements model
evaluation given that this theory is well founded on mathematical concepts and has
shown promising results for research on the evaluation of grammars (Evermann &
Wand 2001b; Green & Rosemann 2000; Opdahl & Henderson-Sellers 2002a; Weber
& Zhang 1996).

In addition, the Fettke and Loos (2003) approach was selected because it allows
comparing requirements models that are represented with different grammars which
is the main objective of this research.

In summary, the use of the Fettke and Loos (2003) approach is justified because it is
BWW theory driven and a simple analytical approach that provides a mechanism for
comparison of requirements models.

3.7 Justification of the Rosemann and Green meta-models for

normalized reference models

As part of the Fettke and Loos (2003) methodology, the requirements model needs
to be transformed to an ontological model. The outcome of this step is an
ontologically normalized reference model. In order to generate these normalized
reference models in BWW terms, the Rosemann and Green (2000) BWW meta-
models will be used. This meta-model is based on the original E-R specification
from Chen (1976) with extensions made by Scheer (1998). The use of the Rosemann
and Green (2000) meta-models is justified for the following reasons:

 65

Since Chen (1976) introduced the original E-R approach, it has undergone intensive
discussions and further developments. It is realistic therefore to expect that solutions
for special methodological problems that could occur during the process of
designing the meta-model are already available in most cases.

Within the communities of computer science and information systems many
potential meta-languages are available. The E-R approach is widely accepted as a de
facto standard for modeling. Evidence for this situation is that the annual
international conference on E-R modeling has been organized for the past 20 years.
Several meta-models based on the E-R approach are already available. Among
others, Scheer (2000) uses an E-R-based meta-language to explain his Architecture
of Integrated Information Systems (ARIS).

3.8 Procedures

There are two types of research procedures: build and evaluation. Build procedures
are required to accomplish the build objectives of the design research framework
while the evaluation procedures accomplish the evaluation objectives.

3.8.1 Data Collection (Build)

Data gathering is an important part of this research as it is required to commence the
building part of the research. Stake (1995) and Yin (1994) have identified seven
sources of empirical evidence in case studies:

1. Documents: Written material sources.
2. Archival records: Archival documents can be service records,

organizational records, and lists of names, survey data, and other
such records.

3. Interviews: An interview can be used for three purposes: as an
exploratory device to help identify variables and relations, as the
main instrument of the research and as a supplement to other
methods (Kerlinger 1986).

4. Questionnaires: These are structured questions written and supplied
to a large number of respondents, commonly spread over a large
geographical area for consideration in advance.

5. Direct observation: This occurs when a field visit is conducted during
the case study.

6. Participant-observation: Participant-observation turns the researcher
into an active participant in the events being studied.

7. Physical artefacts: Physical artefacts can be tools, instruments, or
some other physical evidence that may be collected during the study
as part of the field visit.

For this research, interviews, observation techniques, physical artifacts and review
of system documents were used for the case study. The most common methods of
collecting data within the case study approach are through observation and
interviews (Bell 1992). The benefits that both observation and interviews serve in
the assimilation of qualitative information is noted by Gilbert (1993) and expanded
upon here.

 66

The use of observation as a method of data collection is well documented (Bell
1992, Benbasat et al. 1987, Stake 1995) and works well in case research (Yin 1994).
Before observation can be used in research, three minimum conditions set out by
Tull and Hawkins (1993) need to be met:

1. The data has to be available for observation
2. The behaviour has to be repetitive, frequent, or otherwise predictable
3. An event has to cover a reasonably short time span.

According to Jorgensen (1989), observation is appropriate for studies of almost
every human existence. Through observation, it is possible to describe what goes on,
who or what is involved, when and where things happen, how they occur, and why
things happen as they do in particular situations (Jorgensen 1989). A great deal of
time is spent on paying attention, watching and listening carefully (Neuman 1994).
The observer uses all the senses, noticing what is seen, heard, smelled, tasted and
touched (Neuman 1994; Spradley 1979).

According to Neuman (1994), there are four possible research stances for the
participant observer:

1. Complete participant: the researcher operates under conditions of
secret observation and full participation.

2. Complete observer: the researcher is behind a one-way mirror or in
an invisible role that permits undetected and unnoticed observation
and eavesdropping.

3. Participant as observer: the researcher and members are aware of the
research role, but the researcher is an intimate friend who is a
pseudomember.

4. Observer as participant: the researcher is a known, overt observer
from the beginning, who has more limited or formal contact with
members.

The case selected is a legacy systems which uses a centralized mainframe platform.
Such a platform is representative of the platforms on which many legacy-based
systems operate. A software house produces a home loan software system
implemented at a number of banks and insurance groups. The system operates on
the Unisys A-Series mainframes. The case-study’s system is a customised version
of the home loan system product implemented at a mid-sized home loan bank in the
Netherlands that specializes in the marketing, sales and administration of its own
home loan products. This bank is the case study company for this research. The
case study system was implemented in the mid 1980’s and is maintained by a team
of two software developers. The system has been modified many times in order to
reflect changes in the business processes of the organization; however, there is no
formal documentation of these changes.

The technique used to interview maintainers was open-ended interviews. The use of
this technique is justified for this research by two main reasons. First, the goal is to
elicit the respondent’s views and experiences in his or her own terms, rather than to
collect data that are simply a choice among pre-established response categories

 67

(Anderson et al. 1994). Secondly, the interview is not bound to a rigid interview
format or set of questions that would be difficult to establish given the nature of the
research and will limit the results (Anderson et al. 1994).

System documentation was collected in order to perform the reverse engineering
analysis required to recover the requirements models (Jacobson & Lindstrom 1991).
Jacobson and Lindstrom (1991) suggests that the legacy information system can be
described by using different elements as requirements specifications, user operating
instructions, maintenance manuals, training manuals, design documentation, source
code files, and database schema descriptions (Jacobson & Lindstrom 1991).

For this case study, the following documents were collected to describe the
information system:

1. Architecture documentation: The diagrams are included in Appendix
A and include Sub-system flow (geographic) diagram, Sub-system
process flow diagram, System architecture for the procedural model
diagram, batch process program flow diagram, and screen diagrams.
These diagrams have not been updated since the original
implementation of the legacy system that started in the mid 1980’s
and ended in 1987. These diagrams were developed by the software
development firm that customized the bank’s legacy system.

2. Database schema: The logical data model of the legacy system was
collected a used to generate the data model for this dissertation. This
document was created by the software development firm that
impemented the legacy system.

3. Manuals: User manuals for the legacy system. These manuals have
not been updated to reflect modifications.

3.8.2 Requirements model Recovery (Build)

The reverse engineering methodology, as specified in Jacobson and Lindstrom
(1991) was applied to capture the requirements model of the legacy system. The
following steps were used:

• Develop a concrete graph that describes the components of the system and
their interrelationship.

• Develop an abstract graph showing the behavior and the structure of the
system.

• Develop a mapping between the two, i.e. how something in the abstract
graph relates to the concrete graph and vice versa.

The abstract graph should be free of implementation details. For example,
mechanisms for persistent storage or partitioning into processes should not appear
on this graph. The concrete graph must, on the other hand, show these details. The
mapping between the two should explain how the abstract graph is implemented by
way of the concrete graph (Jacobson & Lindstrom 1991).

 68

As described in section 3.8.1, the components of the legacy system that were
collected to describe the system were:

• Database schemas
• User manuals
• Architecture documentation
• Observation of the system
• Open Interviews with users and technical experts

Use cases were used to develop the concrete graph for reverse engineering. Use
cases are an excellent tool for reverse engineering as they provide a sequence of user
interactions with the system (Jacobson & Lindstrom 1991). Their purpose is to
define a typical way of using the system and to describe the business process, which
document how the business works and what the business goals are of each
interaction with the system. In the context of reverse engineering, it is possible to
explore an old system with use cases (Jacobson & Lindstrom 1991).

The use cases developed show the interrelationship between manuals,
documentation, interviews, source code and researcher’s observation of the system.
The abstract graph described in the Jacobson and Lindstrom (1991) methodology is
in fact an example of a legacy requirements model. For the legacy system in this
study, the requirements model was represented in terms of data flow diagrams, a
context model and entity relationship diagrams.

The description of the business process, business events and responses is essential in
generating a requirements model (Whitten et al. 2001). The use cases used to
construct the concrete graph, document the business processes, events and responses
required to construct this legacy abstract graph. In order to generate the DFDs
required to construct the legacy requirements model, business events to which the
system must respond and appropriate responses were identified with the help of the
use cases. Essentially, there are three types of events (Whitten et al. 2000):

1. External events: are so named because they are initiated by external
agents. When these events happen, an input data flow occurs for the
system in the DFD.

2. Temporal events: trigger processes on the basis of time. When these
events happen, an input called control flow occurs.

3. State events: trigger processes based on a system change from one
state or condition to another.

Information systems usually respond to external or temporal events. State events are
usually associated with real time systems (Whitten et al. 2000).

 69

Once these events were identified, DFDs were drawn using Microsoft Visio 2000
with the help of the list of mapping transformations suggested by Whitten et al.
(2000). This mapping shows how the concrete graph represented by the use case can
be mapped into the abstract graph represented by the DFD. The list of
recommendations is:

• The actor in the use case that initiated the event will become the external
agent.

• The event identified in the use case will be handled by a process in the DFD.
• The input or trigger in the use case will become the data or control flow in

the DFD.
• All outputs and responses in the use case will become data flows in the DFD.

DFD models were reviewed with the software developers in charge of the
maintenance of the case-study legacy system in order to verify its accuracy. The
data model of the legacy requirements model was generated by identifying the data
stores in the DFD, examining the use cases and database schemas, and documented
using an entity relationship diagram.

3.8.3 Component-based requirements model generation (Build)

Once the requirements model was reverse engineered from the legacy system, the
legacy system was re-engineered for a complete change in implementation
technique but no change in functionality by using the following steps (Jacobson &
Lindstrom 1991):

• Prepare an analysis model.
• Map each analysis object to the implementation of the old system.

In the first step, an analysis model was prepared with the help of the use cases
prepared in the reverse engineering process. These use cases already contain the
information that was assimilated from the manual, system architecture
documentation, open interviews and research observations described as description
elements in the Jacobson and Lindstom (1991) methodology shown in Figure 3-1.
Only the analysis model of the re-engineering process was required as this
research’s primary objective is the comparison of requirements models and it is not
concerned about the full implementation of the information systems.

 70

Figure 3.1 Preparation of the analysis model

(Adapted from Jacobson & Lindstom (1991))

An analysis model only contains the logical aspect and is free of physical
implementation details. The logical representation of a component is concerned with
its logical abstraction, its relationship with other logical elements, and its assigned
responsibilities. The logical representation of a component-based system was
modeled using the following UML diagrams (Houston & Norris 2001):

• Use case diagrams
• Class diagrams
• Sequence diagram
• State diagrams.

Actors were identified from the use cases and use case diagrams were constructed to
identify the system scope and boundaries. The requirements model should be free of
physical implementation details; for the case of components, their logical
representation is modeled using UML subsystems and identified inside the use case
diagrams as proposed by Houston and Norris (2001). Class diagrams are prepared
using the criteria for finding objects that are described in the object-oriented method
described by Jacobson (1987). This step is accomplished by reviewing each use case
to find nouns that correspond to business entities or events (Jacobson 1987). Not all
the nouns in the use cases represent valid business objects. The list of nouns is
cleaned by removing nouns that represent synonyms, nouns outside of the scope of
the system, nouns that are roles without unique behavior or are external roles,
unclear nouns that need focus or nouns that are really actions or attributes (Whitten
et al. 2000). Once objects are identified, their relationships were modeled as part of
the class diagrams and interfaces were identified.

All subsystems are said to have a state that is the value of its attributes at one point
in time (Whitten et al. 2000). The change in state is triggered by an event. A state
diagram depicting the different state a subsystem can have, the events that cause the

System
Architecture

Documentation

Open Interviews

System
Observation

User Manuals

Use Cases Analysis Model of the
System

Restructuring
Analysis

 71

subsystem to change state over time, and the rules that govern the subsystem’s
transition between states is generated for all the subsystems that have identifiable
states and complex behavior. Once state diagrams are generated, sequence diagrams
are completed in order to show how the subsystem’s elements implement the major
interface operations (Houston & Norris 2001).

After the UML diagrams that represent the component analysis model are
completed, a mapping of each analysis object to the implementation of the old
system is conducted as suggested by Jacobson and Lindstrom (1991). The map
showed that all analysis objects and dependencies were motivated by at least one
primitive description element.

3.8.4 Ontological Evaluation (Evaluation)

Once the legacy requirements model is recovered and the component business
analysis model represented with the use of UML diagrams, the Fettke and Loos
(2003) methodology is used to evaluate these models for equivalency of
representation of business requirements.
As part of this evaluation, the ontological normalization of the legacy and re-
engineered component requirements models is generated. The ontological
normalization of a reference model consisted of four steps (Fettke & Loos 2003):

1. Developing a transformation mapping,
2. Identifying ontological modeling deficiencies,
3. Transforming the requirements models, and
4. Assessing the results.

In the first step of this method, a transformation mapping for the traditional and
component-based (UML) diagrams used for representing the requirements models is
developed. This transformation mapping allowed converting the constructs of the
traditional and component based (UML) diagrams to the constructs of the BWW
model. The first step is based on the method for the ontological evaluation of
grammars proposed by Wand and Weber (1993).

The transformation mapping consisted of two mathematical mappings. First, a
representation mapping described whether and how the constructs of the BWW
model are mapped onto the traditional and component based (UML) constructs.
Second, the interpretation mapping described whether and how the traditional and
component based (UML) constructs are mapped onto the constructs of the BWW-
model (Fettke & Loos 2003).

All ontological deficiencies of the requirements models are identified as part of the
second step of the generation of the normalized ontological requirements models. To
identify the ontological deficiencies of the recovered requirements model and re-
engineered component-based requirements model, all constructs of the models are
reviewed. Each construct of the requirements models analyzed is examined with
respect to whether the construct is used correctly regarding the interpretation
mapping.

 72

Deficiencies are classified as (Fettke & Loos 2003):

• Adequacy: The grammatical construct is ontologically adequate.
Nevertheless an ontological deficiency can emerge by applying the
grammatical construct to build the reference model. Therefore it must be
examined whether the construct of the reference model is used correctly with
respect to the interpretation mapping. The construct of the reference model is
used adequately if it is used correctly with respect to the interpretation
mapping.

• Excess: Construct excess is a modeling deficiency in general and needs a
special handling in the transformation step. Therefore, this construct should
be marked as excessive in the reference model.

• Overload: Construct overload is a modeling deficiency in general and needs
a special handling in the transformation step. Therefore, this construct should
be marked as overloaded in the reference model.

Based on the representation mapping it is decided whether the traditional and
component-based grammar are incomplete or redundant. An incomplete grammar
suggests that specific facts of reality cannot be adequately represented in the
requirements model.

In the third step, the requirements models are transformed to ontological models.
The outcome of this step is two ontologically normalized requirements models. The
objective of both techniques is to represent the domain of interest in a normalized
way by applying specific transformation patterns (Fettke & Loos 2003).

The two models are compared based on their ontologically normalized models. The
result of this comparison is an analysis that revealed if the compared models are
ontological equivalent, complementary or in conflict. In order to generate these
normalized reference models in BWW terms, the Rosemann & Green (2002) BWW
meta-models are used.

3.9 Validity and Reliability

Peräkylä (1997 p. 206) states, "the issues of reliability and validity are important,
because in them the objectivity of research is at stake". Enhancing objectivity
ensures the accuracy of the results and findings from research.

Reliability is the extent to which a procedure will produce the same results under
constant conditions (Bell 1992, Kirk & Miller 1986). In the case of this study, the
reliability of the research results entailed whether or not the same findings would
occur if the study was repeated in the same manner.

Great care has been taken in the planning, implementing and analysis stages to
ensure reliability. Benbaset et al. (1987) state that a clear description of the data
sources and the manner in which they contribute to the overall findings of a study is
an important aspect of the reliability and validity of the results. For this reason, a
clear description of the data sources and methods used to gather those sources is
provided in section 3.8.1.

 73

Data collected using interviews is open to problems such as interview bias,
misdirected prompting and issues of question wording. With regard to the results
from observation techniques, some of the issues that typically affect the reliability of
observation results are potential recorder bias and obtrusive influence (Benbaset et
al. 1987).

Audio tapes were used to increase reliability, interviews were audio recorded.
Peräkylä (1997) states that using tapes and transcripts eliminates many of the
problems associated with the recording of qualitative information, specifically field
notes and the limited public access to them. However, Peräkylä (1997) warns
researchers of several important factors affecting the reliability of tape recordings
and transcripts. These include:

• The decision of how much to record
• The technical quality of the recordings
• The adequacy of transcripts
• The inclusion of vocal expression in initial transcripts.

These issues were considered and it was decided to record and transcribe all
interviews completely thus providing a wide scope and full database of information
from which to extract information. The two interviews conducted were fully
transcribed in detail, noting and including the many aspects of body language of
interviewees. This was in accordance to Peräkylä (1997) who notes that:

A rich transcript is a resource of analysis: at the time of transcribing, the researcher
cannot know which of the details will turn out to be important for the analysis.
(Peräkylä 1997, p. 207).

The transcript was sent back to the interviewes for confirmation. With regard to the
results from observation techniques, the issues of reliability are somewhat easier to
assess than data collected via interviews. Because much of what was observed was
inanimate and static (such as technological deployments, report printing, data entry)
the issues that typically affect the reliability of observation results such as potential
recorder bias and obtrusive influence did not apply. Subsequently, these
observations have high reliability.

Validity describes whether an item measures or describes what it is supposed to
measure or describe (Bell 1992). It is a much more complex concept than reliability
and there are many variations and sub-divisions to which researchers can investigate
in attempts at ensuring validity of their results. Bell (1992) states that researchers
involved in smaller projects without complex testing or measurements need not
investigate the concept of validity too thoroughly but should examine results and
methods critically. Noting this, a brief examination of two aspects of validity is
provided.

To increase validity and to ensure accuracy, follow-up e-mail was used to discuss
and clarify topics of discussion. This ensures that what was stated in the research is
factual and accurate.

 74

Another aspect of validity relates to the generalisability of research findings. The
results of this research were produced from a single case study. The generalisability
of the conclusions can be compromised due to this limitation.

Exemplary case study design ensures that the procedures used are well documented
and can be repeated with the same results (Soy 1996). According to Burns (1994),
research can be considered internally valid if the author demonstrates that the
changes indicated by the analysis of a problem situation constitute an improvement
to it. Internal validity normally applies to explanatory and causal studies, but not to a
descriptive or exploratory study such as this one (Pervan 1996). The researcher
attempts to ensure internal validity for the case study by:

• Conducting the interviews by the same researcher to avoid variations in
administration of the instrument.

• Assuring the respondents of anonymity and confidentiality of the data to
ensure that data gathered were accurate and unbiased.

• Retaining original data such as interview recordings, interview transcripts,
and field notes.

• Allowing the respondents to choose time and place of interviews and
interview time.

• Allowing the respondents to choose comfortable and familiar surroundings
for interview.

• Using triangulation of sources and methods (e.g. open interview,
observation, documents, source code).

According to Gable (1994) and Jick (1979), triangulation involves the use of
multiple techniques within a given method to collect and interpret data. It also
increases the reliability of the data and the process of gathering it as well as serving
to corroborate the data gathered from other sources (Tellis 1997a; 1997b). Exclusive
reliance on one method may bias or distort the researcher’s picture of the particular
slice of reality the researcher is investigating (Burns 1994). Bias may be in the form
of perceptual deceptions or distortions (Remenyi & Williams 1996). Although it
cannot be eradicated, bias can be minimized by the use of techniques such as
triangulation (Remenyi & Williams 1996).

For this research, triangulation was performed by collecting data from open
interviews, manuals, architecture documents, database schemas and observation
techniques.

3.10 Ethical Considerations

Ethical issues to consider when carrying out this research are noted in this section.

Software code is a considerable investment that must be protected against theft and
plagiarism. There was an agreement between the researcher and the owner of the
information system of the case study that the source code should not be made
public, therefore the source code will not be included in this dissertation.

The researcher had access to the information systems database. This database
contains many sensitive customer details such as credit records, addresses and other

 75

personal information. The personal information contained in this data raises privacy
issues, and any existing, applicable privacy legislation must be adhered to, such as
Canada’s Privacy Act 1988.

Different software packages have been used in the preparation of this dissertation.
All the software used in the preparation of this work was properly licensed in order
to conform to copyright laws.

3.11 Conclusions

To address the research question, the design science framework was chosen and
justified as the main methodology framework for this research. This framework
requires two main activities: build and evaluate, which require the use of several
methodologies. The case study methodology was chosen and justified as the main
methodology to build and evaluate requirements models. The Jacobson and
Lindstrom (1991) approach for re-engineering of legacy systems was chosen and
justified as the methodology to build the original requirements model of the legacy
system under research and for the building of the component-based re-engineered
requirements models.

The methodology by Fettke and Loos (2003) was selected and justified to evaluate
the requirements models generated by the reverse engineering (legacy requirements
model) and those generated by the re-engineering process (component model).
Traditional and component-based constructs were also evaluated under the same
methodology. The Rosemann and Green (2002) meta-models were justified as the
primary tool to represent the normalized requirements models in BWW construct
terms. The comparison of the normalized legacy and re-engineered requirements
models revealed if they represent the same requirements and helps to answer the
research question of this study.

Requirements models are built with the help of data collected using interviews,
observation techniques and review of information systems documents. Different
methods to enhance the validity and reliability of the study are discussed and ethical
considerations mentioned in order to protect the privacy of the information collected
and to conform to copyright laws.

 76

Chapter 4 Results

4.1 Case Study Description

The case-study system selected is a Home Loan information system developed by a
consultant company in the Netherlands. The system was customized for a mid-sized
home loan bank based in the Netherlands that specializes in the marketing, sales and
administration of its own home loan products. The information system was designed
for use on Unisys A-Series mainframes.

The selection of this case study is justified for the following reasons. First, the
proposed legacy system uses a centralized mainframe platform. Such a platform is
representative of the platform on which many legacy-based systems operate.
Secondly, the system contains both an on-line processing component, as well as a
batch-processing component. This is a characteristic of many legacy systems,
especially in the financial sector, that require an on-line entry and maintenance
component and a job-scheduling component to handle high volume processing in
non-peak times. Lastly, the system was developed by using the structured
programming approach.

The bank fulfils a number of functions, specifically:

• Marketing and sales of its home loan products.
• The offer and acceptance of client applications via an on-line system. The

client comprises both internal sales staff as well as external agents.
• The complete administration of the home loans.
• The complete administration of their in-house insurance policies.

The bank is responsible for the system enhancements, development and
maintenance of the Home Loan and Insurance information System (HLIS). The
HLIS was developed in the mid eighties and has been in service in the bank since
then. HLIS is a contract system wherein all business property loans as well as
private home loans are managed and administered. This system has its own
application/offer system ensuring that an interface between a separate offer and loan
system is not required. In addition to the loan account administration, all related
insurance policies are managed and administered within the system. The system
ensures absolute correlation between the account and the insurance administration.

The information system consists of two main business systems, namely a batch
processing system and a transaction-based processing system. Most of the systems
within the bank have their data stored and managed within the same shared
database.

There are a number of sub-systems defined within the HLIS system:

• The loan authorization system
• The product system
• The insurance administration system
• The offer and application system

 77

• The loan administration system
• The relation administration system (links offers with applications).

4.1.1 Sub-system selection

Due to the large scale and complexity of the system, the research focused on one
sub-system representative of the main types of business processes. The sub-system
focused on for this research was the Offer and Application sub-system. The Offer
and Application sub-system was selected for the following reasons:

• It includes an on-line user interactive component, a procedural business flow
component and a batch-processing component. This makes it a
representative sub-system because these are the three main components of
the system’s architecture.

• The sub-system can be analyzed independently from the rest of the system as
there is a clear entry point into the sub-system, which starts with an on-line
application process and a clear delivery point to the rest of the system with
the creation of a loan structure. This makes it ideal for the study because the
researcher does not require understanding the details of the other parts of the
system for the analysis.

• This sub-system is small enough to be researched within the scope of the
research project.

• The researcher has access to the area where the sub-system operates. This
can be seen as an advantage because the researcher can observe the sub-
system’s users during working hours for the preparation of the uses cases
required for the re-engineering process.

• The sub-system interacts with the loan administration personnel. This makes
it a representative sub-system because all the other sub-systems also interact
with these actors.

4.1.2 Description of the Offer and Application Sub-System

All applications and subsequent offers for home loan products are handled by the
sales department of the bank (either central or at branch offices) and independent
home loan agents. The sales personnel and the loan administration personnel are the
main system users.

An on-line application is made between the customer and the agent or bank sales
person. In discussion with the client, a customer chooses a particular home loan
product. A product can be thought of as a predefined template or blueprint
containing all relevant information for a loan structure to be “manufactured” at the
time of closure of the offer stage. The product gives the loan its structure and is the
basis for all related entity couplings. Within the product, there can be a number of
optional sub-products.

There are two distinct phases to the home loan application process. The potential
client firstly needs to apply for a home loan. To facilitate the application process, the
system offers the following functions:

• The entry of a new application

 78

• Changes to application details
• Inquiry of existing application details
• Cancellation of the application
• The entry of client details
• The entry of property details.

Once an application has been completed, the bank makes the potential client an offer
or number of offers. The number of offers depends on the amount of changes the
client makes to the application details during the session with the sales advisor. To
facilitate the offer process, the system offers the following functions:

• The entry of a new offer
• Changes to offer details
• Inquiry of existing offer details
• Copying, changing and deletion of client relation details
• The invoking of the calculation module
• Changes to the status of the offer.

The offer can progress through any of the following states from its inception:

• Registration of offer by regional office handling sale.
• Offer registration authorized by regional office.
• Offer registration declined by regional office.
• Offer document produced by regional office.
• Offer document accepted by regional office.
• Offer complete for processing by head office.
• Declined by client at regional office.
• Ready for sending offer back to regional office.
• Registration of offer by head office.
• Authorized by head office.
• Declined by head office.
• Offer document produced by head office.
• Offer document accepted by head office.
• Accepted by client.
• Offer definite.

4.2 Legacy requirements model recovery

As the final goal of this dissertation is to compare the traditional and re-engineered
component requirements models, it is necessary to recover the original requirements
model from the legacy system.

The technique to be used for this purpose is the one proposed by Jacobson and
Lindstrom (1991). The legacy information system can be described by using
different elements including requirements specifications, user operating instructions,
maintenance manuals, training manuals, design documentation, source code files,
and database schema descriptions. The elements selected to describe this system
should represent the true system, e.g. Manual.

 79

For this case study, the following elements were collected to describe the
information system:

• Architecture diagram
• Database schema
• Training manuals
• Interviews with developers
• Database scripts
• System observation

4.2.1 Case Study’s System Architecture

Open interviews were conducted with the maintainers of the legacy systems in order
to find out how the system was developed, what are the functions of the system and
the type of documentation used for the system development. A consent letter to
interview the two developers in charge of the case-study system’s maintenance was
mailed to the head office administrator of the bank before the interview in order to
confirm their participation in the study. A copy of the consent letter and form is
included in appendix G of this dissertation. Once consent was given, two interviews
were conducted of one hour duration each. The interview protocol is included in
appendix H and includes questions used to collect information related to the
system’s documentation, architecture and operation.

As part of the requirements model recovery, the system architecture of the legacy
system of the case study was recovered by examining transcripts of the interviews,
documentation and manuals collected from the system. A sample of these
documents is in Appendix A.

Information systems architecture can be mapped to five layers (Whitten et al. 2000):

1. Presentation layer: the actual user interface, the presentation of inputs
and outputs to the user.

2. Presentation logic layer: Any processing that must be done to
generate the presentation. Examples include editing input data and
formatting output data.

3. Application logic layer: Includes all the logic and processing required
to support the actual business applications and rules. Examples
include credit checking, calculations, data analysis, and the like.

4. Data manipulation layer: Includes all the commands and logic
required to store and retrieve data to and from database.

5. Data Layer: Is the actual data in a database

The HLIS system is a centralized system. The system uses a central, multi-user
computer (mainframe) to host all the data, data manipulation and application logic
layers of the information system. The users interact with the host computer via
workstations.

The program running on the user’s workstations was written in the Pascal language.
This software handles presentation and presentation logic processing. Local controls

 80

such as checking compulsory filling of fields is done by the workstation via scripted
controls and referenced in a local system database. The workstation also handles a
small portion of the data and data manipulation layers as it maintains a local system
database that is used to configure the Pascal program running on the workstation.
Entry data and program calls are rerouted as a record to the mainframe via a logical
format interface program. The record consists of both data as well as the required
transaction code to be executed in the mainframe system. Transaction codes are
linked on the mainframe to actual program object files written in COBOL. The
mainframe programs are responsible for the application logic layer that includes the
business rules. The mainframe hosts a DB2 relational database and the data
manipulation layer that allows the server to access and update the system’s database
as required. The system architecture is represented in figure 4-1.

Figure 4.1 Legacy System Architecture

4.2.1.1 Interface Architecture

The interface architecture defines the technologies used for input, output and inter-
system connectivity (Whitten et al. 2000). The legacy system uses batch and on-line
input/output processing.

In the on-line process, the user enters the input data in the workstation using a
keyboard and the system processes the information in real-time. A good example of
this process is the registration (creation) of an offer. Once the sales agent has
completed the required offer entry screens and entered on the last screen, the
workstation (Pascal) calls the applicable mainframe transaction to create an offer
record in the offer dataset. A mainframe transaction generates offer numbers

A p p l ic a t io n
D a ta b a s e

L e g a c y
A p p l ic a t io n

M a in F r a m e

U s e r

R e a d s /U p d a te s D a ta b a s e

W o r k s ta t io n

C l ie n t
P C

S y s te m
D a ta b a s e

(S to r e d in th e
C lie n t P C)

W A N
P B X

 81

automatically. Any exceptions found in the mainframe program generate an error
response from the program back through the data transfer interface to the
workstation. The error response is in the form of an error code, the message
description of which is held in the definition dataset in the local database installed in
the client PC and accessed by the workstation software. The error message is
displayed at the bottom of the workstation screen. Figure 4-2 illustrates this process.

Figure 4.2 On-line interface processing

In batch-processing, transactions are accumulated into batches for periodic
processing (Whitten et al. 2000). The loan generation process is a good example of a
batch process and is illustrated in Figure 4-3. This process is scheduled as a batch
job for the evening batch run at head office. The selection program selects all offers
with a status of accepted by head office and writes offer details to an interim file to
serve as input for program 1, described below.

Program 1 is responsible for the creation of the loan account and sub-accounts and
connects people to loans. It changes the status of the offer to “offer definite” and
writes relevant offer and loan data to an interim file to be used by program 2.
Program 2 is responsible for generating print files for letters to clients and data files
for interfaces for external systems.

A p p l i c a t i o n
D a t a b a s e

L e g a c y
A p p l i c a t i o n

M a i n F r a m e

R e a d s / U p d a t e s D a t a b a s e

W o r k s t a t i o n

C l i e n t
P C

P a s c a l
(P r o g r a m)

S y s t e m
D a t a b a s e

(l o c a t e d i n
C l i e n t P C)

U s e r

D a t a t r a n s f e r
i n t e r f a c e

f o r m a t

 82

Figure 4.3 Batch processing in the legacy system

4.2.1.2 User Interface architecture

The HLIS system uses a menu-driven interface. Figure 4-4 represents a sample
screen layout for the current on-line system.

Selection
Program
(Cobol)

Offer

Program 1

(Cobol)

Interim File

User Select offers

Time Event
(Evening)

Interim File

Program 2

(Cobol)

Reports
Files

Printouts

External
Systems

Time Event
(Evening)

 83

Figure 4.4 Screen layout sample for procedural model

Navigation between options is done by use of arrow keys and enter key on selected
option to advance to next logical screen. Return to previous logical screen is via the
escape key. Navigation between data entry fields is done with the tab key. Mouse
functionality is not enabled. All transaction confirmation messages and error
messages resulting from controls are displayed in red in the bottom panel of the
screen.

When filling in fields, a user may choose from a drop down list box by using the F1
key. An example is when the user chooses a product in the new offer entry screen. A
product code can be typed in directly to the entry field or the user can press F1 to
receive a list box of products and choose from there.

In order to document the user interface, a state transition diagram is generated. A
state transition diagram is used to depict the sequence and variations of screens that
can occur when the system user uses the terminal (Whitten et al. 2000). Also, the
state transition diagram will be used to generate use cases to document the
interaction with the system (Deursen et al. 2000). Figure 4-5 illustrates the state
transition diagram of the legacy system. Appendix A has a complete set of screen
shots for all the output screens of the system.

 84

Figure 4.5 Screen flow structure

4.2.2 Use cases

The following use cases have been documented to describe the Offer and
Application Sub System:

• Process Application
• Process Offer Regional Office
• Process Offer Head Office
• Maintain Offer
• Loan Generation

The use cases were developed by using observation, interviews and documentation.
First, the researcher visited the sales department for the head and regional offices of
the case study information system’s site during five different days and observed
users operating the system as a complete observer during several hours. The
justification for this role was to avoid intrusion in the normal operation of the
information systems and learn by observing the users in the natural environment of
the information systems. The notes generated from these observations were used to

New offer entry
screen

Offer screen

Application
number

New
Change

Calculate Offer
Entry

Application
number

Cancel

Change status
screen

Cancel

Offer Number

New offer entry
screen product 2

New offer entry
screen product 1

New offer

Cancel

OK Cancel

OK

 85

document the normal flow of operation, actors, frequency of use and business rules
for use cases

Two interviews were conducted with the developers in order understand the
operation and indentify the available documentation for the system. Interviews
helped to validate and correct business processes documented during the observation
phase. The developers identified several user manuals that were used to complete
the use cases documents for this study.

The researcher reviewed user manuals to identify actors, normal flows, triggers,
alternative flows, preconditions, postconditions and business rules for the use cases
of this study. The results of the observation, interviews and manuals were
documented in preliminary use cases. These preliminary uses were validated by
reviewing them with the developers for errors, omissions, inconsistencies and
problems.

The use cases that received the most attention in the research were the process offer
by regional office case, the maintain offer case and the loan generation case. These
three use cases were selected for focus as representative of the required criteria of
investigating a procedural business flow, a more event-based flow and a batch
processing flow respectively.

Table 4-1 defines information that pertains to this particular use case. Each piece of
information is important in understanding the purpose behind the use case.

Table 4.1 Offer by regional office Use case

Use Case ID: 1
Use Case Name: Process Offer by regional office
Actors: Sales agent, Applicant, Administrator, Debtor and Insurer
Description: This use-case satisfies all of the goals of setting up and

processing a new offer to the status of production by regional
office. This applies for both existing as well as new
applicants. All aspects of the offer process are covered, from
initial registration to the production of the offer at the regional
office.

Trigger(s): All events dealing with new and existing applicants applying
for a home loan through the usual sales channels.
Once the application is completed, the applicant requests an
offer from the Sales Agent. An on-line offer form is loaded.

Preconditions: The sales agent must be logged onto the system.
Postconditions: Offer attains a status of produced at regional office.
Normal Flow: Sales agent processes an offer and generates a yet to be

authorized offer document all in a single session.
1. Relevant application data is made available in workstation

offer entry screen once Sales agent enters application
number in the offer entry screen.

2. Changes (if applicable) to relation and/or loan and/or
property details are made.

3. A product or product combination is captured. All entry

 86

requirements within the product or product combination
structure are filled These include: the completion of all
sub-product requirements and options such as linking
savings, accounts and linking depot accounts, fixed
interest rate duration and distribution of capital loan
amount over product structure.

4. Loan repayment options are captured including: external
bank account number, method and frequency of payments
amount of deposit to be paid.

5. Sales agent attempts to upgrade offer status to Registered.
Once all local and mainframe based controls have been
processed, the offer is upgraded by the system to status
registered.

6. The computational module is called from the workstation
by the sales agent in order to calculate: Loan - interest
payments percentages and amount based on duration of
fixed interest, reduction on capital amount over time,
penalties for early loan settlement or non-scheduled
payments against capital loan.

7. On completion of the computational module, the offer is
placed by the system as status ready for printing.

8. The sales agent selects print from the offer entry screen.
The offer document is printed.

9. Once the applicant accepts the offer, the offer attains
status of offer complete for transfer to head office.

Alternative
Flows:

Sales agent processes an offer in a number of sessions with
the applicant. A range of offers is made under a single
application.
1 – 8 Completed over time and from last registered offer status
A range of offers is made under a single application.

1 – 8 Repeated for every required offer variation. Each new
offer receives an incremented series number.

Exceptions:
Includes:
Priority: 1
Frequency of
Use:

10/hour

Business Rules: A maximum of four sub-accounts are allowed within a
contract.
External account details (the payer account) must be linked to
a bank registered with the home loan bank.
An internal saving account must be linked to the sub-account
representing the product.

Special
Requirements:

Assumptions:
Notes and Issues:

 87

Details of the remaining use cases are provided in Appendix B.

4.2.3 Legacy requirements model construction

In order to construct a requirements model for the legacy system, the following
elements generated as part of the reverse engineering activity are used:

• Description of the subsystem
• System architecture
• Interface architecture
• Use cases (business processes description)

These elements identify how the components of the legacy system relate to each
other and are used to recover the requirements model in terms of data flow and
entity relationship diagrams.

In order to generate the DFDs required to construct the legacy requirements model,
business events to which the system must respond and appropriate responses were
identified with the help of the use cases. Essentially, there are three types of events
(Whitten et al. 2000) :

• External events: are so named because they are initiated by external agents.
When these events happen, an input data flow occurs for the system in the
DFD.

• Temporal events: trigger processes on the basis of time, or something that
merely happens. When these events happen, an input called control flow
occurs.

• State events: Trigger processes based on a system change from one state or
condition to another.

Information systems usually respond to external or temporal events. State events are
usually associated with real time systems (Whitten et al. 2000).

The possible events for Process Application use case are represented in Table 4-2.
These events were identified from the use case description of Table 4-1. The
descriptions of possible events for the remaining use cases for the Offer and
Application Sub System are described in Appendix C.

 88

Table 4.2 Possible events for the Process Application use case

Actor Event Trigger Response

Applicant Completes loan
application New application

A paper application is
generated and put on
the file cabinet

Sales Agent
Enters applicant and
sales details for new
application

New paper
Application

Create new records
for the application,
applicant and other
applicants relations
tables in the database

Sales Agent
Enters property
details for new
application

Application and sales
details are entered for
the new application

Update the
application table with
the property details in
the application table.

Sales Agent Enter the loan
requirement details

Property details are
entered for the new
application

Update the
application table with
the loan requirement
details

Sales Agent Income test request
Loan requirements
are entered for the
new application

Income test results
(Fail or accepted)

Applicant Application is
rejected Income test failed Reject Application

Sales Agent Selects new product Income test is
accepted

Update the
application table with
the product selection

Sales Agent Invokes credit test
module Product is selected Sends a credit request

to the bank

Bank Reviews credit
request

Credit request from
application

Application is
rejected or allowed to
continue

Sales Agent
Application
document is
generated

Credit test is accepted
by the bank

The system generate
an application
document, updates
the application table
with the acceptance
status and informs the
sales agent that
application has been
accepted

Applicant Signs document
Application is
generated by the
system

The signed
application is stored
in the customer file
cabinet

Sales Agent Request application
acceptance status

Application is signed
by the customer

System changes
application status to
accepted in the
application table

 89

Once these events were identified, data flow diagrams and context diagrams were
drawn with the help of the list of transformations suggested by Whitten el al. (2000).
The list of recommendations is:

• The actor that initiated the event will become the external agent
• The event will be handled by a process.
• The input or trigger will become the data or control flow
• All outputs and responses will become data flows

The diagrams generated out of the analysis of the events tables were:

• Context diagram
• DFDs

The notation used to describe the DFD and context diagram is expressed in Figure
4-6.

Figure 4.6 DFD notation

E x t e r n a l a g e n t D a t a f l o w

B u s i n e s s P r o c e s s D a t a S t o r e

 90

The context diagram for the Office and Application sub system is shown in Figure
4-7. This context diagram was generated by identifying the actors, triggers and
responses from Table 4-2 and Appendices C-1, C-2, C-3 and C-4. Each identified
actor is represented as an external agent, each response as a data flow going out the
sub-system and each trigger as a data flow going in the sub system in the context
diagram. The DFD at the first level was generated by identifying the responses,
triggers and actors for each use case in the Office and Application sub-system
identified in Table 4-2 and Appendices C-1, C-2, C-3 and C-4. Each use case of the
Office and Application sub-system is represented as a process, each trigger as a data
flow going in the processes, each actor as an external agent and each response a data
flow going out the processes in the DFD in Figure 4-8.

DFDs for each of the use cases of the Office and Application sub-system are
presented in Appendix D of this dissertation and were generated based on the
identification of actors, triggers, events, and responses from Table 4-2 and
Appendices C-1, C-2, C-3 and C-4. Each DFD at the second level represents actors
as external agents, triggers as data flows going into the processes, responses as data
flows going out the processes and events as the processes that handle them.

 91

Figure 4.7 Context diagram for the Offer and Application sub-system

Customer

Offer and Application System

Agent

Bank

New Application

Application Rejected or Accepted notification Application
Accepted

Or Rejectted

Application Details

Credit Request

Application Accepted
Or Rejected

Request
An Offer

Offer Acceptance

Offer

Generate offer

Accept offer

Update
Offer State

To
“complete for transfer to head office”

Administrator

legal department

Notary

Credit Bureau

Offer Approved or
refused

Letter
With offer
request

Letter

Offer
Accepted or

refused

Flat file with offers
Information

list of offers
with status of transferred to office

update to “Registered in Head office”

Offer Approved
Or

Refuse

Update offer to accepted by head office

Offer Dossier

Insurance
Companies

Tax Office

Loan
Data files

Loan
Data
Files

Loan
Data
Files

Loan Creation

Loan
Data
Files

Loan Data Files

 92

Figure 4.8 Offer Figure 4-8 Offer and Application sub-system DFD

Customer
Agent

Bank

New Application

Application Rejected or Accepted notification

Application
Accepted

Or Rejectted

Application Details

Application Accepted
Or Rejected

Request
An Offer

Offer Acceptance

Offer Generate offer

Accept offer

Update
Offer State

To
“complete for transfer to head office”

Administrator

legal department

Flat file with offers
Information

list of offers
with status of transferred to office

update to “Registered in Head office”

Offer Approved
Or

Refuse

Update offer to accepted by head office

Offer Dossier

Insurance
Companies

Tax Office

Loan
Data
Files

Loan Creation

Process Application

1
File CabinetCompleted

Application

Loan Application

Products
Application

Applicants

Other
Applicants

Application
Details

Application
Info

Products
Info

 Other applicants

Applicant

Process Offer By
Regional Office

2

Offer
Details

Offer

Application
Information Update

Application

New Offer

Offer details
Offer
Status
Update

Credit Request

Process Offer
By Head Office

3

Update
Offer

Credit Bureau

Offer Approved or
refused

Letter
With offer
request

Notary

Letter

Offer Accepted
Or

Refused

List of offers

File Cabinet Orders

Maintain
Offer

4

Administrator

Cancellation
Letter

Offer
Letter

Offer
Number

New Offer
Requirements

Change
Of Offer Status

Offer Cancelled

Update
Offer
Status

New
Requirements

Offer
Status

Offer
Printout

Offer Details

Loan Generation
Process

5

Offer With Registered by the head office status

Create Loan

Loan

Data Files

Loan Details

Data Files

Data Files

Data files

Orders

Credit Bureau

Letter for credit bureau and notary

Letter for bureau and notary

 93

The data model found in the system architecture documentation was examined and
the researcher found that it was incomplete because many of the entities that were
presented in the database script source code collected from the system were not
included in the model. This was expected as the system has been modified many
times since the date of the documentation. The model was completed in order to
reflect its current state and it is presented in Figure 4-9.

Figure 4.9 Completed E-R data model

Bank Products

ApplicationAgent

Other applicant
relations Has

Does

Sub-product credit

Consists ofIssues

Sub-offer credit

Is offered in

Offer

May lead to

Is offered
in

Sub account

Acceptance
Results in

Loan account Consists of

Acceptance results in
Main debtor

Other offer relations

Named in

Named in

Payer

Other loan relations

Pays

Included in

Consists of

Home Loan

If guarantee

Issues

Applicant submits

Regional Office

Head Office

Administrator

Changes status

Property

Is contained

Has

Agenda

Payment Agenda

Interest Rate
Agenda

 94

4.3 Re-engineering of legacy systems

As part of the Jacobson and Lindstrom (1991) methodology, the component-based
requirements model was developed with the help of the use cases prepared for the
recovery of the legacy requirements models. These use cases contain the
information assimilated from the source code, manual, system architecture
documentation, open interviews and research observations described as description
elements in the Jacobson and Lindstom (1991) methodology. These description
elements were used to build the component-based model. The following UML
diagrams were generated as suggested by Houston and Norris (2001) as the required
diagrams to model component requirements models.:

• Use case diagrams
• Class diagrams
• Sequence diagram
• State diagrams
• Activity diagrams.

The UML diagrams followed the UML 2.0 standard (OMG 2003). In keeping with
the UML approach to model development, it is essential to define actors for the
system. Reed (2002) defines an actor as a stimulator of the system and an initiator of
an event. Actors can also be passive recipients of stimuli from the system. Actors
are mostly thought of as human beings but can also be other interfaced systems that
receive input from the system or provide input into the system or hardware devices
(Reed 2002). The actors identified with the help of the use cases for the sub-system
under research are presented in Table 4-3.

Table 4.3 Sub-system Actors

Actor Definition

System Creates loan structure
Applicant Applies for a home loan product
Sales Agent Facilitates sale of product
Home Loan Administrator
(regional)

Handles Offer and loan admin. At regional
level

Home Loan Administrator (head
office)

Handles Offer and loan admin. At head office
level

Debtor Responsible for loan debt
Bank Loan provider and administrator
Notary Provider of deed of sale, bond documentation
Business Updates product model
Insured Covered by policy
Insurer Pays policy premium
Insurance Company Underwrites policy
Administration management Requests and receives reports
Tax department Requests loan and policy details
Credit Bureau Issues credit assessment of debtor
Loan system External system handling all loan

administration

 95

Actor Definition

Insurance system External system handling insurance
administration

Use case models capture the functional requirements of an information system by
focusing on usage situations, the tasks that users want to accomplish with an
information system. In this context, a use case model is a conceptual model that
articulates the required behavior of a system in non-technical, implementation-
independent terms. The use case model shows how the actor interfaces to the
information systems. The use case model of the case study’s sub-system is shown in
Figure 4-10. The interaction of actors with the use cases identified for the system is
represented in this model.

There are functions that are shared or can be reused by other use cases. These are
represented by the include UML construct. This construct represents a relationship
between two use cases that shows that an instance of one use case will also contain
the behavior specified by another use case (the included use case) (OMG 2003).

In order to generate the class diagram, it was important to identify the objects of the
system. This step was accomplished by reviewing each use case to find nouns that
correspond to business entities or events (Jacobson 1987). The result of this search
is documented in Table 4-4 depicting all the classes and types identified in the use
cases.

 96

Figure 4.10 Use case model for the case study's sub-system

Agent

Process Application

Bank

Income
Testing

Applicant

<<include>>

Credit
Testing

<<include>>

Process Offer by regional
Office

Get Application
Details

 Process Property details

<<include>>

<<include>>

<<include>>

 Process Loan
requirements

<<include>>

<<include>>

Process
Product

Selection

<<include>>

<<include>>

Offer Status
Update

<<include>>
Computational

Module

<<include>>

Maintain Offer

Administrator
Cancel Offer Request

<<extend>> Retrieve Offer details

<<include>>

Process changes in
Offer requirements

<<extend>>

<<extend>>

Notary

Credit Bureau

Process Offer by Head Office

Legal department

Get list of offers<<include>>

<<include>>

Loan Generation

Tax office Insurance

 97

Table 4.4 Possible Classes and interfaces for the Sub-System

Class Type

ProcessApplicationPanel Boundary
CreditApplicationPanel Boundary
ProcessOfferRegionalPanel Boundary
ProcessOfferHOfficePanel Boundary
CreditCheckInterface Boundary
MaintainOfferPanel Boundary
InquireOfferPanel Boundary
LoanGenerationPanel Boundary
Credit Test Control
Process Application Control
Process Offer regional Control
Process Offer head office Control
Maintain Offer Control
Loan Generation Control
Architecture Infrastructure Control
Print Control
File Control
Application Entity
Relation Entity
Applicant Entity
Agent Entity
Loan Entity
Bank Entity
Debtor Entity
Property Entity
Product Entity
Sub-product Entity
Regional office Entity
Head office Entity
Administrator Entity
Offer Entity
Cabinet Entity
Account Entity
Sub Account Entity
Service Centre Entity
Agenda Entity
Payment Agenda Entity
Interest Rate Agenda Entity
Income Test Control
Computation Module Control

The Application and Offer sub-system is represented as a package with the
stereotype of <<system>>, as seen in Figure 4-11. The system was broken into
multiple subsystems as seen in the same picture. Subsystems, like systems, are

 98

stereotyped packages with the stereotype of <<subsystem>> and are a grouping of
model elements that are part of the overall system.

A subsystem can be modeled as a UML package and can communicate with other
packages by using interfaces. Figure 4-12 shows the different UML packages of the
case study and their interfaces and possible interactions. UML packages manage
object model elements, such as classes (Yun-Tung 2001). The process sub-system
UML package that encapsulates the control type classes is represented in Figure 4-
13. The UML package can be interfaced by using the IProcess interface that is
indicated in the same diagram. The class diagrams for the Data and Interface
subsystems are included as appendices E-1 and E-2.

Detailed object interactions can be modeled with the sequence diagram. The purpose
of the sequence diagram is to represent the interaction between object instances
within the system. They provide the sequence of messages passing between objects
over time (Sparx Systems 2001). A sequence diagram can represent each use case.
Figure 4-14 is the sequence diagram for the Process Offer Head Office use case. The
diagram begins with objects organized into columns to differentiate the sequencing
stages. The rectangular blocks located on the dashed vertical lines are focus-of-
control rectangles indicating that the object above is in control of that messaging
sequence. For example, the instantiated offer class (object) has control over many
messaging sequences in the Process Offer Head Office use case. The sequence
diagrams for the rest of the use cases of the case study are in appendices E-3, E-4,
E-5 and E-6.

Activity diagrams can be divided into object swimlanes that determine which object
is responsible for which activity. For example, the activity diagram for the Loan
Generation use case is depicted in Figure 4-15. In this figure, it is possible to
identify two different swimlanes that are handled by the administrator and system
objects. In the diagram, a single transition comes out of each activity, connecting it
to the next activity. A transition may fork into two or more parallel activities as can
be seen after the creation of the loan structure in the example of figure 4-15 where
three activities are performed in parallel. The activity diagram of the Maintain Offer
use case is included in Appendix E-7 and the Process Offer by Head Office use case
is in Appendix E-8.

A state diagram models the life cycle of a single object. It depicts the different states
an object can have, the events that cause the object to change state over time, and
the rules that govern the object’s transition between states (Whitten et al. 2000).
Figure 4-16 depicts the state diagram of the test income object identified in the class
diagram. Appendix E-9 shows the state diagram for the offer object with its different
states and transitions. Activity diagrams and state diagrams are related. While a state
diagram focuses attention on an object undergoing a process (or on a process as an
object), an activity diagram focuses on the flow of activities involved in a single
process. The activity diagram shows how those activities depend on one another.

 99

Figure 4.11 Subsystems relationships

Figure 4.12 Interface relationships

 100

Figure 4.13 Control Package

ProcessApplication

ArchitectureInfrastructure

ProcessOfferRegional

ProcessOfferHeadOffice

MaintainOffer

LoanGeneration

 Subsystem

<<Subsystem>>
Control subsystem

CreditTest

1

1

1

1

1

1

1

1

1

1

IProces

Print

File

 101

Figure 4.14 Process Offer Head Office Sequence Diagram

ProcessOfferHOfficePanel Offer
Top Package::Administrator

CreateList

GetListofoffers

Print File

Returnoffers

UpgradeStatusOffer

UpgradeOfferStatus

PrintLetters

GenerateFiles

SetAssesmentPeriod

UpdateOffer

UpgradeStatusOffer

UpgradeOfferStatus

ProcessOfferHeadOffice

GetList

UpgradeStatusOffer

SetssessmentPeriod

UpgradeOfferStatus

Process Offer by head office

Legal
department

SendFileswithOffersInformation

CreatePhysicalFiles

NotaryCredit Bureau
ApproveLetters

Message1

 102

Figure 4.15 Loan generation activity diagram

Administrator System

H

Start
Create Loan
Structure

Create data files

Accounts and sub-accounts
Are creates

Couplings between relation
entities are created

Agenda profile is created in
terms of

H

End

 103

Figure 4.16 State diagram of the Income test object

After the UML diagrams that represent the component analysis model were
completed, a mapping of each analysis object to the implementation of the old
system was conducted as suggested by Jacobson and Lindstrom (1991).

The primitive description elements used for this research were architecture diagram,
database schema, training manuals, interviews with developers, database scripts and
system observation.

A mapping was performed in order to verify that all the objects for each of the
diagrams that represent the component analysis model were motivated by at least
one primitive description element. A summary of this mapping is included in table
4-5. The map shows that all analysis objects and dependencies for each component-
based diagram were motivated by at least one primitive description element.

 104

Table 4.5 Mapping of Component Analysis models into Description Elements

Diagram Description Elements

Use case Architecture diagram, Interviews, Training manuals, System
observation

Class Interviews, Training Manuals, Database scripts, System observation
Sequence Interviews, Training Manuals, Database scripts, System observation
State Interviews, Training Manuals, System observation
Activity Interviews, Training Manuals, System observation

4.4 Ontological Evaluation

Evaluation is an important step in the design science research framework for this
study. The research activity for this step is the ontological evaluation of
requirements models by using the Fettke and Loos (2003a) methodology. This
activity consists of four steps (Fettke & Loos 2003a):

• Developing a transformation mapping,
• Identifying ontological modeling deficiencies,
• Transforming the reference model, and
• Assessing the results.

The purpose of the first and second step is to evaluate the constructs used to build
the legacy and re-engineered component models. This evaluation was performed in
order to identify ontological deficiencies in these constructs when it comes to
representation of functionality in re-engineered component requirements models that
were represented by the traditional requirements model used to build the legacy
information system.

The third and fourth step have the objective of evaluating the requirements models
built as part of the reverse engineering and re-engineering research activities that are
part of the research framework. In the third step, the requirements models will be
transformed into an ontological model. The outcome of this step is two ontologically
normalized reference models. In order to generate these normalized reference
models in BWW terms, the Rosemann and Green (2002) BWW meta-models are
used.

In the fourth step, the two models are compared based on their ontologically
normalized representations. The result of a comparison will be that the models are
ontological equivalent, complementary or in conflict. The summary of the findings
is presented in the discussion Chapter 5.

 105

4.4.1 Developing a transformation mapping

In this section of the study, traditional and component diagrams are mapped onto
BWW constructs. The mapping of traditional diagrams to BWW constructs is
depicted in Table 4-6 and was the result of a research study conducted by Valverde
and Toleman (2006). The traditional diagrams used are the three types proposed by
the Yourdon (1989) structured analysis:

• Context diagram
• Data flow diagram
• Entity relationship diagram.

There are two types DFD models: 1) Physical DFDs – where the diagram describes
the physical components of the information system and 2) Logical DFDs – that
describe the meaning or the ‘what’ of the components of the information systems
(Wand & Weber 1989).

As this research deals only with the requirements models, only logical DFDs will be
analyzed. The logical DFD to BWW construct mapping is based on the work of
Wand and Weber (1989). In logical DFDs, data flows represent external and internal
events. Properties of real things may be represented by data elements described in
data dictionaries but not in data flows and data stores.

There is no explicit representation of the states of the real system in a DFD. Rather,
the possible and allowed states of the information systems are defined implicitly in
terms of possible and allowed values of the data elements described in the data
dictionary and therefore not represented in the DFD (Wand & Weber 1989).

Events of the information system are represented by data flows. External events are
represented by data flows coming from a source while internal events are
represented by internal data flows that are generated when the system responds to an
external event (Wand & Weber 1989).

A DFD fully represents a system if and only if there is a path between every pair of
processes. If this is not the case, then the DFD represents two or more disconnected
information systems. External agents and data stores are represented by things and
they form part of the environment in the BWW model (Wand & Weber 1989).

The things in the system are processes and data according to Wand and Weber
(1989), given this interpretation processes can be represented by things. Data linked
to a process, a process linked to another process and a process linked to an external
agent may be interpreted as coupling (Wand & Weber 1989). External agents are
interpreted as things, therefore a link between them and processes may be
interpreted as coupling as they link things in a system (Wand & Weber 1989).

In DFDs, decomposition involves breaking a process into a number of sub-
processes. DFDs conform to the BWW model notion of a good decomposition
(Wand & Weber 1989). In their analysis, Wand and Weber (1989) did not include
the transformation construct mapping as this was added in the BWW model after the
publication of their analysis. In this dissertation, transformations were interpreted as

 106

processes because they represent a procedure by which data inputs are transformed
into data outputs (Satzinger et al. 2002 p. 196).

Entity relationship diagrams (ERD) contain entities and relationships. Although
Wand and Weber’s (1989) interpretation that both can be viewed as representing
things of a real system, the interpretation of Green and Rosemann (2000) of the
entity representing a class was used as entities can represent multiple instances of
things. Properties are represented directly in the entity relationship diagram via the
notion of attributes. Coupling between things can be represented by the lines
between the entities and relationships (Wand & Weber 1989). The interpretation of
the functional decomposition diagram mapping was taken from Green and
Rosemann’s (2000) work.

Table 4.6 Mapping between traditional and BWW constructs

BWW construct Context Diagram DFD ERD

Thing External agents
External data
stores
System

External Agents
External Data
Store
Data Stores
Process

Property:
In particular
IN PARTICULAR
In general
Intrinsic
Mutual
Emergent
Hereditary
Attributes

 Attribute type

Class Entity type
Kind

 Specialization/
generalization (IS-
A)

Conceivable state
space

State law Specialization/
generalization
descriptors;
[Min., max.]
cardinalities

Lawful state space
Event Data flow
Process DFD
Conceivable event
space

Transformation Process
Lawful
transformation

 107

BWW construct Context Diagram DFD ERD

Lawful event
space

History
Acts on
Coupling:
Binding mutual
property

Ext. Agent->Data
Flow-> System

System->Data
Flow-> External
Data store

Process->Data
Flow->Ext.
Agents

Ext. Agent->Data
Flow-> Process

Process->Data
Flow-> Data store

Data stores ->Data
Flow-> Process

Relationship type
(no symbol
for relationship in
grammar)

System System DFD
System
Composition

 External agents
and data stores in
a DFD

System
Environment

External Agent
External data
stores

External Agent
External Data
Stores

System structure DFD

Sub-system DFD
System
decomposition

 DFDs and sub
diagrams

Level structure Series of processes
decomposed at
different levels

External event Data flow
Stable state
Unstable state
Internal event Data flow
Well-defined
event

Poorly defined
event

(Source: Valverde and Toleman 2006 p. 65)

Component-based models were generated using UML diagrams and mapped onto
BWW constructs as shown in Table 4-7.

Irwin and Turk (2005) propose that the UML-actor should be defined as a type of
classifier in the UML meta-model, which corresponds to a BWW kind, and as a role
or facet of a thing in the UML specification, which corresponds to a BWW property.
The interpretation of Opdahl and Henderson-Sellers (2002b) of the UML-actor

 108

being a BWW thing was used here as it matches the definition of Wand and Weber
(1995) of things acting on the proposed system.

Irwin and Turk (2005) and Opdahl and Henderson-Sellers (2002b) agree that the use
case UML-association corresponds to a binding mutual property of an external
entity BWW construct. They also agree that the same applies to the UML-use case
that is interpreted in both studies as a BWW process.

The UML-extend and UML-include were mapped as a BWW-binding mutual
property (Opdahl and Henderson-Sellers 2002b). Irwin and Turk (2005) argue that
UML actors also can be considered a BWW system environment as they are
external entities that interact with the system. Although Opdahl and Henderson-
Sellers (2002b) argue that the BWW system environment construct is not defined in
the UML grammar, the interpretation by Irwin and Turk (2005) was used in Table 4-
7 because the argument that actors that are outside the system boundary and can be
considered ‘environment’ is valid as this satisfies the Wand and Weber (1995)
definition of BWW-system environment. However, the UML grammar does not
support the “internal actors” (Irwin & Turk 2005) therefore all the actors are
external and considered part of the system environment.

Irwin and Turk (2005) propose that the use case construct represents a BWW thing
and a process at the same time and is therefore ontologically overloaded. The
argument that the use case is also a thing was accepted and used in Table 4-7 for the
following reasons: 1) the use case can be defined as a classifier; and 2) this is an
element that has behavioral and structural features and that may participate in
relationships (Irwin & Turk 2005). It also satisfies the definition of Wand and
Weber (1995) of a BWW mutual property construct as two use cases can be linked
with a UML-extend or UML-include construct that was previously interpreted as a
mutual property and requires the link between two or more things.

The UML-system is consistent with the BWW definition, and thus there is
technically no ontological discrepancy with BWW system construct (Irwin & Turk
2005).

Table 4.7 Mapping between UML diagrams and BWW constructs

BWW construct Use Case Sequence Class State Activity

Thing Actor
Use case

Object Object Object
Swimlane

Property:
In particular
IN PARTICULAR
In general
Intrinsic
Mutual
Emergent
Hereditary
Attributes

UML
attribute

Activity

Class Class

 109

BWW construct Use Case Sequence Class State Activity

Kind

 Generaliz
ation
UML
aggregate
class
UML
composite
class

State State State of
object

Conceivable state
space

 State
machine

State law UML-
multiplicit
y

State>Tra
nsition>St
ate

Lawful state space Sub states
Event Trigger Activity
Process Use Case Activity

diagram
Activity

Conceivable event
space

 All
triggers

Transformation UML
operation

 Activity

Lawful
transformation

 Guard
conditions
On
transitions

Lawful event space
History Shallow

history
state
construct

Acts on
Coupling:
Binding mutual
property

UML
associatio
n
UML
extend
UML
include

Messages UML
associatio
n
UML
interface

.

System
System
Boundary

Sequence
Diagram

Package
with
<<system
>>

System

 110

BWW construct Use Case Sequence Class State Activity

Composition
System
environment

Actor <<Stereot
ype>>

System structure Messages

Sub-system Package
with
<<subsyst
em>>

System
decomposition

Level structure
External event <<Stereot

ype>

Stable state Final
State

Unstable state Initial
State

Internal event <<Stereoy
pe>>

Well-defined event Trigger
Poorly defined
event

(Source: Dussart et al. 2004 p.85)

The interpretation for the mapping of BWW constructs for the activity, state, class
and sequence diagrams comes for the most part from the work of Dussart et al.
(2004) although some changes were made based on the interpretation of Opdahl and
Henderson-Sellers (2002b) and the BWW construct definitions of Wand and Weber
(1995). The BWW ontological construct “thing” can be associated with the object in
the sequence, activity and state diagrams. The activity chart can show the
transformations made on objects during activities and therefore interpreted as BWW
transformation and property constructs (Dussart et al. 2004).

In the sequence diagram, the interpretation of Dussart et al. (2004) is consistent with
the interpretation of Opdahl and Henderson-Sellers (2002b) for the UML-object and
UML-message being mapped as BWW thing and binding mutual property
constructs but it conflicts with the interpretation of the UML-message being
interpreted as a BWW system structure construct because this is not mapped to any
UML construct in the Opdahl and Henderson-Sellers (2002b) interpretation.
However, the interpretation by Dussart et al. (2004) was used as this satisfies better
the Wand and Weber (1995) definition of a BWW system structure construct of a set
of couplings that exist among things in the system and things in the environment of
the system as UML-messages link objects (things) and actors (Environment)
together.

 111

The interpretation of a UML-object being considered a BWW system composition
of Dussart et al. (2004) conflicts also with the interpretation by Opdahl and
Henderson-Sellers (2002b) of a BWW system composition construct being mapped
as a UML-physical system. The interpretation by Dussart et al. (2004) was not used
as the system composition BWW construct is a set of things in the system (Wand
and Weber 1995) while an object is only considered one thing and not a set of
things.

A system can be represented using the sequence diagrams, the system environment,
that is to say external and internal things to the system cannot be differentiated
without a stereotype (Dussart et al. 2004).

The state diagram interpretation by Dussart et al. (2004) did not conflict with the
interpretation by Opdahl and Henderson-Sellers (2002b). States of the thing are
represented by the state of the object in the activity diagram or by the state construct
in the state diagram. A state machine in the state diagram represents the conceivable
State Space, defined as all the states that a thing may ever assume. A Lawful State
Space can be represented in a state diagram using substates. Stable States and
Unstable States can respectively be represented by the final state or the initial state
in a state diagram (Dussart et al. 2004).

The activity diagram interpretation by Dussart et al. (2004) was used for the most
part except the interpretation of the UML-swimlane that came from Opdahl and
Henderson-Sellers (2002b). Dussart et al. argue that the UML-swimlane can
represent either a thing (such as an organization) or a hereditary property of the
thing (a user of the organization). However, a user in an organization is in fact an
actor, defined earlier as a thing and not a property.

Events are represented as the trigger for a transition in the state diagram. But events
can also be represented as an activity in the activity diagram. There is no
grammatical differentiation for external and internal events but the use of the use
cases for human-machine interaction diagrams or the use of stereotypes could help
make the differentiation possible. The Conceivable Event Space can be observed on
the state machine of a thing by looking at all transitions’ triggers. There exists no
construct for a poorly defined event, and well-defined events use the same
grammatical construct as a normal event (Dussart et al. 2004).

Lawful transformations are represented by guard conditions on transitions. There is
no grammatical construct for Lawful event space. History can be modeled using the
shallow history state construct in the state diagram. The BWW construct Acts on
cannot be represented in the same way as it is defined in the definitions of the
ontological constructs but could eventually be associated to the composition
relationship in the class diagram, for example, in a composition relation between a
thing “Activity” and a thing “Project” (Dussart et al. 2004).

Class diagrams can contain symbols for classes, associations, attributes, operations,
and generalizations. Class and kind are respectively represented in the UML in the
class diagram with the class and the generalization constructs (Dussart et al. 2004).
UML operations can be depicted by BWW transformations and UML attributes as
BWW characteristic intrinsic properties (Opdahl & Henderson-Sellers 2004).

 112

Class diagrams can also show the subsystem architecture, where the primary
elements are UML system and subsystems. Subsystems represent components
during development (Opdahl and Henderson-Sellers 2004). Subsystems and systems
can be represented using a stereotyped package (Dussart et al. 2004).

Relations between classes are depicted by UML associations, these can be
represented by using the BWW mutual binding property construct and UML-
multiplicity represented by state law (Opdahl & Henderson-Sellers 2004).

In the next section, ontological modeling deficiencies identified in the traditional
and component-based diagram constructs will be examined.

4.4.2 Identifying ontological modeling deficiencies

Ontological limitations of process modeling with traditional models are
acknowledged by Rosemann et al. (2005) and Green and Rosemann (2000).
Functional decomposition diagrams are ontologically redundant when compared to
the combination of DFDs, ERDs, and context diagrams.

No representations exist for conceivable state space, lawful state space, conceivable
event space, lawful transformation or lawful event space. Accordingly, problems
may be encountered in capturing all the potentially important business rules of the
situation.

No representations exist for acts on, history, stable state, unstable state, well defined
event and poorly-defined event. Again, the usefulness of traditional diagrams for
defining the scope and boundaries of the system being analyzed is undermined.

As for an analysis of ontological completeness in component models, several
constructs cannot find representation in any diagrams: lawful event space, acts on,
poorly defined event. A construct overload is found for the activity construct in the
activity diagram that can represent a transformation, a process, a property in general
or an event. Construct overload was also observed for the swimlane of the activity
diagram that can represent either a thing (such as an organization) or a hereditary
property of the thing (a user of the organization). Finally, overload was also
identified for the trigger construct (that can represent either an event or a well-
defined event).

There is construct redundancy in the case of the process ontological construct that
can be either represented by a complete activity diagram or by the activity construct
in an activity diagram. In the case of the activity diagram, construct excess can also
be identified because the branching construct could not find any matching
ontological construct. Overlaps occur in the activity diagram and the state diagram
(Dussart et al. 2004).

As for the transformation of legacy requirements models using traditional diagrams
into UML models, the ontological analysis reveals that all the BWW constructs
represented in the traditional models can be represented in the UML models.
Context diagrams can be depicted by use case diagrams as these contain all the

 113

BWW constructs required for ontological equivalent representation. ERDs are
represented by property, class, kind, state law and coupling constructs. The class
diagram is able to represent the same constructs therefore able to represent the same
requirements. DFDs are able to represent thing, property, transformation, process,
coupling, system composition, system environment, system decomposition and level
structure constructs. These could be represented with the help of activity, class and
use case diagrams. Finally, functional decomposition diagrams can be depicted with
the use of the same diagrams.

The use of state and sequence diagrams is redundant in the representation of
structured diagrams. The main reason is that structured traditional diagrams are not
able to represent states and the overlap of sequence diagrams with use case
diagrams.

Based on the ontological analysis presented in tables 4-6 and 4-7, the following
rules can be used when mapping traditional and component-based requirements
models into BWW constructs.

For traditional requirement models, the following rules can be used for DFD, ERD
and Context diagrams. For the DFD diagram:

• For every external agent, data store and external data store in the DFD,
create a BWW thing construct.

• For every process in the DFD, create a BWW thing construct and a
transformation BWW construct.

• For every data flow in the DFD, create a BWW internal event construct if
the data flow represents and internal event or an external event BWW
construct if the data flow represents an external event.

• For every process connected to an external agent and a process connected to
a data store via a data flow, create a BWW coupling construct and use it
couple the BWW thing constructs used to represent the process, external
agent or data store.

• Create a process, system structure, sub-system, system decomposition and
level structure BWW constructs for the DFD.

For the ERD diagram:

• For every entity, create a class BWW construct.
• For every relationship, create a coupling BWW construct. Use this construct

to couple the BWW class constructs that represent the entities in the
relationship. Use the cardinality of the relationship to establish the state law
for the BWW coupling construct used to represent the relationship.

For the Context diagram:

• Create a BWW thing construct that represents the system
• For every external agent and data store, create a BWW thing construct.

 114

• For every external agent connected to the system via a data flow, create a
BWW coupling construct and use it to couple the BWW thing constructs that
represent the external agent or data store.

For traditional component-based models, the following rules can be used for Use
case, Class, Sequence and State diagrams.

For the Use case:

• For every Actor or Use case found, create a thing BWW construct.
• For every Use case found, create a process BWW construct.
• Form every UML association, extent or include construct, create a coupling

BWW construct and use it to couple the thing BWW constructs created to
represent Actors or Use cases.

• Create a BWW system construct to represent the boundary of the diagram.
• For every actor found, create a system environment BWW construct.

For the Sequence diagram:

• For every object, create a BWW thing construct.
• For every message, create a BWW coupling and system structure constructs.

Use the BWW coupling construct to couple the BWW thing constructs that
represent the objects used in the exchange of messages.

• Create system BWW construct to represent the sequence diagram.
• Create a BWW system environment construct for every stereo type construct

found in the diagram.

For the UML Class diagram:

• For every UML class in the diagram, create a BWW class construct.
• For every UML association in the diagram used to connect two UML

classes, create a BWW coupling construct and use it to couple the BWW
class constructs used to represent the UML classes. Use the UML
multiplicity cardinalities to establish the state law for the BWW coupling
construct used to represent the UML association.

• For every package with sub-system create a BWW subsystem construct
• For every package with system create a BWW system construct
• For every UML interface, create a BWW coupling construct and use it to

couple the sub-systems or systems BWW constructs used to represent UML
sub-system or system packages that are coupled by the interface.

For the State diagram:

• For every UML object in the diagram, create a BWW thing construct.
• For the initial state in the diagram, create a BWW unstable state construct.
• For the final state in the diagram, create a BWW stable state construct.
• For every other state in the diagram, create a BWW state construct.

 115

• For every trigger in the diagram, create a BWW internal construct if the
trigger is generated by an internal object or a BWW external construct if the
event is generated by an actor.

• For every transition in the diagram from a state to another state, create a state
law BWW construct and use this construct to couple the BWW state
constructs used to represent the states in the transition.

• Create one conceivable state BWW construct for the diagram

Although the ontological mappings provide evidence that component-based models
derived from the traditional models of a legacy system are able to represent the same
BWW constructs, a normalized reference model comparison can be used as a tool to
verify that the same requirements captured in the legacy system traditional
requirements models are represented in the component-based models. In the next
section, normalized reference models for both legacy and re-engineered
requirements models will be constructed for a comparison analysis.

4.4.3 Generation of normalized ontological meta-models

In their book “Ontological analysis of business systems with ontologies”, Green and
Rosemann (2005) proposed the use of a meta-model based on the BWW ontology
for the representation of business systems. Green and Rosemann (2005) explained
that these meta-models can be used to compare ontological models. In this section of
the dissertation, normalized ontological models based on the Green and Rosemann
(2005) BWW meta-model were constructed in order to compare legacy and re-
engineered requirements models.

Normalized ontological models were developed by using the meta language defined
by Rosemann and Green (2002). A summary of the language construct is defined in
table 4.8. A set of processes were defined in order to generate the normalized
ontological models. These processes are indicated below:

• For every diagram in the legacy and component-based models, a normalized
ontological was created.

• Every construct in the legacy and component-based diagrams was mapped
onto a BWW construct with the help of tables 4-5 and 4-6.

• For each construct that was not mapped onto a BWW coupling construct, an
entity meta language construct was created.

• For each construct that was mapped onto a BWW coupling construct, a
relationship meta language construct was created.

• Every entity in the normalized ontological model was labeled with the name
of the construct that it represents and its corresponding BWW construct(s) in
parentheses.

• Entities in the diagram representing BWW thing constructs were coupled
with the help of relationship entities and cardinalities indicated for each
relationship in the form of N1, N2 where N1 is the minimum and N2 the
maximum number of instances that the state law allows for each couple.

• Any non coupling relationship among entities was represented with the help
of relationship entities.

 116

Table 4.8 Elements of meta language for Normalized Ontological Models

Language Construct Explanation

Entity type

Relationship type combining at least two
entities.

If it is necessary to model that a relationship
type is related to another element of the data
model (entity or relationship type), the
relationship type has to be reinterpreted.

(Source: Rosemann and Green 2002 p. 80)

In Figure 4-17, the BWW meta-model for the ERD of the legacy system is depicted
with the help of the BWW model proposed by Green and Rosemann (2005). Entities
are represented by classes that are coupled and their relationship governed by state
laws. Figure 4-18 depicts the BWW meta-model for the context diagram of the
legacy system. This model represents external entities as things that are part of the
system environment and system composition, these external entities are coupled
with the system by using data flows in the context diagram.

Figure 4-19 depicts the BWW meta-model for the DFD of the process offer by head
office use case (Appendix D-3). External entities are mapped as things, data flows
as external events or coupling when used to bind data stores with process or external
entities with processes. Processes are represented by transformations. Systems,
subsystem, processes, environment, structure and composition are also represented
in the DFD.

Figure 4-20 shows the BWW meta-model for the use case diagram for the re-
engineered system. Use cases represent things or processes that are coupled to other
use cases and actors. Actors can be coupled with use cases or other actors. Actors
are part of the system’s environment that is part of the system.

 117

Figure 4.17 Normalized ontological model for the ERD of the legacy system

 118

Figure 4.18 Normalized BWW meta-model for the context diagram of the legacy system

 119

Figure 4.19 Normalized BWW meta-model DFD for the Process Offer Head Office use case

 120

Figure 4.20 BWW meta-model for the use case diagram for the re-engineered system

S y s te m
E v iro n m e n t)

B a n k
(T h in g)

1 ,n

0 ,n A p p lic a n t
(T h in g)

0 ,n

A g e n t
(T h in g)

0 ,n

O ffe r a n d
A p p lic a tio n

(S y s te m)

H a s

H a s

A d m in is tra to r
(T h in g)

0 ,n

T a x O ffic e
(T h in g)

In s u ra n c e
(T h in g)

N o ta ry
(T h in g)

C re d it B u re a u
(T h in g)

C o u p lin g

0 ,n

P ro c e s s
A p p lic a t io n

(T h in g)
(P ro c e s s)

C o u p lin g

0 ,n

0 ,n

In c o m e
T e s t in g
(T h in g)

(P ro c e s s)

C re d it
T e s t in g
(T h in g)

(P ro c e s s)

P ro c e s s
P ro d u c t

S e le c t io n
(T h in g)

(P ro c e s s)

P ro c e s s
L o a n

R e q u ire m e n ts
(T h in g)

(P ro c e s s)

P ro c e s s
P ro p e rty

D e ta ils
(T h in g)

(P ro c e s s)

C o u p lin g

0 ,n

0 ,n

0 ,n

0 ,n

0 ,n

P ro c e s s
O ffe r b y
R e g io n a l

O f fic e
(T h in g)

(P ro c e s s)

0 ,n

0 ,n

0 ,n

0 ,n
0 ,n

C o u p lin g

0 ,n

0 ,n

0 ,n

0 ,n

0 ,n

G e t A p p lic a tio n
D e ta ils
(T h in g)

(P ro c e s s)

C o m p u ta t io n a l
M o d u le
(T h in g)

(P ro c e s s)

C o u p lin g
0 ,n

0 ,n

0 ,n

O ffe r
S ta tu s
U p d a te
(T h in g)

(P ro c e s s)

0 ,n

M a in ta in
O ffe r

(T h in g)
(P ro c e s s)

C o u p lin g

0 ,n

0 ,n

C o u p lin g

0 ,n

0 ,n

R e tr ie v e O ffe r
D e ta ils
(T h in g)

(P ro c e s s)

P ro c e s s
C h a n g e s in o f fe r

re q u ire m e n ts
(T h in g)

(P ro c e s s)

C a n c e l
O ffe r re q u e s t

(T h in g)
(P ro c e s s)

0 ,n

0 ,n

0 ,n

0 ,n

0 ,n

L e g a l
d e p a rtm e n t

(T h in g)

0 ,n

P ro c e s s O ffe r
B y H e a d

O ffic e
(T h in g)

(P ro c e s s)

C o u p lin g
0 ,n

0 ,n

C o u p lin g

G e t lis t o f o ffe rs
(T h in g)

(P ro c e s s)

1 ,n

0 ,n

0 ,n

0 ,n

L o a n
G e n e ra t io n

(T h in g)
(P ro c e s s)

C o u p lin g

0 ,n

0 ,n

C o u p lin g

C o u p lin g

C o u p lin g

0 ,n 0 ,n

0 ,n

0 ,n

0 ,n

0 ,n

0 ,n

0 ,n

1 ,n

 121

Figure 4-21 shows the BWW meta-model for the sequence diagram of the Process
Offer Head Office use case for the re-engineered system. Objects represent things
that are coupled by messages; messages are part of the system structure and objects
part of the system.

Figure 4.21 BWW model for the sequence diagram of the Process Offer Head Office use case

Appendix F-1 shows the BWW meta-model for the class diagram of the database
package for the Process Offer Head Office use case for the re-engineered system.
The database package is represented by the BWW sub-system construct, the
package is composed of classes represented by BWW classes that are coupled to
other classes due to the UML association. Couplings are governed by state laws that
represent the UML multiplicity between classes in the diagram.

 122

Figure 4.22 BWW meta-model for the class diagram of the database package for the process offer by head office use case for the re-engineered system

Coupling
Allowed by
State Law

Architecture
Infrastructure

(Class)

MaintainOffer
(Class)

1,1 1,1
CreditTest

(Class)

Coupling
Allowed by
State Law

1,1 1,1

1,1
1,1

Subsystem
Control
Package

(Subsystem)

IProcess
(Coupling)1,N

Belongs
To

1,N

1,N

1,N

1,N1,N

1,N

Coupling
Allowed by
State LawCoupling

Allowed by
State Law

Process
Offer

Regional
(Class)

1,1

Coupling
Allowed by
State Law

Process
Application

(Class)

1,1

1,1

Coupling
Allowed by
State Law

Process
Offer

HeadOffice
(Class)

1,1

1,1

Coupling
Allowed by
State Law

LoanGeneration
(Class)

1,1

1,1

1,1

1,N

1,N
1,N

1,N

 123

Figure 4-22 and Appendix F-2 show the BWW meta-models for the class diagram
of the process control and interface packages for the Process Offer Head Office use
case for the re-engineered system.

Figure 4-23 shows the BWW meta-model for the package diagram for the Process
Offer Head Office use case. In this diagram, packages are represented by BWW
subsystems that interface to each other by using the coupling construct.

Figure 4.23 BWW meta-model for the package diagram for the Process Offer by Head Office

use case for the re-engineered system

Figure 4-24 depicts the BWW meta-model for the state diagram (Appendix E-10) of
the ProcessOfferHOfficePanel object identified in table 4-4. In the diagram, states
are depicted as BWW state constructs. The set of possible states represent the
conceivable state space. Transitions from one state to another state are governed by
state laws. Triggers that allow transitions from one state to another are depicted by
BWW event constructs. The final state is depicted by a stable state and the initial
state as an unstable state. All triggers are part of the conceivable space event.

 124

Figure 4.24 BWW meta-model for the state diagram of the ProcessOfferHOfficePanel object

Create List
(External Event)

Consists of

 Initial state
(Unstable state)

Waiting for a list of
offer

(State)

Offers returned
(Event)

2 2 2 2

0,1 0,1

Can occur on

Conceivable
Event state

(Event)

Transition
Allowed by
State Law 1,11,1

1,1

1,1
1,1 1,1

1,1

Update status Offer
(External Event)

Consists of

2 2

Transition
Allowed by
State Law

Waiting for a change
of status of offer

(State)

0,1

1,1

Set Assessment
Period

(External Event)

Consists of

2 2

Transition
Allowed by
State Law

Waiting for updates in
offer

(State)

0,1 0,1

1,1
1,1

Update status Offer
(External Event)

2 2

Set Assessment
Period

(External Event)

2 2

1,1

 125

Figure 4-25 depicts the BWW meta-model for the activity diagram for the Process
Offer Head Office use case (Appendix E-8). In this diagram, the swim lane UML
object represents a BWW thing construct that generates an event through an activity
that is being handled by another activity that represents a transformation. Activities
might represent an event, a transformation or a process. The states of an object are
also represented inside activities as these describe the object states.

Figure 4.25 BWW meta-model for the activity diagram of the Process Offer Head Office

Invokes a
printed list of all

offers
transferred to

the office
(Event)

1,1
Admnistrator

(Thing)
1,n

1,n

Generate

Consists of Consists of

Files are created for
all the offers

And Upgrade offer
Status to Registered

In the office
(Transformation)

Registered
At home office

Precedes

Succeeds

Invokes change
Of offer
screen
(Event)

Consists of Consists of

Upgrades the offer
To be accepted by

Head Office
(Transformation)

Offer Accepted
By Head Office

Precedes

Succeeds

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,n

0,n

1,1

1,n

2,2

2,2

Generate letters
To notary and credit

bureau
(Transformation)

0,1

 126

4.5 Conclusions

A bank’s Home Loan Information System was selected as a case study and the Offer
and Application sub- system was selected as the focus for the case study.

Reverse engineering was applied to the case study in order to recover its
requirements model. A concrete graph of the case study was identified as part of the
reverse engineering process proposed by Jacobson and Lindstrom (1991). The
concrete graph of the case study was presented by providing a description of the
loan offer and application sub-system, sub-system architecture, interface
architecture and business processes.

Use cases were created to document the business processes of the case study. The
use cases were used to generate the legacy requirements model in terms of context,
DFD and ERDs and a component-based requirements model in terms of UML was
generated by using the re-engineering technique proposed by Jacobson and
Lindstrom (1991).

Traditional and UML component-based diagrams were mapped onto BWW
constructs as part of the ontological evaluation of requirements models. Ontological
modeling deficiencies of the different diagrams analyzed were acknowledged and
BWW meta-models for the legacy and re-engineered requirements models were
generated.

In this chapter, models were built and evaluated in terms of ontological modeling
deficiencies as part of the design science framework used for this dissertation. In the
next chapter, re-engineered component-based models are evaluated in terms of their
capacity to represent the same business requirements embedded in the legacy
requirements model.

 127

Chapter 5 Analysis and Conclusions

5.1 Introduction

The previous chapter presented the collected data and analysis for the research while
this final chapter discusses conclusions and implications of the research. The aim of
this dissertation is to provide an answer to the research question, introduced in
section 1.2:

Is the resulting component-based requirements model ontological equivalent
to the legacy requirements model when shifting paradigms in the re-
engineering process?

The answer to this question requires the answers to three research issues. The first
deals with the possible conflict that might occur if one grammar construct in one
diagram of the legacy requirements model can be mapped to more than one
grammar construct in one diagram in the target re-engineered component-based
requirements model. The second deals with the accommodation of all legacy
requirements model grammar constructs into the re-engineered component-based
requirements model and the third with the possibility of the component requirements
model being complementary to the legacy requirements model, which means that
the re-engineered requirements model is able to accommodate all the grammar
constructs of the legacy requirements model and complement in addition more
constructs that were not able to be represented in the original requirements models.
Thus the three research issues, introduced in Section 1.2 and justified in Chapter 2,
are:

RI1: Are the compared requirements models in conflict?
RI2: Can the business component model accommodate all the grammar
constructs of the legacy requirements model?
RI3: Are the compare requirements models complementary?

Requirements models are regarded in conflict if one grammar construct in one
diagram of the legacy requirements model can be mapped to more than one
grammar construct in one diagram in the target re-engineered component-based
requirements model. If this happens, the system modeler needs to interpret the
grammar in conflict and map it to the grammar that is closer in meaning to the
interpretation of the original grammar.

If the component-based requirements model is able to accommodate all the grammar
constructs of the legacy business model, the system modeler only needs to follow a
mapping table that can be used to map each original grammar construct into a target
re-engineered component-based grammar construct.

When the component-based requirements model complements the original legacy
model, the system modeler might opt to supplement the original legacy requirements
model with grammar constructs that can help to represent better the system’s
requirements from the ontological view.

 128

The previous chapter presented and analyzed the data by using an ontological
evaluation of requirements models in order to address the three research issues with
the use of a case study. This chapter builds on the literature review of Chapter 2, the
methodology in Chapter 3 and the data analysis of Chapter 4 to draw conclusions
and discuss the implications of this study along the lines of the three identified
research issues. The research question is addressed and implications for theory and
practice, as well as limitations are discussed. Finally, future research needs are
identified and directions for further study are recommended.

5.2 Conclusions on the research issues

This section discusses the conclusions reached about the three research issues. The
conclusions of each research issue are discussed in more detail in the following sub-
sections, 5.2.1-5.2.3. Contributions are summarized in Section 5.4. Next, the
conclusions on research issue 1, ‘Conflicts’ are discussed.

5.2.1 Conclusion to the research issue 1: “Conflict”

This section discusses the findings of this study with respect to research issue 1. The
research issue investigates:

RI 1: Are the compared requirements models in conflict?

Requirements models are regarded as in conflict if one grammar construct in one
diagram of the legacy requirements model can be mapped to more than one
grammar construct in one diagram in the target re-engineered component-based
requirements model.

The legacy requirements model is normally represented with three diagrams: ERD,
DFD and Context. ERDs are composed of three main constructs; entities,
cardinalities and relationships.

By looking at the normalized ontological model for the ERD of the legacy system of
the case study for this dissertation (Figure 4-18), it was found that entities were
represented by BWW classes, cardinalities represented by BWW conceivable space
state laws and relationships represented by BWW couplings constructs.

The BWW constructs represented in Figure 4-18 were also found in the normalized
BWW meta-model for the database package of the class diagram for the case study
(Appendix F-1). Each entity in the ERD was mapped onto a class in the class
diagram for the database package. In addition, each of the cardinalities was mapped
as a UML multiplicity and each relationship as a UML association.

There were no conflicts encountered for the case of the ERDs re-engineered into
UML class diagrams for the component-based requirements model as each construct
in the legacy model was mapped onto only one construct in the UML component
requirements model (Table 5-1).

 129

Table 5.1 Mapping of ERD into UML Class diagrams

DFDs are mainly composed of external agents, data stores, processes and data
flows. External agents were represented by both things and system environment, in
BWW terms, in the normalized meta-model DFD for the Process Offer Head Office
use case of the case study (Figure 4-19).

External agents for the DFD were mapped in the re-engineered requirements model
as things and system environment BWW constructs in the meta-model of the use
case diagram for the re-engineered system. In the case of external agents, there were
no conflicts detected in the re-engineering process (Figure 4-24).

In Figure 4-20, the normalized BWW meta-model for the DFD of the Process Offer
by Head Office use case identifies the data stores offer and cabinet as BWW thing
constructs. The same constructs are identified as BWW things constructs in figure 4-
25 for the BWW model for the sequence diagram of the Process Offer Head Office
use case. This suggests that for the case of data stores, there were no conflicts as
these data stores originally represented in the DFD of the legacy system are also
represented by objects in the sequence diagram of the target re-engineered system.

Data flows have different interpretations depending on their use. They could
represent a BWW external event or internal event constructs, external if initiated by
an external agent and internal if initiated by a process (Table 4-4). In addition, they
could represent BWW coupling constructs if they are used to bind processes with
external agents or data stores (Table 4-4).

In the normalized BWW meta-model for the DFD for the Process Offer Head Office
use case in Figure 4-23, it is possible to see that the data flow that represents the
“Request list of offers with status transferred to the office” initiated by the
administrator, is represented as an external event in the meta-model of Figure 4-23.
Internal and external events represented originally in the legacy requirements
models as data flows, can be represented in the re-engineered component-based
requirements model as triggers in state diagrams or activities in activity diagrams
(Table 4-6).

The “Request list of offers with status transferred to the office” event was mapped in
the BWW meta-model for the activity diagram of the Process Offer Head Office use
case of Figure 4-26. However, this diagram is unable to differentiate between
internal and external events as all activities represent BWW events as indicated in
Table 4-6, therefore this type of diagram cannot be used to represent data flows.

In the case of the state diagram, the use of stereotypes is used to differentiate
between external and internal events. For the case of the “Request list of offers with
status transferred to the office” event represented in the DFD by a data flow, this is
represented in the BWW meta-model for the state diagram of the
ProcessOfferHOfficePanel object of Figure 4-25 as an external event.

Entities UML class

Cardinalities UML multiplicity
Relationships UML association

 130

Data flows could also represent a BWW coupling construct if a data flow is used to
bind a process with an external agent, another process or data store.

In the normalized BWW meta-model of the Process Offer Head Office use case
(Figure 4-20), the administrator (external agent) was mapped into a BWW thing
construct. This external agent receives a data flow “List of offers with status of
transferred to the office” from the process “Process request list of offers transferred
to the office” that is represented as a BWW coupling construct in the meta-model of
Figure 4-20. In this case, the data flow diagram is used to bind a process with an
external agent.

A similar representation is found in the component requirements model. Figure 4-22
shows the BWW meta-model for the sequence diagram of the Process Offer by the
Head Office use case, in this diagram it is possible to see that the Administrator
represented by a BWW thing construct is coupled via “return offer” message from
the ProcessOfferHOfficePanel Object represented as a BWW thing construct, this
object is also coupled to the ProcessOfferHOffice object that is derived from a class
of the same name that is part of the subsystem process package. In Appendix F-4, it
is possible to see that the ProcessOfferHOffice class is represented by a BWW class
construct that is part of the subsystem process package. This class has a “GetList”
operation that is represented as a BWW transformation construct in the same
diagram. The GetList transformation represents the same “Process request list of
offers transferred to the office” transformation in the legacy requirements model as
this transformation is in charge of retrieving the list of offers transferred to the head
office. In this case, there were no conflicts encountered.

In the case of data flows binding processes with data stores, it is possible to see in
the normalized BWW meta-model of the Process Offer Head Office use case
(Figure 4-20) that the process “Process request list of offers transferred to the
office” that is represented as a BWW transform construct in the meta-model is
bound to the data store offer represented as a BWW object construct by using the
data flow “List of offers with status of transferred to the office”. The component-
based requirements model shows a similar representation in Figure 4-22 which
shows the BWW meta-model for the sequence diagram of the Process Offer Head
Office use case. This diagram shows that the object ProcessOfferHOffice
represented by a BWW object construct is coupled to the offer object represented as
a BWW object construct. Appendix F-4 depicts the ProcessOfferHOffice class that
is represented by a BWW class construct that has the “GetList” operation that is
represented as a transformation BWW construct in the same diagram. As this
“GetList” transformation represents the same “Process request list of offers
transferred to the office” transformation in the legacy requirements model, this
suggests that there is no conflict for the representation of the data flow “List of
offers with status of transferred to the office” of the legacy requirements model.

Data flows can also be used to represent couplings between DFD processes.
Processes in DFDs can be interpreted as BWW things and transformations
according to table 4-6. This is consistent with the interpretation of Want and Weber
(1989) which states that the things in the system are processes and data. In the
normalized BWW meta-model of the process Offer by Head Office use case (figure

 131

4-20), the process “Process Offers updates” is coupled via the data flow “List of
offers with status of transferred to the office” with the process “Process Request List
of Offers Transferred to the Office”. In the component-based requirements model,
this is represented in the BWW model for the sequence diagram of the process offer
by the head office use case (Figure 4-22) by the BWW object ProcessHOffice
coupled by a message to the BWW object Offer. This representation is ontological
equivalent as the ProcessHOffice object is derived from the class of the same name
that appears in the BWW meta-model subsystem diagram for the Process Offer
Head Office use case (Appendix F-4) and has the transformation “GetList” that
performs the activities required to get the list of offers transferred to the office and it
is coupled to the Offer object via the IDatabase interface which has the
transformation “UpdateOfferStatus” that performs the process that updates the offer
status. In this case, both legacy and component-based have the same representation
in BWW terms.

As shown in table 5-2, the data flow construct can be mapped onto two UML
constructs depending on the data flow interpretation. This shows a potential conflict
when re-engineering DFDs into component-based UML diagrams.

Table 5.2 Potential conflict in the representation of data flows in the re-engineered

component model

Data flow interpretation UML representation

Internal Event UML trigger
External Event UML trigger
Coupling between process and external agent UML message
Coupling between process and data store UML message
Coupling between process and process UML message

Context diagrams are mainly composed of external agents, data flows and the main
system. Figure 4-19 depicts the normalized meta-model for the context diagram of
the legacy system. In this figure, external agents are represented by BWW things
and system environment. These were mapped one to one in Figure 4-24 where each
external agent was mapped onto one actor in the use case diagram that represents a
BWW thing and is part of the system environment. The system in the context
diagram was mapped as the system boundary in the use case diagram in Figure 4-24
as both represent BWW system constructs. The data flows in the context diagram
were mapped as UML associations in the use case diagram as both represent BWW
coupling BWW constructs that bind external agents with the system. Based on the
previous analysis, it was found there were no conflicts for the case of the context
diagrams re-engineered into UML case diagrams (Table 5-3).

Table 5.3 Mapping of Context Diagrams onto UML Use Case diagrams

External agents Actor

System System boundary
Data flows UML associations

 132

Class diagrams are not the only ones that can represent BWW transformation
constructs; activity diagrams are also able to depict this type of construct. The
process “Process Letters” depicted as a transformation BWW construct in the
normalized BWW meta-model of the DFD for the Process Offer Head Office use
case (Figure 4-20) was mapped as “Generate letters” process depicted in the
normalized BWW model for the activity diagram of the Process Offer Head Office
use case (Figure 4-26). However, the activity diagram is not capable of representing
the administrator that is coupled with this process by using a data flow as depicted
by Figure 4-20 as activity diagrams are not capable of representing BWW thing and
coupling constructs. On the other hand, Figure 4-22, representing the BWW model
for the sequence diagram of the Process Offer Head Office use case is capable of
representing the administrator as a BWW thing construct that is coupled to the
object ProcessOfferHOfficePanel represented as a BWW thing construct. This
object is coupled with the Print object depicted by a BWW thing construct that is
derived from the class of the same name that has the operation print letters that is in
charge of generating the letters as shown in Appendix F-4 and represented as a
BWW transformation construct. This shows the redundancy of the use of activity
diagrams in the re-engineering of legacy requirements models as class diagrams are
able to represent operations that encapsulate the business processes depicted by
legacy systems.

Although a process in the DFD can be mapped onto an activity in the activity
diagram or an operation in the class diagram, this does not represent a conflict as the
activity and operations UML constructs belong to two different UML diagrams.

In conclusion, the data flow is the only construct of the legacy requirements model
that presented conflict in the re-engineering process. Suggestions on how to deal
with this conflict will be included in section 5.2.4 as part of the conclusions of this
dissertation.

5.2.2 Conclusion to the research issue 2: “Grammar accommodation”

This section discusses the findings of this study with respect to research issue 2. The
research issue investigates:

RI 2: Can the business component model accommodate all the grammar
constructs of the legacy requirements model?

In the previous section, it was demonstrated that component-based requirements
models were able to accommodate all the grammar constructs of the legacy
requirements model. The results of this mapping are summarized in Table 5-4.

 133

Table 5.4 Traditional diagrams representation in UML component diagrams

Type of
diagram Diagram element UML representation

Context
Diagram

External Agents

Actor (Use case diagram)

 Data Flow UML association (Use case
diagram)

 System System Boundary(Use case
Diagram)

DFD External agents Actor (Use case diagram)
 Data stores Object (Sequence diagram)
 Data flows (internal and external

events)
Data flows (external agent and
process coupling)
Data flows (process and data store
coupling)
Data flows (process and process
coupling)

Triggers (State diagram)

UML message

UML message

UML message

 Process Activities (Activity diagram)
UML operations (Class
diagram)

ERD Entities UML class (Class diagram)
 Cardinalities UML multiplicity (Class

diagram)
 Relationships UML association (Class

diagram)

As indicated in Table 5-4, the component-based requirements model is able to
accommodate all grammar constructs of the business legacy model provided that the
interpretation (event or coupling) of the data flow is known in order to map it to the
appropriate UML construct in the component-based requirements model. Table 5-4
shows that data flows can have two interpretations and it is necessary to know the
interpretation used in the diagram in order to map it to the appropriate UML
representation. Each of the other diagram elements of the business legacy model can
be mapped to one UML representation as indicated in Table 5-4.

5.2.3 Conclusion to the research issue 3: “Complementary”

This section discusses the findings of this study with respect to research issue 3. The
research issue investigates:

RI 3: Are the compared requirements models complementary?

If the re-engineered requirements model is able to accommodate all the grammar
constructs of the legacy requirements model and supplement more constructs that
were not able to be represented in the original requirements models, this can be
regarded as complementary.

 134

As identified in Section 4.4.2, the traditional models offer ontological limitations
when representing business requirements. During the ontological analysis it was
found that no representations exist for conceivable space, lawful state space,
conceivable event space, lawful transformation or lawful event space constructs. In
addition, no representations exist for acts on, history, stable state, unstable state,
well defined event and poorly-defined event constructs. Accordingly, problems may
be encountered in capturing all the potentially important business rules of the
situation in traditional requirements models.

In Section 4.4.2, it was found that the ontological completeness in component
models is lacking as several constructs cannot find representation in any diagrams:
lawful event space, acts on, poorly defined event.

However, the ontological mappings listed in tables 4-4 and 4-5 provide evidence
that component-based models derived from the traditional models of a legacy
system are able to complement the legacy requirements model as they are able to
represent many of the BWW constructs that the legacy requirements model was not
able to represent.

Table 5-5 shows the ontological constructs that are not represented in the traditional
requirements models but that are represented in the component-based requirements
models.

Table 5.5 UML constructs that complement traditional requirements models

BWW constructs not represented
in the traditional requirements
models

UML constructs in component models used to
represent the BWW constructs not represented
in the traditional requirements models

Conceivable state space State machine of the UML state diagram
Lawful state space Sub states of the UML state diagram
Conceivable event space All triggers of the UML state diagram
Lawful transformation Guard conditions on transitions of the Activity

diagrams
History Shallow history in the UML state diagram
Stable state Final state in the UML state diagram
Unstable state Initial state in the UML state diagram
Well defined event Trigger in the UML state diagram

Based on the table above, it is possible to conclude that component-based
requirements models are able to complement traditional requirements models by
including constructs that are not able to be represented in the original requirements
model. This supports the idea that the component-based models are more
ontologically complete than the traditional models and thus makes them better
options to document business requirements. However, there are still three BWW
constructs that cannot be represented with the present UML grammar and might be
possibly included in future versions of UML.

The other issue is that although the representation of BWW subsystems are included
in the original legacy requirements model with the use of DFDs, these subsystems

 135

were not designed with the intention of reusability unlike components in the case of
component-based systems. The notion of component is not supported as such in
legacy systems and constitutes a complement to the original legacy systems.

In conclusion, the component-based requirements model is able to complement the
legacy model by adding more constructs that are able to better cover the BWW
ontology as a proof of being able to represent requirements better in ontological
terms.

5.2.4 Conclusions to research question

Based on the discussion of the three research issues in sections 5.2.1-5.2.3, this
section proposes an answer to the research question:

Is the resulting component-based requirements model ontological equivalent to the
legacy requirements model when shifting paradigms in the re-engineering process?

In Section 5.2.1, it was found that there was a conflict with the use of data flows as
these can represent events (internal or external) and also couplings between
processes to data stores, processes with processes and processes with external agents
(Wand & Weber 1989).

Although this might be seen as a potential conflict in the re-engineering process, the
problem of mapping the data flow with UML triggers or UML messages (Table 5-3)
can be eliminated if the interpretation is known before the legacy requirements
model is re-engineered. The interpretation can be easily found by reading the use
cases or business process descriptions of the legacy requirements model and a rule
can be used to solve this conflict. The rule can require mapping the data flow as a
UML trigger if it is interpreted as an event, and mapping it as a UML message if the
data flow is interpreted as coupling.

In the Section 5.2.2, it was found that the re-engineered component requirements
model was capable of representing all the legacy requirements model constructs.
Table 5-4 shows the mapping of all the legacy requirements model constructs onto
the component-based requirements model as a proof of this.

In addition, in Section 5.2.3 it was discussed that the component-based requirements
model is able to complement the legacy requirements model and therefore able to
better represent requirements in ontological terms.

Based on the results of the three research issues discussed in this section, the answer
to the research question is that the resulting component-based requirements model is
ontological equivalent to the legacy requirements model when shifting paradigms in
the re-engineering process and is able to represent the same requirements. The
answer to this question verifies that a re-engineered component-based requirements
model generated using UML grammar is able to represent the requirements
encapsulated in a legacy system requirements model represented by the traditional
DFD, ERD and Context diagrams models.

 136

5.3 Implications for theory

The main contribution to theory of this study is a systematic approach for the re-
engineering of legacy systems into component-based systems in order to generate
ontological equivalent requirements models. Based on the ontological analysis in
this dissertation, the following rules can be used when re-engineering legacy
systems in order to ensure the same representation of requirements in the re-
engineered requirements models.

For the case of the context diagram in the legacy requirements model, this can be
represented with the help of the use case diagram in the component-based model by
following the rules below:

• For every external agent, create an actor that interacts with the system in the
use case diagram.

• For every data flow, create a UML association that will bind actors with the
system.

• For the case of ERD in the legacy requirements model, these can be
represented with the use of UML class diagrams in the component-based
model by following the rules below.

• For every entity in the ERD of the legacy requirements model, a class should
be created in the class diagram of the component-based model.

• Relationships in the ERD should be respected in the class diagrams and
implemented with UML associations.

• Cardinalities in the ERD should be respected in the class diagrams and
implemented with UML multiplicity constructs.

For the case of DFD in the legacy requirements model, these can be represented
with the use of sequence diagrams, state diagrams and class diagrams by following
the rules below:

• For every external agent, create an actor in the sequence diagrams.
• For every process, create an operation in an appropriate class of the class

diagram that implements the process in the DFD.
• For every data flow interpreted as an internal or external event, create a

trigger in the state diagram of the appropriate object in charge of generating
the event. If the event is external use a stereotype to indicate this in the
trigger.

• For every data flow interpreted as coupling, create a message in the sequence
diagrams. Data flows used to couple external agents with processes should
be represented in the sequence diagram as a message between the actor
representing the external agent and the object that is in charge of
implementing the process by using the operation created for this in rule 2.
Data flows used to couple processes with data stores should be represented
in the sequence diagram as a message between the object implementing the
process and an object representing the data store. Data flows used to couple a
process with another process should be implemented by a message between
an object implementing the first process and another object implementing the

 137

second one. If both processes are implemented by the same object this could
be represented by a message being sent from the object to itself.

Table 5-6 shows the UML component-based diagrams required to represent the
legacy requirements model.

Table 5-6 UML component diagrams

Type of diagram UML representation

Context Diagram Use case diagram

ERD Class diagram

DFD Sequence diagrams
Class diagrams
State diagrams

These sets of rules represent the main contribution to theory of this dissertation.
The use of these rules would ensure an ontological equivalence when re-engineering
legacy requirements models into component-based requirements models.

5.4 Contributions of this study

Five levels of contribution are distinguished. The five levels of contribution are as
follows:

First, the application of the BWW (Wand and Weber 1995) ontology for the re-
engineering of information systems was demonstrated during the study. An
ontological approach to re-engineering is an important contribution of this
dissertation as the literature review revealed that little research has been carried out
applying this ontology in the re-engineering of legacy systems.

Second, this study demonstrated the application of the work of Wand and Weber
(1989) with regards to interpretation of DFDs and ERDs in BWW terms, and the
BWW representation for dynamic aspects of UML of Dussart et al. (2004) and
Opdahl and Henderson-Sellers (2002b) as the basis for an ontological approach to
re-engineering of information systems.

Third, rules were generated based on the ontological analysis in this dissertation as
provided in Section 5.3. These rules are a clear contribution as they can be used for
every re-engineering project in order to ensure that the requirements of the legacy
requirements model will be represented in the target re-engineered requirements
model.

Fourth, based on the results of this study, a recommendation to create an improved
version of UML that can include UML grammar for the representation of three
BWW constructs: lawful event space, acts on, and poorly defined event, is made as
these constructs are not currently represented by UML.

 138

Fifth, the results of the study supports the idea that the component-based models are
more ontologically complete than the traditional models and thus makes them better
option to document business requirements.

5.5 Implications to Information Systems Practice

The nature and intention of this study, in addition to contributing to theory, is to
provide the tools for information systems re-engineering of legacy systems into
component-based systems. The dissertation demonstrated the use of the BWW
ontology as the main framework for information systems re-engineering. The
mapping (table 5-4) can be used to transform constructs in the traditional
requirements model into UML constructs for the target re-engineered component-
based requirements model. In addition, rules identified in section 5.3 can be used as
the basis of information systems re-engineering for legacy systems.

BWW meta-model diagrams were introduced as useful tools in the re-engineering
process as these are footprints of the models in terms of ontological representations.
These footprints can be used for comparison of models and verification of
representation of business requirements of the original legacy requirements model in
the target re-engineered component based requirements model.

The dissertation verified that a re-engineered component-based requirements model
based on UML grammar is able to represent business requirements embedded in
legacy requirements models originally created to be implemented with structured
languages.

The study also revealed that the required UML diagrams in the re-engineering of
legacy systems are use case, sequence, state and class diagrams. The study
demonstrated the redundancy of the use of activity diagrams in the re-engineering of
legacy requirements models as class diagrams are able to represent operations that
encapsulate the business processes depicted by legacy systems.

This research study also confirmed the study of Dussart et al. (2004) that UML
grammar is ontologically incomplete. Therefore, the complete set of BWW
constructs would need to be included in future versions of UML in order to allow
for models that can better represent the reality captured in business requirements.

5.6 Limitations

One of the most important limitations of this study was that the legacy system
selected was poorly documented in terms of functional processes and technical
design. This problem was overcome by recovering the requirements model of the
case study by applying a reverse engineering approach as specified in the Jacobson
and Lindstrom (1991) methodology. This methodology used data collection methods
of interviews, direct observation and secondary data.

Another important limitation was that the study only concentrated on a re-
engineering project that does not include new requirements. This was required as the
study needed that both legacy and re-engineered requirements models to be
ontological equivalent for direct comparison. However, the results could be

 139

extended to projects that include new requirements as it is always possible to use the
proposed methodology to transfer legacy requirements and verify that the
requirements are represented in the re-engineered requirements models, then new
business requirements could be included once the verification is complete.

Another issue is the generalisability of the study due to the use of only one case in
the research. Many critics of the case study approach question the academic value of
this method as they argue that generalisation from results is not applicable (Bell
1992). However, Bassey (1981) insists that "the relatability of a case study is more
important than its generalisability". He continues, stating that “if case studies are:
carried out systematically and critically, if they are aimed at the improvement of
education, if they are relatable, and if by publication of the findings they extend the
boundaries of existing knowledge, then they are valid forms of educational
research” (Bassey 1981 p.86). For this study, the researcher followed the
suggestions of Bassey in order to minimize the generalisability limitation of the
study.

Another limitation was that the intense exposure to study of the case could have
biased the findings because the researcher who conducted the re-engineering was the
same person who conducted the evaluation analysis (Soy 1996). However, this was
minimized by following a rigorous methodology.

5.7 Implications for Methodology

This study has methodological implications; first, design science was the main
methodology for this dissertation and it proved to be useful for the research of
information systems re-engineering. The research activities that March and Smith
(1995) identify for this methodology are build and evaluate and these were
fundamental for this study as the first was used for construction of business and
BWW normalized models and the second was used in the evaluation of these
models for equivalency of business requirements.

The dissertation showed that the methodology by Fettke and Loos (2003) can be
used as a framework for the evaluation of requirements models for equivalency of
representation of business requirements. Another important implication of this
dissertation is the use of the Rosemann and Green (2002) meta-models as the
primary tool to represent the normalized requirements models in BWW construct
terms. The Fettke and Loos (2003) methodology was based on the use of the
concept of normalized requirements models and the Rosemann and Green (2002)
meta-models proved to be an effective way to generate this type of model.

In summary, this dissertation was based on the design science methodology that
created BWW models based on the Rosemann and Green (2002) meta-models,
evaluated these models by using the Fettke and Loos (2003) ontological
methodology and showed these to be effective tools for information systems re-
engineering.

 140

5.8 Directions for future research

This study has set the theoretical background for future research in the development
of automated tools for the re-engineering of information systems. A software tool
could be constructed to compare legacy and re-engineered requirements models
based on the methodology proposed and the rules generated in this dissertation. This
software tool could translate the legacy and component-based requirements models
into ontological normalized referenced models that could be used for comparison.

Although meta-models were used as the main tool for the creation of ontological
normalized referenced models, these have limitations as they cannot be easily
programmed and implemented in automated tools.

Future research could explore the use of meta-languages such as XML that could be
used to represent requirements models in BWW terms and could be easily
interpreted and visualized by software tools.

Future research could also be concentrated in the development of an ontological
requirements modeling language that could be used to model business requirements.
This modeling language could be independent of the programming paradigm in
order to avoid possible conflicts and omissions when re-engineering information
systems.

As this dissertation only concentrated on a case of re-engineering with no new
requirements, further research can be done for the inclusion of re-engineering
projects that include new requirements.

In addition, the ontological deficiencies detected in the UML grammar could be
incorporated in future versions of UML in order to make it more ontologically
complete.

5.9 Summary

The study evaluated the requirements models generated by the component-based
and traditional approaches when shifting paradigms in the re-engineering process in
order to verify that the re-engineered requirements model is capable of representing
the same business requirements of the legacy system. A legacy system was selected
as part of the case study and re-engineered using the component-based paradigm
with the help of UML notations. The requirements model of the legacy system was
recovered using reverse engineering and compared to the component-based
requirements model using normalized reference models generated with the help of
BWW transformation maps. These maps revealed that the re-engineered
requirements models in UML are capable of representing the same business
requirements of the legacy system. The identified UML diagrams required to
represent the legacy models were class, use case, state and sequence diagrams.

A set of rules were suggested for re-engineering legacy systems into component-
based information systems in order to ensure the same representation of legacy
system’s requirements in the re-engineered requirements model.

 141

Finally, this research included directions of future research that put emphasis on the
development of automated software tools for systems re-engineering that could
implement the rules suggested in this study and the ontological methodology
approach used for this dissertation.

 142

REFERENCES

Ackermann, J., Brink, F., Conrad, S., Fettke, P., Frick, A., Glistau, E., Jaekel, H.,
Kotlar, O., Loos, P., Mrech, H., Raape, U., Ortner, E., Overhage, S., Sahm, S.,
Schmietendorf, A., Teschke, T. & Turowski, K. 2003, Standardized Specification of
Business Components, University of Augsburg, Augsburg.

Anderson, J.G., Aydin, C. E., & Jay, S. J. 1994, Evaluating Health Care Information
Systems: Methods and Applications. Sage publications, USA.

Avision, D. E. & Fitzgerald, G. 1995, Information Systems development:
methodologies, techniques and tools, McGraw-Hill, New York.

Babiker, E., Simmons, D., Shannon, R. & Ellis, N. 1997, ‘A model for re-
engineering legacy expert systems to object-oriented architecture’, Expert Systems
with Applications, vol.12, no.3, pp.363- 371.

Bassey, M. 1981, ‘Pedagogic research: on the relative merits of search for
generalisation and study of single events’, Oxford Review of Education, vol.7, no.1,
pp. 73-79.

Bell, J. 1992, Doing your research project, Milton Keynes: Open University Press,
UK.

Benbasat, I., Goldstein, D. & Mead, M. 1987, ‘The Case Research Strategy in
Studies of Information Systems’, MIS Quarterly, vol.11, no.3, pp. 368-386.

Bennett, K. 1995, ‘Legacy Systems: Coping with Success’, IEEE Software, vol.12,
no.1, pp.19-23.

Bisbal, J., Lawless, D., Wu, B. & Grimson, J. 1999, ‘Legacy information systems:
issues and directions’, IEEE Software, vol.16, no.5, pp. 103-111.

Bloor Research 2001, Understanding business goals, [Online] Available
http://www.it-director.com/business/content.php?cid=2254, [Accessed 19
November 2007].

Brown, A.W. 2000, Large-Scale, Component-Based Development, Prentice Hall,
New Jersey.

Brookshear, J.G. 2000, Computer Science: an overview, Addison-Wesley, Boston.

Bunge, M. 1977, Treatise on Basic Philosophy: Volume 3: Ontology 1: The
furniture of the world, Reidel, Boston.

Bunge, M. 1979, Treatise On Basic Philosophy: Volume 4: Ontology II: A World of
Systems, Reidel, Dordrecht.

Bunge, M. 1999, Dictionary of Philosophy. Prometheus Books, Amherst.

 143

Burstein, F. & Gregor, S. 1999, The Systems Development or Engineering
Approach to Research in Information Systems: An Action Research Perspective,
Proceedings of the 10th Australasian Conference on Information Systems,
Wellington, 1-3 December.

Carey, J. & Carlson, B. 2001, ‘Business Components’, in Component Based
Software Engineering, Addison-Wesley, Reading, MA.

Chen, P. P.-S. 1976, ‘The Entity-Relationship Model: Toward a Unified View of
Data’, ACM Transactions on Database Systems, vol.1, no.1, pp. 9-36.

Cheesman, J. & Daniels, J. 2001, UML Components: simple process for specifying
component-based software, Addison Wesley, New Jersey.

Chikofsky, E.J. & Cross, J.H. 1990, ‘Reverse Engineering and Design Recovery - a
Taxonomy’, IEEE Software. vol.1, no.7. pp. 13-17.

Chisholm, R.M. 1996, A Realistic Theory of Categories: An Essay on Ontology,
Cambridge University Press, UK.

Cormella-Dorda, S., Wallnau, K., Seacord R.C. & Robert J., 2000, A survey of
legacy system modernization approaches [Online], Available:
http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html, [Accessed
03 Dec 2007].

De Lucia, A., Di Lucca, G. A., Fasolino, A. R., Guerra, P., & Petruzzelli, S. 1997,
Migrating legacy systems towards object-oriented platforms, Proceedings of the
International Conference on Software Maintenance (ICSM’97), Bari, 1-3 October.

Davies, L., Green, P. & Rosemann M. 2002, Facilitating an ontological foundation
of information systems with meta models, Proceedings of ACIS International
conference of computer science, software engineering, information technology, e-
business, and applications (ACIS 2002), St-Louis, 24-26 October.

Desmet L., Jaco L., Mertens K. & Verhanneman T. 2003, COTS, the safety
nightmare of component-oriented frameworks [Online], Available
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW367.pdf , [Accessed 09
Sept 2008].

Deursen, A.V. , Elsinga B., Klint P. & Tolido R. 2000, From legacy to component
software renovation in three steps [Online], Available
http://home.hetnet.nl/~daan.rijsenbrij/cwicap/index.html, [Accessed 08 Sept 2007]

Deursen, A.V. & Kuipers, T. 1999, Identifying objects using cluster and concept
analysis, Proceedings of the 21st International Conference of Software Engineering,
ICSE-99 pp. 246-255.

 144

Deursen, A.V. & Kuipers, T. 1998, Rapid system understanding: Two COBOL case
studies. Proceedings of the sixth International Workshop on Program
Comprehension; IWPC’98, IEEE Computer Society, pp. 90–98.

Deursen, A.V & Moonen, L. 1999, Understanding COBOL systems using types,
Proceedings of the 7th Int. Workshop on Program Comprehension, IWPC’99, IEEE
Computer Society, pp.74–83.

Digree, T. 1988, ‘Business Object Component Architecture’, IEEE Software, vol.15,
no.5, pp.60-69.

D’Souza, D.F. & Wills, A. 1999, Objects, Components and Frameworks with UML:
The Catalysis approach, Addison-Wesley, Reading, MA.

Dussart A., Conseil R., Aubert B. & Patry M. 2004, ‘An Evaluation of Inter-
Organizational Workflow Modeling Formalisms’, Journal of Database Management,
vol.15, no.2, pp. 74-104.

Erlikh L. 2002, ‘Leveraging legacy system dollars for e-business’, IT Professional,
vol.2, no.6, pp. 54 – 56.

Evermann, J., Wand, Y. 2001, ‘An Ontological Examination of Object Interaction in
Conceptual Modeling’. Proceedings of the 11th Workshop on Information
Technologies and Systems, (WITS 2001). New Orleans, Louisiana.

Favre, J.M , Duclos, F., Estublier, J., Sanlaville, R. & Auffret, J.J. 2001, Reverse
Engineering a Large Component-based Software Product, Proceedings of the Fifth
European Conference on Software Maintenance and Re-engineering (CSMR),
Lisbon, Portugal, 14-16 March.

Fettke, P., Loos, P. 2003, ‘Ontological evaluation of reference models using the
Bunge Wand-Weber-model’. Proceedings of the Ninth Americas Conference on
Information Systems. Tampa, FL, USA, pp. 2944-2955.

Fettke, P., Loos, P.2004 ‘Ontological evaluation of the specification framework
proposed by The “Standardized Specification of Business Components”
memorandum –some preliminary results. Proceedings of the 1st International
Workshop on Component Engineering Methodology, Erfurt, Germany, 11-12
September.

Flynn, D. 1998, Information Systems Requirements: determination and analysis,
McGraw-Hill, New York.

Fontannete, V., Garcia, V.C., Perez, A., Prado, A.F. 2002, ‘Component-Oriented
Software Re-engineering using Transformations’. Proceedings of the International
Conference on Computer Science, Software Engineering, Information Technology,
E-business, and applications, Foz do Iguaçu - Paraná. Proceedings of the ACIS
International Conference on Computer Science, Software Engineering, Information
Technology, e-Business, and Applications. A Publication of the Internacional
Association for Computer and Information Science, p. 206-211.

 145

Gilbert, A. L. 1993, A contingent theory of information technology planning:
Rationality, learning, or negotiations?, PhD thesis, Northeastern University.

Green P. & Rosemann M. 1999, An Ontological Analysis of Integrated Process
Modelling, Proceedings of the 11th International Conference on Advanced
Information Systems Engineering (CAiSE 99), Springer: Berlin, pp. 225-240.

Green, P. & Rosemann, M. 2000, ‘Integrated Process Modelling: an ontological
evaluation’, Information Systems, vol.25, no.2, pp. 73-87.

Green, P. & Rosemann, M. 2005, Business Analysis with Ontologies, Idea Group
Publishing, New York. US.

Haddox, J.M., Kapfhammer, G.M., 2002, ‘An approach for understanding and
testing third party software components’. Proceedings of 2002 Annual Reliability
and Maintainability Symposium, Seattle, WA, January 28-31.

Heineman G. T. & Councill W.T, 2001, ‘Definition of a Software Component and
its elements’ in Component Based Software Engineering , Addison-Wesley, Boston,
Mass.

Henderson-Sellers B. & Barbier F 1999, ‘Black and White Diamonds’, Proceedings
of the UML 99-The Unified Modeling Language (Beyond the Standard), UML 99
R.France and B. Rumpe, eds., Lecture Notes in Computer Science (LNCS), No.
1723, Springer Verlag, Berlin, Germany, 1999, pp. 550-565.

Henderson-Sellers B. 2001, ‘An Open Process for Component-Based Development’,
in Component Based Software Engineering , Addison-Wesley, pp. 243-263.

Hevner, A.R., March, S.T., and Park, J. 2004, ‘Design Research in Information
Systems Research’, MIS Quarterly, vol.28, no.1, pp 75-105.

Hoffman, C. 1997, ‘Requirements model Tutorial’ [Online], available:
http://www.balsamfir.com/documents/overview.html, [Accessed 15 January 2003].

Houston, K. & Norris, D. 2001, ‘Software Component and the UML’ in Component
Based Software Engineering , Addison-Wesley, pp. 243-263.

Hyperion Solutions Corporation 2001 Requirements Modelling: Ready for Prime
Time Report [Online], Available
http://whitepapers.silicon.com/0,39024759,60043623p,00.htm, [Accessed 1 April
2001].

Irwin, G. & Turk, D. 2005, ‘An Ontological Analysis of Use Case Modeling
Grammar’, Journal of the Association for Information Systems, vol.6., no.1., pp.1-
36

 146

Kaplan, B., & Dorsey, P. 1991, Requirements Analysis interviewing: alternative
perspectives. Technical Report 91-021. Washington, D.C.: The American
University, Department of Computer Science and Information Systems.

Jacobson, I. 1987, ‘Object Oriented Development in an Industrial Environment.’.
Proceedings of the OOPSLA. Orlando, Florida.: ACM Press, pp. 183-191.

Jacobson, I. & Lindstrom F. 1991, ‘Re-engineering of Old Systems to an Object-
Oriented Approach,’ Proceedings of the In Conference on Object-Oriented
Programming Systems, Languages and Applications OOPSLA 1991, pp. 340-350.

Jacobson, I., Christerson, M., Jonsson, P. & Overgaard, G. 1993, Object-oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley,
Wokingham, England.

Jorgensen, D. L. 1989, Participant observation: Methodology for human studies,
Sage publications, Newbury, CA.

Jones, C. 1991, Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill. US.

Kerlinger, F.N. 1986, Foundations of behavioral research, Holt Rinehart and
Winston Publisher, New York.

Kinnear, T. & Taylor, J. 1996, Marketing Research, McGraw-Hill, New York.

Koschke, R., 2000, Atomic Architectural Component Recovery for Understanding
and Evolution, Phd. Thesis, University of Stuttgart.

Hawthorne, M. & Perry D.E. 2005, ‘Software Engineering education in the era of
outsourcing, distributed development, and open source software: challenges and
opportunities’, Proceedings of the 27th international conference on Software
engineering, St. Louis, pp.643-644.

Hammersley, M., & Atkinson, P. 1989, Ethnography: Principles in practice,
Tavistock publisher, London.

Lakhotia, A. 1997, ‘A unified framework for expressing software subsystem
classification techniques’, Journal of Systems and Software, vol.36, no.3. pp. 211–
231.

Longworth, R. 2003, Modeling Events for Today's System Requirements, [Online]
available from Internet http://www.cips.ca/it/resources/eventviews.pdf [Accessed 20
Oct 2003].

Lunn, K. 1997, OO Analysis and Design - Course Notes , [Online], Available from
URL: http://www.csc.liv.ac.uk/~1cs88/oonotes-relevant.htm [Accessed 20 Oct
2003].

 147

Mylopoulos, J. 1998, ‘Information modelling in the time of the revolution’,
Information Systems, vol. 23, pp. 127-155.

Myles, M.B. & Huberman, A.M. 1994, Qualitative data analysis: An expanded
sourcebook, Sage publications, Thousand Oaks, CA.

Neuman, W.L. 1994, ‘Sampling’, in Social Research Methods, Allyn and Bacon,
Boston.

Nunamaker, J.F. & Chen, M. 1990, ‘Systems development in information systems
research’, Proceedings of the Twenty-Third Annual Hawaii International
Conference on Systems Science, IEEE, pp 631-639.

OMG, 2003, UML 2.0 Superstructure Final Adopted Specification [Online],
Available: http://www.omg.org/cgi-bin/doc?ptc/2003-08-02 [Accessed 08 Aug
2006]

Opdahl, A.L. & Henderson-Sellers, B. 2002a, ‘Understanding and improving the
UML metamodel through ontological analysis‘, Journal of Software and Systems
Modelling, vol.1, no.1, pp. 43–67.

Opdahl, A.L., & Henderson-Sellers, B. 2002b, ‘Ontological Evaluation of the UML
Using the Bunge-Wand-Weber Model’, Software Systems Model, vol.1, no.1, pp.
43-67.

Opdahl, A.L. & Henderson-Sellers, B. 2004, ‘A template for defining enterprise
modeling Constructs’, Journal of Database Management, vol.15, no.2, pp. 39-73.

Orlikowski, W. & Baroudi, J. 1991, ‘Studying Information Technology in
Organizations: Research Approaches and Assumptions’, Information Systems
Research, vol.2, no.1, pp. 1-28.

March, S. & Smith, G. 1995, ‘Design and Natural Science Research on Information
Technology’, Decision Support Systems, vol.15, no.4, pp. 251 - 266.

Mišic, V.B. & Zhao, J. L. 2000, ‘Evaluating the Quality of Reference Models’,
Proceedings of ER 2000 – 19th Conference on Conceptual Modeling, Berlin,
Springer-Verlag, pp. 484-498.

Peräkylä, A. 1997, ’Reliability and validity in research based on tapes and
transcripts’, in Qualitative research: theory, method and practice, eds D. Silverman
(Ed.), Sage publishing, London.

Perry, C. 1998, ‘Processes of a case study methodology for postgraduate research in
marketing’, European Journal of Marketing, vol.32, no.9, pp. 785-802.

Prado, F. 1992, Estratégia de Engenharia de Software Orientada a Domínios, Rio de
Janeiro/RJ, 333, PhD thesis, Pontifícia Universidade Católica.

 148

Reed, Jr, P.R. 2002, Developing Applications with JAVA and UML, Addison-
Wesley, Boston.

Rosemann, M. & Green, P. 2002, ‘Developing a meta model for the Bunge-Wand-
Weber Ontological Constructs’, Information Systems, vol.27, no.2, pp. 75-91.

Rosemann, M., Recker J., Indulska M. & Green P. 2005, Process Modeling – A
Maturing Discipline? BPMI.org: Business Process Modeling Notation (BPMN),
available at: http://www.bpmi.org/ accessed June 5 2005.

Rosemann, M. & Green, P., 1999 ‘Enhancing the Process of Ontological Analysis
“The “Who cares” Dimension’, Proceedings of the Information Systems
Foundations Workshop Ontology, Semiotics and Practice.

Rosemann, M. & Zur-Muehlen, M. 1998, ‘Evaluation of Workflow Management
Systems – a Meta Model Approach‘, The Australian Journal of Information
Systems, vol. 6, no.1, pp. 103-116.

Rumbaugh, J. 1994, ‘Getting started: Using use cases to capture requirements’,
Journal of Object-Oriented Programming, vol.7, no.5, pp. 8-12.

Satzinger, J.W., Jackson, R.B., & Burd, S.D. 2002, Systems Analysis ad Design in a
Changing World, Course Technology, Boston, Mass.

Seacord, R.C., Plakosh, D. & Lewis, G.A 2003, Modernizing legacy systems,
Addison Wesley Boston.

Serrano, M., Carver, D. & De-Oca, C. 2001, ‘Re-engineering legacy systems for
distributed environments’, Journal of Systems and Software, vol.64, no.1, pp. 37-55.

Sommerville, I. 2001, Software Engineering, Addison-Wesley, Boston.

Scheer, A.W. 1998, ARIS–Business Process Frameworks, Springer-Verlag, Berlin.

Soy, S. 1996, The Case Study as a Research Method [Online] available from
Internet: http://www.gslis.utexas.edu/~ssoy/usesusers/l391d1b.htm [Accessed in 15
March 2003].

Sparx Systems 2001, An introduction to Business Process Modeling in Enterprise
Architect, with BPMN and Eriksson-Penker [Online], Available
http://www.sparxsystems.com.au/downloads/whitepapers/businessProcessModelTut
orial.pdf , [Accessed 2 Feb 2002].

Spradley, J.P. 1979, The ethnographic interview, Holt, Rinehart and Winston, New
York.

Stake, R.E. 1995, The art of case study research, Sage publishing, California, CA.

Stroulia, E., El-Ramly, M., Kong L., Sorenson, P., & Matichuck, B. 1999, ‘Reverse
engineering legacy interfaces: An interaction-driven approach’, Proceedings of the

 149

6th Working Conference on Reverse Engineering, WCRE’99, pages 292–301. IEEE
Computer Society, Atlanta.

Strauss, A., & Corbin, J. 1990, Basics of qualitative research: Grounded theory
procedures and techniques, Sage publishing, Newbury Park, CA.

Szyperski, C. 1998, Component Software: Beyond Object-Oriented Programming,
Addison Wesley, Reading MA.

Tagg, R. 1991, ‘A Review of the Suitability of Various Applications for an OO
Approach’, Proceedings of the Tenth Annual Conference TAC 1991, British
Computer Society, Walsall.

Tull, D. and Hawkins, D. 1993, Marketing Research: Measurement and Method,
Macmillan Publishing Company, New York, NY.

Uschold, M., King, M., Moralee, S. & Zorgios, Y. 1998, ‘The enterprise ontology’.
The Knowledge Engineering Review, vol.13, no.1, pp. 31-89.

Valverde, R. & Toleman, M. 2007, ‘Ontological evaluation of requirements models:
comparing traditional and component-based paradigms in information systems re-
engineering’ in Ontologies: a handbook of principles, concepts and applications in
information systems, eds R. Sharman & R. Kinshore, Springer, New York.

Verrijn-Stuart, A.A. 2001, ‘A Framework of Information System Concepts’,
Proceedings of the IFIP TC8/WG8.1 Working Conference on Information System
Concepts, Brussels, November 15-16.

Vessey, I., Ramesh V. & Glass, R. 2004, ‘An Analysis for Research in the
Computing Disciplines’, Communications of the ACM, vol.47, no.6, pp. 89-94.

Warrel, D. & Stevens K 2003, ‘Towards and Understanding of Risk Management in
Legacy Information Systems Modernisations’, Proceedings of the 14th Australasian
Conference on Information Systems ACIS 2003 November, Perth Western
Australia.

Wand, Y. & Weber, R. 1988, ‘An ontological analysis of some fundamental
information systems concepts’, Proceedings of the Ninth International Conference
on Information Systems, Minneapolis USA, November 30–December 3.

Wand, Y. & Weber, R. 1989, ‘An ontological evaluation of systems analysis and
design Methods’, Proceedings of the IFIP WG8.1 Working Conference on
Information Systems Concepts: An In-Depth Analysis, Namur, Belgium, pp.79–107,
North-Holland, Amsterdam.

Wand, Y. & Weber, R. , 1990, ‘An ontological model of an information system’,
IEEE Transactions on Software Engineering (TSE), vol.16, no.11, pp. 1282–1292.

 150

Wand, Y. & Weber, R. 1993, ‘On the ontological expressiveness of information
systems analysis and design grammars’, Journal of Information Systems, vol.3, no.4,
pp. 217–237.

Wand, Y. & Weber, R. 1995, ‘On the deep structure of information systems’,
Information Systems Journal, vol.5, no.3, pp. 203–223.

Wand, Y. & Weber, R. 2002, ‘Research Commentary: Information Systems and
Conceptual Modelling - A Research Agenda’, Information Systems Research,
vol.13, no.4, pp. 363-377.

Weber, R. 1997, Ontological Foundations of Information Systems, Buscombe
Vicprint, Blackburn, Victoria.

Weber, R. & Zhang, Y. 1996, ‘An analytical evaluation of NIAM's grammar for
conceptual schema diagrams’, Information Systems Journal, vol.6, no.2, pp. 147-
170.

Wolfgang, P. 1997, ‘Component-Based Software Development - A New Paradigm
in Software Engineering?’, Software-Concepts and Tools Software - Concepts and
Tools, vol.18, no.4, pp.169-174.

Wolcott, H. 1990, Writing up qualitative research, Sage publishing, Newbury Park,
CA.

Whitten, J. L., Bentley D. L. & Dittman K.V. 2000, Systems Analysis and Design
Methods, McGraw-Hill, New York

Wreden, N. 1998, Model Business Processes [Online], Available:
http://www.informationweek.com/702/02iuprc.htm, [Accessed 20 February 2007].

Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wade, V., O'Sullivan, D. &
Richardson, R. 1997, 'Legacy Systems Migration - A method and its Tool-kit
Framework', Proceedings of the APSEC '97/ICSC '97, Ed. IEEE Computer Society.

Yin, R.K. 1994, Case Study Research-Design and Methods, Applied Social
Research Methods Series, Sage publishing, Newbury Park.

Yun-Tung, L. 2001, The art of objects: Object Oriented design and Architecture,
Addison Wesley, Reading, MA.

Zikmund, W.G. 2000, Business Research Methods, The Dryden Press, Forth Worth.
Zou R. & Kontogiannis K. 2002, Migration to Object Oriented Platforms, Revised
edition, Sage Publications, Newbury Park.

 151

APPENDICES

Appendix A System Architecture documentation collected

Appendix A-1 Sub-system flow (geographic)

Appendix A-2 Sub-system process flow

 152

Appendix A-3 System architecture for the procedural model

Appendix A-4 Typical batch process program flow

 153

Appendix A-5 Offer Screen

Appendix A-6 New Offer entry screen 1

Appendix A-7 New Offer Entry Screen Product 1

 154

Appendix A-8 New Offer Entry Screen Product 2

Appendix A-9 Calculate Offer Entry Screen

Appendix A-10 Change status screen

 155

Appendix B Use Cases

Appendix B-1 Use case for process application

Use Case ID: 1
Use Case Name: Process Application

Actors: Sales agent, Applicant.
Description: This use-case satisfies all of the goals of setting up and processing a new application. This applies for both existing

as well as new applicants. All aspects of the application process are covered, from initial entry to application
acceptance.

Trigger(s): All events dealing with new and existing applicants applying for a home loan through the usual sales channels.
Preconditions: The sales agent must be logged onto the system.
Postconditions: Application attains a final status of accepted by all parties. An application printout is made for record purposes.
Normal Flow: An applicant completes an application on-line, supplies all required information and the application is accepted by

all parties.

1. All relevant Applicant and sales details are entered for new relations including:
 Debtor
 Agent (if applicable)
 Account manager
 Applicant name, address and bank account.
2. Entry of property details (to be used as security against the loan).
 Purchase price
 taxation value (if known at this stage)
 location
 property type

 156

3. Entry of Loan requirement details (credit application) including:
 details of existing loans
 details of assets and liabilities
 monthly income and expenditure
 Loan amount required
 Deposit amount (if applicable)
 Desired payment frequency
4. Agent selects income test before proceeding to next step:
 Income test, test which controls whether or not income is sufficient for required loan
5. Product(s) is (are) selected:
 Applicant selects desired product or product combination
 Selected Product(s) entered and verified by the system
6. Sales Agent invokes credit testing and income testing modules.
7. Application document is requested and generated.
8. Upon signature of the Application document by the Applicant, the Sales
 agent requests and receives Application Acceptance status from the
 system.

Alternative Flows: An applicant completes an application via a physical application form, supplies all required information and the
application is accepted by all parties.

1. The sales agent prints out an application form, which the applicant
 completes and the details on the form are then entered online.

Exceptions: The bank due to a failed credit check rejects the application.
The application is rejected by the bank due to failing to meet income/expenditure balance requirements.

Includes:
Priority: 1
Frequency of Use: 100/h
Business Rules: 1. Agent must be registered with bank.

 157

2. Property must be within national borders.
3. Loan amount may not be greater than 125% of taxation value of property.
4. Standard requirement of 10% deposit against capital sum.
5. Applicant must pass the income test for loan sum required.

Special Requirements:
Assumptions:
Notes and Issues: Location of source is in Regional Office

 158

Appendix B-2 Use Case for Loan Generation

Use Case ID: 2
Use Case Name: Loan generation.

Actors: System and Administrator
Description: This use-case satisfies the goals of creating a loan structure based on the data provided in the accepted offer as well

as the creation of all relevant database couplings.

Trigger(s): The offer acquiring the status of accepted by head office and the applicant.

Preconditions: The administrator must be logged onto the system.
Postconditions: Offer obtains a. status of closed and the loan structure and all relevant couplings are made in the database.
Normal Flow: Once the offer is accepted by all parties, an administrator upgrades the offer status to accepted whereby the loan

structure of the new customer is created, based on the accepted offer.

1. A loan structure is created in the system. The following is created in the system (based on the product model and
the data provided in the offer):
All relevant accounts and sub-accounts are created
2. Couplings between relation entities are created such as:
Debtor to debit account
Contract to loan to notary bond
Agenda profile is created in terms of:
Payment schedule obligations, Interest rate review periods, Archiving of records

3. The generation of data files occurs, for external interfaces to agents, notaries, insurance companies, the credit

 159

bureau and the tax department

Alternative Flows:
Exceptions: The system rejects the creation of the loan structure due to a business rule.

Includes:
Priority: 1
Frequency of Use: 100/day
Business Rules: 1. The generation of the contract data can only occur once offer is at status accepted by head office.

2. Debit account must be generated within the loan structure in order to handle internal payments as well as
external payments.

Special Requirements:
Assumptions:
Notes and Issues: Regional Offices and Agencies

 160

Appendix B-3 Use case for Process Offer by regional office (online process)

Use Case ID: 3
Use Case Name: Process Offer by regional office (online process)

Actors: Sales agent, applicant, Applicant, Administrator, Debtor, and Insurer
Description: This use-case satisfies all of the goals of setting up and processing a new offer to the status of production by

regional office. This applies for both existing as well as new applicants. All aspects of the offer process are
covered, from initial registration to the production of the offer at the regional office.

Trigger(s): All events dealing with new and existing applicants applying
for a home loan through the usual sales channels.
Once the application is completed, the applicant requests an offer from the Sales Agent. An on-line offer form is
loaded.

Preconditions: The sales agent must be logged onto the system.
Postconditions: Offer attains a status of produced at regional office.
Normal Flow: Sales agent processes an offer and generates a yet to be authorized offer document all in a single session:

1. Relevant application data is made available in workstation offer entry screen once sales agent enters application
number in the offer entry screen.
2. Changes (if applicable) to relation and/or loan and/or property details are made.
3. A product or product combination is captured. All entry requirements within the product or product
combination structure are filled these include: the completion of all sub-product requirements and options such as
linking savings, accounts and linking depot accounts, Fixed interest rate duration and Distribution of capital loan
amount over product structure.
4. Loan repayment options are captured including: external bank account number, method and frequency of
payments and amount of deposit to be paid.
5. Sales agent attempts to upgrade offer status to Registered. Once all local and mainframe based controls have

 161

been processed, the offer is upgraded by the system to status registered.
6. The computational module is called from the workstation by the sales agent in order to calculate: Loan -
interest payments, percentages and amount based on duration of fixed interest, reduction on capital amount over
time penalties for early loan settlement or non-scheduled payments against capital loan.
7. On completion of the computational module, the offer is placed by the system as status ready for printing.
8. The sales agent selects print from the offer entry screen. The offer document is printed.
9. Once the applicant accepts the offer, the offer attains status of offer complete for transfer to head office.

Alternative Flows: Sales agent processes an offer in a number of sessions with the applicant.. A range of offers is made under a single
application.

1 – 8 Completed over time and from last registered offer status a range of offers is made under a single application.
1 – 8 Repeated for every required offer variation. Each new offer receives an incremented series number.

Exceptions: The system rejects the creation of the loan structure due to a business rule.
Includes:
Priority: 1
Frequency of Use: 10/h
Business Rules: 1. A maximum of four sub-accounts are allowed within a contract.

2. External account details (the payer account) must be linked to a bank registered with the home loan bank.
3. An internal saving account must be linked to the sub-account representing the product.

Special Requirements:
Assumptions:
Notes and Issues: Regional Offices and Agencies

 162

Appendix B-4 Use case for Process Offer by Head office (online process)

Use Case ID: 4
Use Case Name: Process Offer by head office

Actors: Administrator, Applicant, Bank, Notary, Credit Bureau and Tax department
Description: This use-case satisfies all of the goals of processing a new offer from the status of registered at head office to the

status of accepted or declined by head office.

Trigger(s): 1. All events dealing with the gathering and processing of required information in order for the offer to be able to
be assessed.
2. The offer obtains the status transferred to head office. The administrator requests (via an on-line menu option) a
daily list of all offers that have attained the status of transferred to head office.

Preconditions: The administrator must be logged onto the system.
Postconditions: Offer attains a status of either accepted or declined by head office.
Normal Flow: The administrator processes an offer to the status of accepted by head office.

The administrator requests (via an on-line menu option) a printed list of all offers that have reached the status of
transferred to head office.
Physical files for the holding of all required documents are created for all offers on the list.
The administrator upgrades the status of the offer to registered at head office.
Upon the offer obtaining the status of registered at head office, the system generates letters to the following
external entities:
 Notary, requesting authorization for the creation of the home loan bond.
 Credit Bureau for credit approval of the debtor.
The system also generates a flat file to be read in by the banks legal department sub-system.
An assessment period is entered into wherein the administrator gathers all incoming documentation.

 163

Once all required documentation is received and all external entities approve of the offer, the administrator
upgrades the offer to accepted by head office.

Alternative Flows: None
Exceptions: The offer is declined by head office.
Includes:
Priority: 1
Frequency of Use: 100/day
Business Rules: 1. The offer can only be accepted by head office upon:

Receipt of Medical clearance for the debtor
Receipt of Credit Bureau clearance
Receipt of approval from relevant insurance companies
Receipt of approval from the banks legal department
Receipt of notary authorization

Special Requirements:
Assumptions:
Notes and Issues: Place of process at Head Office

 164

Appendix B-5 Use case for Maintain offer (online process)

Use Case ID: 5
Use Case Name: Maintain Offer

Actors: Administrator, Applicant
Description: This use-case satisfies all of the goals of maintaining a new offer from the status of accepted by applicant to

accepted or declined by head office.
Trigger(s): 1. All events dealing with the gathering and processing of required information in order for the offer to be able to

be assessed.
2. The applicant calls the service centre to inquire about the status of an offer.

Preconditions: The administrator must be logged onto the system.
Postconditions: Offer obtains a. status relevant to the change administered
Normal Flow: An applicant calls to inquire about the status of an offer.

Upon the telephonic request from the applicant, the administrator invokes the offer inquiry screen.
The administrator enters the applicable offer number and reads off status and/or other relevant offer details.
The administrator terminates the screen upon termination of the applicants call.

Alternative Flows: An applicant calls to change the details of an offer. Deposit amount or fixed interest changes, for example.

1 – 2 Administrator determines from screen information and/or offer status provided whether or not the
 desired change is allowed.
3. If deemed allowable, the administrator will invoke the change offer details screen and make the
 change.
4. Any change to the offer automatically results (by the system) in the status of the offer being
 reset to registered, effectively resulting in a new offer.

 165

5. The administrator will change the status of the offer to registration authorised by regional
 office.
6. The administrator will reprint the offer and send the document out for posting to the applicant.

An applicant calls to cancel the offer/s.

1 – 2 same as normal flow.
3. The administrator will invoke the change offer details screen and make the
 cancellation.
4. The system automatically changes the status of the offer to cancelled by applicant.
5. Upon cancellation, the system will trigger the printing of a cancellation confirmation letter.
6. The administrator will send the cancellation letter out for posting.

Exceptions:
Includes:
Priority: 2
Frequency of Use: 100/hour
Business Rules: 1. Any change to the capital amount to be borrowed must result in a credit check.

2. No changes are allowed if the offer has reached the status of closed or definite.
Special Requirements:
Assumptions:
Notes and Issues: Place of process at Head Office Service Centre

 166

Appendix C Event-Response Tables

Appendix C-1 Possible events for the Process Offer by Regional Office

Actor Event Trigger Response
Sales Agent Sales agent enters

application number in the
offer entry screen

The applicant requests
an offer from the Sales
Agent

Relevant application data is made available in workstation offer
entry screen.

Sales Agent Changes to relation
and/or loan and/or
property details are
entered on the screem

Application data is on
the screen and applicant
requests changes on the
application

Changes to relation and/or loan and/or property details are made in
the application table

Sales Agent A product or product
combination is captured
and
 all entry requirements
within the product or
product combination
structure are Filled
These include:
1.the completion of all
sub-product requirements
and options such as
linking savings accounts
and linking depot
accounts.

2.Fixed interest rate

Application data is on
the screen

The offer is created and saved in the system

 167

duration.

3. Distribution of capital
loan amount over
product structure.

Loan repayment options
are captured including:

1.external bank account
number, method and
frequency of payments
2. Amount of deposit to
be paid.

Sales Agent Sales agent attempts to
upgrade offer status to
Registered

Offer is created Update the offer in the offer table with the status of “registered”

Sales Agent The computational
module is called from the
workstation by the sales
agent

Request of
Computational module
by Sales Agent
+
Offer has been created

The system calculates:
Loan - interest payments (percentages and amount based on
duration of fixed
 interest.
Reduction on capital amount over time.
Penalties for early loan settlement or non-scheduled payments
against capital loan.
The system displays a message “Ready” for printing”

Sales Agent The sales agent selects
print from the offer entry
screen

The system displays a
message “Ready”

The offer document is printed.
Offer is sent to applicant

 168

Applicant Accepts or refuses offer Offer is received by
applicant

Informs sales agent about his decision

Sales Agent Retrieves Offer from the
system and updates
status to “complete for
transfer to head office”

Offer is accepted by
Applicant

The system updates offer in the offer table with the status of
“complete for transfer to head office”

 169

Appendix C-2 Possible events for the Process Offer by Head Office use case

Actor Event Trigger Response
Administrator System enquiries to the

database for offers with
status of transferred to
the office

Request for list of offers
with status of
transferred to office.

A screen output with all the offers that have reached status of transferred
to head office is displayed

Administrator creates physical files for the holding of all required
documents are created for all offers on the list.

Administrator The administrator
upgrades the status of
the offers to registered at
head office on the screen

Screen output with
offers with “transferred
to head office” status is
displayed

System changes in the offers table the status of all the offers to
“registered at the head office”

The system generates letters to the following external entities:
 Notary, requesting authorization for the creation of the home loan bond.
 Credit Bureau for credit approval of the debtor.

Letters are sent to the external entities by administrator.

The system also generates a flat file with the offers information to be
read in by the banks legal department sub-system.

Administrator Enter an assessment
period for each offer
wherein the
administrator gathers all
incoming documentation

Offers changed to status
of “registered at the
head office”

Update the offers table with the assessment period from the system

Administrator upgrades the offer to
accepted by head office

All required
documentation is
received and all

Update the offers table with the status of accepted by the office

 170

external entities
approve of the offer

 171

Appendix C-3 Possible events for the Maintain Offer use case

Actor Event Trigger Response
Administrator the administrator

invokes the offer
inquiry screen and
enters offer number and
or offer relevant details

The applicant calls the
service centre to
inquire about the
status of an offer

The system displays on the screen offer details

Administrator The administrator will
invoke the change offer
details screen and make
the
 cancellation

An applicant calls to
cancel the offer/s.
and the system has
already displayed the
offer details on the
screen

The system automatically changes the status of the offer to cancelled by
applicant in the offer table
Upon cancellation, the system will trigger the printing of a cancellation
confirmation letter.
The administrator will send the cancellation letter out for posting

Administrator The administrator will
invoke the change offer
details screen
and make the change.

An applicant calls to
change the
requirements or details
of an offer and the
system has already
displayed the offer
details on the screen

The system will change the status of the
 offer being reset to be registered and a new offer will be created .

Administrator The administrator will
change the status of the
offer to registration
authorized by regional
office.

Offer reset to status
“to be registered” and
customer called to
change details in offer

The system changed the registration status to registered for the offer

 172

Administrator Reprint the offer System changed to
registration status and
Customer called for
changes in offer

The system will print the offer in paper format.
Administrator will send the offer

 173

Appendix C-4 Possible events for the Loan Generation use case

Actor Event Trigger Response
Administrator Create loan structure is

in the system.
Offer acquiring the
status of accepted by the
head office

All relevant accounts and sub-accounts are created. Couplings
between relation entities are created such as:
Debtor to debit account
Contract to loan to notary bond

Agenda profile is created in terms of:
Payment schedule obligations, Interest rate review periods,
Archiving of records

System The generation of data
files occurs

Loan structure created
in the database

data files occurs are created for external interfaces to agents,
notaries, insurance companies, the credit bureau and the tax
department

 174

Appendix D DFDs for legacy system of case study

Appendix D-1 DFD for Process Application use case

Customer New application

Complete Loan
Application

1.1

File Cabinet

Completed Load Appication

Agent

Loan Application

Process applicant
and sales details

1.5

Applicant and sales details

Applicants

New applicant

Application

Other
Applicants

New Applications

New Other Applicants

Process Property
Details

1.3

Property Details

Update application with property details

Process loan
requirements

1.2

Loan requirements

Update application with loan requirements

Test Income

1.4

Loan
Requirements

Application rejected notification

Process Product
Selection

1.6

Product Selection

Product

Product
details

Update Application with product selection

Test passed

Credit Test
Process

1.7

Application

Application information

Product Selected

Bank

Credit request

Applicant’s Income information

Verify Credit

1.8

Credit
Information

Application
Rejected

Or
Accepted

Application
Accepted

Application Rejected

 175

Appendix D-2 DFD for Process Offer by Regional Office use case

AgentApplicant Application Number

Get Application
Details

2.1

Application

Application
Details

Application
Number

Request an Offer
+

Application Number Process Offer
Request

2.6

Application
Details

Process
Application
Information

Chage

2.3

Request for Application Information
Change

+
Application Changes

Application Changes

Process
Applications

Changes

2.2

Application
Changes

Updated
Application

Process Offer

2.7

Sub product requirements
+

Linking options
+

Fixed interest rate duration.
+

. Distribution of capital loan amount over product structure.
+

external bank account number
+

Amount of deposit to be paid.

Offer

New
Offer

Process Offer
Status Update

2.4

Update Status of
Offer to

Registered

Update Status of
Offer to

Registered

Generate Offer
Details

2.5

Computation Module request

Offer

Loan
Interest

Payments
+

Reduction of Capital over time
+

Penalties
+

“Ready for Printing”

Generate Offer for Applicant

ApplicantOffer
Process

Acceptance
Information

2.10

Accept
Offer

Offer
Acceptance

Retrieve Offer
Details

2.8

Offer Details

Offer details request
+

Offer number

Offer details

Update Offer
status

2.9

Offer Details

Offer Status updated to
“complete for transfer to head office”

Update
Offer State

To
“complete for transfer to head office”

 176

Appendix D-3 DFD for the Process Offer Head Office use case

Administrator Process Request
list of Offers

transferred to the
office

3.2
Request for list of offers

with status of transferred to office

Offer

List of Offers
with status of transferred to the office

list of offers
with status of transferred to office

Physical
Files for orders

Cabinet

Process Offers
Updates

3.3

List of Offers
with status of transferred to the office

Requests status update to “Registered in Head office”
 for list of offers

with status of transferred to office

Update
Offers with
Registered
at the head
Office status

legal
department

Letters for Credit Bureau
And Notary

Flat file with offers
Information

Assessment
Period

Update
Offers with

Assessment Period

Notary

Credit
Bureau

Process Letters

3.1

Letters for Credit Bureau
And Notary

Letters for Credit Bureau

Letters for Notary

Offer Approved
Or

Refuse

Offer Approved
Or

Refuse

Offer Approved
Or

Refuse

Update offer to accepted by head office

Update
Offer with
Accepted

at the head
Office

Create Physical
Files for order

3.4

Order
Information

 177

Appendix D-4 DFD for Maintain Offer use case

Administrator

Process Call

4.1

inquire about
the status of an offer

Offer

Applicant

Offer Number
And

details

Retrieve offer
details

4.2
inquire about

the status of an offer

Offer Number

Offer details

Cancel Offer

Process cancel
Request

4.3

Offer cancel

Update offer to Cancel status

Offer details

Cancellation letter

Process Letter

3.1

Cancellation
Letter

Cancellation Letter

Change offer details

Process changes
in offer

requirements

4.4

New
Offer Requirements

Offer details

New Offer
Requirements

New Offer
Requirements

+
Change of state to be registered

Change status of
Offer

4.5

Offer details

Change status of offer to registration authorized by regional office

Change of state of offer to
registration authorized by regional office

Re Print Offer

4.6

Print offer

Offer details

Offer Printout

Offer
Letter

New Offer Letter

 178

Appendix D-5 DFD for the Loan Generation use case

 179

Appendix E UML Diagrams for re-engineered system of case study

Appendix E-1 Class diagram for the database subsystem package

Application

Bank
Agent

Other Application
Relations Products

1..n

1..n

0..n0..n

1 n

1

Offer

1

0..n

Debtor

1..n

1..n

Loan Account

1

0..1

Sub Product

1..n

Applicant

1 n

1 n

Loan

0..1

1..n

Regional
Office

0..n 1

Property

1

1..n

Administrator

1

0..n

Head Office

1

0..n

Sub account

1..n1

Agenda

1

1

Payment
Agenda

Interest
Agenda

SubOfferCredit
1..n

1

0..n

1

0..1

0..n

1

Payer

1..n

1..n

Other Offer Relations
0..n

Other Loan
Relations

0..n

0..n

Subsystem

Database
<<Package>>

Elements

IDatabase

 180

Appendix E-2 Class diagram for the Interface subsystem package

 181

Appendix E-3 Sequence diagram for the Process Application use case

Process Application Interface Application Processor
Top Package::Agent

Set applicand and sales detalis

Process applicant and sales details

Application Applicant Applicant relations

Create new application

create new applicant

Create new applicant relations
Set property details

Process property details

Update application with property details

Set Loan Requirements

Process Loan requirements

Update Application with Loan requirements

Invoke Income Test

Display Income Test

Set Income requirements

Income test

Income test

Fail/accepted message

Bank

Process product selection

Update Application with new product

Invokes Credit Test

Verify credit for application

Check credit

Credit test fail or accepted

Request application print

Print Application document

Print

Print Application

Select New Product

Products

Get Products

 182

Appendix E-4 Sequence diagram for the Loan Generation use case

LoanGenerationPanel Loan
Top Package::Administrator

CreateLoan

CreateLoan

Account SubAccount

CreateSubaccounts

Debtor

CreateAccount

CreateDebtor

File

CreateDataFiles

LoanGeneration

CreateLoan

CreateDataFiles

 183

Appendix E-5 Sequence diagram for the Process Offer by Regional Office use
case

ProcessOfferRegional Application
Top Package::Sales Agent

SetApplicationNumber

GetApplicationData

Relation Property Product

UpdateApplicationData

ReturnApplicationDetails

ChangeApplicationDetails

UpdateRelationData

UpdatePropertyData

Relation Sub-product

GetProducts

GetProducs

GetSubproducts
ReturnAvailableProducs

SetProducts

Offer

SetProducDetails

SetLoanRepaymentOptions

CreateOffer

UpgradeOfferStatus

UpgradeOfferStatus

ProcessOfferRegionalPanel

GetApplicationData

DisplayApplicationResults

UpdateApplicationData

GetAvailableProducts

DisplayAvailableProducts

CreateOffer

UpgradeOfferStatus

RequestComputationalModule

CalculateLoanInterestPayments

CalculateReductionOnCapital

CalculatePenalties

RetrieveOffer
GetOffer

GetOffer

UpdateOfferStatus UpdateOfferStatus
UpdateOfferStatus

 184

Appendix E-6 Sequence diagram for the Maintain Offer use case

 185

Appendix E-7 Activity diagram for the Maintain Offer use case

Customer Administrator System

H

Start

Call Service
Centre

 Invokes offer on
Screen

Adm inistrator
Enters Offer num ber
And relevant details

Determ ine
If change is allowable

[Change Details]

[Cancel] Invoke change of offer
Details screen

[Not allowable]

[Change Details]

Retrieve and display
Offer details

Cancel offer

Changes the status
Of the offer to cancelled

Print cancellation
Confirm ation letter

Administrator w ill send
Cancellation confirmation

letter

Inform Custom er
That changes are not allowed

Invoke change of offer
Details screen

M ake Changes
Change the status of the offer to

“to be registered”

Create new offer

Change the status of offer
To “registration authorized by regional office”

The system changes the status of
the

Offer to “registered”

Reprint the offer

The system changes the status of
the

Offer to “registered”

System prints offer

Adm inistration sends offer to
Customer

H
END

 186

Appendix E-8 Activity diagram for the Process Offer by Head office use case

 187

Appendix E-9 State diagram for the Offer Object

H

Offer Initial State

Generates Offer

Offer
Waiting to be authorized

Offer
Registered
Regional
Office

Upgrade status offer

Offer
Complete for
Transfer to the
Head Office

H

Customer
Accepts Offer

Final State

Ready for
Printing

Called
Computational

Module

Offer
Transferred to the

Head Office

Offer is printed

Transfer office
To the Head

Office

Offer registered
At the Head Office

Upgrades the offer status

Offer accepted by the
Head Office

Documentation is received

Offer
Modification

Offer
Modification

Offer
Modification

Offer Modification

Cancelled by aplicant

Cancel Offer

Cancel
Offer

Cancel Offer

Cancel Offer

Cancel offer

 H

Final State

 188

Appendix E-10 State diagram for the ProcessOfferHOfficePanel Object

H
initial state
(Waiting for input)

Create List

Waiting
For list of offers

«Administrator»

Offers returned

Waiting
For for change of status

of the offer

«Administrator»

Update status Offer

Waiting
For for updates in offer

«Administrator»

Set assessment period

Offer updated

Changes made in offer

 189

Appendix E-11 Subsystem diagram with the classes required for the Process
Head Office use case

IProcess

IDatabase

IInterface

GetList
UpgradeStatusOffer
SetAssementPeriod
UpgradeOfferStatus

ProcessOfferHeadOffice

Interface<<subsystem>>

Data<<Subsystem>>

CreateList
UpdateStatusOffer

SetAssesmentPeriod
UpgradeStatusOffer

ProcessOfferHOfficePanel

GetListOffers
CreateOffer

UpgradeOfferStatus
UpdateOffer

Offer

ArchitectueInfrastructure

PrintLetters
ApproveLetters

Print

GenerateFiles
GeneratePhysicalFiles

File

Process <<subsystem>>

 190

Appendix F BWW Model

Appendix F-1 BWW meta-model for the database package of the class diagram
for the Process Offer Head Office

Coupling
Allowed by
State Law

Bank
(Class)

Products
(Class)

Coupling
Allowed by
State Law

Applicant
(Class)

Application
(Class)

Agent
(Class)

1,1 1,N

1,N 1,N

1,N

Sub product
Credit
(Class)

Coupling
Allowed by
State Law

1,1 1,N

Property
(Class)

Coupling
Allowed by
State Law

1,N 1,1

Offer
(Class)

0,N

Sub offer
Credit
(Class)

Coupling
Allowed by
State Law

1,1

0,N

Coupling
Allowed by
State Law

1,N1,1
Coupling

Allowed by
State Law

Other
Applicants

relation
(Class)

Coupling
Allowed by
State Law

0,N

0,N

Coupling
Allowed by
State Law

1,1

Regional
Office
(Class)

Coupling
Allowed by
State Law

0,N

0,N

Main
Debtors
(Class)

1,1

1,N

Other
Relations
(Class)

0,N

Administrator
(Class)

1,1

Head Office
(Class)

Coupling
Allowed by
State Law

0,N

1,1

Sub Account
(Class)

Coupling
Allowed by
State Law

Loan Account
(Class)

Coupling
Allowed by
State Law

1,N

1,1

Payer
(Class)

Coupling
Allowed by
State Law

1,N
1,N

Coupling
Allowed by
State Law

1,1

0,1

Other Loan
Relations
(Class) Coupling

Allowed by
State Law

Home Loan
(Class)

0,1

Coupling
Allowed by
State Law

1,N

1,1

Interest
Rate

Agenda
(Class)

Agenda
(Class)

Payment
Rate

Agenda
(Class)

Coupling
Allowed by
State Law

1,N

1,N

1,1

Coupling
Allowed by
State Law

1,1

1,1

Subsystem
Database
Package

(Subsystem)

Idatabase
(Coupling)1,N

Belongs
To

Belongs
To

1,N

1,N

1,N

1,N

1,N

1,N

1,N

1,N1,N

1,N

1 N

1,N

1,N

Belongs
To

1,N

1,N

1,N

1,N

1,N

1,N

Belongs
To

Belongs
To

1,N

1,N

1,N

1,N

1,N

1,N
1,N

1,N

1,N

0,1

 191

Appendix F-2 BWW meta-model for class diagram of the interface package for
the Process Offer Head Office

Process
Application

panel
(Class)

MaintainOffer
Panel

(Class)

1,1

InquireOfferPanel
(Class)

Coupling
Allowed by
State Law

1,1 1,1

1,1

Subsystem
Interface
Package

(Subsystem)

IInterface
(Coupling)1,N

Belongs
To

1,N

1,N

1,N1,N

Coupling
Allowed by
State Law

Credit
Check

Interface
(Class)

1,1

Coupling
Allowed by
State Law

Credit
Application

Panel
(Class)

1,1

1,1

Coupling
Allowed by
State Law

1,1

Process Offer
Regional panel

(Class)

Process Offer H
Office panel

(Class)

1,N

1,N

1,N

1,N 1,N

 192

Appendix F-3 BWW meta-model for the state diagram of the offer object

Generates Offer
(Event)

Consists of

Offer Initial state
(Unstable state)

Offer wanted to be
authorized

(State)

Upgrade
Status Offer

(Event)

Consists of

Offer Registered
Regional
Office
(State)

Customer
Accepts

Offer
(Event)

Consists of

Offer
Complete for

Transfer to the
Head Office

(State)

Call
Computational Module

(Event)

Consists of

Ready for
Printing
(state)

2 2 2 2

2 2

2 2

0,1 0,1 0,1

0,10,1

Offer is printed
(Event)

Consists of

2 2

0,10,1

Transfer office
To the Head

Office

(Event)

Consists of

Offer
Transferred to the

Head Office
(State)

2 2

0,1

0,1

Upgrades the offer
status

(Event)

Consists of

Offer registered
At the Head Office

(State)

2 2

0,1

0,1

Can occur on

Forms

Conceivable
Event state

(Event)

Transition
Allowed by
State Law 1,11,1

Transition
Allowed by
State Law

Transition
Allowed by
State Law

1,1

0,1

1,1

Transition
Allowed by
State Law

1,1

1,1

Transition
Allowed by
State Law

1,1 1,1 Transition
Allowed by
State Law

1,1 1,1

Documentation is
Received

(Event)

Consists of

Offer accepted by the
Head Office

(Stable State)

2 2

0,1

0,1

1,1 Transition
Allowed by
State Law

1,1 1,1

Offer Modification
(Event)

Cross Product

2 2

Cancel order

(Event)

0,1

0,1

0,1 0,1

0,1

0,1

2 2

Consists of Consists of

Cancelled by applicant

(State)

0,1

0,1

Conceivable
state
Space

Transition
Allowed by
State Law

1,1

1,11,1

1,1
1,1 1,1

1,1

1,1

 193

Appendix F-4 BWW meta-model Subsystem diagram with the classes required
for the Process Head Office use case

hasOffer
(Class)

GetListOffers
(transformation)

CreateOffer
(transformation)

1,N 1,N

1,N

Subsystem
Interface
Package

(Subsystem)

IInterface
(Coupling)1,N

Subsystem
Process
Package

(Subsystem)

IProcess
(Coupling)

Subsystem
Database
Package

(Subsystem)

IDatabase
(Coupling)

1,N

1,N

1,N 1,N

UgradeOfferStatus
(transformation)

1,N

UpdateOffer
(transformation)

1,N

has
ProcessOfferHOffice

Panel
(Class)

CreateList
(transformation)

UpdateStatusOffer
(transformation)

1,N 1,N

1,N

SetAssesmentPeriod
(transformation)

1,N

UpgradeStatusOffer
(transformation)

1,N

hasProcessOfferHeadOffice
(Class)

GetList
(transformation)

UpdateStatusOffer
(transformation)

1,N 1,N

1,N

SetAssesmentPeriod
(transformation)

1,N

UpgradeStatusOffer
(transformation)

1,N

Has

0,N

Has

0,N

ArchitectureInfrastructure
(Class)

hasPrint
(Class) PrintLetters

(transformation)

1,N
1,N

hasFile
(Class) GenerateFiles

(transformation)

1,N 1,N

Coupling
Is Kind of

1,N

1,N

1,N

Coupling
Allowed by
State Law

1,N

1,N

Has
1,N

1,N1,N

1,N

ApproveLetters
(transformation)

1,N

GeneratePhysicalFiles
(transformation)

1,N

 194

Appendix G Consent letter

AUSTRALIA

THE UNIVERSITY OF
SOUTHERN
QUEENSLAND

FACULTY OF BUSINESS

Department
of Information Systems

TOOWOOMBA QUEENSLAND 4350
AUSTRALIA
TELEPHONE +61 7 4631 2100
FACSIMILE +61 7 4636 1762

Tel. +61 7 4631 1630
Fax. +61 7 4631 1631

29 March 2002

My name is Raul Valverde and I am currently a doctoral student of the Faculty
of Business, University of Southern Queensland / Australia, I am undertaking
research on component-based systems re-engineering of legacy systems. This
research is important because it will help both practitioners as yourself and other
researchers, understand better how to transfer business requirements embedded in
legacy systems into modern re-engineered component-based systems.

I am seeking your interest and permission to become a participant (as a stakeholder)
in my research to conduct a number of open interviews and conversations with you
about your experiences and knowledge about the Home loan system that you
currently maintain as part of your job duties. The interviews (2) will last about 1
hour, which will be taped and written up for analysis. Meeting place and time can be
flexible to suit your needs.

The information you provide will be treated confidentially and will not be
passed on to any other people in your organization, unless you want to do this.
Individuals will not be identified in the research report. You have the right to decline
or withdraw from the research at any time. No reasons for such a decision will
be required nor will you be subject to any adverse consequences as a result
of your withdrawal. If you do withdraw from the project, information collected
will be used unless you state otherwise. If you don’t want your information used, it
will either be returned to you or destroyed. If you have a concern regarding the
implementation of the project, you are welcome to contact the Secretary, Human
Research Ethics Committee University of Southern Queensland, Toowoomba
Queensland Australia 4350, or by telephone at 011 61(7) 4631 2956.
For any questions about the survey, or if you would like any additional
information, please feel free to call me at (250) 8482424 EXT. 2989, or contact me
by email rvalverde@jmsb.concordia.ca. Thank you for your valuable contribution to
this research effort.

Raul Valverde
Doctoral student
University of Southern Queensland

 195

AUSTRALIA

THE UNIVERSITY OF
SOUTHERN
QUEENSLAND

FACULTY OF BUSINESS

Department
of Information Systems

TOOWOOMBA QUEENSLAND 4350
AUSTRALIA
TELEPHONE +61 7 4631 2100
FACSIMILE +61 7 4636 1762

Tel. +61 7 4631 1630
Fax. +61 7 4631 1631

 Participant Consent Form Research Project – The ontological
evaluation
 of the requirements model when shifting from a traditional to a
 component-based paradigm in information systems re-
engineering.

 Re: Consent to Participate in Research

I _____________________________________ have read the Information Sheet
under the above research project and agree to become a participant in the study.

Organisation

Position
Signature
Date

Please keep a copy and return original to:

Raul Valverde
Project Researcher
University of Southern Queensland
(514) 8482424 ext 2989
rvalverde@jmsb.concordia.ca

 196

Appendix H Interview Protocol

Interview Protocol for Participants

Thank you for agreeing to participate in my doctoral research project. This interview
should take about one hour.

The main aim of my research project is to contribute to generate better mechanisms for
the transfer of requirements of legacy systems into re-engineered component based
systems.

The research procedure will be based on a qualitative approach to data collection and
analysis. This is mainly done through interviewing people involve in the maintenance
of legacy systems. Specific comments you make are confidential, in terms of their
source.

The information you provide will be treated confidentially and will not be passed on to
any other people in your organization, unless you want to do this. Individuals will not
be identified in the research report.

You have the right to decline or withdraw from the research at any time. No reasons
for such a decision will be required nor will you be subject to any unfavourable
consequences as a result of your withdrawal. If you do withdraw from the project,
information collected will be used unless you state otherwise. If you don’t want your
information used, it will either be returned to you or destroyed.

Your organization and each participant will be entitled to access the research
dissertation. The interview includes questions and discussion to gain your experience
and views of the Home Loan Information System (HLIS). There are no right or wrong
answers to the questions. I would like to make some notes during the interview.

If acceptable to you, interviews are taped to ensure I do not miss comments, and for
subsequent analysis. Further interviews, if necessary, are a follow-up to see all areas
are covered as part of my selected research process.

The expected benefits associated with your participation are:

• Identification of existing documents related to the HLIS.
• A better understanding of the operation of the HLIS.
• A better understanding of the architecture of the HLIS.

Do you have any questions about your participation in the project before we proceed?

Is it OK to proceed?

If no, can we discuss this further and agree on action?

 197

Interview Questions for Participant1

Start recorder.
Thanks for reading the interview protocol and agreeing to participate in my research
project.
I’ll begin the interview by recording some details, and then ask some questions.

Participant……………………………….Interview #……………………..

Date…………………..Time………………..Place……………………………

Role Title:…………………………………………………………………………….

Time in Role…………………………………….

1. What are the documents available for the HLIS?

Participant’s Response

2. Can you describe the content in general terms of each document?

Participant’s Response

3. Can you describe the architecture of the HLIS in terms of programming languages,
file systems, databases, networks and interfaces?

Participant’s Response

4. Can you identify the actors that interact with the Offer and Application sub-system
of the HLIS?

Participant’s Response

 198

5. What information do actors need to supply to the Offer and Application sub-
system?

Participant’s Response

6. What information do actors need to receive from the Offer and Application sub-
system?

Participant’s Response

7. What functionality does each actor expect from the Offer and Application sub-
system?

Participant’s Response

8. Can you describe the normal flow of events in a typical day of operations of the
Offer and Application sub-system?

Participant’s Response

9. Can you describe the normal flow of events in a typical day of operations of the
Offer and Application sub-system?

Participant’s Response

10. Do actors need to be informed about the events generated from the Offer and
Application sub-system?

Participant’s Response

Please let me know if you have any concerns about the conduct of this interview.
Thank you for participating in the interview

 199

Follow-up Interview Questions for Participant

Start recorder.

Thanks for agreeing to meet with me again as a participant in my research project.

I’ll begin the interview by recording some details, and then we can continue with our
conversation.

Participant………………………………… Interview #………………………
Date…………………Time…………….Place………………………………… In the
last interview we discussed:

To cover in this interview:

As advised in last interview, please let me know if you have any concerns about the
conduct of this interview. Thank you for participating in interview.

