The cost of saving farm dam water

Debbie Atkins *CRC Irrigation Futures Irrigation Australia*

Erik Schmidt

National Centre for Engineering in Agriculture (NCEA)
University of Southern Qld (USQ)

Presentation

- Demonstration Ready Reckoner calculator
 - 8 steps
- Resources on dam management
 - National Centre for Engineering in Agriculture (NCEA)
 - National ProgramSustainable Irrigation(NPSI)

Economic Ready Reckoner

Web-based tool for farm managers, advisors and consultants to calculate water saved in ML through evaporation / mitigation systems

Estimates the cost of evaporation or seepage mitigation system used to save this water as \$/ML/year

ReadyReckoner

Economic Ready Reckoner - Evaporation Mitigation Systems

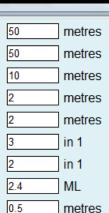
					About Assumptions Case Studies		Evaporation Resour	ces webpaq
Dem	o Case	e Studies	LockyerVa	ılleySouth-EastQLD-Ho	rticulture		•	
Loca	tion:		Lockyer Valley, South-East (Queensland,				
Desc	riptio	n:	Horticulture,				<u></u>	
	1.	Select Stor	age Type		Rectangular Ring Tank	▼	(2)	
✓	2.	Enter / Imp	ort Monthly Evaporation Data	ı			?	
✓	3.	Enter the A	verage Amount of Water Sto	red Per Month (as a %	of Total Storage Volume)		(2)	
✓	4.	Enter the A	verage Percentage of Years	hat the Storage Conta	ins Water (per month)		?	
✓	5.	Select your	Most Applicable Seepage O	otion	Impermeable Liner Installed	▼	?	
✓	6.	Initial evalu	nation for various Evaporation	n Mitigation System (E	MS)		Evaluate	
		— Initial	Evaluation Show 🚨					
✓	7.	Modify sele	ected Evaporation Mitigation	System (EMS)	Impermeable Cover	v	(2)	
✓	8.	Modify sele	ected Seepage Mitigation Sys	tem (SMS)	No Seepage Mitigation Required	•	?	
							Calculate	
User	Inputs	File (*.csv)				Browse	Import ?	
Disclair	ner * Th	nis site is best vi	ewed in Internet Explorer					

Length @ Centreline of Crest (L)

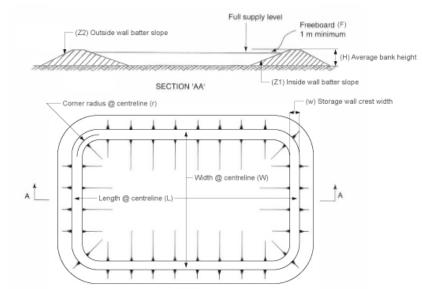
Width @ Centreline of Crest (W)

Corner Radius @ Centreline of Crest (r)

Storage Wall Crest Width (w)


Average Bank Height (H)

Batter Slope of the Storage Inside Wall (Z1)


Batter Slope of the Storage Outside Wall (Z2)

Full Supply Volume

Freeboard (F)

Save & Continue

Rectangular Ring Tank

The user is required to enter the following inputs.

Length @ Centreline of Crest (L)

- Length of the longer wall of the ring tank, measured along the centreline of the wall. [metres]

Width @ Centreline of Crest (W)

- Length of the shorter wall of the ring tank, measured along the centreline of the wall. [metres]

Corner Radius @ Centreline of Crest (r)

- Radius of each corner of the ring tank, measured along the centreline of the wall. [metres]

Storage Wall Crest Width (w)

- Width at the top of the storage wall. [metres]

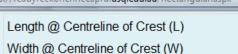
Average Bank Height (H)

- Average height of the storage wall, measured from the original natural ground level to the crest, i.e not from

Batter Slope of the Storage Inside Wall (Z1)

- Inner slope of the storage wall, input as a ratio, i.e. 3 in 1, 4 in 1, etc. [dim.]

Batter Slope of the Storage Outside Wall (Z2)


- Outer slope of the storage wall, input as a ratio, i.e. 3 in 1, 4 in 1, etc. [dim.]

Full Supply Volume

- Maximum storage volume when full, whilst maintaining the freeboard stated. [ML]

Freeboard (F)

- Vertical distance between the water surface level when full and the storage wall crest. [metres]

Corner Radius @ Centreline of Crest (r)

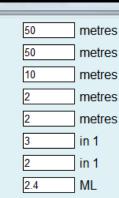
Storage Wall Crest Width (w)

Average Bank Height (H)

Batter Slope of the Storage Inside Wall (Z1)

Batter Slope of the Storage Outside Wall (Z2)

(Z2) Outside wall batter slope


Corner radius @ centreline (r)

Length @ centreline (L)

SECTION 'AA'

Full Supply Volume

Freeboard (F)

O.5 metres
Save & Continue

Freeboard (F)
1 m minimum

(H) Average bank height

(Z1) Inside wall batter slope

(w) Storage wall crest width

Full supply level

Width @ centreline (W)

Rectangular Ring Tank

The user is required to enter the following inputs.

Length @ Centreline of Crest (L)

- Length of the longer wall of the ring tank, measured along the centreline of the wall. [metres]

Width @ Centreline of Crest (W)

- Length of the shorter wall of the ring tank, measured along the centreline of the wall. [metres]

Corner Radius @ Centreline of Crest (r)

- Radius of each corner of the ring tank, measured along the centreline of the wall. [metres]

Storage Wall Crest Width (w)

- Width at the top of the storage wall. [metres]

Average Bank Height (H)

- Average height of the storage wall, measured from the original natural ground level to the crest, i.e not from

Batter Slope of the Storage Inside Wall (Z1)

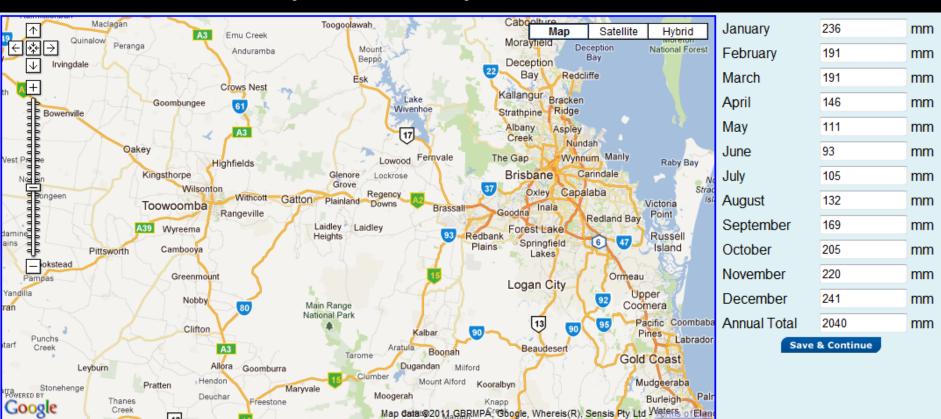
- Inner slope of the storage wall, input as a ratio, i.e. 3 in 1, 4 in 1, etc. [dim.]

Batter Slope of the Storage Outside Wall (Z2)

- Outer slope of the storage wall, input as a ratio, i.e. 3 in 1, 4 in 1, etc. [dim.]

Full Supply Volume

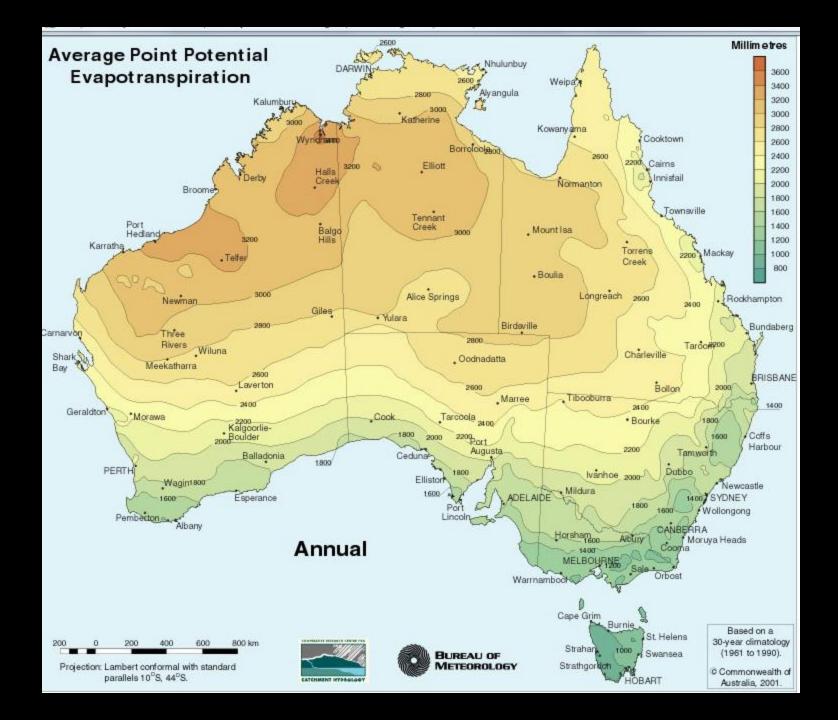
- Maximum storage volume when full, whilst maintaining the freeboard stated. [ML]

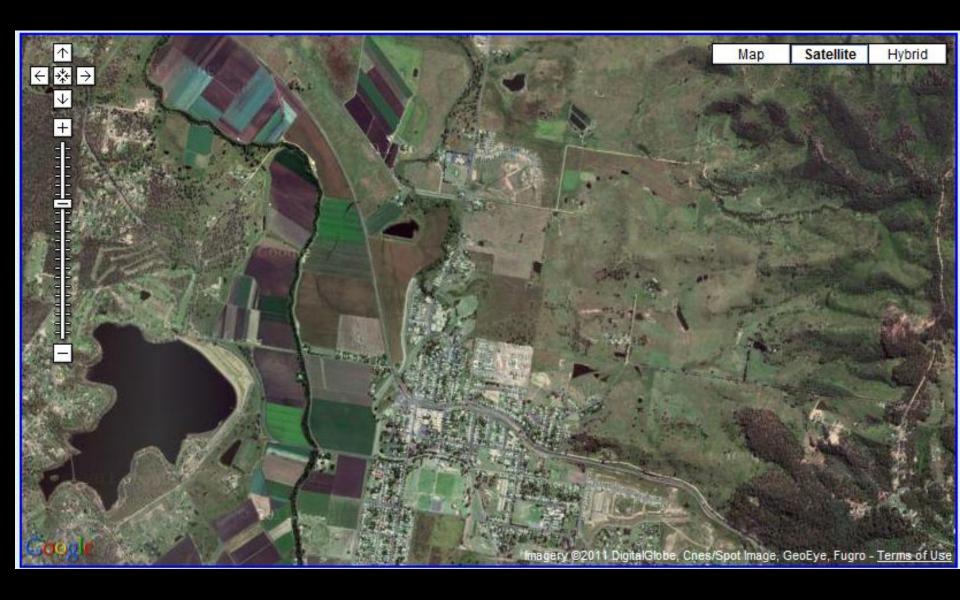

Freeboard (F)

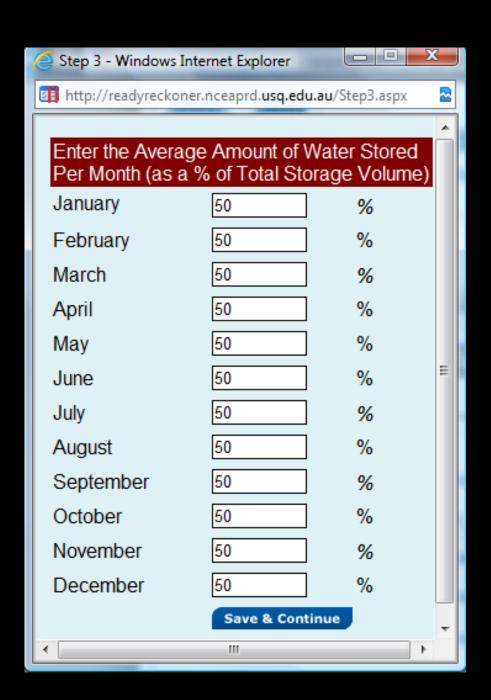
- Vertical distance between the water surface level when full and the storage wall crest. [metres]

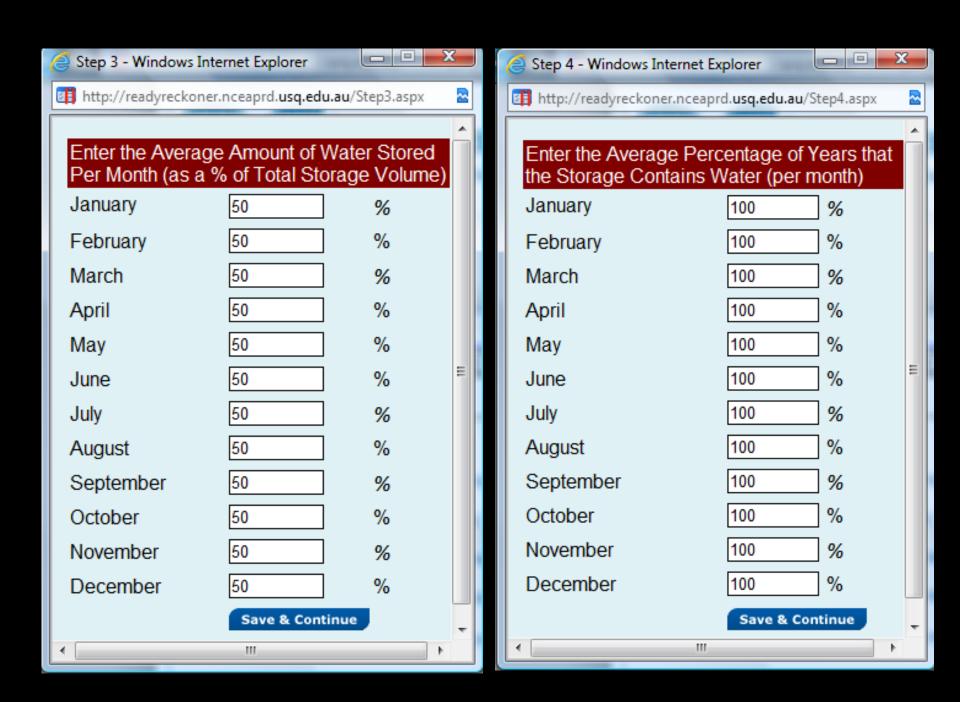
Other types of dams

- Circular ring tank
- Gully dam


Step 2 – Evaporation data




Click on the map to obtain Latitude & Longitude



Click here to view 'Annual Evaporation' map

ReadyReckoner

Economic Ready Reckoner - Evaporation Mitigation Systems

					About Assumptions Case Studies		Evaporation Resource	es webpaq
Demo	Case	Studies		LockyerValleySouth-EastQLD-	-Horticulture		•	
Locati	on:		Lockyer Valley, S	outh-East Queensland,				
Descr	iptior	1:	Horticulture,				<u>~</u>	
	1.	Select Store	age Type		Rectangular Ring Tank	V	(2)	
✓	2.	Enter / Imp	ort Monthly Evapor	ration Data			?	
✓	3.	Enter the A	verage Amount of	Water Stored Per Month (as a	% of Total Storage Volume)		?	
✓	4.	Enter the A	verage Percentage	of Years that the Storage Co	ntains Water (per month)		?	
V (5.	Select your	Most Applicable S	Geepage Option	Impermeable Liner Installed	V	?	
/	6.	Initial evalu	ation for various E	vaporation Mitigation System	n (EMS)		Evaluate	
		— Initial	Evaluation Sho	ow 🚨				
✓	7.	Modify sele	ected Evaporation I	Mitigation System (EMS)	Impermeable Cover	•	?	
✓	8.	Modify sele	cted Seepage Miti	gation System (SMS)	No Seepage Mitigation Required	•	?	
							Calculate	
User Ir	nputs	File (*.csv)			Brow	/se	Import ?	
Disclaime	r * Th	is site is best vie	ewed in Internet Explore	er				

Step 6 - Initial Evaluation

Evaporation Mitigation System	Performance	Cost	Cost to Save Water (\$/ML)	
Impermeable Cover	Good	Low	225.6	
impermeable cover	Poor	High	2,667.4	?
Shade Cloth	Good	Low	371.5	
Snade Cloth	Poor	High	2,167.6	?
Chemical Monolayer	Good	Low	27.8	
Chemical Monolayer	Poor	High	672.7	?
Modular Cover	Good	Low	148.5	
Modulal Cover	Poor	High	2,096.3	(?)
Ingrana Wall Haight	Good	Low	133.3	
Increase Wall Height	Poor	High	1,351.6	?

Step 7 Detail for impermeable cover

Efficiency of EMS (Range - 85-100% (90-95% recommended))

Capital (Upfront) Cost (Range - \$3.50-\$30.00/m2)

Lifespan (~ 10-15 years recommended)

Annual Operating and Maintenance Cost (~ \$0.01 - \$0.03/m2 recommended)

Discount Rate (%)

0 %

5 7 per m2

15 years

\$ 0.2 per m2

%

Save & Continue

Step 7 Detail for impermeable cover

Efficiency of EMS (Range - 85-100% (90-95% recommended))

Capital (Upfront) Cost (Range - \$3.50-\$30.00/m2)

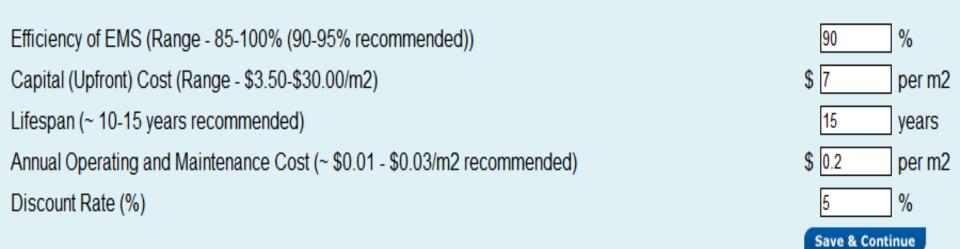
Lifespan (~ 10-15 years recommended)

Annual Operating and Maintenance Cost (~ \$0.01 - \$0.03/m2 recommended)

Discount Rate (%)

0 %

5 7 per m2


15 years

\$ 0.2 per m2

%

Save & Continue

Step 7 Detail for impermeable cover

Step 8 Detail for seepage mitigation

No system needed, impermeable liner already installed

Final calculation

Location: Lockyer Valley, South-East Queensland,

Description: Horticulture,

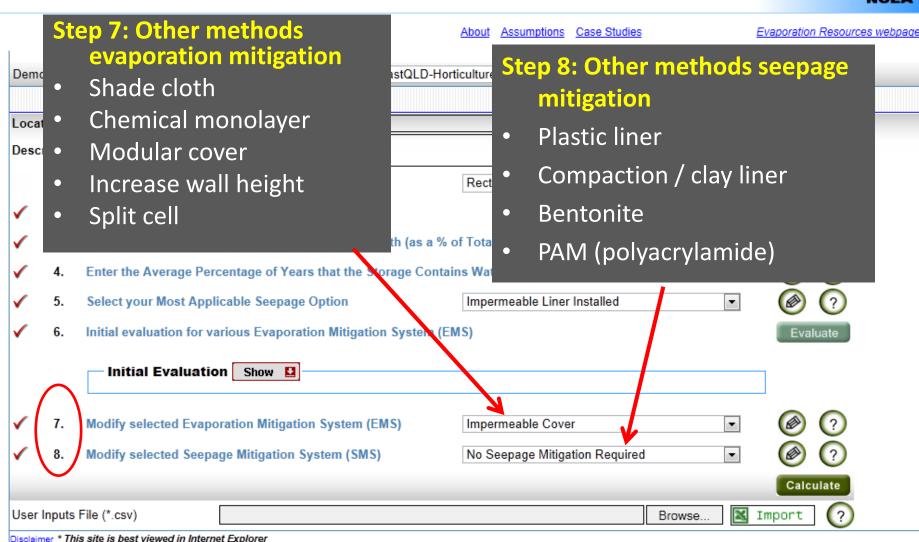
Result

Result - Rectangular Ring Tank			
Calculated Storage Volume at Full Supply Level	2.4		ML
Surface Area at Full Supply Level	.2		ha
Annual Seepage Loss	0		ML
Annual Evaporation Loss	3.3		ML
Evaporation Mitigation System: Impermeable Cover			
Total Water Saved From Evaporation	3	ML each year	
Cost to Save this Water	\$ 596.3	per ML per year	
Total Cost of Evaporation Mitigation System at Installation	\$ 13,837		
Annual Operating and Maintenance Cost	\$ 395.3		

See case study in paper

Sensitivity Analysis - Cost to save water (\$/ML)

Re-do Steps 7 & 8 with other mitigation methods



All Property			NCEA
St	ep 7: Other methods evaporation mitigation	About Assumptions Case Studies	Evaporation Resources webpage
Demo		stQLD-Horticulture	•
•	Shade cloth		
Locat	Chemical monolayer		
Desci •	Modular cover		*
	Increase wall height	Rectangular Ring Tank	(2)
√ .	Split cell		(2)
1	Spire cen	th (as a % of Total Storage Volume)	@ 0
√ 4.	Enter the Average Percentage of Years that the Xo		@ (2)
•			~ ~ ~
5.	Select your Most Applicable Seepage Option		
✓ 6.	Initial evaluation for various Evaporation Mitigation	System (EMS)	Evaluate
	Initial Evaluation Show		
√ 7.	Modify selected Evaporation Mitigation System (EM	Is) Impermeable Cover	• (() (?)
√ 8.	Modify selected Seepage Mitigation System (SMS)	No Seepage Mitigation Required	
			Calculate
User Inputs	File (*.csv)	Browse	Import (?)
Disclaimer * Th	nis site is best viewed in Internet Explorer		

Re-do Steps 7 & 8 with other mitigation methods

Summary

Ready Reckoner valuable tool to help with decision making by estimating

- □ Potential water loss
- ☐ Possible water savings
- Cost of mitigation methods

Cost of doing nothing

Cost of doing something

Resources on dam management

http://readyreckoner.nceaprd.usq.edu.au

http://farmdammanagement.ncea.biz

www.ncea.org.au

www.npsi.gov.au

http://farmdammanagement.ncea.biz

MAIN MENU

- O Home
- Evaporation And Seepage
- Economics
- Biodiversity
- Aquaculture
- Water Quality
- Weed and algae management
- Integrated water management

HOME

Welcome to the Farm Dam Management Resource Kit

This new resource is designed to provide clear information to:

- Measure and manage seepage and evaporation
- · Calculate costs in managing water losses
- Improve biodiversity
- Assess options for aquaculture
- Manage water quality, weed and algae