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Abstract

Improving the accuracy of the diagnosis of disease can help to increase
the quality of healthcare. Many researchers have developed classification
models to support healthcare practitioners to make accurate diagnoses, avoid-
ing the need to rely on their experience base diagnose diseases. However,
these models are currently based on datasets collected from healthcare data
including medical history. As a result, the reliability and accuracy of pre-
dicting results of the diagnosis, are limited.

Following the goal of improving the accuracy of health risk prediction,
this thesis concentrates on the classification of tasks through mining health-
care data. The study suggests several frameworks and algorithms to de-
velop classification models. In addition, challenges of extracting useful in-
formation and processing data noise from the real dataset are addressed as
a way of learning models. Classification models are developed based on
well-proven medical data sources. By using medical evidence, the study
aims to improve the accuracy of classification for health risk prediction.

The first contribution of this thesis is an innovation of building a binary
classification model to predict patients’ risks. The second contribution of
this dissertation is to build a medical knowledge base to support classifica-
tion models for improving the reliability and accuracy of the model. The
third significant contribution of the thesis provides a framework for build-

ing a predictive model within multiple diseases.
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Chapter 1

Introduction

1.1 Background

With the rapid development of technology in medicine, the quality of health-
care is receiving closer attention and many countries have invested sig-
nificant amounts of money in public healthcare. One of the most signifi-
cant is the United States government that in 2011 disbursed $414.3 billion
on healthcare (Mirel and Carper [2014]). At the same time, the United
States government endeavoured to enhance precision medicine by utilis-
ing increasingly large amounts of available health data (Collins and Varmus
[2015]). They aimed to create a valid database for analysing and justifying
the health risk status of patients. Some years later, the Australian govern-
ment expended $170 billion from 2015 to 2016 for healthcare (Inacio et al.
[2019]), highlighting the importance of spending money and effort to im-
prove the quality of healthcare. However, improving healthcare is challeng-
ing; finance is necessary to support and improve healthcare, but technolo-
gies are needed to assist in achieving the goal of improvement in healthcare
quality.

In healthcare, data mining is used to check treatment effectiveness, health



customer relationship management, patient care, and to counter fraud and
abuse (Koh et al. [2011]). Much work has been done in disease risk assess-
ment, with a focus on supporting medical practitioners to make safe and
effective clinical decision. Massive medical datasets contain wealth domain
knowledge that can help physicians in decision-making. There is strong ev-
idence that clinical decisions based on risk assessment may improve disease
management (James et al. [2014], Hunink et al. [2014]). Data mining tech-
niques have increased as a way of predicting diseases (Chang et al. [2011],
Huang et al. [2012]). Some researchers also have developed predictive mod-
els for the classification of clinical risks (Kim et al. [2014], Sabibullah et al.
[2013]). These studies have helped to improve accuracy in disease assess-
ment and reduce errors in disease treatment.

In developing systems for health risk prediction, exploring all relation-
ships between medical history and medical condition plays an important
role to improve the performance of classification models. Therefore, many
researchers (Zhang et al. [2018a], Shah et al. [2019], Han et al. [2019]) have
focused on mining label-specific features and label correlations to build clas-
sification models as well as boost the performance of classification models.
To explore label correlation effectively, a heterogeneous information graph
is used to mine these relationships between label correlations. A large num-
ber of researchers (Chen et al. [2016a], Xiong et al. [2018], Lei and Zhang
[2019], Wang et al. [2020]) has considered using a graph to develop classi-
tication models. These studies have brought significant improvements in
enhancing the accuracy of health risk prediction.

While data mining may be beneficial for supporting healthcare, some



challenges need to be addressed at the same time in the process of develop-
ing models to support the assessment of health risks. Support models are
often built based on observational data collected from patient conditions
described in electronic health records. However, these datasets still have
challenges and require many preprocessing steps before becoming useful
data to apply in building models. The first challenge is the heterogeneity
of the data. Datasets usually contain a large number of different data types
combined from such evidence as physical examinations, personal habits,
and lab tests, etc. These types of data are related to different parts of the hu-
man body and various aspect of a patient’s health status. These factors are
critical and need to be handled effectively to achieve classification models
with the highest performance. The dataset with an insufficient number of
labelled samples also influences the training model. If most of the target la-
bels used for assessment are negative cases, the performance of models will
have less reliability. Moreover, non-completion of the data collection also
brings challenges to the development of effective models. If a dataset has
too much noise, this will negatively affect the accuracy and quality of the
model. These challenges must be overcome to achieve classification models
with effective results of prediction.

In the field of healthcare, especially for diagnosis, evidence and relia-
bility are extremely important. Therefore, the evidence-based medicine ap-
proach is expected to be used for optimising decision-making. It aims to
ensure that the clinician’s opinion relies not only on available knowledge
from the scientific literature but also on local knowledge mined from indi-
vidual observational data. The approach helps minimise risks during the

diagnosis process. Therefore, disease prediction models are more useful if



they can integrate evidence to ensure the reliability of that model. In the
tield of medical research, Medical Literature Analysis and Retrieval System
Online (MEDLINE) is one of the most significant data sources related to sci-
entific literature. It is a metadata repository of biomedical abstracts and uses
Medical Subject Headings (MeSH) to manually index publications from the
National Library of Medicine (NLM). Wang et al. [2017a] showed that the
integration of medical knowledge has a strong ability to improve informa-
tion retrieval performance for medical informatics applications, like recom-
mender systems or ontology learning. By relying on the personalised med-
ical profile of the patients and knowledge bases (MEDLINE), researchers
can provide evidence-based decision-making support to healthcare practi-
tioners, which promises to improve the quality of healthcare services. Data
mining could be the best approach to help expand the applications to the
healthcare industry. It is expected to have a significant effect on decision

support systems and improving the quality of healthcare institutes.

1.2 Statement of the Problem

The main problem addressed in this research is the classification of health-
care data. The research tries to improve the disease diagnosis result by using
data mining and machine learning techniques. The research thesis provides
evidence-based decision-making support to doctors, physicians and health-
care practitioners and helps them reduce human errors. The human brain
has limits; medical knowledge changes over time. Doctors and physicians
may find it difficult to avoid human errors when they rely on their expe-
rience for medical advice, diagnosis or treatment. Experience-based deci-

sions may lead to the problem that some critical cases are overlooked. In



contrast, data mining in healthcare can help cover the overlooked areas be-
cause it does not have the limitations mentioned above. Data mining allows
researchers to work with data collected from a massive number of patients,
a number that is more than any doctor ever treats. As a result, data mining
can provide high-quality evidence covering as many possibilities as possible
to support doctors” decision-making by knowledge discovery in healthcare
data.

In terms of technology and knowledge, in order to provide an evidence
base for medical decisions, the study uses data mining and machine learn-
ing to develop classification models that are able to support medical advice
through the evidence base of medicine. Having evidence from data analy-
sis helps doctors to be more confident in predicting a patient’s health status
as being healthy or unhealthy through a binary classification, as well as as-
sessing multiple diseases through a multi-label classification. Furthermore,
a classification model not only helps doctors categorize patients as being
healthy or unhealthy but also gives them suggestions about what kind of
diseases they are suffering from.

Although evidence-based medicine plays an important role in develop-
ing classification models for health risk prediction, integrating knowledge
into classification models is not an easy task. It requires a lot of effort and
time to process these challenges. Moreover, building classification models
always is challenging because of the heterogeneity of the data, imbalance of
the data or missing data. To deal with the task of predicting health risk sta-
tus through evidence based diagnosis, research needs to present some of the
effective methods to solve these issues. To achieve the research goals of this

thesis, there are four research questions that will be addressed as follows:



Q1) What are the essential underlying patterns from a patient’s observational
data that may lead to the conclusion that the patient’s health status is healthy or
unhealthy?

The research based on the observational data from the National Health
and Nutrition Examination Survey (NHANES)! dataset to develop classifi-
cation models, is able to predict whether a patient is healthy or unhealthy.
The NHANES dataset has a thousand attributions about the characteristics
of a patient. For example, a patient is suffering from liver cancer. A question
may be asked whether people who smoke every day, or drink alcohol three
times per week are likely to suffer from liver cancer. Another issue is how
to define the relationship between disease and attributions. It is clear that

identifying these underlying patterns is a challenging task.

Q2) Given a set of diseases, what are the identifiers in a patient’s observational
data that can be used to separate one disease from others? ~ Not only is this
study aimed to identify a patient affected by a disease, but it is also about
whether the patient suffers multiple diseases. Identifying a patient affected
by many diseases is much more complicated than identifying a specific dis-
ease. Classification models need to identify factors for the determination of
different diseases. How to predict different diseases is another challenge in
this study. The classification model is needed to find out the similar and
different relationships between diverse diseases from the numerous inputs
of attributes. The impact of attributes on different diseases also needs to be

assessed to achieve a useful classification model.

https:/ /www.cdc.gov/nchs/nhanes/index.htm



Q3) How can the findings discovered in Q1 be used in a classification model to
diagnose a patient’s health status based on evidence?

Given P = {p1, p2, .., pn} is a set of patients and A = {ay,ay,...,a,} is
a set of attributes. Each patient p links with their attributes such as age,
weight, lab test results, habits. D = {dy,dy,...,d,} is a set of diseases that
is associated with patients in P. A classification model, which is developed
based on P, A and D, may have limited information to assess whether a
patient is healthy or unhealthy. Discovering underlying patterns from a
dataset to identify the connections between attributes and different diseases
is a challenge in this study. To improve the accuracy and reliability of the
classification model, the research endeavours to discover more relationships
in A by mining knowledge from the MEDLINE corpus. How to discover
connections between observational data and MEDLINE is the major chal-

lenging task in this study.

Q4) How can the findings discovered in Q2 be used in a multi-label classifica-
tion model to diagnose which diseases a patient is suffering from?

Identifying the attributes that cause each disease plays an essential role
in forming a predictive model for that disease. Some previous work has
succeeded in this issue. However, it is more challenging in terms of de-
termining the connection of attributions to multiple diseases. A patient
in P may associates with one or more disease in D. Therefore, discover-
ing underlying connections among patterns in .4 and D is an important
task in developing the multi-label classification model. Besides, identify-

ing the relevance among diseases in D is expected to improve the accuracy



of the multi-label classification model. By identifying connections between
attributes and different diseases, a multi-label classification model can be

developed for support practitioners in predicting multiple diseases.

1.3 Research Aims and Objectives

Based on the research problem, the thesis aims to develop innovative clas-
sification models to assist practitioners in medical diagnosis. The classifi-
cation models mine attributes of a patient from the observational data in
NHANES. Besides, these models can be expected to integrate knowledge
in the medical domain that has been evaluated by experts to increase the
accuracy and reliability of predicting results. In the past, researchers relied
only on the attribute of the patients but were not interested in using med-
ical knowledge to evaluate and verify the useful attribute of the patients
from the collected data. The proposed model is expected to improve the
quality of clinical evidence-based decisions as well as reduce the time and
cost incurred during the diagnosis by practitioners. In particular, this thesis

achieves the following objectives:

(I) To develop a binary classification model for assessing a person’s health
status to see whether he (she) is healthy or not. Based on the observa-
tional data, this study analyses and processes the data in the dataset to
tind correlations between a patient’s attributes and the diseases that a
patient is likely to have. A model then is developed to predict diseases
for patients by using these findings. This objective is designed to deal

with the research question Q1 in Section 1.2.



(IT)

(I11)

To integrate the knowledge into the classification model for generating
an evidence-based model to support practitioners. This objective re-
quires an innovative framework to exploit how to integrate the knowl-
edge base into classification models. This research uses MEDLINE
and MeSH as an evidence-based source to adopt to the classification
model. A lot of effort may be expected to transform the knowledge in
MEDLINE and MeSH for acquiring a deep understanding of using the
observational data of NHANES. This task is challenging in presenting
both data and knowledge in the data analysis format. Mapping the
observational data and the knowledge base is expected to improve the
performance of classification. A comparison between models within
and without knowledge is required to evaluate how the effect of the
knowledge base compares to the traditional classification model. This
objective is designed to address the research question Q3 specific in

Section 1.2.

To design a multi-label classification model for predicting possible dis-
eases for a patient. The multi-label classification model is more com-
plicated than a binary classification model. The study is not only to
mine underlying connections between symptoms and disease but also
to mine among diseases. Moreover, integrating the knowledge into
the multi-label classification model needs more time and cost. Assum-
ing connections among patterns can be discovered, however, apply-
ing evidences of medicine to improve these connections which help
to advance the performance of classification model still are remains

challenging. Therefore, an innovative approach is needed to solve the
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classification of multiple diseases. This objective is designed to con-

duct the research question Q2 and Q4 in Section 1.2.

1.4 Scope and Limitations

The scope of the thesis is on mining the observational data from NHANES,
which was collected from 2013 to 2014 to conduct the experimental results
of the proposed thesis. This research is limited by the number of diseases
due to the limit of available data. The amount of missing data for some
datasets are often huge, so the results of analysis and process data to evalu-
ate for some diseases may decrease accuracy. Therefore, this study develops
a model to predict diseases that have less than fifty per cent of missing data.

In addition, the limitation of this study is the number of patients of the
healthcare dataset is a constant, which leads to data flexibility limitation. A
dynamic study is more complex and is expected to explore in future work.
The time-series data of healthcare data also has not been considered in this
study. The time series plays an important role in determining the outcome
of the prediction. This may have an impact both directly and indirectly on

conditions from time to time.

1.5 Organisation of the Thesis

This section presents the organisation of the thesis. At the highest level,
this research builds effective classification models for healthcare decision
support to help physicians to avoid human errors. The flow structure of the

thesis is shown in Figure 1.1.
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FIGURE 1.1: The flow structure of the thesis

The research background, the statement of the research problem, aim
of the research and scope of the research are presented in Chapter 1. The
study introduces the related works of the thesis in chapter 2. The main
task of the doctoral thesis consists of three major studies, which cover the
three objectives corresponding with Chapter 3, 4, and 5. Chapter 6 presents

conclusions with scientific contributions and the future work.

¢ In Chapter 2, the research first discusses previous work about mining
data, specifically in the medical domain. How do they build a clas-
sification model to support in diagnosis? What are the best methods
being considered in predicting the health risk status? Then, the thesis

presents research around learning classification through a knowledge
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graph. Finally, the study shows related work about multi-label classi-

tication problems.

In Chapter 3, the research focuses on the first objective. The objec-
tive is to understand the compound influences of different patterns
from the observational data. The NHANES dataset is used to evalu-
ate the proposed model. The dataset has more than 2585 attributes,
which cover a wide range of information about an individual, such
as personal demographics, observations, laboratory tests, or diagnos-
tic reports. Based on the analysis of the NHANES dataset, a binary
classification model is developed to predict the person’s health sta-
tus through the heterogeneous information graph, which can show

whether a patient is healthy or not.

Chapter 4 deals with building knowledge graph to apply to the classi-
fication model for improving the accuracy of the health risk assess-
ment, which responds to the second objective. The study uses the
evidence of medicine to recognise symptoms that have less effect on
assessing the health risk status. In this project, the research uses MED-
LINE as an essential source of the knowledge base to develop and
evaluate the performance of the classification model. Besides, the med-
ical subject headings, which are used for information retrieval from
MEDLINE, are expected to be mined for accessing MEDLINE effec-
tively and efficiently. The research analyses the combination of the
knowledge source (MEDLINE), ontology (MeSH) and the observa-
tional data (NHANES) to develop a classification model within evidence-
based medicine. To achieve a highly effective discovery of the map-

ping between the knowledge base and the data, a heterogeneous graph



13

(Ji et al. [2011a], Sun et al. [2009]) may be presented with different
types of nodes to connect to multi-typed relationships of data items.
A classification model, which is built based on the medical knowl-
edge graph, is expected to achieve the high performance of classifi-
cation compared to classification models without the medical knowl-

edge graph.

¢ In Chapter 5, the third objective introduces a multi-label classification
model to predict multiple diseases that a patient could suffer. The
study processes and analyses the effect of symptoms on different dis-
eases. The varying impacts of symptoms of diseases are then are as-
certained. Later, the risk level of a symptom to different diseases can
be computed. A symptom with the high-level of the influence asso-
ciated with greater numbers of disease in the process of building the
multi-label classification model. The symptoms belongs to different
categories, such as personal demographics, observations, laboratory
tests, or diagnostic reports. To improve the link between symptoms
and diseases, an innovative approach called a positive and negative
graph is proposed to find out connections between underlying pat-
terns from the observational data in NHANES. A ranking algorithm
then determines the risk level of a patient for learning multi-label clas-

sification.
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Chapter 2

Literature Review

This chapter introduces a brief literature review concerning use of the clini-
cal dataset as well as methods regarding the solution of classification prob-
lems. The main target of this chapter concentrates on reviewing the advan-
tages and disadvantages of developing models for predicting health risk
status. The chapter first looks at the existence of the binary classification
problems: how have previous researchers analysed and processed ways to
build the binary classification; how can others determine and identify the
health risk status; what are the existing models for health risk prediction?
Another issue related to this work focuses on construction and understand-
ing of knowledge graphs. Finally, this chapter focuses on reviewing existing

works about the problems of learning multi-label classifications.

2.1 Classification for Health Risk Analysis

2.1.1 Data Mining and Analysis in the Medical Domain

Data mining is used not only to discover underlying relationships among
large observational datasets but also to summarize and provide intelligible

and useful data to users (David [2007]). It is used to find unknown patterns
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and trends in information (Koh et al. [2011]). Since the use of computers has
become extensive in the healthcare industry, data mining has also become
an essential modality in the field of health sciences. The goal of research
on health information is to combine computer science and information sci-
ence to improve the quality of care (Herland et al. [2014]). According to
Rosset et al. [2010] and Holzinger [2016], researchers use data mining as an
important tool for analyzing big data to improve healthcare services. More-
over, by using data mining techniques, healthcare professionals can predict
health insurance fraud, healthcare costs, disease prognosis, disease diag-
nosis and disease epidemiology and accurately estimate the length of stay
(LOS) in a hospital (Yoo et al. [2012]).

Ideally, data mining techniques should support intelligent data prepro-
cessing that automatically selects the required data and eliminates the un-
desired data. It should also use domain knowledge of other data processes,
and should also automate the knowledge discovery process. These tech-
nics lead to a better understanding and utilization of existing knowledge in
data. If these problems were adequately resolved, data mining could likely
become a core technology for the practice of evidence-based medicine (Yoo

et al. [2012]).

2.1.2 Health Status Measurement

Health status measurement prognostication is becoming one of the most

difficult challenges that health practitioners are facing. Therefore, scoring
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systems play an essential role in minimizing errors caused by fatigue. In ad-
dition, these systems are widely used to support health practitioners in im-
proving health knowledge and clinical decisions. In the area of myelodys-
plasia syndromes, different scoring systems are introduced, referring to dif-
ferent goals. For example, Miyazaki [2013] introduced an international prog-
nostic scoring system (IPSS), which mainly focused on improving analysis
of the specific impact of marrow blast percentage and depth of cytopenias.
Prakash et al. [2006] suggested a Simplified Acute Physiology Score (SAPS)
IT scoring system, which helps physicians to make better clinical decisions
by quantifying the severity of illness in the Intensive care unit area. The
system introduces a method of converting the score to the possibility of a
patient mortality in the hospital. In line with SAPS II, the Acute Physiol-
ogy and Chronic Health Evaluation (APACHE) II scoring system (Wagner
and Draper [1984]) is introduced, focusing on the systematic application of
clinical judgments about the relative importance of derangement.
However, the researchers have tried not only to introduce new scoring
systems but also to compare the advantages and efficiency levels among
the existing scoring systems, resulting in giving a better choice of scoring
systems to physicians. For example, Keegan et al. [2012] have discussed
the performance of four scoring systems, including APACHE III, APACHE
IV, SAPS III and Mortality Probability Model (MPM) III. Research showed
that APACHE III and APACHE IV had no significant difference in distin-
guishing capability, and they both performed better compared with SAPS
III and (MPM) III. Moreover, research also showed that complex models
worked better than simple models, and the efficiency level of these models

depended on how many variables being used for developing a classification
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model.

2.1.3 Health Risk Prediction by Classification

Different studies have been conducted to use classifications to support health
practitioners in the prediction of health risks. Yeh et al. [2011] endeavoured
to apply the classification techniques to build an optimum cerebrovascu-
lar disease predictive model. In their research, three attribute input modes,
T1, T2, and T3 were built, which mainly focused on building the classifica-
tion models and comparing their advantages and efficiencies. On the other
hand, Neuvirth et al. [2011] conducted research which mainly focused on
applying state-of-the-art methods to predict the future health of patients
and identify patients at high risk. In order to conduct this study, two binary
classification algorithms logistic regression (LR), and k-nearest neighbour
(KNN) were used.

Following this research, a new approach to machine learning was used
by Nguyen et al. [2014]. Their approach used the training phase accompa-
nying soft labels to refine the binary class information to achieve a more
efficient binary classification model. In order to solve the problem of label
uncertainty (label noise) in binary classification, Yang and Loog [2016] intro-
duced a new method which was focused on using uncertainty information
to improve the performance of retraining-based models. The results show
that the new method provides a more efficient demonstration and can be

used to reduce human labelling errors in different applications.
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214 Mining Heterogeneous Graphs for Classification

The graph-based methods have brought more advantages for discovering
the intrinsic characteristics of data, where the vertices and edges of a graph
are taken up as model data points and their relationships, respectively (Guil-
lory and Bilmes [2009]). Researchers have conducted different studies which
aim to minimize the errors of the graph-based method. For example, the
study shows that if data is presented in a heterogeneous graph, the results of
mining these graphs can be significantly improved. Therefore more mean-
ingful results can be generated from the different types among links and
objects (Sun et al. [2009]). In 2010, Ji et al. [2010] conducted a study by using
a classification method for heterogeneous networks. This method is called
GNetMine. GnetMine uses only one classification criteria for all of the ob-
jects in the network which, it is argued, is one of the weaknesses of this
method. On the other hand, however, Luo et al. [2014] discovered that the
type of differences of objects in the network might have different criteria of
classification. In order to improve on this weakness, they suggested a new
method to minimize this drawback by providing the concept of meta paths
for mining the heterogeneous graph.

In healthcare data, some researchers have taken advantage of the hetero-
geneous graph to discover more knowledge and improve disease diagnosis.
Hwang and Kuang [2010] introduced a heterogeneous label propagation
algorithm using graph-based semi-supervised learning to the discovery of

disease genes. This study is based on homo-subnetworks, where links are
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set up from the same types of objects to build up a heterogeneous disease-
gene graph. Recently, Chen et al. [2016a] proposed a semi-supervised het-
erogeneous graph on the health (SHG-Health) algorithm to predict high-
risk disease classes for unlabelled data. The model has contributed to a sig-
nificant improvement in classification problems in healthcare data by min-

ing knowledge from a heterogeneous graph.

2.2 Knowledge Base Learning

2.2.1 Ontology and Related Techniques

By using ontology, data can be organized as a knowledge graph, including
concepts and relationships among concepts. This can help raise efficiency
in design models in data mining. Many researchers have taken advan-
tage of this technology to raise the performance of their model. Lee et al.
[2006] proposed a new approach to predict more accurately the detailed
concepts based on the existing concepts, at the same time using syntactic
relations. This approach is useful for automatic generation of new concepts
from biomedical articles, while Gao et al. [2017] tried to improve the ef-
ficiency of distance learning methods from ontology mapping and ontol-
ogy similarity measuring. They suggested novel algorithms which would
be presented as corresponding ontology sample data labelled and ontology
sample data without a label. The results of experiments have demonstrated
that this innovative ontology is more efficient and accurate in distance learn-
ing from ontology mapping and ontology similarity measures. Another ap-
proach, presenting the concept detected from a document into a graph, Ni

et al. [2016] proposed a new method to measure similarly among concepts.
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The approach represents concepts as continuous vectors which are utilized
to accumulate similar pairwise among pairs of concepts. This study makes
improvements in measuring semantics among documents.

On the other hand, Choi et al. [2014] gave a new method for improv-
ing ranking performance, called the semantic concept-enriched dependence
model. The proposal shows that terms related to concepts are also crucial
for improving information retrieval. The study conducts extensive experi-
ments, including a medical literature corpus and a clinical document corpus
which is more effective compared to previous work. With the focus on term
space, Wang and Akella [2015] defined the notion of a concept which uses
documents and queries from term space to create concept space. This study
has enhanced the estimation of relevance, including decreased dimension-
ality of the space and remaining dependencies between the words of a con-
cept. Similarly, to guarantee the semantic measure similarity between the
medical terms, Karpagam et al. [2016] suggested a new method which com-
bined the sources of disease concepts and biomedical resources to identify

the medical terms for extending the Disease Ontology automatically.

2.2.2 Knowledge Graph

Knowledge Graph has become an essential topic in the last decade. It plays
a vital role in mining data. It can help to discover hidden patterns between
entities. There is an increase in building and applying a knowledge base on
data mining. Xu et al. [2014a] suggested a new knowledge powered method
by incorporating knowledge graphs into the learning process to encode the
relationship between entities, attributes or properties of objects. This ap-

proach has improved the quality of word representations. Bordes et al.
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[2011] suggested a method to learn the distributed embedding of knowl-
edge bases. This approach has helped to generate new reasonable relations
by linking raw-text as entity vectors to knowledge extraction. Similarity,
Nguyen et al. [2017] investigated a method to apply semantics from raw
text and knowledge resources for achieving high-level representations of
documents based on both text embedding and concept-based embedding.
To use conceptual graphs effectively, Shi et al. proposed a new model
to organise and integrate the textual medical knowledge into conceptual
graphs. This approach provides semantic mappings between textual medi-
cal expertise and medical knowledge, which can explore complex semantics
among entities in chain inferences. It also helps to detect and obtain access
to valuable information from the medical domain. Moreover, based on the
documents, Voskarides et al. [2015] tried to clarify the relationships among
entities of knowledge graph by sentences. These sentences that refer to an

entity pair were extracted and enriched through ranking.

2.3 Learning Classifiers using Knowledge Base

2.3.1 Mapping between Different Sources of Medical Ter-
minologies

Medical terminologies are crucial not only in healthcare but also in medical
research. If practitioners and researchers can have a deep understanding
of terminologies in distinguishing between terms and concepts, it can help
reduce the limit of human errors. Moreover, combining these terms and

concepts of different sources can lead to more semantic networks of these
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data. By mapping both Medical Subject Headings (MeSH) and the Interna-
tional Classification of Diseases (ICD-10) bases using prescription coding,
Pereira et al. [2006] obtained 68% of recall, which facilitated the task of cod-
ing patient information. These two sources were extracted from the Unified
Medical Language System (UMLS) Metathesaurus.

Approximately 34% of Metathesaurus strings are identified from the ti-
tles and abstracts of the biomedical literature in MEDLINE by (Srinivasan
et al. [2002]). Taking advantage of this discovery, Schriml et al. [2018] built
an ontology of human disease that organised concepts and terms related
to the concepts of disease systems. This ontology was generated by ex-
tending and integrating the cross-mapping resources of MeSH, ICD, Sys-
tematized Nomenclature of Medicine — Clinical Terms (SNOMED CT). The
knowledge presented in an ontology can be more useful in discovering
the semantic network of diseases. Cross-terminology mapping of these
sources to create a terminological medication system was also conducted
by Saitwal et al. [2012]. Standardized biomedical terminologies can help the
growing amount of research, and increase the amount of clinical and pub-
lic health data. Moreover, Zhang et al. [2016] combined the MeSH terms
and the UMLS concepts to improve the retrieval performance of the rele-
vant biomedical documents from MEDLINE. 43.3% of improvement was

achieves compared to the other approach without using MeSH and UMLS.

2.3.2 Knowledge Discovery in Medical Corpus

Scientific literature has significant contributions in improving precise knowl-
edge. Discovering precise knowledge can help to strengthen the accuracy

of decision support systems for the healthcare industry. Many researchers
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have tried to implement different learning approaches and a variety of sys-
tem applications to improve the clinical system. A model with two lev-
els of self-supervision has been established concerning extraction using the
knowledge base MEDLINE and Unified Medical Language System (UMLS)
(Banugitah et al. [2016]). In contrast, Jiang et al. [2017] suggested a three-
layer knowledge base model that raised the precision in system predic-
tion and provided more opportunities to recognise the relationship between
conceptual diagnoses and real-time symptoms among diseases. These ap-
proaches are advantageous for knowledge discovery that could help to achieve
a high performance of developing applications for clinical areas.
Originally, scientific literature played an essential role in upgrading the
quality of system development. This fact leads to the point that many re-
searchers focus on using a knowledge base in their study. For example,
Wang et al. [2017b] used a knowledge resource to develop a system, which
was automated to generate disease-pertinent concepts. Huang et al. [2017a]
combined multiple populous knowledge sources with building a knowl-
edge graph for helping practitioners to explore realistic clinical queries.
Moreover, Xu et al. [2014b] built their model to enable the system to have
a deeper understanding of disease etiology, a model that automatically dis-
covers other patterns specifying semantically similar relationships among
diseases. Scientifically, a total of 34,448 disease pairs have been discovered
from 21,354,075 MEDLINE records. In contrast, Liu et al. [2009] discovered
3,159 diseases using MeSH annotation of MEDLINE articles to get a compre-
hensive list of connections between disease and environmental factors. To
extract drug or disease symptoms from the knowledge base of MEDLINE,
Zeng and Cimino [1998] and Chen et al. [2008] combined text mining and
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statistical techniques for automatic acquisition of knowledge from medi-
cal domains to identify drug-disease associations. Xu and Wang [2013a]
extracted 34,305 unique drug-disease pairs by developing a pattern-based
biomedical relationship extraction method from MEDLINE, which was ab-
stracted and compared to 56 602 cancer drug-SE pairs extracted by Xu and
Wang [2013b].

2.3.3 Integrating Data and Knowledge

Shah et al. [2019] argued that the combination between the clinical con-
cepts and clinical notes can give researchers evidence in treatment as well as
help practitioners in making decisions. A large number of researchers have
demonstrated that biomedical literature plays an essential rule in health-
care. Some researchers have taken advantage of biomedical literature in
improving the quality of healthcare as well as discovering a broad meaning
of concepts related to human disease. Hanauer et al. [2014] and Kavuluru
et al. [2013] differentiated between clinical datasets and biomedical litera-
ture to discover more fully the relationship and the meanings among con-
cepts. These results brought useful data for further research in the medical
domain.

Similarly, Anupindi and Srinivasan [2017] used MESH and ICD based
on disease co-occurrence associations to connect the biomedical literature of
MEDLINE and the patient data of the phenotypic disease network (PDN),
which was created from Medicare Claims for hospitalisations (Hidalgo et al.
[2009]). These diseases are generated by differentiating between MEDLINE
and patient data to bring more benefits to build innovated models in clin-

ical diagnosis. Escudié et al. [2017] combined the electronic health record
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(EHR) and biomedical literature to identify a specific disease. Using text
from 741 patients, they obtained 79.3% of the mapped concepts for detected
celiac disease. Zhao and Weng [2011] used the linkage of EHR and MED-
LINE to build a weighted Bayesian Network Inference model for predicting
pancreatic cancer based on selecting 20 common risk factors. The suggestion
has a significant accuracy improvement compared to existing representative

methods for the prediction of pancreatic cancer.

2.4 Learning Multi-label Classification Models

2.4.1 Problem Transformation

Due to the complexity of multi-label classification problem with respect to
the big space of label set, a large number of previous studies have decided
to transform the multi-label classification problem as a binary classification
and multi-class classification techniques to deal with this issue. The binary
classification approach is used to facilitate processing rather than generating
multi-label; however, the disadvantages of the method are that, it does not
consider label correlations. Similarly, multi-class classification can help to
explore label dependencies, but it makes a more prominent space on the
original label set.

To exploit the dependencies among labels, Zhang and Zhang [2010] in-
troduced a method that used Bayesian networks to separate the multi-label
problem into several single-label classification sub-problems. The condi-
tional dependencies of the labels are based on setting a common parent of
labels as additional features for the classifier. The effectiveness of the ap-

proach is highly competitive compared well-established methods. A new
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chaining approach has been suggested for multi-label classification through
binary relevance in (Read et al. [2011]). The method addresses both the dis-
advantages of the binary method, including the imbalanced data and the
dependency between the labels (Dembczyniski et al. [2012]) and also main-
tains acceptable computational complexities. For large datasets, the method
achieves superior competitive performance to state-of-the-art methods. An-
other way to deal with binary relevance for improving the predictive per-
formance of a classifier is to distinguish between the different types of label
dependence, including conditional and marginal dependencies (Alvares-
Cherman et al. [2012]). In addition, the approach separates the task of
multi-label classification into three classes of sub-problem: the estimation
of the joint conditional distribution, the minimisation of single-label loss
functions, and the minimisation of multi-label loss functions.

Similarly, Tsoumakas et al. [2010] presented a new method that trans-
formed the multi-label problem into several multi-class problems and ad-
dressed learning as a single-label classification task. A random subset of the
set label was used for building a classifier. The technique can stochastically
explore the disjoint and overlapping classes from the construction of the la-
bel set. The approach obtained a substantial improvement compared to the
original transformed method. Zhang et al. [2015] has proposed a method
for promoting an independent rather than a dependent binary relevance for
solving the multi-label classification problem. The study used chaining and
stacking techniques through pruning methods to deal with the problem.
Degree of correlation was estimated among labels for removing unimpor-

tant labels. The approach helped reduce the computational costs and raised
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predictive performance for the dependent binary relevance model. In addi-
tion, Montafies et al. [2014] used chaining and stacking techniques to learn
multi-label classification. However, their study concentrated on the type of
training data used for model construction and the underlying dependency

structure.

2.4.2 Algorithm Adaptation

In suggesting a new algorithm to solve the multi-label problem, Kumar et al.
[2013] presented a new technique called the classical method of beam search
to address multi-label learning through probabilistic classifier chains. The
method helps to deal with the ordering of the tags while training as well as
the test time inference. Experimental results of the method yields a state-of-
the-art method for learning the multi-label classification. Alali and Kubat
[2015] proposed a new classifier-stacking technique to improve the original
binary relevance for resolving the problem of multi-label classification. The
method helps deal with error-propagation (Senge et al. [2014]) of unknown
values of attributes during prediction. Also, the approach can support the
removal of unnecessary label dependencies because of classifications which
may not be improved by using all class relations. Empirical evidence of the
technique outperforms other methods such as dependent binary relevance
or Confident Stacking. Similarly, Liu and Cao [2015] proposed a promoted
method for multi-label k nearest neighbor algorithm to solve the multi-label
problem based on a lazy learning approach. The method helps to exploit
more the label relevance through the coupled similarity between class la-
bels. Consequently, the performance of prediction shows a notable outcome

compared to multi-label k nearest neighbor.
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2.4.3 Ensemble Methods

Multi-label learning was developed extensively in the last decade by a large
number of previous works. Most of the researchers emphasise the chal-
lenges of multi-label classification problems concerning imbalanced data of
the training sets and correlation among labels. Therefore, they focus on
dealing with these issues to improve the performance of prediction. The en-
semble approach is one of the most effective methods for solving the multi-
label classification problem. Tahir et al. [2012] used a heterogeneous ensem-
ble technique for dealing with imbalanced data and labelled relevance to
improve the performance of multi-label learning. Experimental outcomes
based on six datasets showed that multi-label learners by heterogeneous
ensembles could help to overcome over-fitting problems. The approach
achieves a high performance results compared to other methods. Li et al.
[2013] emphasised that the traditional pairwise constraints among labels
play an essential role in multi-label learning. Therefore, the study proposed
a new multi-label classification framework for a multi-label ensemble called
a variable pairwise constraint projection. The study first used the variable
pairwise constraint projection to maintain the correlations between samples
and labels. A boosting-like strategy was then adopted to expand the base
classifiers. By using ensemble approaches, Mahdavi-Shahri et al. [2016] and
Li et al. [2017] introduced a new method to improve the performance of
multi-label learning. These approaches focused on dealing with the imbal-
anced data, which helped to exploit dependencies among different labels.
Recently, heterogeneous information networks have increased in popu-
larity because they can help to explore more hidden knowledge regarding

relationships among different types of entities for both data samples and
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class labels. Kong et al. [2013] took advantage of heterogeneous information
networks to extract multiple types of relationships among different classes
of labels by exploiting the linkage structure. These relationships help to fa-
cilitate the multi-label classification process. Using heterogeneous informa-
tion networks for multi-label learning is an effective approach to solve label
correlations because the correlations among different class labels may be dif-
ficult to learn directly while some may be missing. Empirical results indicate
that the performance of multi-label classification is boosted by using hetero-
geneous information networks. Similarly, Zhou and Liu [2014] presented an
activity-edge centric multi-label classification framework based on hetero-
geneous information networks. The study first combined structures used
between the primary social network and multiple associated activity net-
works to generate a unified multigraph based on edge classification. The
study secondly used the structure affinity and the label vicinity to create a
unified classifier based on multiple activity networks. Then, an algorithm
was proposed to refine the classification result by different activity-based
edge classification schemes from multiple activity graphs. The experimen-
tal result showed that the approach achieved a high performance compared

to existing methods.

2.5 Summary

The thesis endeavoured to discover the knowledge from the medical do-
main in developing classification models with both accuracy and reliabil-
ity. This chapter, therefore, examines various domains of mining data in
addressing classification problems. It is clear that machine learning plays

an important role in the discovery of new knowledge in different domains
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(David [2007], Koh et al. [2011]). In particular, it has a significant effect on
improving the performance of decision support systems in healthcare ( Her-
land et al. [2014], Rosset et al. [2010], Holzinger [2016], Yoo et al. [2012]).
There are many approaches to solve the classification problems. In the
review of the chapter, it can be asserted that many studies have investi-
gated binary classification problems and developed related data mining
techniques. Table 2.1 shows the brief information about learning binary
classification. Health status measurement prognostication is known as a
tirst approach for supporting health practitioners in improving health knowl-
edge and clinical decisions (Miyazaki [2013], Prakash et al. [2006], Wagner
and Draper [1984], Keegan et al. [2012]). By focusing on the prediction of
health risks, many researcher have developed a binary classification to help
the health risk prediction (Yeh et al. [2011], Neuvirth et al. [2011], Nguyen
et al. [2014], Yang and Loog [2016]). However, these model often use a limi-
tation of input data which lead to uncertain results. To improve these chal-
lenges, graph-based approaches have been used by (Guillory and Bilmes
[2009], Sun et al. [2009], Ji et al. [2010], Luo et al. [2014], Hwang and Kuang
[2010], Chen et al. [2016a]) to deal with the types of disease through tradi-
tional diagnosis. Using a graph to discover the real dataset can help to im-
prove the accuracy of the classification models. Although the graph could
bring more benefits to improve the accuracy of the classification models, the
way to build these graphs still have a limitation. Therefore, this thesis is ex-
pected to provide a new method to build a graph which helps to boost the
performance of the classification models.

As an advantage of the knowledge graph, ming data under concepts and
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The gaps of the existing re-

Category Author search

Miyazaki

[2013]; Prakash | These scoring systems just pro-
Health  Status et al. [2006]; | vide basic informa}tion t(? sup-
Measurement Wagner and | port ‘health practitioners in im-

Draper [1984]; | proving health knowledge and

Keegan et al. | clinical decisions.

[2012]

By analysing the real dataset, a

Yeh et al. [2011]; | few of the binary classification

Neuvirth et al. | models is developed to predict
Health Risk | [2011]; Nguyen | the health risk status. These
Prediction et al. [2014]; | model have a significant impact

Yang and Loog | on support practitioners. How-

[2016] ever, these models have limited

on discovering the real dataset.

Guillory

and Bilmes | By using a heterogeneous infor-
Classification [2009];Sun et al. | mation graph, rgsearchers may
by Mining [2009];Ji et al. | have deeply discovered ele-
Heterogeneous [2010];Luo et al. | ments of the real dataset. How-
Graphs [2014]; Hwang | ever, these methods of building

and Kuang | a graph still have challenges be-

[2010]; Chen | cause of the complex of the data.

et al. [2016a]
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relationship among concepts has contributed significant benefits in discov-
ering hidden knowledge. A large number of researchers have shown that
mining the data by using concepts can bring high performances of discov-
ering knowledge (Lee et al. [2006], Gao et al. [2017], Ni et al. [2016], Choi
et al. [2014], Wang and Akella [2015], Karpagam et al. [2016]). Knowledge
graphs have been successfully considered for using in data mining by re-
searchers (Xu et al. [2014a], Bordes et al. [2011], Nguyen et al. [2017], Shi
et al., Voskarides et al. [2015]). These works have motivated the research
by proposing a framework to build a knowledge graph, which is based on
MEDLINE to improve the performance of exploring knowledge in the med-
ical domain. Applying the knowledge graph can help increase the accuracy
of classification models.

Although using a knowledge graph has more benefits in discovering
knowledged, it is a challenge to combine different data sources for build-
ing one. Combining different sources to create a cross-mapping can help
to discover more semantic relationships among terminologies. The cross-
mapping of different medical sources is completed by a large number of
researchers (Pereira et al. [2006], Soualmia et al. [2013], Srinivasan et al.
[2002], Schriml et al. [2018], Saitwal et al. [2012], Zhang et al. [2016]). By
using the advantages of combining sources in medical domain, numerous
researchers have developed applications to enhance the quality of clinical
diagnosis (Shah et al. [2019], Hanauer et al. [2014], Kavuluru et al. [2013],
Anupindi and Srinivasan [2017], Hidalgo et al. [2009], Escudié et al. [2017],
Zhao and Weng [2011]). In the thesis, an approach combining the obser-
vational data and biomedical literature has been conducted for building a

heterogeneous information graph, which can help to boost the performance
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TABLE 2.2: The weakness of related work for health risk pre-
diction by multi-label classification

Category

Author

The gaps of the existing re-
search

Problem Trans-
formation

Zhang and Zhang
[2010], Read et al.
[2011], Tsoumakas
et al. [2010], Zhang
et al. [2015]

Transforming the multi-label
classification problem as a
binary classification and multi-
class classification techniques to
facilitate learning has succeeded
by many researchers. However,
this method has limited on
solving label correlations, which
play an important role in learn-
ing multi-label classification.

Algorithm
Adaptation

Kumar et al. [2013],
Alali and Kubat
[2015], Liu and Cao
[2015]

This method could help increase
the accuracy of classification by
their optimised algorithm. This
approach has limited on deal-
ing with imbalanced data of the
training sets and the obstacle
of determining the correlation
among labels.

Ensemble
Methods

Tahir et al. [2012],Li
et al. [2013],
Mahdavi-Shahri

et al. [2016], Li et al.
[2017], Kong et al
[2013], Zhou and Liu
[2014]

This is one of the methods
that has been used by many
researchers recently for deal-
ing with the multi-label clas-
sification, especially, applying
a graph in learning multi-label
classification.  However, this
method leads to an increase in
the space of label correlations.

Besides solving the binary classification, the problem of multi-label clas-

sification is addressed in the thesis. Table 2.2 presents a common review of
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three different approaches to deal with the multi-label classification. Han-
dling multi-label classifications as well as predicting multiple diseases re-
mains a challenging task for many researchers due to its complexity. To
determine whether an example has multiple labels, a multi-label classifica-
tion model requires multiple processing stages. To deal with the complex-
ity of a multi-label learning problem, researchers often break down a big
problem into small problems to facilitate learning or focus on one partic-
ular issue to increase the accuracy of classification. Problem transforma-
tion is one of the options that is used to dealt with the multi-label problem.
Based on the approach, the multi-label classification problem is transformed
into several single-label classification problems (Zhang and Zhang [2010],
Alvares-Cherman et al. [2012]) or several multi-class problems (Tsoumakas
et al. [2010], Zhang et al. [2015], Montafies et al. [2014]), that superseded
multiple techniques in the past. The approach of problem transformation
facilitates the learning of multi-label classification.

Meanwhile, some other researchers have chosen to focus on proposing
an optimal algorithm to improve classification accuracy (Kumar et al. [2013],
Alali and Kubat [2015], Liu and Cao [2015]). All these methods show that
the essential challenges of learning multi-label classification are due to im-
balanced data of the training sets and the obstacle of determining the cor-
relation among labels. Therefore, some researchers recently applied the en-
semble method (Tahir et al. [2012], Li et al. [2013]) to deal with these is-
sues. Using heterogeneous information networks (Kong et al. [2013], Zhou
and Liu [2014]) to deal with the multi-label classification problem is one of
the more efficient methods to discover the relevance label. The approach is

able to exploit multiple types of relationships among different class labels
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based on discovering the linkage structure of the heterogeneous informa-
tion graph.

Although a large number of researchers have succeeded in addressing
the multi-label problem, however, exploiting correlations between labels
still has limitations, especially in the field of multiple disease diagnosis, a
model that needs to deal with cause and effect relationships. These rela-
tionships are extremely important because one symptom can be a causal
effector of many diseases; some symptoms may be causal to a particular dis-
ease. Therefore, the thesis represents the characteristics of a patient under
a graph to discover relationships among underlying patterns of a dataset.
Then the graph is separated into two different domains to boost leaning
the correlation between diseases. In particular, the integration of evidence
medicine into classification models is used to help increase the reliability
of that model in practical applications. Moreover, it also helps in finding
the profound relationships between diseases as well as their corresponding

symptoms.
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Chapter 3

Binary Classification for Health
Risk Prediction using a

Heterogenous Information Graph

In this Chapter, the study proposes an innovative classification model for
knowledge discovery from patients’ personal health repositories. The model
discovers medical domain knowledge from the massive data in the National
Health and Nutrition Examination Survey (NHANES) based on a heteroge-
neous information graph. The graph is built using combining Pearson Cor-
relations and Semantic Relations. On the basis of the model, an innovative
method is developed to help uncover potential diseases suffered by people
and to classify patients’ health risk. The proposed model is evaluated by
comparing it to a baseline model, which was also built on the NHANES
data set in an empirical experiment. The study makes significant contribu-
tions to the advancement of knowledge in data mining with an innovative
classification model, specifically crafted for domain-based data. In addition,
by accessing the patterns of various observations, the research contributes

to the work of practitioners by providing a multifaceted understanding of
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individual and public health.

3.1 Introduction

Data mining is used in the healthcare area in order to assess the effective-
ness of treatment. In recent years, many researchers have spent time and
effort on assessment of the risk of diseases. The research mainly focuses
on supporting physicians and other medical practitioners in making secure
and effective clinical decisions relating to their patients. Along with physi-
cians” experience, medical databases are considered to be valuable sources
to provide evidence to facilitate effective decision making. Risk assessment
has been undertaken to improve the assessment and management of dis-
eases by (Cheng et al. [2017], Chin et al. [2015]). These approaches have
helped to improve accuracy as well as to reduce the risks relating to disease
treatment. However, the diversity and complexity of terms and concepts in
the documents available for study may limit the accessibility of information
that is effectively retrieved.

Semantic similarity is widely used in improving the performance of min-
ing data to retrieve the highest amount of data. Many researchers have
taken advantage of Semantic similarity to achieve a significant improve-
ment in understanding of the issues involved. Ni et al. [2016] proposed a
new method to measure similarity among concepts. The approach repre-
sents concepts as continuous vectors which are utilized to accumulate sim-
ilar pairwise arrangements among pairs of concepts. The study improves
the measurement of semantics among documents. Similarly, to guarantee
the semantic measure of similarity between the medical terms, Karpagam

et al. [2016] suggested a new method which combines the sources of disease
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concepts and biomedical resources to identify the medical terms for auto-
matically extending the Disease Ontology. The trend of the semantic simi-
larity for mining data has increased recently because semantic similarity has
contributed a significant improvement in discovering new knowledge.

The increasing volume of datasets is helpful for medical professionals
who wish to improve the quality of healthcare. In relation to medical di-
agnosis, some researchers have developed predictive models for the classi-
fication of clinical risks (Kim et al. [2014], Sabibullah et al. [2013]) and for
predicting diseases (Chang et al. [2011], Huang et al. [2012]). However,
there are still issues relating to applying real datasets in mining. Most of
the datasets lack data labels. Moreover, the lack of features for represent-
ing all types of networked data may have a negative effect on discovering
knowledge. As a result, mining these data may not bring about a high per-
formance result because of the complexity of the real dataset. The datasets
also have various types of objects. Therefore, presenting these datasets by
using a new method is necessary to advance effective mining.

Due to the limitation of the real datasets, many researchers use a hetero-
geneous graph to represent the data for developing classification models. Ji
et al. [2010] proposed a new algorithm to predict the label for each object
by separating the different types of links and objects which can be applied
on the heterogeneous graph. This approach shows a significant improve-
ment in the task of surmounting the classification problem. Following some
successful trials, there has been an increase in the number of works on clas-
sification in the heterogeneous graph (Sun et al. [2009], Luo et al. [2014],
Wan et al. [2015], Kong et al. [2012]). This approach has helped the model

to be more meaningful compared to mining using traditional methods. In
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order to diagnose disease, Chen et al. [2016a] proposed an algorithm called
a semi-supervised heterogeneous graph on health (SHG-Health) to predict
the risk of mortality and morbidity of patients based on the health exam-
ination data. The model is built on mining the heterogeneous graph only
based on the neighbouring nodes” information. This work has a significant
result in discovering the different types of relationship in the heterogeneous

graph for health risk prediction by classification.

3.2 Research Problem Formulation

This study focuses on the observation data to build a binary classification
for predicting the health risk status. The following definitions illustrate the

research problem.

Definition 3. 1. [Electronic Health Records]
The Electronic Health Records are a 3-tuple R = {P, A, M4}, where

* P ={p1,p2 .., Pm} is the set of patients in the entire dataset and |P| =

m;

e A={m,ay,...,a,} is aset of attributes and | A| = n. Each attribute has a

label label(a) that marks the semantic meaning of a;

o M is a matrix constructed by P x A with values taken from a survey with

questions defined by A of patients P. [

Definition 3. 2. [Patient Health Profile]
The health profile HP (p) of a patient p € P is defined as a vector 7 = {(ay,



42

wy), (ay, wo), ..., (an, wy)}, where a € A and w is the value of attribute a on

patient p. g

Definition 3. 3. [Research Problem]

LetP = {p;,i=1,...,1} beaset of patientsand P € P; S = {s1,...,sx} bea set
of classes, where each s is a disease and K is the number of classes. Given a training
set of patients P, = {p;,j = 1+ 1,...,m} and their respective health profiles
HP(p;), with y;? = {0,1},k = 1,...,K is provided for describing the likelihood
of pj belonging to a class sy, the research problem is to learn a binary prediction
function f(y¥|p) and use it to classify p; € P into {sy} C S for prediction of the

patients’” health status in terms of the set of diseases defined in S. g

3.3 Framework

3.3.1 Data Correlation

Pearson correlation is an approach that can help to identify the secure connec-
tion between two factors and can help machine learning to obtain an opti-
mum result in data mining. In healthcare data, some researchers have used
the Pearson correlation coefficient to investigate the relationship between dis-
eases. Ha et al. [2017] used the Pearson correlation coefficient to identify the
relationship among diseases for predicting the prognosis of high-risk pa-
tients. The Pearson correlation is used widely in the medical domain to anal-
yse data by Zhou et al. [2014], Tsanas et al. [2013], Torres et al. [2012] for
discovering the underlying patterns in the real dataset. All of the works
demonstrate the critical effect of the Pearson correlation coetficient in mining

data.
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In this study, the Pearson correlation is adopted to identify the potential
connection of different types of data in the dataset. The Pearson correlation
value indicates the strength of relationship between data. Each data type
is transformed to a node in graphic format. The connection between those
data evolves into edges linking the nodes. The value assigned to the edges
represents the strength of the links. By using this approach, a heterogeneous
information graph (HIG) can be constructed. The HIG can be used to help
discover patterns underlying the data.

To identify the links between data and measure their strengths, the fol-
lowing Pearson correlation formula is exploited Egghe and Leydesdorff [2009].

o= nY i XY — Y % X Vi (3.1)

VI — (T x0)?\fn D 2 — (T i)

where x and y are two random elements in .A. The values of the Pearson
correlation coefficient p reveals how one data affects the others and distin-
guishes the correlation between different data. With the values, data with
strong connection are clustered in a common class.

As defined in Electronic Health Records, /\/17“‘3l is a matrix constructed
by P x A, Therefore, given an attribute 2 € A, using a mapping function
that returns all a’s corresponding values in patients” health profiles can be

defined:

O(a;) = {wi|(a;, w;) € p,Vp € P} (3.2)

Let Cr be a set of knowledge specifying the class revealed by correlation
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of the data in R, the Electronic Health Records; c be a concept in the health
domain and ¢ € CR; y be a threshold determining whether or not two at-
tributes are strongly related. Algorithm 3.1 presents how the knowledge is

discovered from the healthcare dataset.

Algorithm 3.1 Knowledge Discovery from Health Data.

1: INPUT:R = {P, A, MA};
2: OUTPUT: Cp;

3: Let Kr = @,isInc = false;
4: for eacha; € Ado

5: w; < Q(ai);
6: foreacha; € A a; # ajdo
7: Wj < Q(a]'),'
8: pij < pearsonCorrelation(w;, w;);
9: if Pij > 7 then
10: for eachc € CR do
11: if (a; € ¢) A (a; & c) A (isInc = false) then
12: c=cU{aj};
13: islnc = true;
14: else
15: if (a; € c) A (aj & c) A (isInc = false) then
16: c=cU{a;};
17: islnc = true;
18: end if
19: end if
20: end for
21: if isInc = false then
22: c= {ai,aj};
23: Cr = Kr U{c};
24: end if
25: isInc = false;
26: end if
27 end for
28: end for

29: return CR

Algorithm 3.1 fist uses a loop to check all attributes of the dataset. Then,
the algorithm uses a mapping function by Eq.(3.2) to return all correspond-

ing values for each attribute 4;. Next, another for loop is used to check
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the rest of attributes a i # aj. Then, the Person Correlation coefficient p be-
tween g; and a; is conducted by Eq.(3.1). For all p identified great v, a loop is
used to check whether or not concepts belong to the specific knowledge Cr.
If each concept learned between 4; and 4; belongs to the health knowledge
domain and concepts do not exist in Cg, these concepts learned between g;
and a; are added into Cr. Repeating this process for the rest of attributes
reveals all possible concepts for Cr. This algorithm uses three nested loops
for learning concepts for Cr. The complexity of the algorithm is identified
by O(n?).

The health knowledge, C, discovered by mining health data R, is a set of

health concepts as defined below:

Definition 3. 4. [Latent health knowledge]

Latent health knowledge, denoted by C, is a set of health concepts, in which each
element is ¢ := (M‘;‘,Mﬁ) e C, where M‘g is a matric A x A, A C A and
A € R. For each pair (a;, a;) € M4, the value of weight (a;, a;) € ./\/qlf1 indicates

the strength level of correlation between a; and a;. [

Table 3.1 presents a couple of health concepts discovered by Algorithm
3.1. A concept comprises attributes 2 (MCQ160D), a; (MCQ160B), a3 (MCQ160C)
and a4 (MCQ160E). They are strongly connected to one another and thus
clustered in a common concept. (In fact, these attributes are commonly re-
lated to heart issues.) Another concept consist of a5 (LBXBPB) and a7 (LB-
DBPBSI). These attributes also have a strong relationship and have been
clustered - they are actually all about blood. Attribute a5 (WTSH2YR) how-
ever, has no relationship with others listed on the table and are excluded
from the "heart" and "blood" concepts. (They may belong to other classes

that are not shown on the table due to the limit of space here).
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TABLE 3.1: The Pearson Correlation coefficient. The code of

MCQ160D (a1), MCQ160B (a5), MCQ160C (a3) and MCQ160E

(a4) belong to the Heart class, where LBXBPB (a¢) and LB-

DBPBSI (a7) belong to the Blood class and WTSH2YR (as5) be-

longs to other class, where the emphasised values indicate
strong connection of attributes

ai an as ay as ag ay
ap 1 0.264 | 0.415 | 0.321 | -0.032 | 0.039 | 0.041
a; | 0.264 1 0.292 | 0.401 | -0.019 | 0.004 | 0.005
az | 0.415 | 0.292 1 0.416 | -0.020 | 0.047 | 0.049
as | 0.320 | 0.401 | 0.416 1 -0.049 | -0.001 0
as | -0.032 | -0.019 | -0.020 | -0.049 1 -0.054 | -0.066
a¢ | 0.039 | 0.004 | 0.047 | -0.001 | -.0.054 1 0.981
ay | 0.041 | 0.005 | 0.049 0 -0.066 | 0.981 1

3.3.2 Semantic Relations within Data

Domain knowledge has been widely used in data mining to help improve
the performance of systems in a specific domain. Such relationships can be
generated for a range of semantic relations as well as syntactic relations. Xu
et al. [2014b] constructed a model to enable the system to have a deeper un-
derstanding of diseases, a model that automatically discovers other patterns
specifying semantically similar relationships among diseases. By presenting
the concept detected from a document into a graph, Ni et al. [2016] proposed
a new method to measure similarity among concepts. Then, the approach
represents concepts as continuous vectors which are utilized to accumulate
pairwise similarity among pairs of concepts. This study demonstrated the
improvement in measuring semantics among documents.

Discovering knowledge from the medical domain has been successful
by analysing data for generating a semantic network (Abacha and Zweigen-

baum [2011]). A semantic network is set up by linking all of the concepts
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(the semantic class, or the node with the same type). There are a large num-
ber of relationships between two semantic types being set up from the se-
mantic network. These relationships help to provide more chances to im-
prove the performance of decision support systems in healthcare.

In this study, to conduct a risk prediction for each patient based on
the heterogeneous graph, the research considers each type of concept node
as a semantic class. Then the research builds up a model to predict the
risk of each disease that belongs to the different class by comparing the ef-
fect among these classes. In this study, the same type of nodes are set up
by considering all attributes with the same semantics for constructing the
graph. All observation data in the NHANES dataset are categorised into
eight classes. The eight medical semantic classes are presented in Table 3.2
with a brief description. Each class consists of a group of diseases. For
example, the Hepatitis class contains both Hepatitis B and Hepatitis C. By
adopting semantic knowledge in our work, underlying patterns from the
data can be discovered.

The domain health knowledge, S, acquired by categorizing the attribute
label in the health dataset IR, is a set of semantic health concepts, which is

defined as:

Definition 3. 5. [Domain Health Knowledge]
Domain Health Knowledge is a set of health concepts, s € S, where s = {lebel(ay),
lebel(ay), ..., lebel(ay)}, a € A, which is a set of attribute labels connected by the

semantic relation of "related-to”, and A € R. O



TABLE 3.2: Semantic categories

Class

Description

Kidney Condi-
tions

All the attributes related to kidney disease.

All types of hepatitis such as A, B, and C. In addi-
tion, some questions are asked related to hepati-

Hepatitis tis, for example, “Have you ever received Hep-
atitis A vaccine”.

Diabetes Urine or blood lab test.

Blood Pressure .

and Cholesterol All the lab tests relating to blood.

Heart disease

Questions such as “Has a doctor ever told you
that you had a heart attack, coronary heart dis-
ease, or congestive heart failure?”. In addition,
the doctor may ask about angina (angina pec-
toris).

Attributes of respiratory disease, e.g., asthma,

Rgsplratory emphysema, thyroid problem, chronic bronchi-
Disease Hs
Profile Personal demographics such as age, weight, and
gender.
Miscellaneous attributes or attributes where
Others

ground truth can not be obtained.
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3.3.3 Heterogeneous Information Graph Construction

In this study, a heterogeneous graph is constructed consisting of the differ-
ent types of nodes based on health examination records. By presenting the
data as a heterogeneous information network, hidden information that ex-
ists in the real dataset can be discovered. The National Health and Nutrition
Examination Survey (NHANES) dataset is used to build the heterogeneous
information graph. The NHANES dataset consists of 2585 attributes, cov-
ering a wide range of information about an individual, such as personal
demographics, observations, laboratory tests, and diagnostic reports. After
careful examination, these characteristics were manually categorised into
eight classes based on their intuitive semantic relations. Hepatitis, Kidney
conditions, Diabetes, Heart disease, Blood Pressure and Cholesterol, Profile Respi-
ratory Disease and Others, are presented in Section 3.3.2

As mentioned above, this study considers using a new approach for set-
ting up links between two nodes of the heterogeneous information graph.
Considering each attribute in the NHANES dataset as a data object, the un-
derlying links connecting objects are discovered by adopting the Pearson
correlation coefficient, which is a powerful technique to measure the linear
correlation between two variables. Denote a Pearson Correlation coefficient
value by p, two objects (two attributes) v; and v, hold valid connection if
p(v1,v2) > 7, where 7 is a threshold defining the validity of object con-
nection. The range of the coefficient value is set between -1 and 1. The
relationship between the two objects is perfectly negatively linearly related
if the coefficient value is approximately -1. In contrast, the relationship be-
tween two nodes is more strongly correlated if the coefficient value is in the

possible range of nearly 1. Apparently, a larger p value indicates a stronger
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connection between the two objects.

A heterogeneous information graph is then constructed with the seman-
tic classes and the link connecting objects is defined by the Pearson correlation
coefficient. A heterogeneous information graph (Ji et al. [2011a], Sun et al.
[2009]) is adopted to help explore all different types of data since the dataset
has many types of categories. The graph can cover different types of nodes
which have multi-typed relationships of data items being linked. In the de-
sign of our model, the unhealthy status is assessed by a classification model,
using a heterogeneous information graph constructed by the data collected

from observation of a patient.

Definition 3. 6. [Health Knowledge Graph]
The Health Knowledge Graph graph is a 2-tuple, G :=< V,E > with an object
mapping function ¢ : V. — A and a link type mapping function ¢ : E — R, where

* V is a set of vertices, in which each element v is an attribute a € A and

A:g(v) € A

* Eisaset of edges, in which each element is a semantic relation v in the relation

type set R : ¢(e) € R, where R =CJS. O

The coefficient value of the Pearson correlation (p) is an essential factor in
building the heterogeneous graph. It is calculated based on the influence
between two attributes (variables) belonging to the different objects. The
coefficient values of the Pearson correlation is calculated through the use of K
attributes. However, some of the coefficient values may have a minus value.
Nevertheless, the coefficient value of some (p) are equal 0 because they do
not have an influence or relation between two attributes. The Pearson cor-
relation (p) needs to have the threshold value of vy for identifying a validity

link between two objects.
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FIGURE 3.1: A sample heterogeneous information graph

Figure 3.1 illustrates a subgraph of the heterogeneous information graph
constructed using the NHANES dataset. Three types of objects are illus-
trated, where A is a class for Heart Disease, B for Patient Profile and C for
Kidney Condition. As we can see, the profile of aged (B1) is related to most of
the nodes because people of all ages can get any disease. However, height
(B2) can only link to B1 and B3 (weight) because height does not affect kid-
ney or heart disease. However, B3 plays an important aspect in causing a
heart attack (A1) as well as a diseased kidney (C2). There is no link between
heart disease and kidney conditions. Among aspects in Heart Disease and
Kidney Conditions, links always exist because these aspects are in the same

class.
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3.3.4 Binary Classification Model

With the availability of the heterogeneous information graph, a function can
be learned from the training data that formalises the profile of a patient for
her state of healthiness or unhealthiness regarding a disease x:

k k
f(x) =Y vixp(xv)xa+) vjxp(x,v)xp (3.3)
~ —

1= J
where ¢(x) = ¢(v;) and ¢(x) # ¢(v;). Each element v; or v; is an attribute
a € A. p(x,v;) is a Pearson Correlation coefficient, which is identified for
building a graph for disease x. Also, « and f are two coefficients adopted to
clarify the contribution of latent health knowledge and domain health knowledge
in the classification model.

Based on f(x), a patient’s health status can be modelled against a single

disease, x:

, if f(x) >0
gy = = 64)

0, otherwise

where 0 is a threshold to determine the final class, “healthy” or “un-
healthy”, for the patient. When checking against multiple diseases x € X,

an overall model can then be defined on the basis of Eq. 3.4:

y(X) =115 _ y(x,), where x € X, |X| = k (3.5)

In this model, there are three important parameters which have a sub-
stantial effect on running the training model. First, if we consider the coef-
ticient of the same and different semantic groups « and B, these two param-

eters show the effect between the different semantic groups, where a+p=1.
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If the coefficient of « is nearly equal 1 (B approximates 0), other groups do
not have a role in this model. The model favours domain health knowledge
and omits latent health knowledge. The model only considers the factors in
the same group to predict the high risk to health for a patient. For exam-
ple, the model uses attributes of the Hepatitis B class to predict whether
these patients belong to the Hepatitis B class (unhealthy) or not. In con-
trast, if the coefficient of § is nearly equal 1 (x approximates 0), the model
only considers attributes of the different semantic group to predict the high-
risk to health for patients. The latent health knowledge takes place and the
domain health knowledge is fades. The model uses the attributes that are not
related to the Hepatitis B class to predict whether or not these patients be-
long to the class. When a and B are of the same value (x =0.5 and 8 = 0.5),
domain health knowledge and latent health knowledge are equally considered in
the classification model. Another parameter is the threshold value of 6. The
parameter has a direct effect on deciding whether the patient belongs to a
healthy or unhealthy case.

An optimisation Algorithm 3.2 is also developed to find the best values
for variables &, p and 6 in the model:

In Algorithm 3.2, at the third-step, the first value of the threshold 6 is
set equal to 0.1. Following a loop is used to set the value of & and 8, where
« plus B equal to 1. Then calculating the performance of the model is to
define the best value of F-measure for function f(x). There were 11 values
of F-Measure for the first round with 6 being 0.1. Then, the algorithm can
define the max value of F-Measure as well as identify the best threshold for
« and B. At the four-step, the algorithm uses the value of a# and B from

the third-step is to set a loop for § running from 0. to 0.9 and calculate the
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Algorithm 3.2 Optimisation Algorithm

1: INPUT: 8 = {0,0.1,...,1},« = {0,0.1,...,1} and 6 = {0.1, ..

OUTPUT: The best value of 6, « and B
setf = 0.1;
foreacha € {0,0.1,...,1} where g € {1,0.9,...,0}

¢ Calculate weight value for Eq.(3.3)
* Select the best « and B

set the best « and B
for6 =0.1,0.2,..,0.9

¢ Identifying the performance of Eq.(3.3)
¢ Select the best 0

repeat step 1 for the best 6

repeat step 2 for the best « and j
repeat step 3 and 4 until convergence
return 6, « and S

.,09}

performance of the model. Then the max value of F-measure for the classifi-
cation model is defined based on 9 values of F-Measure. Then the best value
of 6 is identified. Repeating the third-step with a new value of threshold 0 is
to confirm the best value of « and B. If these values are converged, the four-
step will repeat until all values of a, B and 0 are converged. The algorithm

uses two nested loops for identifying the value of «, f and 6. Therefore, the

complexity of the algorithm is O(n?).
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3.4 Empirical Experiments for Evaluation

3.4.1 Dataset

In this study, the NHANES dataset was used for the experiment. The NHANES
dataset has been collected since 1960 in the United States. It comprises a se-
ries of surveys including a variety of health and nutrition measurements
with different population groups. This dataset provides significant health
knowledge to help identify and assess the risk of disease for Americans.
The dataset covers a wide range of health assessments, such as lab tests,
physical examinations and personal habits. The NHANES dataset contains
9770 participants with more than 2585 attributes which are categorized by
Table 4.1 except for the characteristics related to food and nutrition. In the
experiments, the dataset collected from 2013 to 2014 was used to train and
test the classification model.

Due to the missing data, this research only considered the attributes
which have a limited level of sparseness. Figure 3.2 shows the percentage
of the missing data of the NHANES dataset. Also, data for foods and nu-
trition are not considered. As a result, there are 318 attributes used in the
experiments.

The dataset was manually assessed to generate the ground truth based
on 13 attribute correspondents with 13 diseases in Table 3.4, which were
selected for experiments in this model. Only patients who were clear of
all thirteen diseases were considered healthy. As a result, 5144 out of 9770
participants were identified healthy, and 4626 participants were unhealthy.
Table 3.5 illustrates the statistics of the NHANNES dataset. Before applying

the dataset to experiments, it was pre-processed first as it contained many



TABLE 3.3: NHANES attributes by categories

Type

Category

Attribute description

age, marital status, gender, education level, residential suburb,

annual income, weight, people according to age groups, total

Patient Profile Demographics
number of people in the family /household, language used in in-
terview
b consumption behavior, diet behavior and nutrition, physical ac-
Habit
tivities, smoking, alcohol use, drug use
. . questions regarding sleep disorders, depression, cognitive prob-
Questionnaire Mental Health
lems
diabetes, diagnosis of hepatitis B or hepatitis C kidney disease,
Current Health
sexual behaviour, osteoporosis, cardiovascular disease, derma-
Status
tology, disability, immunization, oral health
Health asthma, childhood and adult, anaemia, psoriasis, heart, diseases,
Conditions arthritis, blood transfusions
Family History
asthma, diabetes, heart attack/angina
of Disease
weight, height, recumbent length, body mass, circumference
Examinations Physical
muscle strength, blood pressure
External femur, neck, head circumference, leg, arm
trochal term, abdominal diameter, teeth, gum disease, oral hy-
Other giene, impression of soft tissue condition, denture/partial, den-
ture/plates
albumin, cholesterol, glycol haemoglobin, insulin, glucose, vita-
Lab Tests Biochemical
min B12
lood blood metal weights, blood lead, blood cadmium, blood mercury,
Bloo
blood selenium, blood manganese
urinary arsenic, urinary creatinine, sugar, iodine, mercury, metal,
Urine
urine pregnancy, trichomonas
) toxocara, hepatitis, HIV antibody, human papilloma virus, ni-
Other

trate, thiocyanate
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The Percentage of Missing Data (NHANES)
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FIGURE 3.2: The percentage of missing data

noisy data. The values of attributes were normalised into a unified form.
Then, the missing data were handled and replaced by the average of all

values in the respective attribute.

Data Normalisation

The dataset needs to be pre-processed to be transformed into a unique for-
mat for the experiment. For example, a nominal data type such as gender is
presented as equal to 0, and 1 instead of the format type being male and fe-
male. The ordinal data type such as general health condition is presented as
0, 0.5 and 1 instead of presenting as bad, good and excellent. With the data
type such as a range of blood test (50 to 150), the research uses the standard
of maximum and minimum to transfer data into the range of [0, 1]. Zero
is set for a negative case or called unhealthy, where one is set for a positive
case or called healthy. Similarly, for a range of age, if the patient is getting

older, the health risk will be increasing. Therefore, the range of age from 18
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TABLE 3.4: Experimented diseases

Code

Description

DIQO010

diabetes or sugar diabetes

KI1Q022

weak or failing kidneys

MCQ160A

arthritis

MCQ160B

congestive heart failure

MCQ160C

coronary heart disease

MCQ160D

angina, also called angina pectoris

MCQ160E

heart attack

MCQ160G

emphysema

MCQ1600

CcOrD

MCQ160L

liver condition

HEQO030

hepatitis C

BPQO020

high blood pressure

BPQO80

high cholesterol

TABLE 3.5: Statistics of the dataset

Description Number
Participants 9770
Attributes 2858
Diseases 30

Healthy case 5144

Unhealthy case | 4626
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to 65 is normalised by a new scale from 0 to 1.

Data Cleansing

Cleansing noisy data is a necessary task of mining data. In this study, the
NHANES dataset also contains a large number of missing data. Therefore,
the NHANES dataset needs to be corrected before applying the model. If all
of the attributes have a small instance (the small number of participants),
the study removed them from the dataset because they may have a nega-
tive effect on developing the model. Based on the statistics table from the
real dataset, to ensure enough data for experiments as well as to reduce the
maximum of the negative effect on retrieval information by missing data,
all attributes that have more than 50% of missing data are removed. After
cleaning the noisy data, the dataset consists of 318 attributes and is more
beneficial for applying to the experiment. However, there is still a little
missing data from 318 attributes so that we need another step to process this
issue before applying the model. Because the dataset is normalized into the
unique format by the binary presentation, the missing data was proceeded
by replacing the average of all values in the respective attribute. After this

processing, the dataset is available to apply for the experiments.

3.4.2 Performance Measurements

The standard metrics including accuracy, recall, precision and F-measure
(Bowes et al. [2012]) were used to measure the experimental model’s perfor-
mance. These are defined as follows:

Recall = (3.6)

TP+ FN
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.. TP
Percision = TP+ EP (3.7)
TP+ TN
A = .
Y = TP Y TN+ FP+ FN (3.8)

2 % Recall x Percision
F— — .
fmeasure Recall + Percision (3.9)

where TP is True Positive ("Subject x is correctly labelled as belong to disease y”),
TN is True Negative ("“Subject x is correctly labelled as not belong to disease y"”),
FN is False Negative ("Subject x is incorrectly labelled as not belong to disease y”),
and FP is False Positive ("Subject x is incorrectly labelled as belong to disease y”).

Precision is the fraction of the number of samples correctly labelled as
belonging to a disease among the total number of samples labelled as be-
longing to a disease. Recall is the fraction of the number of samples correctly
labelled as belonging to a disease among the total number of samples that
actually belong to a disease. Equal to one is the ideal result that corresponds
to precision and recall. These two quantities can be combined into a single
value by F-measure. Accuracy presents the correct classification rate of the
model.

In this study, to ensure the reliability of evaluation, the k-fold (k = 5) val-
idation approach was adopted. Five subsets were randomly generated from
the NHANES dataset. Four of the five subsets would be used for training
and the other one for testing in each experimental run. The final perfor-
mance of the experimental model was counted based on the average per-

formance of all five runs over the tests of twenty-two diseases. Both the
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training and testing of the model had five rounds being used for the exper-
iment. All five sub-sets of data were used to run the proposed model and

then applied to the baseline model.

3.4.3 Baseline Model

The proposed model was evaluated by comparing it with the baseline model
(Chen et al. [2016a]), representing state-of-the-art related research. The base-
line model uses the semi-supervised learning algorithm called the semi-
supervised heterogeneous graph on health (SHG-Health) to solve the classi-
fication problem with consideration of the relationship existing in the data’s
neighbourhood. Alternatively, our proposed model considers the semantic
relations between data attributes and relations underlying the data, which
was adopted to construct the heterogeneous information graph in experi-
ments.

To build up the heterogeneous information graph, Chen et al. [2016a]
used the general health examination (GHE) dataset covering data from 2005
to 2010 in Taipei City. The dataset was collected from 102,258 participants
aged from 65. The baseline model has categorized the dataset with 230 at-
tributes into three types of group data: physical test, mental assessment,
and profile. A heterogeneous graph was set up with four different types of
nodes: Record, Physical Test, Mental Assessment, and Profile. Record is an
artificial node for representing individual records. This is an essential node
of the baseline model because it is used for setting up the links of the graph.
Each individual record presents for more than one node because each record

of the GHE dataset contains data for different years from 2005 to 2010.
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In contrast, the NHANES dataset used in this study covers data for only
one year. This could point to an assessment of the performance result of
the baseline model because the baseline model did not show whether or not
the results are affected if the dataset has data for one year. In this study,
the baseline model was rebuilt by using the NHANES dataset. Both our
model and the baseline model were based on the same dataset to develop
the binary classification model. Both models have the same goal of trying
to make a significant result in predicting high-risk diseases. By applying a
new proposal, this study tries to improve the performance of classification

compared to the baseline model.

3.4.4 Results

Figure 3.3 presents the dataflow in an experimental design. First, the NHANES
dataset was separated into two subsets: a training set and a testing set. The
former was used to help develop the classification model, whereas the latter
was used for evaluation of the proposed model. All variables of the dataset
were presented as binary labels. A value of 1 indicates a positive case, and
a value of 0 indicates a negative case. Based on the design model, all values
were converted to binary. Then, a risk score value is computed to indicate a
patient’s health status. Finally, the results of the proposed model were com-
pared to the SHG-Health model to show the percentage of improvement.
Thirteen diseases were tested in five rounds, as discussed. Tables 3.6, 3.7,
3.8, and 3.9 presented the experimental results in both the proposal model
and SHG-Health model including precision, recall, and accuracy and F-

measure. The percentage of precision in the proposed model showed a great
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FIGURE 3.3: Experimental data-flow

improvement compared to the SHG-Health model. There were a few dis-
eases that were not improving the performance of classification compared
to the proposed model regarding recall and accuracy. Overall, although the
percentage of recall and accuracy did not show improvement for some dis-
eases in the proposed model, the proposed model outperformed the SHG-
Health model in F-measure.

To justify the overall performance of the proposed model and SHG-Health
model, the average of all diseases was present in Tables 3.10. The percentage
change in performance was also used for clarifying the significant level of
improvement achieved by the proposed model over the SHG-Health model.
It is calculated by the following equation, where N is the number of diseases

being observed in the experiment.
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TABLE 3.6: Precision result of thirteen diseases, where the em-
phasised values indicate the superior performance in compar-
ison.

Disease Precision
Proposal model | SHG-Health model

KIQ022 0.39918 0.09882
MCQ160G 0.32422 0.12551
MCQ160D 0.32913 0.12248
DIQO010 0.80073 0.08815
HEQO030 0.59007 0.00987
MCQ1600 0.66619 0.13914
MCQ160B 0.25806 0.13696
MCQ160C 0.46522 0.11863
MCQ160E 0.40931 0.12981
MCQ160L 0.58956 0.09284
MCQ160A 0.51509 0.33932
BPQ020 0.66636 0.36759
BPQO080 0.51177 0.31788
Avg. 0.50191 0.16054

* 100%

1 § % result(proposal model) — result(baseline model)
result(baseline model )
(3.10)

3.4.5 Discussions

The overall performance of the proposed model is better than that of the
SHG-Health model. The result suggests that the proposed model has higher
capability of processing sparse data compared with the baseline model. The
training data set is sparse and non-balanced. The proposed model achieved

promising results although dealing with such sparse data. However, the
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TABLE 3.7: Recall result of thirteen diseases, where the em-
phasised values indicate the superior performance in compar-
ison.

Disease Recall
Proposal model | SHG-Health model

KIQ022 0.43024 0.23324
MCQ160G 0.82700 0.11167
MCQ160D 0.53281 0.14746
DIQO010 0.59232 0.85820
HEQO030 0.62748 0.73551
MCQ1600 0.45330 0.18103
MCQ160B 0.63830 0.23176
MCQ160C 0.61373 0.29357
MCQ160E 0.61993 0.24936
MCQ160L 0.25329 0.34374
MCQ160A 0.73416 0.66660
BPQ020 0.790084 0.91995
BPQO080 0.71754 0.98800
Avg. 0.60232 0.45847

SHG-Health model was recorded with relatively lower performance, espe-
cially, in Precision and F; measure results. The adoption of semantic and
domain knowledge has made a significant impact on the success of the pro-
posed model. The data was categorised into different groups based on the
semantic and domain knowledge. The use of the Pearson correlation has
also brought to the proposed model the ability of recognising the patterns
underlying the data. With all such advantages, the prosed model was lever-
aged and overall it eventually significantly outperformed the baseline.
Although the result of the proposed model showed a significant im-
provement compared to the SHG-Health model overall, the performance of
Recall and Accuracy for some diseases in the baseline model achieved better

of classification. The SHG-Health model is designed to predict health risks
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TABLE 3.8: Accuracy result of thirteen diseases, where the em-
phasised values indicate the superior performance in compar-

ison.
Disease Accuracy
Proposal model | SHG-Health model

KIQ022 0.78162 0.90697
MCQ160G 0.78415 0.97144
MCQ160D 0.96374 0.95542
DIQO010 0.95709 0.30568
HEQO030 0.99251 0.34476
MCQ1600 0.78666 0.93204
MCQ160B 0.75916 0.93123
MCQ160C 0.95604 0.88386
MCQ160E 0.94924 0.90406
MCQ160L 0.96229 0.83609
MCQ160A 0.74359 0.56926
BPQ020 0.79554 0.43991
BPQO080 0.68894 0.32439
Avg. 0.85543 0.71578

by mining a heterogeneous information graph generated from data. The
heterogeneous information graph constitutes data with similar attributes
and properties in a common neighbourhood. The model then tries dis-
cover health care / medical domain knowledge from the data constructed
in the heterogeneous information graph form. Investigation revealed that
the SHG-Health model tended to have obtained higher coverage of hy-
pothesis space with a heterogeneous information graph constructed with
an non-complex structure. As a result, in some diseases, the SHG-Health
model performed better than the proposed model as shown in Table 3.7
and 3.8 when constructing the heterogeneous information graph using the
NHANES dataset with data collected in only one year. This is also because

of the sparseness of data. There are some disease in the dataset which have



TABLE 3.9: F-Measure result of thirteen diseases, where the
emphasised values indicate the superior performance in com-

parison.
Disease F-Measure
Proposal model | SHG-Health model

KIQ022 0.30101 0.13624
MCQ160G 0.43012 0.11271
MCQ160D 0.39693 0.12820
DIQO010 0.67798 0.15984
HEQO030 0.59204 0.01947
MCQ1600 0.37085 0.14753
MCQ160B 0.32307 0.16690
MCQ160C 0.52822 0.16845
MCQ160E 0.49208 0.16804
MCQ160L 0.35294 0.14601
MCQ160A 0.60085 0.44798
BPQO020 0.72234 0.52498
BPQO080 0.59288 0.48094
Avg. 0.49087 0.21595

TABLE 3.10: Overall comparison of the proposal model to the
baseline model, where the emphasised values indicate the su-
perior performance in comparison.

Precision | Recall | Accuracy | F-Measure
The proposal model | 0.50191 | 0.60232 | 0.85543 0.49087
SHG-Health model | 0.16054 | 0.45847 | 0.71578 0.21595
Percentage Change | 212.64% | 31.38% | 19.51% 127.31%

67
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a small number of samples for the experiment. The non-balanced data led

to different results for the experiment.

TABLE 3.11: Overall statistics for each threshold in the valida-

tion sets.
Threshold 0 0.1 0.2 0.3 04
% of links incl. | 100% | 24.36% | 4.93% | 1.34% | 0.63%
Threshold 0.5 0.6 0.7 0.8 0.9
% of links incl. | 0.21% | 0.19% | 0.34% | 0.37% | 0.97%

Furthermore, there are several parameters of importance related to the
development of our model. Changing these coefficients may affect the re-
sults of our model. For that reason, the research needs to identify the best
value to enhance the performance of our model. Firstly, it is related to the
range values of the Pearson correlation coefficient. An analysis is needed to
assess the best threshold value (y) for the Pearson Correlation coefficient (p)
because its threshold strongly affects the overall performance achieved by
the model. If -y is set too large, the relevant information will not be sufficient
for study. In contrast, if we set 7y too small, more non-relevant information
is included as noise. Therefore, we ran a program to test all range values of
Pearson correlation from 0 to 1, scaling up by 0.1. The approach is to count
how many links can be included in the information graph for each range
values of the Pearson correlation coefficient. The results are presented in Ta-
ble 3.11. The study found that 7y = 0.3 gave the model the best and most sta-
ble performance. Table 3.12 illustrated the performance of the classification
model by different the values of threshold . If the value of the threshold

7 increased to 0.4 or even more, the performance of the classification model
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could not be identified. As a result, v = 0.3 was set for the Pearson correla-
tion, which helped the construction of an information graph with a wealth
of information to mine.

TABLE 3.12: Sample comparison of different the values of
threshold <y in Experiments (BPQO080).

Threshold Best averaged performance
(7) Precision | Recall | Accuracy | F-measure
0.2 0.38628 | 0.9087 | 0.56367 0.52370
0.3 0.52231 | 0.71329 | 0.75472 0.59868
0.4 NaN 0 0.74139 NaN

Besides, the «, B, and 6 coefficients play an essential role in deciding the
final result of our model. In the experiment, an algorithm in Section 3.3.4
called the optimization procedure is applied in the training model to iden-
tify the best of «, B, and 6, where a« + B =1, and 0 is in the range from 0.1
to 0.9. Following this, all of these values are applied in the testing model
to evaluate the results of the proposed model. Since the instance for each
round is different, the performance of the result in the testing model for
some diseases decreases compared to the training model. It is easy to un-
derstand that if there are not enough instances being applied to the model,
the result will change. Because our model makes a comparison between
the same and a different group, if the instances of the same group are not
enough, the performance of our model is decreased. That is the reason why
when we have the best value for the «, 8, and 6 coefficient in training, the
results in the testing model may not be obtained as expected.

The coefficients of « and B in (Eq. 3.3) were designed to leverage the

overall performance of the model by giving different considerations to the
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latent health knowledge and domain health knowledge. Thus, the final de-
termined values of « and B also reveal the importance of the latent health
knowledge and domain health knowledge to the model. During the experi-
ments, it was found out that when giving the latent health knowledge more
consideration than the domain health knowledge (a holds a larger value
than f ), the proposed model would be powered with higher performance.
Table 3.13 presents the experimental results on BPQO80 High cholesterol,
one of the diseases studied in the experiments, with different values of «, j3,
and 6 going through five rounds of K-fold. Three out of five rounds show
that the latent health knowledge has presented a stronger influence than
the domain health knowledge ( in the second and fourth rounds they were
tied).

TABLE 3.13: Sample comparison of latent health knowledge
and domain health knowledge in Experiments (BPQO080).

Threshold| Latent | Domain| Best performance

.. F-
Round| (0) () (B) Precision| Recall Accuracy Mmeasure
1 0.3 1 0 0.57385 | 0.56834 | 0.72230 | 0.57108
2 0.2 0.5 0.5 0.48743 | 0.73857 | 0.68707 | 0.58728
3 0.1 0.7 0.3 0.53445 | 0.75177 | 0.70705 | 0.62475
4 0.2 0.5 0.5 0.45833 | 0.75959 | 0.64598 | 0.57170
5 0.1 0.7 0.3 0.50477 | 0.76941 | 0.68231 | 0.60961
3.5 Summary

In recent years much effort has been invested in transforming healthcare ser-
vices form traditional experience-base to evidence-base (Mirel and Carper

[2014], Collins and Varmus [2015], Gardner et al. [2018]). Along the journey,
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data mining and machine learning techniques have played an important
role because the evidence in fact refers to the latent knowledge discovered
from massive data collected from daily operations of healthcare services.
Data mining, machine learning and knowledge engineering / management
have provided technical foundation to the transformation of healthcare ser-
vices, and more advanced techniques in these areas are in great demand,
aiming at further improving the quality of healthcare services.

Answering the call, we constructed a health knowledge graph on this
study using the National Health and Nutrition Examination Survey, a health
examination dataset. Adopting the knowledge graph, a classification model
was also introduced to predict the potential health risk for patients. The
Pearson correlation coefficient was used to discover the correlation between
data attributes. Health domain knowledge contained in the categorisation
of disease was also adopted in the model to help build up the knowledge
graph. Aiming at evaluating the proposed classification model, empirical
experiments were performed, in which the proposed model was compared
with a SHG-Health model implemented for a state-of-the-art model intro-
duced by Chen et al. [2016a]. The experimental results showed that the pro-
posed model outperformed the SHG-Health model, which was significant

in Precision and F; measure.
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Chapter 4

Knowledge Base for Medical

Health Status Classification

In this Chapter, the study integrates the knowledge of the medical domain
into the heterogeneous information graph, which is built in Chapter 3, to
improve the accuracy of the patients” health risk prediction. The research
mines the knowledge, which was extracted from titles, and abstracts of
MEDLINE to discover how to assess the links between objects relating to
medical concepts. A knowledge-base graph model then is developed for the
prediction of a patient’s health status. This knowledge-base graph has in-
stances with influence rules, which helps the graph to generate relationships
between nodes The results of the experiment shows that the knowledge-
base model is superior to the baseline model and has demonstrated that
the knowledge-base could help improve the performance of the classifi-
cation model. The contribution of this study provides a framework for
applying a knowledge-base in the classification model, which helps these
models achieve the best performance of predictions. The experiment of this
study affirmed that biomedical literature could assist in improving the per-

formance of the classification model.
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41 Introduction

The increasing amount of big data has opened many new challenges in data
mining. Traditional data mining, which is performed at the data level, may
not be highly effective in discovering knowledge for two reasons: firstly,
each attribute at the data level has a unique label which has a limitation
in discovering knowledge; secondly, it is challenging to infer implicit infor-
mation among entities. In contrast, at the knowledge level, each attribute
might have more than one label, which focuses on presenting information
by semantic meaning rather than data. Therefore, mining at the knowledge
level can help gather implicit details which can support the achievement of
a higher level of knowledge discovery.

In terms of the knowledge base, Wang et al. [2017a] demonstrated that
a medical knowledge base would have the capacity to improve the perfor-
mance of discovering medical knowledge if it was integrated into the med-
ical domain knowledge. Goh et al. [2016] argued that a knowledge base is
useful in the clinical decision support system. In the medical area, MED-
LINE! is a vital source because it contains a significant number of citations
that are updated frequently in the medical field. However, most researchers
focus on using MEDLINE to retrieve information. Xu and Wang [2013c]
introduced a model to identify drug-disease associations by extracting doc-
uments from MEDLINE. Some researchers have suggested new methods of
achieving a high quality in knowledge that has been discovered. Banugitah
et al. [2016] suggested a way to use multi-level learning from documents
extracted in MEDLINE to improve the discovery of previously hidden use-

ful knowledge. Therefore, MEDLINE would become more useful if it was

lhttps: / /www.nlm.nih.gov/bsd /medline.html
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integrated into concepts of Medical Subject Headings (MeSH)? by instances
which can be applied to applications of decision support.

In addition, applying the heterogeneous information graph (HIG) has
significantly increased by the amount of research, thus providing an ad-
vantage for developing a classification model. Sun and Han [2013] demon-
strated that mining the HIG could provide an effective way to improve the
quality of mining data. Because of the advantage of the HIG, Ji et al. [2011b]
introduced a classification algorithm from the HIG, based on ranking class
algorithms. The results of the experiments showed that the proposed re-
search is more accurate in generating classes as well as contributing a more
meaningful ranking of objects in each class. In the medical domain, the
use of the HIG, which was built from clinical data to predict the health
risk status, has become a current significant topic. Perotte et al. [2015] con-
structed a HIG from electronic health record data to predict the progression
of chronic kidney disease. The result showed that the performance of this
proposed model is more accurate than other models. This advantage in-
creased quickly with the volume of research (Xiong et al. [2018], Lei and
Zhang [2019]) that used the HIG in predicting health risks.

It is clear that evidence-based medicine has a positive effect on improv-
ing the quality of healthcare. It aims to ensure that the clinician’s opin-
ion relies on available knowledge from the scientific literature. Cases et al.
[2013] argue that medical knowledge plays a vital role in decision support
for medical practitioners as well as in healthcare knowledge delivery. How-
ever, extracting and transforming the evidence-based medicine into the care

processes may have significant challenges because of diverse information

2ht’cps: / /www.nlm.nih.gov/mesh/meshhome.html
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contents and structures (Bockmann and Heiden [2013]).

4.2 Research Problem Formulation

The Chapter develops a knowledge graph to help improve the performance
of the classification model. The approach of applying the graph base is used
to solve the problem of classification. The graph distributes the information
under the heading ‘concepts’” and 'relationships’. Each concept presents a
node, and each relationship indicates a link among nodes. In this Chapter,
the research tries to strengthen information for each node as well as to dis-
cover semantic knowledge within each node. Therefore, a knowledge base
developed from the verification and evaluation of experts is embedded in
the graph. The knowledge base helps to improve the reliability of the graph
for discovering knowledge then the study applies this knowledge base to
the development of a classification model.

To complete the task that develops a classification model based on the

knowledge graph, the following definition is used:

Definition 4. 1. [Health Examination Records]

A 3-tuple R = {P, A, M4} is called the Health Examination Record, where P
is a set of patients, P = {p1,p2,...,Pm}, |P| = m. Ais a set of attributes,
A={ay,ar,...,an}, | Al = n. Amatrix M is constructed by P x A. O

Definition 4. 2. [Heterogeneous Information Graph]

A heterogeneous information graph is a 3-tuple, G :=< V,E,M >, where V =
Ut A, A = {ai,an,. .., Ajn,},1=1,2,..., t are t types of data objects and t > 2,
E and M are the set of links between any two data objects V and the set of weight

values by links, respectively. O]
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The main target of this study predicts all nodes that have not been la-
belled in this graph. However, there is limited information for each node
in this graph. Therefore, the research divides this graph into many sub-
graphs, so that each subgraph covers specific information which is defined
as a class. In this case, each class presents a set of "Disease” type objects in

the graph.

Definition 4. 3. [Disease Subgraph]

Given a heterogeneous information graph G :==< V,E,M > and a disease k €
Aqg, Ay is the set of "Disease” type objects, a disease subgraph is a graph G =<
V,EEM>CGifiA; C V. O

Then, we enrich information for each disease subgraph based on embed-
ding instances. Instances help to improve and expand the semantic rela-
tionship between nodes which are learned from a specific knowledge based

domain. Finally, we define our research problem in the following way:

Definition 4. 4. [Research Problem]

Let P = {p;,i=1,...,1} beaset of patients, G = {g(d1),...,g(dx)} be a set of
disease subgraph, where each d is a disease, K is the number of classes and P € P.
Given a training set of patients Py = {p;,j = 1+1,...,m}, the research problem
is to learn a binary prediction function f(g*|p) and use it to classify p; € P into
{g(dy)} C G for prediction of the patients’ health status in terms of the set of
diseases defined in G. g
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4.3 Framework

4.3.1 Medical Subject Headings

Medical Subject Headings (MeSH) is a controlled vocabulary thesaurus which
contains a set of terms naming descriptors as in Figure 4.1, also known as
subject headings in a hierarchical structure. Each descriptor, has a short
definition, connects to related descriptors and a list of similar terms. The
2018 version of MeSH includes a total of 28939 descriptors, 116909 descrip-
tor terms and 244154 supplementary concept records (Tateisi [2019]). It was
created by the National Library of Medicine in 1960 and covered aspects
of medicine and healthcare. MeSH is used for indexing journal articles for
MEDLINE. Each article in the MEDLINE database is assigned from six to
fifteen subject headings from MeSH. It is updated annually to reflect cur-
rent terminology usage. An advantage of MeSH is that it can help to search
the most specific terms available in each article. Therefore, using MeSH to
search articles in MEDLINE helps to obtain a high efficiency in searching
information at various levels of specificity.

Definition 4. 5. [Medical Subject Headings]

The Medical Subject Headings are C :=< C, Rg >, where C = {c1,¢,...,Cn}, 1
is the number of concepts and cy, is a concept belong C. RE is a matrix C x C. The

matrix is set up based on the semantic relationships defined by the medical subject

heading. ]

4.3.2 MEDLINE

MEDLINE is a bibliographic database that has collected journal articles from

academic journals in life sciences and biomedical information since 1966. It
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is produced by the National Library of Medicine in the United States. These
academic journals cover medicine, veterinary medicine, nursing, dentistry,
pharmacy, and health care. The database contains more than 27 million
references which are selected from more than 5200 international publica-
tions in about 40 languages (Costa et al. [2018]). References are added to
the database each week. MEDLINE uses Medical Subject Headings which
give uniformity and consistency to the indexing of the biomedical literature
for information retrieval. MEDLINE uses the PubMed? interface for free
access on the Internet. Engines designed to search MEDLINE include au-
thor names, words in abstract and title of the article, date of publication,
and MeSH terms. Figure 4.2 presents an example of MEDLINE. As shown
in Figure, each citation has an identity that links a few specifical descrip-
tors, terms or concepts (e.g. the descriptor "Diabetes Mellitus, Type 2") from
MeSH. It is also associated with one or more titles and abstracts of arti-
cles related to diabetes mellitus. Journal articles are selected based on the
recommendations of the Literature Selection Technical Review Committee
from advisory committees of both external and internal experts. Therefore,
the function of MEDLINE is to be an important resource for biomedical re-

searchers around the world.

Definition 4. 6. [MEDLINE]
MEDLINE is the set of document © = {01,02, ..., 0y }, where m is the number of
documents in ©. 0 := (T,map(0)), where T = {t1,t5,...,t;} is a set of terms

from d, and map(d) — C C C. O

Shttps:/ /www.ncbi.nlm.nih.gov/pubmed /
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b<MedlineCitation Owner="NLM" Status="MEDLINE">

<PMID Version="1">23575045</PMID>
m<DateCreated>
s<DateCompleted>
o<Article PubModel="Print">
m<Journal>

<ArticleTitle>Abdominal circumference as a screening measure for Type 2
m<Pagination>
n<Abstract>

<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">No comparatiw
<AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">This study aims
<AbstractText Label="METHOD" NlmCategory="METHODS">On 187 adult males a
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The prevalence of T
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Waist circum
-</Bbstract>
g<AuthorList CompleteYN="Y">

<Language>eng</Language>

B<PublicationTypelList>

</Article>

B<MedlinedJournalInfo>

B<ChemicalList>

<CitationSubset>IM</CitationSubset>

g<MeshHeadingList>

d<MeshHeading>

<DescriptorName MajorTopicYN="N" UI="D003924">Diabetes Mellitus, Type 2
<QualifierName MajorTopicYN="Y" UI="Q000175">diagnosis</QualifierName>
</MeshHeading>

#<MeshHeading>

#<MeshHeading>

+</MeshHeadingList>

+</MedlineCitation>

FIGURE 4.2: MEDLINE

4.3.3 Population Medical Knowledge Graph

In this study, medical subject headings are considered as subgraphs to pop-
ulate knowledge from MEDLINE through instances. Figure 4.3 shows an
example of an association between MeSH and MEDLINE. Concepts and
terms related to a kind of disease (for example, type 2 diabetes mellitus)
from MeSH are linked with a number of citations from MEDLINE that are
assigned to type 2 diabetes mellitus. These connections with the concepts
and terms associated to type 2 diabetes mellitus are grouped together to
build up a subgraph. Each subgraph corresponds to a subject or a type of

disease. Figure 4.4 presents an example of three subgraphs regarding liver
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cancer, kidney cancer and diabetes. These subgraphs are built by discov-
ering the knowledge from MEDLINE and are an innovative approach for
gaining the accuracy of a classification model. To populate the knowledge
base for these subgraphs, a mapping function is needed to map the clinical
data and MEDLINE.

As indicated by the discussion above, to map the observation data and
MEDLINE, the study maps between MeSH and International Classification
of Diseases, Tenth Revision (ICD-10)*.

Definition 4. 7. [ICD-10]
The ICD-10 is the set of disease D = {d1,dy, ..., dn}, where m is the number of

diseases and d,, is a disease. OJ

Given a set of diseases D and a set of concepts C from Definition 4.5. For

eachd € D, Map(d — C) = {c} C C. Foreach ¢ € C,Map(c — D) =

4ht’[ps: / /www.cdc.gov/nchs/icd/icd10.htm
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FIGURE 4.4: An example of subgraphs: there are three kinds

of disease corresponding to three subgraphs. Each subgraph

has a different number of nodes and type of links. The various

subgraphs may have the same node together. Each node may
belong to a different object.

{d} C D. Given c; and d}, a link is generated based on the following:

1, if [Map(d — C)| > 0V |Map(c —s D)| > 0
Link(ci ;) — if | Map( )| |Map( )| @1

0, otherwise
The Unified Medical Language System (UMLS)® Metathesaurus is used
as a standard to identify relationships among these data. UMLS consists

of various terms of different sources in biomedicine and health care which

were created by the U.S. National Library of Medicine (NLM) in 1986. If a

5 https:/ /www.nlm.nih.gov /research /umls/index.html
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descriptor’s coding (e.g. D003920 identified as a Diabetes Mellitus, which is
showed in Figure 4.3) in MeSH and a disease coding (e.g. E11 is defined for
Diabetes Mellitus) in ICD-10 have the same concept in UMLS, a link is estab-
lished to connect MeSH and ICD-10. The mapping between disease names
and code is manually classified by the U.S. National Library of Medicine
(NLM). To identify links though mapping MeSH and ICD10, an Algorithm

4.1 is introduced as follows:

Algorithm 4.1 Algorithm for identifying links between MeSH and ICD10

: INPUT: MeSH and ICD-10
: OUTPUT: The set of links between MeSH and ICD-10
. Initialise L = &;
: forallc; € Cdo
for all d]- € Ddo
if Link(c;,d;) = 1 then
L=LU{(cdp};
end if
end for
end for
: return L

—_

D I A L R N

_
_ O

Algorithm 4.1 first uses a loop to check all diseases belonging to MeSH.
Then, another loop is used to check all diseases in ICD10. If the same disease
exists between MeSH and ICD10, a link will be set up and stored in set L.
Then, repeating all values in the two sets MeSH and ICD10 will identify the
rest of the links. Finally, L is returned with a set of links between MeSH
and ICD10. The algorithm uses two nested loops for identifying the links
between MeSH and ICD10. The complexity of the algorithm is O(n?).

Based on the mapping, a triangle of NHANE, MeSH and MEDLINE cre-
ates a knowledge graph in the medical domain. Each specific disease coding

corresponds to a subgraph which is populated with knowledge from a large
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number of articles from MEDLINE. Titles and abstracts of the articles were
selected from published research that has been assessed by experts. Min-
ing the extracted information to populate knowledge for this subgraph has
potential value. Based on the subgraph, a specific knowledge domain can
be obtained. The acquired knowledge may be used as medical evidence
which is embedded in the heterogeneous information graph to estimate the

performance of the classification model.

Definition 4. 8. [Knowledge Graph Base]
The Knowledge Graph Base is a 3-tuple KG := (C, R, G¥), where

e C:=(C1I),e:= (L) whereZ. C I,c € C. T is the universal set of

instances.

* R = {ri,r,...,1q} is the set of all relation types in a knowledge graph, and

q is the number of relations.

. G? is a graph that is generated by 'R and C
O

Based on the definition of knowledge Base, the study needs to perform
an important task to learn instances from © based on T and map(d). These
instances which are associated with concepts C, C C, play an essential role
in building a knowledge graph KG.

Assume that both C and © have k different subjects. Each k subject has n
concepts. MeSH is presented as C; = {cj1,¢in,---,Cin}, i = 1,2,...,k. Where
MEDLINE is indicated as ®; = {0;1,0,...,0m},i = 1,2,...,k and m is the
number of documents. To learn instances from any subject k for populating
knowledge of subgraph corresponding subject k, Cy := (Cy, Zx), where C; C
C. Ij is learned by mapping between Cy and ®y.
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4

f(T) = Y (e — ) (4.2)

j=1
These instances f(Z;) are integrated with edges in the heterogeneous

information graph for improving the accuracy of the classification model.

4.3.4 Applying Knowledge Base to the Classification Model

In the work presented in Pham et al. [2018], a heterogeneous information
graph was built to deal with the problem of health risk prediction. Based
on the work, the study tries to achieve the optimum knowledge discov-
ery by applying the strongest effective factors in building the heteroge-
neous information graph. A heterogeneous information graph is a 3-tuple,
G :=< V,E,M > with an object mapping function ¢ : V — A and a link
type mapping function ¢ : E — R. A heterogeneous graph consisting of dif-
ferent types of nodes was built based on health examination records. Pear-
son correlation was used to identify the connection between two nodes in the
graph. By using h attributes to calculate the coefficient values of the Pearson
correlation, the strength of the relationship between two nodes in the hetero-
geneous graph was effectively demonstrated, denoting a Pearson correlation
coefficient value by p, representing the relationship between two vertices.
The connection is valid if p(v1,v2) > 7, where v is a threshold defining the
validity of object connection. The range of the p is from -1 to 1; if the co-
efficient value approaches 1, two vertices v; and v; are strongly correlated.
However, if the coefficient value is in the range of nearly -1, v; and vy, they
are weakly correlated. Overall, the larger the value is, the stronger is the

relationship between v; and v,. Moreover, in the study, semantic relations in
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Section 3.3.2 from Chapter 3 were applied to advance the accuracy of infor-
mation retrieval. To perform risk prediction for each patient based on the
heterogeneous graph, each type of information node was regarded as a se-
mantic class. The study, therefore, built a model to predict the risk of each
disease belonging the various classes by comparing the effect among these
classes.

As the discussion above suggests, a heterogeneous information graph
was constructed based on the Pearson correlation and the semantic similarity.
Later, the weight of edges p(v1, v7) in the heterogeneous information graph
was normalised by using instances f(Zy) (Eq.(4.2)). The weight of edges
was a critical characteristic of a network that was considered in the complex
system by Supriya et al. [2016] for the detection of the epilepsy syndrome.
After populating the knowledge for the heterogeneous information graph
through instances, a new knowledge graph was generated that was called
the Knowledge Based Heterogeneous Information Graph (KB-HIG). Then,
a classification model was developed based on the KB-HIG for predicting

health risk status. The formula of normalisation is:

f(Ve) = 21 o(0(k), 01) * £(Z) (43)

Assume {e;, e, . . .,eiq} CE,i=1,2,...,k, was the set of links between
any two data objects of a knowledge graph, where k is the type of subjects

and g is the number of the leaning instances. Eq.(4.3) was presented:

q
f(Vi) =) e(k); (4.4)

i=1

Basically, this function (Eq. 4.4) helps to populate the knowledge for a
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graph through instances which learned from MEDLINE. All instances Zj
were identified through a matrix between NHANES and MEDLINE. First,
the study considered all of the attributes from NHANES being independent
terms regarding a type of subject. Secondly, by extracting titles and abstracts
from MEDLINE corresponding to a kind of disease that was the same type
of subject with NHANES, a list of terms concerning a kind of disease was
generated through the information network as a subgraph. A matrix was
created by combining terms between NHANES and MEDLINE. Figure 4.5
illustrates an example of the connection between NHANES and MEDLINE
for diabetes. If any variable of NHANES contains any term from the di-
abetes information network in MEDLINE, these terms were marked this
variable. All mapping between terms of NHANES and terms of MEDLINE

were called learned instances.

[term 1| [term2| | ... | [Termn|
Terms for predicting diabetes

flTerm 1| |Term 2| | ““““ | |Term nl
L Terms for predicting diabetes

k(i) MEDLINE 1D
related diabetes

Terms for predicting diabetes

L/

|Term1| |Term 2| | | |Term nl
Terms for predicting diabetes

MEDLINE
Observation data

FIGURE 4.5: Mapping variable from NHANES to terms from
MEDLINE

In this study, the study applied the word2vec algorithm suggested by
Mikolov et al. [2013] to identify the value for each instance. Word2vec can

transform a large corpus of text into a vector space with several hundred
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dimensions. Every single word from the corpus is assigned a correspond-
ing vector. By utilising the word2vec algorithm, Zheng and Callan [2015a]
and Zheng and Callan [2015b] succeeded in extracting and calculating the
weight among terms. This technique is also called embedding and can mea-
sure semantic similarity among terms as well as recognise similar neigh-
bours for a given term. Obtaining the weight of among terms has a signif-
icant effect on the task of mining knowledge because the weight of among
terms could help promote semantic similarity among terms. These benefits
might contribute to improving the accuracy of the classification model. The
ranges value for each term is from zero to one. For example, if a term does
not exist or is not associated with the given term (e.g. diabetes), the value is
nearly zero. In contrast, the value is approximately one if the term is more
related to diabetes.

By using the availability of the KB-HIG, the research built a function
that can formalise the profile of a healthy (unhealthy) patient concerning a

disease object x:

I q I 9
f(x):ZZUixehxzx+ZZvj><ehxﬁ (4.5)
h=1 j=1h=1

i=1
where ¢(x) = ¢(v;) and ¢(x) # ¢(v;). Each element v; or v; is an at-
tribute a € A. ¢y, is the weight of links, which is normalized through a
knowledge graph. a and B are two coefficients adopted to clarify the contri-
bution of latent health knowledge and domain health knowledge in the classifica-

tion model.
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4.4 Experimental Result and Analysis

4.4.1 Experimental Settings

In this research, diabetes mellitus was selected for evaluating the proposed
model throughout two data sets to ensure the consistency of the perfor-
mance. Diabetes mellitus was one of the most severe health problems and
has caused 79% of deaths for people under the age of 60 by the statistical
report of the World Health Organization (Shakeel et al. [2018]). Many re-
searchers considered using this disease over the past decade for evaluating
the performance of predictive models. Luo’s experiment (Luo [2016]) in-
vestigated this disease in generating rules for explaining the results of the
predictive models. Diabetes mellitus was also considered for estimating
the performance of experiments by Boytcheva et al. [2017]. They extracted
entities from a big collection of outpatient records using frequent patterns
mining.

Figure 4.6 presents the dataflow in an experimental design. A k-fold
(k = 5) validation approach was adopted for the experiment. Four of the
five subset data extracted from the knowledge base were used to train our
model. Later, one of the five subset data was used to evaluate our model.
With evaluation based on ground truth, this project uses standard metrics
accuracy, recall, precision, and F1 measure to evaluate the performance of
the model (Bowes et al. [2012]). The result was compared to Chen’s work
(Chen et al. [2016a]) called a Semi-supervised Heterogeneous Graph-based
Algorithm for Health (SHG-Health) model. Moreover, to increase the relia-
bility and evidence, the study integrated the knowledge base with the Het-

erogeneous information Graph (HIG) model (Pham et al. [2018]) and also
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with the SHG-Health model to compare the effect of the knowledge base.
Integrating the knowledge base into two original classification models was
used to answer these two questions:

Q1) What is the impact of the knowledge base on the performance of the classi-
fication model?

Q2) Does the knowledge base make a contribution to classification models?

Training Set || Training Seti“

Knowedge
SHG-Health
H Ll
Base HIG [€—— Testing Set | Model
MTQI l

KB HIG I\ b SHG-Health
Result Comparisio Result

FIGURE 4.6: Experimental data-flow

One of the most important tasks of this experimental design is to map
the observation data and medical knowledge. The study processed both
MEDLINE and MeSH from XML format into a standard structure data be-
fore applying this data to train the model. The new construction helped to
provide efficient access to the concepts and relationships in MeSH as well as
to each document in MEDLINE. To solve the issues, a XML parser was writ-
ten by using Java programming language to create a new structure of the
database in MySQL under a table. This step made it convenient to extract

information from MEDLINE by using MeSH for information retrieval.
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After mapping MeSH and ICD-10, 153 types of diseases were detected
associated with 3257 patients in NHANES. Table 4.1 shows the statistics of
the top 10 mappings between ICD and MeSH. The research needs to extract
titles and abstracts of MEDLINE ID correlated to diabetes mellitus to gen-
erate instances in normalising the weight of edges in the graph. After map-
ping ICD-10 and MeSH, the descriptors’ coding of MeSH (D003924) was
identified in relation to diabetes mellitus, which is shown in Table 4.1. The
descriptors’ coding was used to extract papers linked to diabetes mellitus
in the MEDLINE database. 99785 papers associated with diabetes mellitus

were used for the experiment.

TABLE 4.1: Top 10 mapping disease between ICD-10 and

MeSH
2(33;10 Description code Patient | Percent | MeSH code
110 Essential hypertension 2421 17.75% D006973
E11 Diabetes mellitus 924 6.77% D003924
J45 Asthma 544 3.99% D001249
F32.9 Major depressive disorder | 488 3.57% D003863
K21 Gastro-esophageal reflux 445 3.26% D005764
F41.9 Anxiety disorder 389 2.85% D001008
E03.9 Hypothyroidism 340 2.49% D009230
K30 Functional dyspepsia 175 1.28% D004415
T78.40 Allergy 159 1.66% D006967
150.9 Heart failure 122 0.89% D006333

The extracted data was used to generate a list of terms related to diabetes
mellitus. The weight of each term was calculated through the word vector
space model. In this study, word2vec algorithm (Mikolov et al. [2013]) was
used to convert the extracted data into vector space. This algorithm helped

to calculate the semantic relationship between all of the terms associated
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with diabetes mellitus. Before using this extracted data for word vector
space model, this study removed all stop-word and steam-word to improve
accuracy information retrieval as well as ensure enough information in cal-
culating the weight for each term.

After running the word vector space model, each term of diabetes mel-
litus is assigned a value. Table 4.2 presents the weight of the top 10 terms.
Finally, a matrix is created by linking these term to variables in NHANES.
The cooperation terms are generated based on this matrix. The value of each
instance was identified by an association between a variable in NHANES
and a list of terms for diabetes mellitus. For example, if a list of terms for
diabetes mellitus does not exist in a variable concerning the attribute of age,
the instance value of the age variable is set to 0. In contrast, the weight of
an instance for a variable is equal to the weight of each term that link to this
variable. Table 4.3 presents the top 10 variables of NHANES that have the
highest weight.

TABLE 4.2: Top 10 terms for diabetes mellitus after mining

Term Weight
type 0.80688
mellitus | 0.80014
non 0.76048
dependent | 0.75367
patient | 0.75254
study 0.72770
niddm | 0.70903
control | 0.68019
insulin 65438
subject | 0.63372

In this study, the proposed model called the Knowledge Base Heteroge-

neous Information Graph (KB-HIG) model is compared with three models
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TABLE 4.3: Top 10 attributes from NHANES have a strong
effect to diabetes mellitus

Variables Weight

Taking insulin 0.65438

Age 0.56882

Glucose refrigerated serum | 0.47249
Blood test 0.44453

Work activity 0.35117
Difficulty concentrating 0.34173
Cotinine Serum 0.33450
Mean cell volume 0.30563
Number of adults in household | 0.26273
Total protein 0.24524

to evaluate the effect of the result if the researcher considers using a knowl-
edge base in diagnosing the specific problem. These models include the HIG
model, the SHG-Health model, and the Knowledge Base Semi-supervised
Heterogeneous Graph-based Algorithm for Health (KB-SHG-Health). The
HIG model used both semantic similarity and Pearson correlation to build a
classification model. In contrast, the SHG-Health Model used the semi-
supervised learning algorithm that conceded only the neighbourhood node
in the heterogeneous graph to deal with the classification. By adopting the
knowledge base in these two models, the study hopes to achieve improved

results compared to the original model.

4.4.2 Dataset

The study used the observation data of the National Health and Nutrition
Examination Survey (NHANES)® and the National Ambulatory Medical

®https:/ /www.cdc.gov/nchs/nhanes/index.htm
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Care Surveys (NAMCS) for training sets and testing sets to evaluate the
proposed model. The NHANES dataset has hundreds of available parame-
ters which collect a wide range of health assessments such as lab tests, phys-
ical examinations, and personal habits. NHANES dataset contains 9770 par-
ticipants with more than 2585 attributes. To ensure enough data for the ex-
periment, only 318 attributes are used in the training model as well as test-
ing results because of the missing data. The NAMCS dataset has a number
of variables regarding the patient’s smoking habits, the physician’s diagno-
sis, the diagnosis, and prescription status as well as the demographic infor-
mation on patients (for example. age, sex, weight, height, and race). The
NAMCS dataset contains 32281 patients with 440 attributes. 164 attributes
are used in the experiment after removing the missing data.

Before applying these data for training models, data preprocessing, in-
cluding data cleaning and data normalisation were conducted because the
dataset has a different type of data and contains a large amount of missing
data. All variables of the dataset were presented as a binary label. A value
of “1” indicates a positive case and a value of “0” a negative case. Based
on the designed model, all data values were normalised as lying between
0 and 1 for validity in the experiment. For example, a nominal data type
such as gender was converted into zero and one from male and female and
an ordinal data type such as general health condition was converted into 0,
0.5 and 1 comprising poor, good and excellent. With the data of that range,
results (50 to 150) such as blood test values were converted into the format
of minimum and maximum [0, 1]. The step also provided a standard to

identify positive and negative cases where 0 was set for negative situations

"https:/ /doi.org/10.3886/ICPSR31482.v3
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(unhealthy), and 1 was set for positive cases (healthy). The missing data

were replaced by the average of all values in the respective attribute.

4.4.3 Baseline Model

In this study, the research uses both the HIG model being developed in
Chapter 3 and Chen’s Model (Chen et al. [2016a]) to evaluate the perfor-
mance of the proposed model. In Chapter 3, the study suggests a het-
erogeneous graph classification model (HIG model) by using both seman-
tic similarity and Pearson correlation to build a classification model. In con-
trast, Chen’s Model (SHG-Health Model) used the semi-supervised learn-
ing algorithm that considered only the neighbourhood node in the hetero-
geneous graph to deal with the classification. The result has demonstrated
that the achieved performance of the HIG model overcome the SHG-Health
Model. By adopting knowledge base in these two models, the study hopes

to achieve more improvement compared to the original model.

4.4.4 Experimental Results

TABLE 4.4: Comparison between KB-HIG Model and SHG-
Health model by NHANES, where the emphasised values in-
dicate the superior performance in comparison.

Precision | Recall | Accuracy | F-Measure
KB-HIG model 0.65982 | 0.68121 | 0.94243 0.65541
SHG-Health model | 0.28781 | 0.54998 | 0.86051 0.37753
Percentage Change | 129.25% | 23.86% | 9.52% 73.60%

To apply a knowledge base in a classification model to advance the per-

formance of prediction, the study completed a task to map the observation
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FIGURE 4.7: The improvement of the KB-HIG Model com-
pared to SHG-Health model



TABLE 4.5: Comparison between KB-HIG Model and SHG-
Health model by NAMCS, where the emphasised values indi-

cate the superior performance in comparison.

Precision | Recall | Accuracy | F-Measure
KB-HIG model 0.53060 | 0.64206 | 0.87097 0.58050
SHG-Health model | 0.28125 | 0.56780 | 0.73726 0.37563
Percentage Change | 88.65% | 13.08% | 18.14% 54.54%

data in the NHANES dataset and MEDLINE based on MeSH and ICD-10.
The statistic of mapping is presented in Section 4.4.1. After the mapping,
the research performed a task of language processing to extract documents
linked to diabetes mellitus. The obtained data were used to integrate into
the classification model for predicting diabetes mellitus. The result of the
experiment is indicated in Table 4.4, Table 4.5, and Figure 4.7. The preci-
sion of the KB-HIG model was a significant improvement compared to the
baseline model in both two datasets. The result of recall and accuracy has
improved by approximately 20 per cent. The percentage change in perfor-
mance was identified based on the Equation 3.10. Overall, the experimen-
tal performance of KB-HIG model is better than SHG-Health model, which
is justified through the vale of F-Measure by the NHANES and NAMCS

dataset with nearly 75 per cent and around 55 per cent, respectively.

4.4.5 Discussions

The results obtained from the study demonstrated that the accuracy of the
predicted outcome is improved by applying the knowledge base in the clas-
sification model. Using the knowledge base in the classification model helped
to generate the semantic relationship among other objects. In this study,

the research converted the extracted data regarding diabetes mellitus to the
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word vector, which could identify the effect among other keywords or terms
based on the vector space model. The technique finds out terms that are sim-
ilar as well as being different to others by calculating the distance between
the two terms. The attributes do not correlate to the topic (as liver cancer)
being removed based on the threshold value that was calculated through

the word2Vec algorithm. This approach helped the model obtain high per-

formance in predicting disease.

TABLE 4.6: Comparison between KB-HIG Model and HIG
model by NHANES, where the emphasised values indicate
the superior performance in comparison.

Precision | Recall | Accuracy | F-Measure
KB-HIG model 0.65982 | 0.68121 | 0.94243 0.65541
HIG model 0.56742 | 0.75101 | 0.77476 0.57282
Percentage Change | 16.28% | -9.25% | 21.64% 14.42%

TABLE 4.7: Comparison between KB-HIG Model and HIG
model by NAMCS, where the emphasised values indicate the
superior performance in comparison.

Precision | Recall | Accuracy | F-Measure
KB-HIG model 0.53060 | 0.64206 | 0.87097 0.58050
HIG model 0.35870 | 0.80332 | 0.77247 0.49552
Percentage Change | 47.92% | -20.07% | 12.75% 17.15%

To increase the reliability as well as to provide more evidence about
the advantage of this study, we expanded our experiment by applying the
knowledge-base in other classification models. We aim to improve our claim

that the knowledge-base could have a significant impact on different classi-

tication modes. There are two questions that we aim to answer.
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FIGURE 4.8: The improvement of the KB-HIG Model com-
pared to the HIG model
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Q1) What is the impact of the knowledge base on the performance of clas-
sification model? Applying the knowledge base in the classification model
to predict diabetes mellitus helped the KB-HIG model obtain significant
improvement for both precision and accuracy as in Table 4.6, Table 4.7,
and Figure 4.8. Overall, the performance of the KB-HIG model for both
the NHANES and NAMCS dataset raises approximately 15% and round
17% compared to the model that does not apply the knowledge base(HIG
model), respectively. This result demonstrated that using the knowledge
base could boost the classification model achieving high performance.

In previous work, the research suggested a new method of building
the HIG. Then, the study developed a classification model by using this
heterogeneous information graph. The result showed that the HIG model
achieved a higher performance than the SHG-Health model. The reason for
this advantage was applying the Pearson correlation and semantic relation to
constructing the HIG. The graph helped to obtain an in-depth understand-
ing between the semantic classes, and rejected objects that were not related
to the topic. Therefore, the HIG model received a significant improvement
in the prediction of health risk status. The HIG model was upgraded by ap-
plying knowledge base that was learned from MEDLINE called the KB-HIG
model. By using knowledge base in developing the model, the performance

of the classification model was significantly improved.

Q2)Does the knowledge base have contributions to other models?
In this study, the knowledge base was integrated on the SHG-Health
model to assess the influence of the knowledge base on the SHG-Health

model. The SHG-Health model used the information neighbourhood node
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TABLE 4.8: Comparison between KB-SHG-Health Model and
SHG-Health model by NHANES, where the emphasised val-
ues indicate the superior performance in comparison.

Precision | Recall | Accuracy | F-Measure
KB-HIG model 0.70066 | 0.68909 | 0.95333 0.69422
SHG-Health model | 0.28781 | 0.54998 | 0.86052 0.37753
Percentage Change | 143.44% | 25.29% | 10.79% 83.88%

TABLE 4.9: Comparison between KB-SHG-Health Model and
SHG-Health model by NAMCS, where the emphasised values
indicate the superior performance in comparison.

Precision | Recall | Accuracy | F-Measure
KB-HIG model 0.59257 | 0.65309 | 0.88764 0.61954
SHG-Health model | 0.28125 | 0.56780 | 0.73726 0.37563
Percentage Change | 110.69% | 15.02% | 20.40% 64.93%

of the HIG to predict the health status. The results from Table 4.8, Table 4.9,
and Figure 4.9 show that the model, applying the knowledge base, has a
better performance than that of the original model. The performance of the
model within the knowledge base achieved a significant improvement with
more than 80% from the experiment on the NHANNES dataset and nearly
75% from the experiment on the NAMCS dataset compared to the model
without the knowledge base.

The SHG-Health model only considered the HIG constructed based on
the information neighbourhood node. The model skipped nodes associated
with the topic if these nodes were not neighbourhood nodes, although these
nodes were connected to the topic. Moreover, all neighbourhood nodes
were used to predict the health risk status, even if these nodes were not re-
lated to the topic. In contrast, the study used a large number of articles from

MEDLINE to populate the knowledge base for the HIG before building the
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SHG-Health model. The method helped to remove the information neigh-
bourhood node that was not associated with the topic. This approach led to
the knowledge base SHG-Health model obtaining a better performance of
classification than the SHG-Health model.
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FIGURE 4.10: A comparison of four models by using
NHANES dataset

Finally, the study made a comparison among four models which were
presented in Figure 4.10 and Figure 4.11. Both models used the knowl-
edge base, including KB-HIG and KB SHG-Health from two datasets, which
were better than the HIG model and SHG-Health model without a knowl-
edge base. It was clear that applying the knowledge base onto classification

models contributed to the improvement of the classification performance.
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FIGURE 4.11: A comparison of four models by using NAMCS
dataset

4.5 Summary

Biomedical literature from MEDLINE has become an important resource to
biomedical researchers. In addition, providing decision support systems
with high quality is necessary to help practitioners avoid human errors.
Therefore, an approach of populating the knowledge base was suggested to
improve accuracy in predicting the health risk status by using MEDLINE.
After populating the knowledge for the HIG by using instances that were
learned from the knowledge base, a classification model was constructed to
mine the HIG for predicting the health risk status. The result of the pro-
posal yielded a significant improvement, which advanced the accuracy of
the prediction. The research also demonstrated that applying the knowl-
edge base into the classification model has achieved a higher performance

than models without applying the knowledge base.
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In this Chapter, the study has demonstrated that the performance of the
HIG model and SHG-Health has been improved by integrating knowledge-
based into graph-based classifiers. The experimental result in Section 4.4.5
showed that the performance of these classification models has been in-
creased significantly. The study has contributed to an innovative framework
in integrating knowledge-based into classification models. The proposed
framework has helped to improve the accuracy of the patients” health risk
prediction as well as to motivate future researchers in using the knowledge

base in their model.
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Chapter 5

Multi-label Positive and Negative
Graph for Predicting Multiple

Diseases

Based on the advantages of the knowledge-base graph being built in Chap-
ter 4, this chapter introduces an innovated framework to develop a multi-
label classification. This study proposes a separation of the space of a graph
into positive and negative graph to discover the relevance of its label through
the neighbouring nodes. The method helps to identify essential factors that
affect its label. The study has transformed all possible labels for each patient
to become a new single combination label set to facilitate the learning of the
multi-label classification. The new label set is a subset of the original label
set. The approach aims to explore the dependence among different labels.
Improving the semantic relationship among labels contributes significant
benefits to reduce the ambiguous dependent relationships. Based on the
suggestion, a ranking algorithm has been introduced to learn multi-label

classifications.
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5.1 Introduction

Many researchers have succeeded to learn multi-label classifications in dif-
ferent fields such as image classification (Sun et al. [2014], Luo et al. [2013]),
video annotations (Dimou et al. [2009], Nasierding et al. [2015]) and text
mining (Zhao et al. [2013], Nam et al. [2014], Tao et al. [2018]), especially
in healthcare, it is important to support medical practitioners in predicting
multiple diseases for a patient. Building multi-label classification models
in diagnosis can support medical practitioners in avoiding human errors.
However, learning multi-labels classification is still a challenging task be-
cause of label ambiguity and data complexity (Zhang et al. [2018b]), uncer-
tain data (Liu et al. [2016]), and order of sample similarities (Cai and Zhu
[2017]).

In the last decade, researchers have used three approaches: problem
transformation, algorithm adaptation, and the ensemble method to address
multi-label classification. The technique of problem transformation is known
as binary relevance and label powersets, which transforms the multi-label
classification problem into one or several single-label classification prob-
lems. As another example, the method of algorithm adaptation adjusts tra-
ditional single-label classification algorithms that deal directly with multi-
label classification (Chen et al. [2016b]). Finally, the ensemble method is
one of the most flexible approaches as it has a significant effect on multi-
label learning because of its purposed combination of all state-of-the-art
techniques to process learning. By applying this method to multi-labels,
Ringsquandl et al. [2016] constructed a knowledge graph based on mining
discriminative sub-graph patterns to explore the label correlations through

the extractive link among labels. This framework derives from previous
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work in Wu et al. [2014], which used a bag of graphs labelled as positive
or negative examples to learn a multi-graph classification. The problem of
graph classification has also been studied by Kong and Philip [2012], who
presented an algorithm to learn multi-label feature selection through opti-
mal subgraph features. By using sub-graph patterns with constraints, they
showed that the search space can be pruned, and extraction of c