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We theoretically analyze the operating principles of a proposed matter-wave Sagnac interferom-
eter utilizing Bose-Einstein condensate (BEC) phonon modes as an interference medium. Previous
work found that the orbital angular momentum phonon modes of a ring-trapped BEC are split in
frequency by rotations, leading to a measurable rotation signal. We develop an alternate description
in which an imbalance in the counter-propagating modes’ amplitudes (populations) is induced by the
rotation of the system during condensation. This description gives analytic forms for the interfer-
ometic phase shift in 1D and is readily generalized to include mean-field interactions. To validate our
findings, we simulate a ring-trapped BEC Sagnac interferometer in one dimension and demonstrate
that measurement of an unknown rotation rate can be performed using a modified analysis. Our
simulation data show strong agreement with our analytic results, and we further employ simulations
to explore and clarify the role of superfluidity in this matter-wave Sagnac interferometer.

I. INTRODUCTION

The Sagnac effect links the phase shift between waves
counter-propagating within an enclosed loop with the ex-
ternal rotation of such a system [1]. This has been ex-
ploited to allow high-precision interferometric measure-
ment of rotations, useful in inertial sensing and naviga-
tion (for examples see Ref. [2]). Current state-of-the-
art Sagnac interferometers utilize counter-propagating
light, with a large enclosed area to boost sensitivity [3].
Matter-wave systems appear to have a sensitivity advan-
tage when considering the energy difference between op-
tical and atomic systems [4]. Despite this, matter-wave
Sagnac interferometers are yet to surpass their optical
counterparts in terms of precision.

Recent proposals have made use of advances in Bose-
Einstein condensate (BEC) research and experimen-
tal techniques, providing an alternative medium to
atomic beam-based and guided matter-wave interferom-
etry schemes [5–23]. In particular, proposals to measure
the Sagnac phase shift of an interference pattern pro-
duced by counter-propagating orbital angular momen-
tum (OAM) modes in a trapped BEC offer a way to
utilize the high levels of control and coherence available
in modern experimental systems [23–25]. This can be
achieved through imparting optical OAM onto the con-
densate [24] or by exciting standing wave collective exci-
tations [25] – the latter being the focus of this work.

The use of collective excitation modes is expected
to ameliorate technical difficulties often associated with
BEC interferometric protocols that require condensate
splitting or spin-dependent transitions [7, 11, 13, 15, 26–
29]. A protocol for collective excitation Sagnac interfer-
ometry in a ring-trapped BEC has been proposed and
tested for rotation sensing [25]. This protocol imprints a
standing wave excitation on ring-trapped atoms through
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a weak azimuthally-modulated optical potential whilst
cooling through the BEC transition. By imposing this
potential during condensate formation then releasing the
BEC to freely evolve in the ring, rotation of the stand-
ing wave pattern is observable in the rotating laboratory
frame, as illustrated in Fig. 1.

Ref. [25] analyze the standing wave rotation in terms
of a frequency splitting between the standing wave’s con-
stituent counter-propagating travelling wave components
in a three-mode model. However, the frequency splitting
effect requires observation in an inertial frame, something
that cannot be achieved when attempting to experimen-
tally measure unknown rotations.

This work is an alternate analysis of the theory in
Ref. [25], in which we develop a frame-independent the-
ory of operation for this protocol. By analyzing the
dynamics in the context of mode amplitudes we re-
veal multiple features of the interferometric design that
were not previously apparent. The splitting of counter-
propagating modes in a rotating waveguide via the
Sagnac effect has been exploited in optical systems to
produce non-reciprocal propagation of light, analysed
in terms of both mode amplitude- [30] and frequency-
splitting [31, 32]. For the purposes of matter-wave
Sagnac interferometry for precision rotation sensing, we
show that a mode amplitude-splitting analysis provides
further insight into achieving high precision.

In Section II we describe the three-mode model and
use it to derive the relationship between the rotation
rate and standing-wave mode amplitudes, showing that
rotation induces a splitting in the amplitudes of counter-
propagating modes. Section III details our numerical
simulations of the interferometer, which show that rota-
tion measurements can be performed by examining the
evolution of the Fourier phase of the imprinted density
modes. In Section IV we show numerically that the im-
balanced state is the ground state of the ring system in
the presence of both rotation and an imprinting potential.
In Section V we extend our analysis to low-temperature
BECs described by the Gross-Pitaevskii equation (GPE),
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Figure 1: Marti et al. proposal schematic illustration, with 2D top-down view (top) and 1D representation
(bottom). (a) Begin with atoms confined to a ring with constant density and impose an optical potential with
azimuthally-dependent modulations V (θ) while condensing to form a BEC with density modulations. At t = 0,

remove the optical potential and allow the density modulations to undergo standing wave oscillation, where at each
half-cycle, the density modulation pattern is inverted. (b) In the presence of rotation, the modulation peaks shift

position with each half-cycle.

and examine practical considerations of our results.

II. THREE-MODE MODEL

In this section we introduce the three-mode model and
use it to derive the Sagnac phase shift for the ring geom-
etry in both inertial and rotating frames. In the rotating
frame we directly relate the mode imbalance to the rota-
tion rate.

Our initial analysis considers a simple model of the
proposed phonon-mode interferometer: a non-interacting
system confined to a one-dimensional ring. This ideal
phonon-mode interferometer with wavefunction ψ(θ)
populates only three angular momentum eigenstates,

ψ(θ) = φ0 + φ+l + φ−l , (1)

φ0 = a0 , (2)

φl = (a+ ∆) eilθ , (3)

φ−l = (a−∆) e−ilθ . (4)

Here φk is an angular momentum eigenstate with quan-
tized circulation k ∈ {0, l,−l}, a is the mean amplitude
of the of the k = ±l modes, ∆ is the mode splitting, and
θ is the positional parameter (angle) around the 1D ring.

The wavefunction is normalized such that
∫
|ψ|2 dr = 1.

Therefore φ0 is the constant background on which the an-
gular momentum modes (i.e. phonon modes) with OAM
quantum number ±l are imprinted. Non-zero values of
∆ result in an imbalance between counter-propagating
mode amplitudes.

A. In the inertial frame

To begin, we first note that Ref. [25] assumes an equal
superposition of counter-propagating modes, i.e. ∆ = 0.

Our analysis proceeds without this assumption. For each
mode (eqs. (2) to (4)), the time evolution operator Ut =

e−iĤt/~ is given by,

Utφ0 = a0 e
−iE0t/~ , (5)

Utφl = (a+ ∆) ei(lθ−Et/~) , (6)

Utφ−l = (a−∆) e−i(lθ+Et/~) . (7)

Where E0 is the energy of the background mode, and
E = El = l2~2/2mr2 is the degenerate energy of the
counter-propagating modes, with m representing particle
mass and r the ring’s radius, which we both set to 1
without loss of generality.

The time-dependent density profile can be decomposed
into the sum of a standing wave and a travelling wave
oscillating on a time-independent background,

|ψ(t)|2 = a2
0 + (a+ ∆)2 + (a−∆)2

+ 2(a+ ∆)(a−∆) cos(2lθ)

+ 4a0∆ cos[lθ − (E − E0)t/~]

+ 2a0(a−∆) (cos[lθ − (E − E0)t/~]

+ cos[lθ + (E − E0)t/~]) (8)

Note when ∆ = 0 the travelling wave component of
Eqn. 8, 4a0∆ cos[lθ − (E − E0)t/~], is zero, consistent
with a non-rotating standing wave state. The rotation
rate is determined through the evolution of the complex
phase shift in the single-frequency Fourier transform of
the density profile,

ϕ(t) = arctan

[∫
|ψ(t)|2 e−ilθdθ

]
, (9)

for a single mode l.
From Eqns. 8 and 9, the phase shift in the inertial

frame takes the form,

ϕ(t) = arctan

[
−∆

a
tan((E − E0)t/~)

]
. (10)
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In the limit ∆
a → 1, Eqn. 10 gives a constant phase gradi-

ent - a linear phase accumulation consistent with a pure
travelling wave. Conversely, taking the limit ∆ → 0 re-
sults in a constant zero phase gradient - as expected for
a pure standing wave.

Considering Eqn. 10 at stroboscopic measurement
times,

τs =
nπ~

E − E0
, (11)

where n is a natural number encoding the number of
oscillations since t = 0, the phase shift is always zero.
The rotation of the density profile relative to the mea-
surement frame (in this case the inertial frame) is given
by the time derivative of the phase shift at stroboscopic
times – when the standing wave component is at its max-
imum amplitude,

dϕ

dt
= −∆(E − E0)

~a
. (12)

In the inertial frame this depends only on the mode im-
balance and choice of excited mode number. In a sensing
application, the measurement frame is expected to ro-
tate with the system at an unknown rate. By analysing

the phase shift ϕ(t) in the rotating frame, we can deter-
mine the relationship between rotation rate Ω and mode
imbalance ∆.

B. In the rotating frame

In the rotating frame, we can perform a similar analysis
as above with the inclusion of a time-dependent coordi-
nate transform,

θ → θ′ + Ωt . (13)

Repeating the calculation of the time-dependent density,
the Fourier transform result for a rotating system is given
by,∫
|ψ(θ′, t)|2 e−ilθ

′
dθ′ = a0 (a+ ∆) e−i(E−E0)t/~ +ilΩt

+ a0 (a−∆) ei(E−E0)t/~ +ilΩt .
(14)

The phase angle subsequently depends on the rotation
rate,

ϕ(t) = arctan

[
−∆ sin[(E − E0)t/~] cos(lΩt) + a cos[(E − E0)t/~] sin(lΩt)

∆ sin[(E − E0)t/~] sin(lΩt) + a cos[(E − E0)t/~] cos(lΩt)

]
. (15)

For Ω = 0, this reduces to Eqn. 10. At stroboscopic times
τs (Eqn. 11) we find explicit dependence of the phase shift
on the rotation rate,

ϕ(τs) =
nπ ~ lΩ
E − E0

. (16)

This phase shift increases with each oscillation due to the
n-dependence of Eqn. 16. At exactly t = τs, the rotation
of the density profile is zero relative to the rotating frame.
At other times, it follows the general form of the phase
shift time derivative in the rotating frame,

dϕ

dt
= lΩ− ∆(E − E0)

~a
. (17)

As dφ
dt = 0 at stroboscopic measurement times, we can

directly relate the mode imbalance ∆ to the rotation rate
Ω using Eqn. 17,

∆

a
(E − E0) = l~Ω . (18)

This result demonstrates that a rotating system devel-
ops an imbalance in the amplitudes of imprinted counter-
propagating OAM modes which is intrinsically linked to

the rate of rotation – with non-zero rotation there is al-
ways a non-zero imbalance.

Experimentally, the rotation rate is measured by imag-
ing the atomic density at one or more stroboscopic mea-
surement times and determining the Fourier phase shift.
The linear gradient between stroboscopic phase shifts ac-
cording to Eqn. 16 is proportional to lΩ – therefore an
unknown rotation rate can be measured in a frame where
the laboratory is also rotating.

III. NUMERICAL SIMULATIONS

To test and extend our analytic results, we simulate the
dynamics of a one-dimensional ring-trapped condensate
in two parameter regimes: the phonon regime and the
mean-field regime. In the phonon regime, excitations are
of sufficiently small amplitude that inter-particle inter-
actions are negligible – allowing simulation of dynamics
using the Schrödinger equation for wavefunction ψ(θ, t),

−i~∂ψ(θ, t)

∂t
=

(
−~2

2mr2

∂2

∂θ2
+ V (θ, t)

)
ψ(θ, t) . (19)
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Figure 2: Space-time density profiles and extracted phase for different rotating reference frame configurations from
simulations without interactions. (a)–(d): space-time density profiles for the ideal 1D ring system. Each case is

labelled with the rotation rate of the system during imaginary time evolution (ΩI) which corresponds to condensate
formation, and the real-time rotation rate (ΩR) that corresponds to the free evolution of the system once the

imprinting potential is removed. Dotted vertical lines indicate full oscillations of the standing wave component from
t = 0, whilst dotted horizontal lines indicate angular positions around the ring, to guide the eye. (e)–(h): plots of

the extracted phase for each of the simulation conditions matching the density profile plot immediately above. The
purple curve is from simulations using the ground state found via imaginary time, while the green points are from

simulations that numerically optimize Eqn. 22. The numerics in Ref. [25] correspond to subfigures (b) and (f),
whilst a physical experiment necessarily corresponds to (d) and (h).

In the mean-field regime, interactions are non-negligible
and described by the Gross-Pitaevskii equation (GPE),

−i~∂ψ(θ, t)

∂t
=

(
−~2

2mr2

∂2

∂θ2
+ V (θ, t) + g |ψ(θ, t)|2

)
ψ(θ, t) ,

(20)

where g is the interaction strength parameter, r is the
radius of the ring, V (θ, t) the time-dependent imprinting
potential, and in the GPE ψ(θ, t) is the 1D order param-
eter for the bosonic field. Simulation is performed using
a three-point Crank-Nicolson method on a grid of 105
points. We simulate the full protocol: condensation (via
imaginary time evolution) in an |l| = 5 imprinting po-
tential, and removal of the imprinting potential at t = 0
for free evolution of the system. The Fourier compo-
nents at select frequencies corresponding to OAM modes
l = [−15, 15] are calculated at each timestep, including
the phase shift extracted from the density profile. Rota-

tion of the system was independently set for the imagi-
nary time and real time portions of the simulation via the
rotation parameters ΩI ,ΩR, respectively. Density plots
and extracted phase shifts for the non-interacting system
are presented in Fig. 2.

Several features of our numerical results support our
analytic solution from Sec. II. In the inertial frame (ΩI =
ΩR = 0) the phase shift at stroboscopic times is zero, as
shown in Fig. 2 (e). Similarly, Fig. 2 shows the time
derivative of the phase shift in the rotating frame (ΩI =
ΩR = Ω) is zero, and the phase shift accumulates by
a fixed amount proportional to lΩ each oscillation, as
predicted by Eqn. 16.

Figure 2 highlights the differences in both phase shift
and density oscillations under different rotation condi-
tions. The rotating-frame analysis in Sec.II correspond-
ing to Fig. 2 (d) and (h) matches the conditions of an
experimental measurement of an unknown rotation – the
condensate is prepared under rotation and freely evolves
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in the ring trap under rotation.

IV. NUMERICAL CALCULATION OF
GROUND STATE

The protocol in Ref. [25] requires an imprinting poten-
tial during condensation to form the initial state. Ac-
cording to the three-mode model, the ground state in
the imprinting potential will depend on model parame-
ters a0, a,∆. In this section, we calculate the expectation
value of the imprinting Hamiltonian using a three-mode
state and compare its numerically-calculated minimum
value to the ground state found using imaginary time
evolution.

We simulate the 1D particle-in-a-ring Hamiltonian
with imprinting potential in a rotating frame,

Ĥ = − ~2

2mR2

∂2

∂θ2
+ [V0 − α cos(lθ)] + i~Ω

∂

∂θ
. (21)

Here m is the particle mass, R the ring radius, Ω the
rotation rate, and V = (1 − α cos(lθ)) the imprinting
potential with modulation amplitude α. We choose as
our ansatz ψ from Eqn. 1, with normalization factor
N = [2π(a2

0 + 2a2 + 2∆2)]−1/2. We then calculate the

expectation value of the Hamiltonian, 〈Ĥ〉,

〈Ĥ〉 =
~2l2

2mR2

(
2a2 + 2∆2

)
+ 4lΩa∆− 2αa0a

a2
0 + 2a2 + 2∆2

. (22)

Full details of the calculation are available in Ap-
pendix A. The ground state of the system is defined by
the values of a0, a,∆ that minimize this expectation value
for given values of the ring radius, rotation rate, and
imprinting potential amplitude. Note that for non-zero
rotation |Ω| > 0, there is an explicit coupling of a and
∆, therefore the ground state of a non-rotating system
will have a different value for a than that of an identi-
cal system that is rotating. This can be seen by careful
examination of Fig. 3. As the normalization factor cou-
ples the derivatives with respect to our three main pa-
rameters, we use a numerical gradient-descent method to
obtain values for a0, a,∆ and compare to the converged
ground state obtained by simulating the system in 1D
with imaginary time evolution. The main result of this
comparison is shown in Fig. 2(e–h), where the extracted
phase of both the three-mode model and imaginary time
simulations are shown with strong agreement.

V. MEAN-FIELD EXCITATIONS

To investigate the effects of imprinting deeper mod-
ulations, we consider the 1D Gross-Pitaevskii equation
(GPE) from Eqn. 20 to describe mean-field condensate
dynamics.

As we increase the interaction parameter g > 0, the
amplitude of the primary (l) mode Fourier component

decreases as the repulsive interactions of the mean-field
potential suppress modulations, as shown in Fig. 3.

The ground state for the interacting case is determined
by using the GPE Hamiltonian from Eqn. 20. This gives
a modified expectation value to that in Sec. IV, though
it can be numerically minimized in the same way as
Eqn. 22,

〈Ĥ〉 =
1

a2
0 + 2a2 + 2∆2

(
~2l2

2mR2

(
2a2 + 2∆2

)
+ 4lΩa∆

− 2αa0a+ g[8a2
0a

2 + (a2 −∆2)2a4]

)
. (23)

As shown in Fig. 4, the interacting ground state result
provides strong agreement between optimized parameters
and those found via imaginary time evolution in numer-
ical simulations.

An additional feature of Fig. 4 when viewed in com-
parison to Fig. 2 is the dependence of the density oscil-
lation period on the interaction strength. In Fig. 5 we
compare the oscillation period of simulations with vary-
ing interaction strengths and find that in the mean-field
approximation the oscillation frequency is dependent on
the Bogoliubov mode energy,

ε(p) =

√(
p2

2m

)2

+
p2gn

m
, (24)

where p is the mode’s momentum and n the atomic den-
sity.

A. The Hess-Fairbank effect

The Hess-Fairbank effect describes the formation of
a non-rotating superfluid condensate in a sufficiently-
slowly rotating container [33]. It is in this slowly-rotating
regime that the three-mode model is obtained exactly,
as shown in Fig. 6 – higher external rotation rates in-
duce a global circulation in the condensed state, shift-
ing the mode occupation. This corresponds to a global
phase factor in the wavefunction, which does not alter
the mode structure of the density, nor the evolution of
the Fourier phase (except for the expected scaling with
rotation rate). This is explored further in Appendix B.

A condensate formed in a rotating Sagnac interferom-
eter is not irrotational as described by the Hess-Fairbank
effect. In the slowly-rotating regime, the rotation of the
imprinted density profile indicates flow without global
circulation. This is where classical fluid analogies break
down, as they cannot describe the superposition state of
the condensate. A simple experimental test of the Hess-
Fairbank effect in the collective excitation interferometer
can be performed using a rotating imprinting potential
to simulate different external rotation rates as in Fig. 6
without requiring rotation of the entire experimental ap-
paratus.
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Figure 3: Mode decomposition of the simulated state following imaginary time evolution with and without rotation
for increasing interaction strength g. The mode splitting is clear between the non-rotating and rotating cases. The

dominant l = 0 mode has been omitted for visual clarity. Note that the amplitude in the non-rotating case is not the
mean amplitude for the corresponding rotating case due to coupling between parameters a and ∆ in Eqns. 22 and

23. As g is increased, we see a suppression of the imprinted mode.

B. Experimental considerations

The rotating reference frame and mean-field effects de-
scribed above impact the feasibility of the original inter-
ferometric scheme. In a typical inertial sensing applica-
tion, the time-dependence of the phase shift requires stro-
boscopic measurements to be precisely timed for maxi-
mum accuracy. This is complicated by the dependence
of the stroboscopic measurement time on the interaction
strength – which in an experiment is related to the atom
number, and cannot be precisely controlled between iter-
ations. Using the Bogoliubov mode energy as a guide to
ideal measurement time can mitigate this where interac-
tions are sufficiently weak.

VI. CONCLUSION

In conclusion, the three-mode model with imbal-
anced mode amplitudes is a frame-independent model for
studying the rotation signal in a phonon-mode Sagnac in-
terferometer. We have shown that this model is accurate
in describing the one-dimensional behavior of this sys-
tem, and that absolute rotation measurement is possible.

The three-mode state is not irrotational per the Hess-
Fairbank effect even at low rotation rates, and we have
suggested a simple experiment to demonstrate this.

Given the results of this work, the ideal rotation mea-
surement scheme involves measuring the extracted phase
at as close to the first stroboscopic measurement time
as possible. We have shown that there are multiple sub-
tleties in reference frame and interaction effects that must
be considered when designing ring-trapped interferomet-
ric schemes.
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Figure 4: Same as Fig. 2 but with mean field interaction strength g = 10. Note the lighter color in the density plots
(a)-(d) due to interactions suppressing the imprinted mode amplitudes. The temporal oscillation frequency is also

increased due to the extra energy in the system. The Fourier phase evolution of the three-mode model (green
crosses, subfigures (e)-(h)) agrees with that of the ground state found through imaginary time (purple curve).
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Appendix A: Numerical ground state calculation

In order to numerically determine the three-mode
model parameters that define the ground state in a ro-
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tating ring system, we calculate the expectation value
of the Hamiltonian for numerical minimization. The 1D
particle-in-a-ring Hamiltonian with imprinting potential
is given in a rotating frame by:

Ĥ = − ~2

2mR2

∂2

∂θ2
+ [V0 − α cos(nθ)] + i~Ω

∂

∂θ
(A1)

Where m is the particle mass, R the ring radius, Ω the
rotation rate, and V = (1−α cos(nθ)) the imprinting po-
tential with modulation amplitude α. We choose as our
ansatz ψ from the three-mode model, with normalization
factor (2π(a2

0 + 2a2 + 2∆2))−1/2. We can then determine

the expectation value of the Hamiltonian, 〈Ĥ〉:

〈Ĥ〉 =

∫ 2π

0

ψ∗Ĥψ dθ

=
1

2π
(
|a0|2 + 2 |a|2 + 2 |∆|2

)
×
∫ 2π

0

[V0 − α cos(mθ)] |a0|2

+

(
~2l2

2mR2
+ [V0 − α cos(nθ)]− ~lΩ

)
|a+ ∆|2

+

(
~2l2

2mR2
+ [V0 − α cos(nθ)] + ~lΩ

)
|a−∆|2

+

[(
~2l2

2mR2
+ [V0 − α cos(nθ)]− ~lΩ

)
× a∗0 (a+ ∆) eilθ

]
+

[(
~2l2

2mR2
+ [V0 − α cos(nθ)] + ~lΩ

)
× a∗0 (a−∆) e−ilθ

]
+ (V0 − α cos(nθ)) (a+ ∆)

∗
a0 e

−ilθ

+ (V0 − α cos(nθ)) (a−∆)
∗
a0 e

ilθ

+

[(
~2l2

2mR2
+ [V0 − α cos(nθ)]− ~lΩ

)
(a−∆)

∗
(a+ ∆) e−2ilθ

]
+

[(
~2l2

2mR2
+ [V0 − α cos(nθ)] + ~lΩ

)
(a+ ∆)

∗
(a−∆) e−2ilθ

]
dθ (A2)

This integral is simplified by noting that all terms with
a single oscillatory factor integrate to zero, leaving only
the non-oscillatory terms, and terms with a product of
cos(nθ) and an exponential. The latter can be calculated
as follows:

To determine the contribution of the imprinting po-
tential modulations to the integral in Equation A2, we
calculate the potential matrix element for generic OAM

eigenstates |k〉 = ψk = (2π)−1/2eikθ:

〈l|Vm|n〉 =

∫ 2π

0

ψ∗l (θ) [V0 − α cos(mθ)] ψn(θ) dθ

=

∫ 2π

0

ψ∗l (θ) V0 ψn(θ) dθ

− α

2π

∫ 2π

0

ψ∗l (θ) cos(mθ) ψn(θ) dθ

= V0 δl,n −
α

2π

∫ 2π

0

cos(mθ) e−i(l−n)θ dθ

= V0 δl,n −
α

2π

∫ 2π

0

1

2

(
cos[(l − n+m)θ]

+ cos[(l − n−m)θ]
)

− i

2

(
sin[(l − n+m)θ]

− sin[(l − n−m)θ]
)
dθ

(A3)

The integral is non-zero if and only if either l−n+m = 0,
or l − n − m = 0. In either of these cases, the matrix
element reduces to:

〈l|Vm|n〉 = −α
2

(A4)

For the three-mode model, there are four such terms,
resulting in the −2αa0a term in the final expression for
the expectation value of the Hamiltonian:

〈Ĥ〉 =
1

a2
0 + 2a2 + 2∆2

×
(

~2l2

2mR2

(
2a2 + 2∆2

)
+ 4~lΩa∆− 2αa0a

)
(A5)

This process is repeated using the Gross-Pitaevskii equa-
tion to obtain the nonlinear expectation value presented
in the main text.

Appendix B: The Hess-Fairbank effect

First observed in liquid Helium [33], the Hess-Fairbank
effect describes the formation of a non-rotating super-
fluid in a container rotating sufficiently slowly during the
transition to the superfluid phase. In a simply-connected
cylindrical container of radius R, rotation proportional
to n~

mR2 is sufficient to generate n vortices of quantized
circulation. This places an upper limit on the rotation
rate of such a container such that the ground state has
zero circulation.

In the ring geometry of the phonon-mode interferom-
eter, it is straightforward to calculate the rotation rate
at which an energy crossing between two OAM modes
occurs for a non-interacting superfluid by equating their
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eigenenergies:

El = Ek (B1)

~2l2

2mR2
− ~lΩ =

~2k2

2mR2
− ~kΩ (B2)

~
2mR2

(l2 − k2) = Ω(l − k) (B3)

Ω =
~

mR2

l2 − k2

2(l − k)
(B4)

For the lth mode and the mode directly adjacent (in
the direction of rotation), the crossing occurs at Ω =
~
mR

2l+1
2 . However, in the three-mode model each mode

does not shift to the adjacent mode, instead there is
a patterned shift where the ±lth mode shifts to the
∓(l + 1)th mode for rotation about the positive z-axis
(or shifts to the ∓(l − 1)th mode for rotation about the
negative z-axis), as shown in Table I.
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Figure 8: Amplitudes of select density Fourier modes after condensation into an l = 5 imprinting potential for
increasing external rotation rate during condensation. Values below 10−6 are equivalent to zero due to a finite

convergence threshold.
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