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Abstract: In this paper, new compact local stencils based on integrated radial
basis functions (IRBFs) for solving fourth-order ordinarydifferential equations
(ODEs) and partial differential equations (PDEs) are presented. Five types of com-
pact stencils - 3-node and 5-node for 1D problems and 5× 5-node, 13-node and
3×3 -node for 2D problems - are implemented. In the case of 3-node stencil and
3× 3-node stencil, nodal values of the first derivative(s) of the field variable are
treated as additional unknowns (i.e. 2 unknowns per node for3-node stencil and 3
unknowns per node for 3×3-node stencil). The integration constants arising from
the construction of IRBFs are exploited to incorporate intothe local IRBF approx-
imations (i) values of the governing equation (GE) at selected nodes for the case
of 5-, 5×5- and 13-node stencils, and (ii) not only nodal values of thegoverning
equation but also nodal values of the first derivative(s) forthe case of 3-node sten-
cil and 3×3-node stencil. There are no special treatments required for grid nodes
near the boundary for 3-node stencil and 3×3-node stencil. The proposed stencils,
which lead to sparse system matrices, are numerically verified through the solution
of several test problems.

Keywords: Compact local approximations, high-order ODEs, high-order PDEs,
integrated radial basis functions.

1 Introduction

Numerical techniques have been developed to solve ODEs and PDEs which are
used to model continuum mechanics problems such as the motion of a fluid and
the deformation of a solid body. Traditional discretisation methods include finite-
difference methods (FDMs) [Conte and Dames (1958); Smith (1978); Gupta and
Manohar (1979); Bjørstad (1983)], finite-element methods (FEMs) [Reddy (2005);
Hughes (1987); Rannacher (1999)], boundary-element methods (BEMs) and finite-
volume methods (FVMs) [Patankar (1980)]. Over the last 20 years, RBFs, which
are known as a universal approximator, have been applied forthe solution of ODEs
and PDEs [Franke (1982); Kansa (1990a,b); Haykin (1999); Kansa (1999)]. They
were first developed as a global technique, in which the dependent variable is de-
composed into a set of RBFs defined over the whole domain of analysis, and its
derivatives are then calculated through differentiation (differentiated RBFs (DRBFs)).
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Later on, Mai-Duy and Tran-Cong [Mai-Duy and Tran-Cong (2001, 2003); Mai-
Duy (2005); Mai-Duy and Tanner (2005b)] proposed integrated RBF (IRBF) meth-
ods, in which highest-order derivative(s) in the ODE/PDE are approximated by
RBFs, and lower-order derivatives and the dependent variable itself are then ob-
tained by integration. Numerical results showed that IRBFsyield better accuracy
than DRBFs.

Global IRBF methods have some strengths and weaknesses. They can produce
very accurate solutions using relatively low numbers of data nodes, and their im-
plementations are quite straightforward. However, they lead to fully populated
system matrices. As a result, for a given spatial discretisation, global IRBF meth-
ods require larger computer storage than traditional methods. In addition, their
matrix condition number grows very quickly as the number of nodes increases. To
overcome these drawbacks, local and compact local IRBF schemes have been de-
veloped (e.g. [Mai-Duy and Tran-Cong (2009); Ngo-Cong, Mai-Duy, Karunasena,
and Tran-Cong (2010); An-Vo, Mai-Duy, and Tran-Cong (2011); Mai-Duy and
Tran-Cong (2011)]). Such local schemes result in sparse system matrices and a
solution to an algebraic set of equations is thus more efficient. In [Mai-Duy and
Tran-Cong (2011)], compact local IRBF stencils for solvingsecond-order ODEs
with Dirichlet and Neumann boundary conditions, and second-order PDEs (i.e.
Poisson equation) on rectangular and non-rectangular domains were proposed; it
was observed that compact local forms produce much more accurate results than
local forms and also than global 1D-IRBF forms in some cases.

This paper is concerned with the development of compact local IRBF stencils for
the solution of fourth-order ODEs and PDEs. The following two strategies (e.g.
[Stephenson (1984); Altas, Dym, Gupta, and Manohar (1998)]) are studied in the
context of local compact IRBFs.

The first strategy employs relatively large stencils (i.e. 5nodes for 1D fourth-order
problems, and 13 nodes or 5×5 nodes for 2D fourth-order problems). For this ap-
proach, only nodal values of the field variable on a stencil are treated as unknowns.
It is noted that, when compared with second-order problems,there are more nodes
used on a stencil (i.e. 2 additional nodes for 1D problems, and 4 and 16 additional
nodes for 2D problems).

The second strategy employs relatively small stencils (i.e. 3 nodes for 1D prob-
lems and 3×3 nodes for 2D problems). For this approach, not only nodal values
of the field variable on a stencil but also nodal values of its first derivative at se-
lected nodes are treated as unknowns. Advantages of this strategy include (i) the
number of nodes employed here does not increase when compared with the case of
second-order problems; (ii) there are no special treatments required for grid nodes
near the boundary; (iii) derivative boundary values can be imposed easily and ac-
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curately; and (iv) first derivative values are obtained directly from the final system
of algebraic equations.

Furthermore, in both strategies, we also incorporate nodalvalues of the governing
equation at selected nodes on a stencil into the IRBF approximations. Numerical
results will show that such an incorporation can significantly enhance the solution
accuracy.

The remainder of the paper is organised as follows. Section 2is a brief review
of IRBFs. The proposed compact local stencils based on IRBFsare presented for
1D problems in Section 3 and for 2D problems in Section 4. Numerical examples
are given in Section 5 to demonstrate the attractiveness of the proposed stencils.
Section 6 concludes the paper.

2 Brief review of integrated RBFs

Consider a continuous functionu(x) wherex is the position vector. Such a function
can be approximated using integrated RBF schemes of second and fourth orders.

2.1 Second-order integrated RBF scheme

In this scheme, the second-order derivatives of the function u are decomposed into
a set of RBFs

∂ 2u(x)
∂η2 =

n

∑
i=1

wi I
(2)
i (η), (1)

whereη denotes a component of the position vectorx (e.g. η can bex for 1D
problems, andx or y for 2D problems),{wi}

n
i=1 is the set of RBF coefficients which

are unknown, and
{

I (2)i (η)
}n

i=1
is the set of RBFs. Expression (1) is then integrated

to obtain approximate expressions for lower order derivatives and the function itself
as follows.

∂u(x)
∂η

=
n

∑
i=1

wiI
(2)
i (η)+c1, (2)

u(x) =
n

∑
i=1

wiI
(0)
i (η)+ηc1+c2, (3)

wherec1 andc2 are “constants of integration” with respect toη , which are to be
treated as the additional RBF coefficients. In (1)-(3), the superscript (.) is used to
indicate the associated derivative order.
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Collocating (1)-(3) at a set of nodal points{xi}
n
i=1 yields

∂̂ 2u
∂η2 = H

(2)
η ŵη , (4)

∂̂u
∂η

= H
(1)

η ŵη , (5)

û= H
(0)

η ŵη , (6)

where the notation ‘̂’ is used to denote a vector,H (.) is the RBF coefficient matrix
in the RBF space and̂wη is the RBF vector of coefficients, including the integration
constants.

2.2 Fourth-order integrated RBF scheme

In this scheme, the fourth-order derivatives of the function u are decomposed into
a set of RBFs as

∂ 4u(x)
∂η4 =

n

∑
i=1

wi I
(4)
i (η). (7)

Approximate expressions for lower order derivatives and the function itself are then
obtained through integration as

∂ 3u(x)
∂η3 =

n

∑
i=1

wi I
(3)
i (η)+c1, (8)

∂ 2u(x)
∂η2 =

n

∑
i=1

wi I
(2)
i (η)+ηc1+c2, (9)

∂u(x)
∂η

=
n

∑
i=1

wi I
(1)
i (η)+

η2

2
c1+ηc2+c3, (10)

u(x) =
n

∑
i=1

wi I
(0)
i (η)+

η3

6
c1+

η2

2
c2+ηc3+c4. (11)
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Collocating (7)-(11) at a set of nodal points{xi}
n
i=1 yields

∂̂ 4u
∂η4 = H

(4)
η ŵη , (12)

∂̂ 3u
∂η3 = H

(3)
η ŵη , (13)

∂̂ 2u
∂η2 = H

(2)
η ŵη , (14)

∂̂u
∂η

= H
(1)

η ŵη , (15)

û= H
(0)

η ŵη . (16)

For the approximations of integration constants used in (1)-(3) and (7)-(11), the
reader is referred to [Mai-Duy and Tran-Cong (2003, 2010)] for further details.

In this study, the multiquadric (MQ) function is chosen as the basis function as

I (4)i (x) =
√

(x−ci)2+a2
i for 1D problems, (17)

I (4)i (x) =
√

(x−cix)2+(y−ciy)2+a2
i for 2D problems, (18)

whereci (for 1D problems) or(cix,ciy)
T (for 2D problems) andai are the MQ centre

and width, respectively. The width of theith MQ can be determined according to
the following relation

ai = βdi , (19)

whereβ is a factor (β > 0) anddi is the distance from theith centre to the nearest
neighbour. It was observed in [Kansa (1990a)] that, as the RBF width increases,
the numerical error of the RBF solution reduces and the condition number of the
interpolant grows. At large values ofβ , one needs to pay special attention as the
solution becomes unstable. Reported values ofβ vary from, typically, 1 for global
IRBF methods to a wide range of 2−200 for local and compact local IRBF meth-
ods. For the latter, one can vary the value ofβ and/or refine the spatial discretisation
to enhance the solution accuracy.

In the following sections, to simplify the notations, we will drop out the subscript
η used in (12)-(16) for 1D problems, and use(i, j) to represent a grid node located
at(xi ,y j) in a global 2D grid,xk to represent a grid nodek in a local 2D stencil, and
M (i, :) to denote theith row of the matrixM .
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3 Proposed compact local IRBF stencils for fourth-order ODEs

Our sample of fourth-order ODEs is taken as

d4u
dx4 +

d2u
dx2 = f (x), (20)

wherexA ≤ x ≤ xB and f (x) is some given function. The boundary conditions
prescribed here are of Dirichlet type, i.e.u anddu/dx given at bothxA andxB.

We discretise the problem domain using a set ofn discrete nodes{xi}
n
i=1, and utilise

fourth-order IRBF schemes to represent the field variableu.

3.1 Compact local 5-node stencil (5-node CLS)

Consider a grid nodexi and its associated 5-node stencil[xi
1,x

i
2,x

i
3,x

i
4,x

i
5] (xi ≡ xi

3).

The conversion system, which represents the relation between the RBF space and
the physical space, is established from the following equations

(
û
ê

)
=

[
H (0)

K

]

︸ ︷︷ ︸
C

ŵ, (21)

whereC is the conversion matrix,̂u=(u1,u2,u3,u4,u5)
T , ŵ=(w1,w2,w3,w4,w5,c1,c2,c3,c4)

T ,
û= H (0)ŵ are equations representing nodal values ofu over the stencil,H (0) is
a 5× 9 matrix that is obtained from collocating (11) at grid nodesof the stencil,
ê= K ŵ are equations representing extra information that can be the ODE (20) at
selected nodes, anddu/dx atxA andxB. Solving (21) results in

ŵ= C
−1
(

û
ê

)
. (22)

If the number of extra information values are less than or equal to 4, the obtained
conversion matrix in (21) is not overdetermined owing to thepresence of the inte-
gration constants. In this case, the extra information is thus imposed in an exact
manner. By substituting (22) into (7)-(11), values ofu and its derivatives at an
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arbitrary pointx on the stencil are calculated in the physical space as

d4u(x)
x4 =

[
I (4)1 (x), . . . , I (4)5 (x), 0, 0, 0, 0

]
C

−1
(

û
ê

)
, (23)

d3u(x)
dx3 =

[
I (3)1 (x), . . . , I (3)5 (x), 1, 0, 0, 0

]
C

−1
(

û
ê

)
, (24)

d2u(x)
dx2 =

[
I (2)1 (x), . . . , I (2)5 (x), x, 1, 0, 0

]
C

−1
(

û
ê

)
, (25)

du(x)
dx

=
[

I (1)1 (x), . . . , I (1)5 (x), x2/2, x, 1, 0
]
C

−1
(

û
ê

)
, (26)

u(x) =
[

I (0)1 (x), . . . , I (0)5 (x), x3/6, x2/2, x, 1
]
C

−1
(

û
ê

)
. (27)

wherexi
1 ≤ x ≤ xi

5. In what follows, we present two ways to construct the final
system of algebraic equations, namely Implementation 1 andImplementation 2.

Implementation 1: The final system is generated by

(i) the collocation of the ODE (20) at{x3,x4, . . . ,xn−2} using (23) and (25) with
x= xi , in which ê= K ŵ is employed to represent values of (20) atxi

2 andxi
4, i.e.

(
f
(
xi

2

)

f
(
xi

4

)
)
=

[
G (2, :)
G (4, :)

]
ŵ, (28)

whereG = H (4)+H (2), and

(ii) the imposition ofdu/dx at xA andxB using (26) withx= x1 andx= xn.

Implementation 2: The final system is generated by collocating the ODE (20) at
{x4,x5, . . . ,xn−3} and{x2,x3,xn−2,xn−1}. For the former, the collocation process
is similar to that of Implementation 1. For the latter, special treatments for the
imposition of first derivative boundary conditions are required. Collocations of the
ODE (20) at{x2,x3} and{xn−2,xn−1} are based on the stencils of nodesx3 and
xn−2, respectively, with the following modified extra information vectors

ê= (du(xi
1)/dx, f (xi

4))
T for the stencil ofx3,

ê= ( f (xi
2),du(xi

5)/dx)T for the stencil ofxn−2.

Both implementations lead to a system matrix of dimensions(n−2)× (n−2).

3.2 Compact local 3-node stencil (3-node CLS)

Consider a grid nodexi (i = {2,3, . . . ,n− 1}) with its associated 3-node stencil
[xi

1,x
i
2,x

i
3] (xi ≡ xi

2).



Manuscript submitted to CMES

8

Unlike the CL 5-node stencil, nodal values of the first derivative of the field variable
are also treated here as unknowns. There are thus two unknowns, namelyu and
du/dx, per node.

We form the conversion system as follows.




û
d̂u
ê


=




H (0)

H (1)

K




︸ ︷︷ ︸
C

ŵ, (29)

whereC is the conversion matrix,̂u=(u1,u2,u3)
T , d̂u=

(
du(xi

1)/dx,du(xi
3)/dx

)T
,

ŵ= (w1,w2,w3,c1,c2,c3,c4)
T , û= H (0)ŵ is a set of three equations representing

nodal values ofu over the stencil,̂du= H (1)ŵ is a set of two equations represent-
ing nodal values of the first derivative atxi

1 andxi
3, andê=K ŵ is a set of equations

which can be used to incorporate more information into the approximations.

Solving (29) results in

ŵ= C
−1




û
d̂u
ê


 . (30)

It can be seen that the IRBF approximations for the field variable and its derivatives
can now be expressed in terms of not only nodal values ofu at the three grid nodes
of the stencil but also nodal values ofdu/dxat the two extreme nodes of the stencil.

The two unknowns at the central point of the stencil (xi
2) require the establishment

of two algebraic equations. This can be achieved by collocating the ODE (20) atxi
2

and collocating the first derivative atxi
2

f (xi
2) = G (2, :)C −1




û
d̂u
ê


, (31)

du(xi
2)

dx
= H

(1) (2, :)C−1




û

d̂u
ê


, (32)

whereG = H (4)+H (2).

The above process leads to a determined final system with(n− 2) equations for
the ODE,(n−2) equations for the first derivativedu/dx, (n−2) unknowns for the
field variableu and(n−2) unknowns fordu/dx at the interior nodes.
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In the case that̂e is used to represent the governing equation (GE) (20) atxi
1 andxi

3,
i.e.
(

f (xi
1)

f (xi
3)

)

︸ ︷︷ ︸
ê

=

(
G (1, :)
G (3, :)

)
ŵ, (33)

we name the corresponding stencil a 3-node CLS with GE.

In the case that̂e is simply set to null, we call it a 3-node CLS without GE.

4 Proposed compact local IRBF stencils for fourth-order PDEs

Consider a 2D fourth-order differential problem governed by the biharmonic equa-
tion

∂ 4u
∂x4 +2

∂ 4u
∂x2y2 +

∂ 4u
∂y4 = f (x,y) (34)

on a rectangular domain (xA ≤ x≤ xB, yC ≤ y≤ yD), and subject to Dirichlet bound-
ary conditions (i.e.u and∂u/∂n given at the boundaries (n the normal direction)).

The problem domain is represented by a Cartesian grid ofnx × ny as shown in
Figure 1. We employ fourth-order IRBF schemes for compact local 5×5-node and
13-node stencils, and second-order IRBF schemes for compact local 3× 3-node
stencils.

4.1 Compact local 5×5-node stencil (5×5-node CLS)

Consider a grid node(i, j) and its associated 5× 5-node stencil. The stencil is
locally numbered from left to right and from bottom to top (node (i, j) ≡ node
13) (Figure 2). The solution procedure here is similar to that for 1D problems.
However, the 2D problem formulation involves more terms andrequires special
treatments for interior “corner” nodes.

The conversion system is constructed as




û
0̂
ê


=




H
(0)

x , O

H
(0)

x , −H
(0)

y

Kx, Ky




︸ ︷︷ ︸
C

(
ŵx

ŵy

)
, (35)

where the subscriptsx and y denote the quantity associated with the integration
process in thex andy direction, respectively;̂0 andO are a vector and a matrix
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of zeros, respectively; equationŝu = H
(0)

x ŵx are employed to collocate the vari-
ableu over the stencil; equationsH (0)

x ŵx−H
(0)

y ŵy = 0̂ are employed to enforce
nodal values ofu obtained from the integration with respect tox andy to be identi-
cal; and equationsKxŵx+Kyŵy = ê are employed to represent extra information
that can be values of the PDE (20) at selected nodes on the stencil and first-order
derivative boundary conditions. In (35),C is the conversion matrix,̂u and0̂ are
vectors of length 25;(ŵx,ŵy)

T is the RBF coefficient vector of length 90, and

O,H
(0)

x ,H
(0)

y ,Kx andKy are matrices (the first three are of dimensions 25×45,
while for the last two, their dimensions are dependent on thenumber of extra infor-
mation values imposed and typically vary between 4×45 to 6×45). Solving (35)
yields

(
ŵx

ŵy

)
= C

−1




û
0̂
ê


 . (36)

We present two ways, namely Implementation 1 and Implementation 2, to form the
final set of algebraic equations.

Implementation 1: The final system is composed of two sets of equations. The
first set is obtained by collocating the PDE at interior nodes(i, j) with (3 ≤ i ≤
nx−2 and 3≤ j ≤ ny−2) and the second set is obtained by imposing first derivative
boundary conditions at boundary nodes (i = 1, 2 ≤ j ≤ ny− 1), (i = nx, 2 ≤ j ≤
ny−1), (3≤ i ≤ nx−2, j = 1) and (3≤ i ≤ nx−2, j = ny).

Implementation 2: First derivative boundary conditions are incorporated into the
conversion system and the final system is formed by collocating the PDE only at
all interior nodes.

Some implementation notes:

1. In constructing the approximations for stencils, the cross derivative∂ 4u/∂x2∂y2

is computed through the following relation [Mai-Duy and Tanner (2005a)], which
requires the approximation of second-order pure derivatives only,

∂ 4u
∂ 2x∂ 2y

=
1
2

(
∂ 2

∂x2

(
∂ 2u
∂y2

)
+

∂ 2

∂y2

(
∂ 2u
∂x2

))

=
1
2

(
H

(2)
x

[
H

(0)
x

]−1(
H

(2)
y ŵy

)
+H

(2)
y

[
H

(0)
y

]−1(
H

(2)
x ŵx

))
. (37)

2. For stencils whose central points are interior nodes(i, j) with 3 < i < nx − 2
and 3< j < ny−2, we construct̂e = Kxŵx+Kyŵy through the collocation of the
PDE (34) at four nodes placed in the diamond (i.e(i −1, j),(i, j −1),(i, j +1) and
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(i+1, j)) as shown in Figure 2. The extra information vector can thus be expressed
in the form



f (x8)
f (x12)
f (x14)
f (x18)


=




Gx(8, :),Gy(8, :)
Gx(12, :),Gy(12, :)
Gx(14, :),Gy(14, :)
Gx(18, :),Gy(18, :)



(

ŵx

ŵy

)
, (38)

where

Gx = H
(4)

x +H
(2)

y

[
H

(0)
y

]−1
H

(2)
x ,

and

Gy = H
(4)

y +H
(2)

x

[
H

(0)
x

]−1
H

(2)
y .

3. For stencils whose central points are (3,3), (3,ny−2), (nx−2,3) and (nx−2,ny−
2), the extra information vector is comprised of four nodal values of the derivative
boundary condition and two nodal values of the PDE. For example, in the case of
(3,3), we formê= Kxŵx+Kyŵy as



∂u(x2)

∂x
∂u(x3)

∂x
∂u(x6)

∂y
∂u(x11)

∂y
f (x14)
f (x18)




=




H
(1)

x (2, :) , O

H
(1)

x (3, :) , O

O, H
(1)

y (6, :)

O, H
(1)

y (11, :)
Gx(14, :) , Gy (14, :)
Gx(18, :) , Gy (18, :)




(
ŵx

ŵy

)
. (39)

4. For stencils whose central points are (i = 3, 3< j < ny−2), (i = nx−2, 3< j <
ny−2), (3< i < nx−2, j = 3) and (3< i < nx−2, j = ny−2), the extra information
vector is comprised of one nodal value of the derivative boundary condition and
three nodal values of the PDE. For example, in the case of (i = 3, 3< j < ny−2),
we form ê= Kxŵx+Kyŵy as



∂u(x3)

∂x
f (x12)
f (x14)
f (x18)




=




H
(1)

x (3, :), O

Gx(12, :), Gy (12, :)
Gx(14, :), Gy (14, :)
Gx(18, :), Gy (18, :)



(

ŵx

ŵy

)
. (40)

Both Implementation 1 and Implementation 2 lead to a final system matrix of di-
mensions(nx−2)(ny−2)× (nx−2)(ny−2).
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4.2 Compact local 13-node stencil (13-node CLS)

Figure 3 shows a schematic outline of a compact local 13-nodestencil. The con-
struction of the final system matrix using 13-node CLS is similar to that with 5×5-
node CLS. Since the present stencil involves 13 nodes ratherthan 25 nodes, a sparse
level (i.e. the number of zero entries) of the system matrix increases and its solution
is thus more efficient. However, one can expect that 13-node CLS is less accurate
than 5×5-node CLS.

4.3 Compact local 3×3-node stencil (3×3-node CLS)

A 3×3-node CLS is constructed through a coupled set of two Poisson equations

∂ 2ν
∂x2 +

∂ 2ν
∂y2 = f (x,y), (41)

∂ 2u
∂x2 +

∂ 2u
∂y2 = ν , (42)

which represent the biharmonic equation (34).

Consider a grid node(i, j) (2≤ i ≤ nx−1,2≤ j ≤ ny−1) and its associated 3×3-

node stencil




x3 x6 x9

x2 x5 x8

x1 x4 x7


 ((i, j) ≡ x5).

4.3.1 Discretisation of equation (41)

Over a 3×3-node stencil, we construct the conversion system as




ν̂
0̂

ê[ν ]


=




H
(0)

x , O

H
(0)

x , −H
(0)

y

K
[ν ]

x , K
[ν ]

y




︸ ︷︷ ︸
C

[ν ]

(
ŵ[ν ]

x

ŵ[ν ]
y

)
, (43)

where ν̂ and 0̂ are vectors of length 9,(ŵ[ν ]
x ,ŵ[ν ]

y )T is the vector of length 30,

H
(0)

x ,H
(0)

y are the matrices of dimensions 9×15, and equationŝe[ν ] =K
[ν ]

x ŵ[ν ]
x +

K
[ν ]

y ŵ[ν ]
y can be used to represent extra information. Like 3-node CLS for 1D prob-

lems, we study here two cases ofê[ν ]. For the first case, the vector̂e[ν ] is used to
represent nodal values of the governing equation at the fournodesx1, x3, x7 and
x9. Hereafter, this stencil is referred to as 3×3-node CLS with GE. For the second
case, the vector̂e[ν ] is set to null. Hereafter, this stencil is referred to as 3×3-node
CLS without GE.
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A mapping from the physical space into the RBF-coefficient space is obtained by
solving (43)

(
ŵ[ν ]

x

ŵ[ν ]
y

)
= (C [ν ])−1




ν̂
0̂

ê[ν ]


 . (44)

Making use of (44), one can express the PDE (41) at the centralpoint of the stencil
as

[
H

(2)
x (5, :), H

(2)
y (5, :)

](
C

[ν ]
)−1

︸ ︷︷ ︸
D

[ν ]




ν̂
0̂

ê[ν ]


= f (x5). (45)

It can reduce to

D
[ν ]
1 ν̂ +D

[ν ]
2 ê[ν ] = f (x5), (46)

whereD
[ν ]
1 andD

[ν ]
2 are the first 9 entries and the last 4 entries ofD [ν ], respectively.

In (46),D [ν ]
2 êν and f (x5) are known values.

4.3.2 Discretisation of equation (42)

Unlike equation (41), we consider nodal values of the field variable at grid nodes,
∂u/∂x at x2 andx8, and∂u/∂y at x4 andx6 as unknowns in the discretisation of
(42). The conversion matrix is thus formed as



û
0̂

∂̂ux

∂̂uy


=




H
(0)

x , O

H
(0)

x , −H
(0)

y

H
(1)

x ([2,8], :), O

O, H
(1)

y ([4,6], :)




︸ ︷︷ ︸
C

[u]

(
ŵ[u]

x

ŵ[u]
y

)
, (47)

where∂̂ux = (∂u(x2)/∂x,∂u(x8)/∂x)T and∂̂uy = (∂u(x4)/∂y,∂u(x6)/∂y)T . It is

noted that the present additional unknownŝ∂ux and∂̂uy are defined and located in
the same way as in the FDM work [Stephenson (1984)].

Solving (47) results in

(
ŵ[u]

x

ŵ[u]
y

)
=
(
C

[u]
)−1




û
0̂

∂̂ux

∂̂uy


 . (48)
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Equation (48) can be split into

ŵ[u]
x =

(
C

[u]
x

)−1(
û, 0̂, ∂̂ux, ∂̂uy

)T
, (49)

ŵ[u]
y =

(
C

[u]
y

)−1(
û, 0̂, ∂̂ux, ∂̂uy

)T
, (50)

where(C [u]
x )−1 and(C [u]

y )−1 are the first and the last 15 rows of(C [u])−1.

Through (49) and (50), the first derivatives ofu at the central point of the stencil
can be computed by

∂u(x5)

∂x
= H

(1)
x (5, :)

(
C

[u]
x

)−1




û
0̂

∂̂ux

∂̂uy


 , (51)

∂u(x5)

∂y
= H

(1)
y (5, :)

(
C

[u]
y

)−1




û
0̂

∂̂ux

∂̂uy


 . (52)

Through (48), the discrete form of equation (42) over the stencil can be written as

[
H

(2)
x , H

(2)
y

](
C

[u]
)−1

︸ ︷︷ ︸
D

[u]




û
0̂

∂̂ux

∂̂uy


= ν̂ . (53)

Substitution of (53) into (46) leads to a discrete form of thebiharmonic equation
(34) at the central point of the stencil

D
[ν ]
1 D

[u]




û
0̂

∂̂ux

∂̂uy


= f (x5)−D

[ν ]
2 f̂k. (54)

By applying (51), (52) and (54) at every interior node, we will obtain the final
system matrix of dimensions 3(nx−2)(ny−2)×3(nx−2)(ny−2).

It can be seen that the proposed compact local IRBF stencil does not require the
calculation of cross derivatives explicitly. Furthermore, there is no need to derive a
computational boundary condition for the intermediate variableν . When applying
the proposed 3× 3-node CLS to fluid flow problems, the variablesu and ν are
replaced with the streamfunction and the vorticity variables, respectively.
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5 Numerical examples

The accuracy of the solution is measured using the relative discreteL2 norm

Ne(u) =

√
n
∑

i=1
(ui −ue

i )
2

√
n
∑

i=1
(ue

i )
2

, (55)

wheren is the number of collocation nodes, andui andue
i are the computed and

exact solutions, respectively.

We will study the behavior of the solutionu with respect to (i) the grid sizeh, and
(ii) the MQ width β .

5.1 One-dimensional problem

Consider the following fourth-order ODE

d4u
dx4 +

d2u
dx2 = 16π4 sinh(2πx)+4π2 sinh(2πx), 0≤ x≤ 2. (56)

Double boundary conditions are defined asu = 0 anddu/dx= 2π at x = 0, and
u= 0 anddu/dx= 2π cosh(4π) at x= 2. The exact solution to this problem can
be verified to beue(x) = sinh(2πx).

We employ 5-node CLS and 3-node CLS without and with GE to discretise (56).
To assess the performance of the proposed stencils, the standard local 5-node IRBF
stencil is also implemented. We conduct the calculations with several uniform
grids,(7,9, · · · ,37).

Figure 4 displays the solution accuracy and the matrix condition numbers against
the grid sizeh. In terms of accuracy (Figure 4a), the solution converges apparently
asO(h1.40) for local 5-node stencil, andO(h5.45), O(h3.96) andO(h4.16) for 5-node
CLS and 3-node CLS without and with GE, respectively. The compact forms, even
for the case of 3-nodes, thus outperform the standard form of5 nodes as indicated
by not only the norm error but also the convergence rate. It can be also seen that
3-node CLS with GE is more accurate than that without GE. In terms of the matrix
condition number (Figure 4b), the 5-node CLS and the standard 5-node stencil yield
similar values. It can be also seen that the inclusion of firstderivatives in the IRBF
approximations, i.e 3-node CLSs, leads to higher conditionnumbers of the system
matrix.

Figure 5a shows a comparison of the accuracy between Implementation 1 and Im-
plementation 2 for the case of 5-node CLS, indicating that both implementations



Manuscript submitted to CMES

16

give similar levels of accuracy. However, Figure 5b shows that Implementation 2
yields better condition numbers than Implementation 1, probably owing to the fact
that the final system matrix of the former is composed of equations derived from
the ODE only.

As mentioned earlier, the value ofβ would have a strong influence on the solution
accuracy. Since the exact solution to this problem is available, it is straightforward
to obtain the optimal value ofβ (i.e. at whichNe(u) is minimum). Table 1 shows
results obtained by a fixed value and the optimal value ofβ for three different grids.
It can be seen that using the optimal value ofβ significantly enhances the solution
accuracy.

5.2 Two-dimensional problems

5.2.1 Example 1

Consider the biharmonic problem with the source functionf (x,y)= 64π4 sin(2πx)sin(2πy),
the domain of interest as 0≤ x,y≤ 1 and boundary conditions of the Dirichlet type.

The exact solution isue(x,y) = sin(2πx)sin(2πy).

Figure 6 shows the behaviour of the solutionu using the proposed 13-node CLS
(β = 18) with respect to the grid sizeh. Results obtained by the FD 13-node stencil
are also included for comparison purposes. The IRBF method (Implementation 2)
is much more accurate and converges much faster than the FDM (Figure 6a). The
rate of convergence is 4.90 for the former and 1.99 for the latter. On the other
hand, the IRBF matrix has higher condition numbers but growsslightly slower
than the FD matrix (Figure 6b). The rate of growth is 3.25 for the former and
3.97 for the latter. Figure 7 indicates that Implementation2 slightly outperforms
Implementation 1 in terms of the matrix condition and accuracy. However, an
improvement in the matrix condition here is not as significant as in the case of
1D problems.

Table 2 presents results by the proposed 5×5-node CLS for a fixed value and the
optimal value ofβ . It can be seen that the MQ width has more influence on the
solution accuracy than on the system matrix condition number. It is noted that a
chosen fixed valueβ = 2.5 is the optimal value for the grid withh= 1/50.

Table 3 shows the accuracy and matrix condition number against the grid size by the
proposed 3×3-node CLS without and with GE. The solution converges asO(h3.36)
for the former andO(h3.88) for the latter. It can be seen that the incorporation
of nodal values of the governing equation into the approximations results in an
accuracy improvement.
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5.2.2 Example 2

Among our proposed compact stencils, the 3×3-node CLS does not require special
treatments for interior nodes close to the boundary. This stencil is applied here to
obtain the structure of the steady-state lid-driven cavityflow in the streamfunction-
vorticity formulation

∂ψ
∂y

∂ω
∂x

−
∂ψ
∂x

∂ω
∂y

=
1

Re

(
∂ 2ω
∂x2 +

∂ 2ω
∂y2

)
, (57)

−ω =
∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 , (58)

whereRe is the Reynolds number,ψ is the streamfunction andω is the vorticity.
One can compute thex− andy− velocity components according to the following
definitions

u=
∂ψ
∂y

andv=−
∂ψ
∂x

.

The boundary conditions are prescribed in terms of the streamfunction as

ψ = 0,
∂ψ
∂x

= 0 at x=0 and x=1, (59)

ψ = 0,
∂ψ
∂y

= 0 at y=0, (60)

ψ = 0,
∂ψ
∂y

= 1 at y=1. (61)

We employ several grids,(21× 21,31× 31, · · · ,111× 111), in the simulation of
the flow. A wide range ofRe, (0,100,400,1000,3200,5000), is considered and the
resultant nonlinear set of algebraic equations is solved using the Picard iteration
scheme

θ̂ = αθ̂ (k)+(1−α)θ̂ (k−1), (62)

where the superscript(k) is used to indicate the current iteration,α is the relaxation

factor (0< α ≤ 1) andθ̂ = (ψ̂ ,
∂̂ψ
∂x

,
∂̂ψ
∂y

)T .

The flow is considered to reach a steady state when
√

∑
(

θ̂ (k)− θ̂ (k−1)
)2

√
∑
(

θ̂ (k)
)2

< 10−9. (63)
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As shown in Section 4.3, the proposed formulation does not require the derivation
of a computational boundary condition for the vorticity andnodal values of the
velocity components are obtained directly from solving thefinal system.

The value ofβ is chosen to be 20 for all simulations, while the value ofα is
employed in the range of 0.8 to 10−5. The higher the value ofRethe smaller the
value ofα will be.

The profile of thex−component of the velocity vector along the vertical centreline
and of they−component along the horizontal centreline forRe= 1000 using sev-
eral grids are demonstrated in Figure 8 and Figure 9, respectively. To provide the
base for assessment, results obtained by the multi-grid FDM[Ghia, Ghia, and Shin
(1982)], which are widely cited in the literature, are included. It can be seen that a
convergence with grid refinement is obtained for both velocity profiles.

Tables 4 and 5 give a comparison of the extreme values of the velocity profile
on the centrelines obtained by the proposed method, FDM [Ghia, Ghia, and Shin
(1982)], FVM [Deng, Piquet, Queutey, and Visonneau (1994)]and the pseudo-
spectral method [Botella and Peyret (1998)]. It can be seen that the present results
are in better agreement with the benchmark spectral solution than the others even
for ‘coarse’ grids, e.g. 51×51 in the case ofRe= 100 and 91×91 in the case of
Re= 1000.

Results concerning the distribution of of the streamfunction and vorticity over the
flow domain are shown in Figures 10 and 11, respectively. Theylook feasible in
comparison with those in literature (e.g. [Ghia, Ghia, and Shin (1982); Botella and
Peyret (1998); Deng, Piquet, Queutey, and Visonneau (1994)]).

6 CONCLUDING REMARKS

This paper is concerned with the development of several compact local IRBF sten-
cils for solving fourth-order ODEs and PDEs. The IRBF approximations are ex-
pressed in terms of not only nodal values of the field variablebut also nodal values
of the ODE/PDE and, in some cases, of first derivative(s). Thelatter is incorporated
through the conversion system with the help of the integration constants. In the case
of 3×3-node stencil, the resultant discretisation system is constructed through a set
of two second-order PDEs, but there is no need to derive a computational boundary
condition for the intermediate variable and no requirementfor the calculation of
cross derivatives explicitly. The proposed stencils are successfully verified using
problems with analytic solution, showing that high rates ofconvergence and high
levels of accuracy are obtained. For the lid-driven cavity flow, a convergent so-
lution is obtained for highRenumbers and the obtained results are in very good
agreement with the benchmark solutions.
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22Table 1: ODE, 5-node CLS, 3-node CLS with GE and 3-node CLS without GE: RelativeL2 errors of the solutionu using
some fixed and the optimal values ofβ for three grids.

5-node CLS 3-node CLS

Without GE With GE

h Fixedβ=24 Optimalβ Fixedβ=77 Optimalβ Fixedβ=10 Optimalβ

Ne(u) β Ne(u) Ne(u) β Ne(u) Ne(u) β Ne(u)

1/20 6.30E-4 1.2 4.04E-4 3.46E-3 6 9.50E-4 1.60E-3 2.6 2.10E-4

1/50 1.59E-5 29.5 7.18E-6 5.85E-5 57 2.17E-5 2.31E-5 7 1.06E-5

1/70 6.39E-6 30.3 3.93E-7 8.22E-6 77 8.22E-6 2.97E-6 10 2.97E-6

O(h4.21) O(h4.27) O(h4.30)
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Table 2: PDE, Example 1, 5×5-node CLS: Condition numbers of the system ma-
trix A and relativeL2 errors of the solutionu using a fixed value and the optimal
value ofβ for several grids.

Fixedβ = 2.5 Optimalβ

h Cond(A) Ne(u) β Cond(A) Ne(u)

1/10 6.15E+2 1.54E-3 1 6.12E+2 1.44E-3

1/20 9.52E+3 1.65E-4 6.2 1.21E+4 7.59E-5

1/30 4.79E+4 8.24E-5 6.4 5.54E+4 1.34E-5

1/40 1.51E+5 4.41E-5 5 1.85E+5 1.35E-5

1/50 3.69E+5 6.47E-6 2.5 3.69E+5 6.47E-6

O(h3.04) O(h3.34)



Manuscript submitted to CMES

24

Table 3: PDE, Example 1, 3×3-node CLS: relativeL2 errors of the solutionu for
several grids.

h Without GE,β = 14.5 With GE,β = 16.6

1/10 1.71E-02 1.29E-02

1/20 3.70E-03 3.43E-03

1/30 1.29E-03 1.23E-03

1/40 4.32E-04 4.05E-04

1/50 4.35E-05 8.13E-06

O(h3.36) O(h3.88)
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Table 4: PDE, Example 2,Re= 100, β = 20: Extreme values of the velocity
profiles on the centerlines by the proposed method and several other methods. It is
noted thatN is the polynomial degree.

Reference Grid umax vmax vmin

Present 31×31 0.21252 0.17675 -0.24908
Present 51×51 0.21354 0.17863 -0.25221
Present 71×71 0.21378 0.17910 -0.25302
Present 91×91 0.21386 0.17928 -0.25334
Present 111×111 0.21390 0.17937 -0.25350
FVM 64×64 0.21315 0.17896 -0.25339
FDM 129×129 0.21090 0.17527 -0.24533
Pseudo-spectral N = 96 0.21404 0.17957 -0.25380

FVM, FDM and Pseudo-spectral refer to finite volume, finite difference and
pseudo-spectral methods results in [Deng, Piquet, Queutey, and Visonneau (1994)],
[Ghia, Ghia, and Shin (1982)], and [Botella and Peyret (1998)], respectively.
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Table 5: PDE, Example 2,Re= 1000, β = 20: Extreme values of the velocity
profiles on the centerlines by the proposed method and several other methods. It is
noted thatN is the polynomial degree.

Reference Grid umax vmax vmin

Present 31×31 0.32684 0.30773 -0.42971
Present 51×51 0.37061 0.35703 -0.50010
Present 71×71 0.38056 0.36802 -0.51530
Present 91×91 0.38411 0.37195 -0.52063
Present 111×111 0.38573 0.37376 -0.52305
FVM 128×128 0.38511 0.37369 -0.52280
FDM 129×129 0.38289 0.37095 -0.51550
Pseudo-spectral N = 96 0.3885698 0.3796447 -0.5270771

FVM, FDM and Pseudo-spectral refer to finite volume, finite difference and
pseudo-spectral methods results in [Deng, Piquet, Queutey, and Visonneau (1994)],
[Ghia, Ghia, and Shin (1982)], and [Botella and Peyret (1998)], respectively.
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Figure 1: A problem domain and a typical discretisation. Legends square, circle
and plus are used to denote the boundary nodes, the interior nodes next the bound-
ary and the remaining interior nodes, respectively.
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Figure 2: A schematic representation of the proposed 5×5-node stencil associated
with node(i, j). Over the stencil, nodes are locally numbered for bottom to top
and left to right, where 13≡ (i, j). Nodal values of the governing equation used as
extra information are placed on a diamond shape.
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Figure 3: A schematic representation of the proposed 13-node stencil associated
with node(i, j). Over the stencil, nodes are locally numbered for bottom to top and
left to right, where 7≡ (i, j). Nodal values of the governing equation used as extra
information are placed on a diamond shape.
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Figure 4: ODE: RelativeL2 errors of the solutionu and condition numbers of the
system matrix against the grid size by the proposed stencilsand the standard local
IRBF one. It is noted that we employβ=24 for local and compact local 5-node
stencils,β=34 for 3-node CLS without GE, andβ=5.6 for 3-node CLS with GE.
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Figure 5: ODE, 5-node CLS,β = 24: The solution accuracy and matrix condition
number against the grid size by Implementation 1 and Implementation 2.
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Figure 6: PDE , Example 1, 13-node CLS,β = 18: The solution accuracy and
matrix condition number against the grid size. Results by the FD 13-node stencil
are also included.
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Figure 7: PDE, Example 1, 13-node CLS,β = 18: The solution accuracy and
matrix condition number against the grid size by Implementation 1 and Implemen-
tation 2.
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Figure 8: PDE, Example 2,Re= 1000: Profiles of thex−component of the velocity
vector along the vertical centerline for several grids. Results by the FDM Ghia,
Ghia, and Shin (1982) are also included.
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Figure 9: PDE, Example 2,Re= 1000: Profiles of they−component of the velocity
vector along the horizontal centerline for several grids. Results by the FDM Ghia,
Ghia, and Shin (1982) are also included.
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Figure 10: PDE, Example 2, 3×3-node CLS, a grid of 111×111: Streamlines of
the flow at several Reynolds numbers. It can be seen that secondary vortices are
clearly captured.
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Figure 11: PDE, Example 2, 3× 3-node CLS, a grid of 111× 111: Iso-vorticity
lines of the flow at several Reynolds numbers.


