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Abstract:  In this paper, new compact local stencils based on intedjnatdial
basis functions (IRBFs) for solving fourth-order ordinatifferential equations
(ODEs) and partial differential equations (PDES) are presk Five types of com-
pact stencils - 3-node and 5-node for 1D problems andbinhode, 13-node and
3 x 3 -node for 2D problems - are implemented. In the case of &msbehcil and

3 x 3-node stencil, nodal values of the first derivative(s) & tield variable are
treated as additional unknowns (i.e. 2 unknowns per noda-farde stencil and 3
unknowns per node for 8 3-node stencil). The integration constants arising from
the construction of IRBFs are exploited to incorporate thimlocal IRBF approx-
imations (i) values of the governing equation (GE) at seléctodes for the case
of 5-, 5x 5- and 13-node stencils, and (ii) not only nodal values ofgbeerning
equation but also nodal values of the first derivative(s)tiercase of 3-node sten-
cil and 3x 3-node stencil. There are no special treatments requiregkith nodes
near the boundary for 3-node stencil and 3-node stencil. The proposed stencils,
which lead to sparse system matrices, are numerically edrifirough the solution
of several test problems.

Keywords: Compact local approximations, high-order ODEs, high-oRIBES,
integrated radial basis functions.

1 Introduction

Numerical techniques have been developed to solve ODEs Bt Which are
used to model continuum mechanics problems such as the matia fluid and
the deformation of a solid body. Traditional discretisatimethods include finite-
difference methods (FDMs) [Conte and Dames (1958); Smi#7&);, Gupta and
Manohar (1979); Bjgrstad (1983)], finite-element methdds\s) [Reddy (2005);
Hughes (1987); Rannacher (1999)], boundary-element rdstfREMs) and finite-
volume methods (FVMs) [Patankar (1980)]. Over the last 2&rgyeRBFs, which
are known as a universal approximator, have been appligtiésolution of ODEs
and PDEs [Franke (1982); Kansa (1990a,b); Haykin (1999hsidg1999)]. They
were first developed as a global technique, in which the diégrgnvariable is de-
composed into a set of RBFs defined over the whole domain dysisaand its
derivatives are then calculated through differentiatiifférentiated RBFs (DRBFS)).
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Later on, Mai-Duy and Tran-Cong [Mai-Duy and Tran-Cong (202003); Mai-
Duy (2005); Mai-Duy and Tanner (2005b)] proposed integt®8F (IRBF) meth-
ods, in which highest-order derivative(s) in the ODE/PDE approximated by
RBFs, and lower-order derivatives and the dependent \arigdelf are then ob-
tained by integration. Numerical results showed that IRRBEKI better accuracy
than DRBFs.

Global IRBF methods have some strengths and weaknessey. ciheproduce
very accurate solutions using relatively low numbers ohdaides, and their im-
plementations are quite straightforward. However, thedleo fully populated
system matrices. As a result, for a given spatial discr@tisaglobal IRBF meth-
ods require larger computer storage than traditional nusthdn addition, their
matrix condition number grows very quickly as the numberades increases. To
overcome these drawbacks, local and compact local IRBRsehdave been de-
veloped (e.g. [Mai-Duy and Tran-Cong (2009); Ngo-Cong, {fdaly, Karunasena,
and Tran-Cong (2010); An-Vo, Mai-Duy, and Tran-Cong (201lai-Duy and
Tran-Cong (2011)]). Such local schemes result in sparseersymatrices and a
solution to an algebraic set of equations is thus more eficien [Mai-Duy and
Tran-Cong (2011)], compact local IRBF stencils for solveerond-order ODEs
with Dirichlet and Neumann boundary conditions, and seemmi@ér PDEs (i.e.
Poisson equation) on rectangular and non-rectangular idsmgere proposed; it
was observed that compact local forms produce much morgaectesults than
local forms and also than global 1D-IRBF forms in some cases.

This paper is concerned with the development of compact I&EF stencils for
the solution of fourth-order ODEs and PDEs. The followingtstrategies (e.g.
[Stephenson (1984); Altas, Dym, Gupta, and Manohar (19284 studied in the
context of local compact IRBFs.

The first strategy employs relatively large stencils (i.eo8les for 1D fourth-order
problems, and 13 nodes ox&b nodes for 2D fourth-order problems). For this ap-
proach, only nodal values of the field variable on a steneiltgrated as unknowns.
It is noted that, when compared with second-order probl¢nese are more nodes
used on a stencil (i.e. 2 additional nodes for 1D problemd,4aand 16 additional
nodes for 2D problems).

The second strategy employs relatively small stencils &.aodes for 1D prob-
lems and 3< 3 nodes for 2D problems). For this approach, not only nodalesg
of the field variable on a stencil but also nodal values of it filerivative at se-
lected nodes are treated as unknowns. Advantages of thitegirinclude (i) the
number of nodes employed here does not increase when canpiinehe case of
second-order problems; (i) there are no special treatsneufuired for grid nodes
near the boundary; (iii) derivative boundary values cannbpeadsed easily and ac-
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curately; and (iv) first derivative values are obtained alyefrom the final system
of algebraic equations.

Furthermore, in both strategies, we also incorporate nealaks of the governing
equation at selected nodes on a stencil into the IRBF appations. Numerical
results will show that such an incorporation can signifigaahhance the solution
accuracy.

The remainder of the paper is organised as follows. Sectimna2brief review

of IRBFs. The proposed compact local stencils based on IRB&presented for
1D problems in Section 3 and for 2D problems in Section 4. Nigakexamples

are given in Section 5 to demonstrate the attractiveneskeoptoposed stencils.
Section 6 concludes the paper.

2 Brief review of integrated RBFs

Consider a continuous functiarix) wherex is the position vector. Such a function
can be approximated using integrated RBF schemes of secohidarth orders.

2.1 Second-order integrated RBF scheme

In this scheme, the second-order derivatives of the funatiare decomposed into
a set of RBFs

17}

2 n
e = > i), @

wheren denotes a component of the position vectafe.g. n can bex for 1D
problems, anc ory for 2D problems){w; }", is the set of RBF coefficients which

n

are unknown, an{li(z)(n)}, . is the set of RBFs. Expression (1) is then integrated
1=

to obtain approximate expressions for lower order defkreatand the function itself

as follows.

J

S0 3 wil?n)-+e @
u(x) = _Zwili“”(n) +nei+cy, (3)

wherec; andc; are “constants of integration” with respectno which are to be
treated as the additional RBF coefficients. In (1)-(3), tineesscript (.) is used to
indicate the associated derivative order.
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Collocating (1)-(3) at a set of nodal poinfz; }_, yields

02u 2)

a—nz = v%ﬂn( )Wf]v 4)

u n

oy =7 W, 5)
0=, (6)

where the notatior™ is used to denote a vecto#(") is the RBF coefficient matrix
in the RBF space an@; is the RBF vector of coefficients, including the integration
constants.

2.2 Fourth-order integrated RBF scheme

In this scheme, the fourth-order derivatives of the functiare decomposed into
a set of RBFs as

04 n
o 3 willn) @

Approximate expressions for lower order derivatives ardtimction itself are then
obtained through integration as

d3u(x n
0,7(3) =3 wih¥(m+e ®)
i—
d2u(x n
5’7(2) = _Zwili(z)(n) +ncL+cy, 9)
i=
au(x n 2
057) :_ZlWi|i(l)('7)+%C1+f7C2+Cs, (10)
i=

< v 10 n®  n?
”(X):i;Wili () + g C1t 5 Co+NCs+Ca (11)
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Collocating (7)-(11) at a set of nodal poirts; }{_, yields

o%u _

ana = 7" (12)
FEY _

an3 =7 (13)
o _

anz =71 (14)
ou _

oy =7 . (15)

a= "% 16

U= Wy. (16)

For the approximations of integration constants used iF(Land (7)-(11), the
reader is referred to [Mai-Duy and Tran-Cong (2003, 201Jfdirther details.

In this study, the multiquadric (MQ) function is chosen as liasis function as

14 (X) = /(x—ci)2+a? for 1D problems, (17)

14 (x) = \/(x— cix)2+ (y—Cy)2+a? for 2D problems, (18)

whereg; (for 1D problems) o(cix,ciy)T (for 2D problems) and; are the MQ centre
and width, respectively. The width of thidh MQ can be determined according to
the following relation

a = pd;, (19)

wheref3 is a factor 3 > 0) andd; is the distance from thigh centre to the nearest
neighbour. It was observed in [Kansa (1990a)] that, as thE RRBIth increases,
the numerical error of the RBF solution reduces and the timndhumber of the
interpolant grows. At large values @, one needs to pay special attention as the
solution becomes unstable. Reported value8 géry from, typically, 1 for global
IRBF methods to a wide range of-2200 for local and compact local IRBF meth-
ods. For the latter, one can vary the valug@&nd/or refine the spatial discretisation
to enhance the solution accuracy.

In the following sections, to simplify the notations, we hdtop out the subscript
n used in (12)-(16) for 1D problems, and u$gj) to represent a grid node located
at(x,yj) in a global 2D gridx to represent a grid nodein a local 2D stencil, and
A (i,:) to denote théth row of the matrix.# .
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3 Proposed compact local IRBF stencils for fourth-order ODEB

Our sample of fourth-order ODEs is taken as

d*u dZ
o Tae = X (20)

wherexa < x < xg and f(x) is some given function. The boundary conditions
prescribed here are of Dirichlet type, iteanddu/dx given at bothxa andxg.

We discretise the problem domain using a setdicrete node$x }i!_;, and utilise
fourth-order IRBF schemes to represent the field variable

3.1 Compact local 5-node stencil (5-node CLS)

Consider a grid nodg and its associated 5-node sterfgjl, x5, x5, X, XL] (x = X5).
The conversion system, which represents the relation legtwee RBF space and
the physical space, is established from the following égoat

a 20
(&)=%]»
¢

where? is the conversion matrixj= (U, Uz, U3, Us, Us) ", W= (Wy, Wo, W3, W4, Ws, C1, C2,C3,C4) ",
U= .7 OW are equations representing nodal values ofrer the stencil 72 is

a 5x 9 matrix that is obtained from collocating (11) at grid nodéshe stencil,

€= _J¢'W are equations representing extra information that cand©DE (20) at

selected nodes, amtl/dx atxa andxg. Solving (21) results in

wz%l(g). 22)

If the number of extra information values are less than oaktju4, the obtained
conversion matrix in (21) is not overdetermined owing to phesence of the inte-
gration constants. In this case, the extra information s timposed in an exact
manner. By substituting (22) into (7)-(11), valueswénd its derivatives at an
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arbitrary pointx on the stencil are calculated in the physical space as

dfu(x) T 1.1/ G
X§)=_I£“><x>, o 1), 0,0, 0 0|7 1<§>, (23)

d*ux) _ 1 3 3 Toom1( U

e :_|;><x>, 18, 1, 0, 0 0% (é) (24)

d®u(x) 1 2 2 11 U

12 :_|;><x>, 1P, x 1,0 0% <§> (25)
du@ _ 1 @ (1) 2 o1 U (26)
=10, 1, 2 x 1 o] s )
u(x):-lio)(x), o Iéo)(x), x3/6, X2/2, X 1}%_1(;). (27)

wherex; <x < xL. In what follows, we present two ways to construct the final
system of algebraic equations, namely Implementation lraptementation 2.

Implementation 1: The final system is generated by

(i) the collocation of the ODE (20) &xs, X4, - --,%—2} using (23) and (25) with
X=X, in whicheé= W is employed to represent values of (20xatndx, i.e.

f (X 9b(2,7) | .
(ved))-[4a) | e
where = 7% + 7@ and
(i) the imposition ofdu/dx atxa andxg using (26) withx = x; andx = X.
Implementation 2: The final system is generated by collocating the ODE (20) at
{X4,%s,...,%n—3} and {Xz,X3,X,—2,X,—1}. For the former, the collocation process
is similar to that of Implementation 1. For the latter, spéd¢ieatments for the
imposition of first derivative boundary conditions are riegd. Collocations of the

ODE (20) at{xp,x3} and {x,_2,X,—1} are based on the stencils of nodgsand
Xn—2, respectively, with the following modified extra informati vectors

€= (du(x,)/dx f(X,))T for the stencil ofs,

€= (f(x,),du(x)/dx)T for the stencil of,_».

Both implementations lead to a system matrix of dimensions2) x (n—2).

3.2 Compact local 3-node stencil (3-node CLS)

Consider a grid node; (i = {2,3,...,n—1}) with its associated 3-node stencil
(X1, X5, X5] (X = X5).
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Unlike the CL 5-node stencil, nodal values of the first denaaof the field variable
are also treated here as unknowns. There are thus two unknoamelyu and
du/dx, per node.

We form the conversion system as follows.

1] 20
e A

—_——
¢

where% is the conversion matrixi= (ug, up,u3)", du= (du(x;)/dx du(xy) /dx) T

W = (W1, W2, Ws,C1,Cp,C3,C4) ", U= ' OW is a set of three equations representing
nodal values ofi over the stencildu= .7 Wis a set of two equations represent-
ing nodal values of the first derivative)dtandx;, andé= .# Wis a set of equations
which can be used to incorporate more information into thgr@pmations.

Solving (29) results in

a
W=¢"1 (@) . (30)
e

It can be seen that the IRBF approximations for the field égiand its derivatives
can now be expressed in terms of not only nodal valuesatfthe three grid nodes
of the stencil but also nodal valuesaxi/dx at the two extreme nodes of the stencil.

The two unknowns at the central point of the stenx‘é') ¢equire the establishment
of two algebraic equations. This can be achieved by coliegahe ODE (20) ak;,
and collocating the first derivative &

a

f() =9(2,:)¢ 1 (ﬁ) , (31)
e

dus) _ D) (9 o /ﬁ\

dXZ =V (2% 1<déu , (32)

where¥ = 4 + 72,

The above process leads to a determined final system(with2) equations for
the ODE,(n— 2) equations for the first derivativeéu/dx, (n— 2) unknowns for the
field variableu and (n— 2) unknowns fordu/dx at the interior nodes.



Manuscript submitted to CMES

In the case tha&is used to represent the governing equation (GE) (Zﬂl) alndxis,
ie.

FQ)) _ (910 o
(f6d) = (4(25)® 49
——
e
we name the corresponding stencil a 3-node CLS with GE.
In the case thagis simply set to null, we call it a 3-node CLS without GE.

4 Proposed compact local IRBF stencils for fourth-order PDE

Consider a 2D fourth-order differential problem governgdte biharmonic equa-
tion

d*u J*u 0%

W‘f—zw‘f‘w: f(va) (34)

on a rectangular domaind < x < Xg, yc <Y < yp), and subject to Dirichlet bound-
ary conditions (i.eu anddu/dn given at the boundaries ¢he normal direction)).

The problem domain is represented by a Cartesian grid, of ny, as shown in
Figure 1. We employ fourth-order IRBF schemes for compagl!lsx 5-node and
13-node stencils, and second-order IRBF schemes for canged 3 x 3-node
stencils.

4.1 Compact local 5 x 5-node stencil (5 x 5-node CLS)

Consider a grid nodéi, j) and its associated %6 5-node stencil. The stencil is
locally numbered from left to right and from bottom to top @eq(i, j) = node
13) (Figure 2). The solution procedure here is similar td foa 1D problems.
However, the 2D problem formulation involves more terms agglires special
treatments for interior “corner” nodes.

The conversion system is constructed as

a N o
0 | = | 40 g0 (WX ) (35)
e S Ay ’

@

where the subscriptgs andy denote the quantity associated with the integration
process in the andy direction, respectivelyp and& are a vector and a matrix
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of zeros, respectively; equatiolis= %((O)WX are employed to collocate the vari-

ableu over the stencil, equation,%((o)wX — %(O)Wy =0 are employed to enforce
nodal values oti obtained from the integration with respectdandy to be identi-
cal; and equationsz;Wy + J#y\Wy = € are employed to represent extra information
that can be values of the PDE (20) at selected nodes on thelsted first-order
derivative boundary conditions. In (35%, is the conversion matrixj andO are
vectors of length 25{Wy,Wy)" is the RBF coefficient vector of length 90, and
ﬁ,%(o),%(o),%( and.z;, are matrices (the first three are of dimensions<Zb,
while for the last two, their dimensions are dependent omtheber of extra infor-
mation values imposed and typically vary between4b to 6x 45). Solving (35)
yields

WX _ Cg—l
\/A\ly o

We present two ways, namely Implementation 1 and Implentient2, to form the
final set of algebraic equations.

Implementation 1: The final system is composed of two sets of equations. The
first set is obtained by collocating the PDE at interior nogleg) with (3 <i <
ny—2 and 3< j <ny—2) and the second set is obtained by imposing first derivative
boundary conditions at boundary nodes=(1, 2< j<ny—1), (=n, 2< | <
n—1),3B<i<n—2 j=1)and Bi<n—2, j=ny).

Implementation 2: First derivative boundary conditions are incorporated ihie
conversion system and the final system is formed by collogatie PDE only at

all interior nodes.

Some implementation notes:

1. In constructing the approximations for stencils, thessrderivatived*u/dx2dy?
is computed through the following relation [Mai-Duy and Tien (2005a)], which
requires the approximation of second-order pure derieatonly,

Py 1[5 (B P (P
02x92y 2\ 0x2 \ dy?2) = 0y? \ 9x?

-1 (o2 0] () - [ (%)) @

(36)

o O) <)

2. For stencils whose central points are interior nodep with 3 <i < ny—2
and 3< j < ny—2, we construce = Wy + %Wy, through the collocation of the
PDE (34) at four nodes placed in the diamond (i- 1, j),(i,j — 1), (i, j +1) and
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(i+1,])) as shown in Figure 2. The extra information vector can treiexpressed
in the form

f(xs) “%(8,:),%(8,:)
fxaz) | | %(12,%(120) | (W
f (X04) G144, (14 (m) (38)
f(Xlg) gx(lai),gy(l&:)
where

-1
9= 50+ 2 [ 0] 2.

3. For stencils whose central points are3(3 (3 ny — 2), (nx—2,3) and (x—2,ny —
2), the extra information vector is comprised of four nodalues of the derivative
boundary condition and two nodal values of the PDE. For exanip the case of
(3,3), we forme = JZWy 4 AWy as

du(xz)

o) B @y, o

ox AY@E), o

Mxe) || g Y6 (W> (39)
ay - @) (11 - Wy

du(xll) 0, % (1L) y

Ty GX(145:)5 Gy(14,3)

f (X14) | Gx(18:), Gy(18:) |

f(Xlg)

4. For stencils whose central points are=@3, 3< j<ny—2),[i=n—2,3<j <
ny—2),(B<i<n—2, j=3)and (i< ny—2, j=ny—2), the extra information
vector is comprised of one nodal value of the derivative lolauy condition and
three nodal values of the PDE. For example, in the case-e3( 3 < j < ny—2),
we forme = JZ Wy + Wy as

o #Y @), 0

G‘x(lz,:)7 G (12,) WX
:Eiii; | Gi(14)), G§(14,:) <Wy> (40)
f(Xlg) Gx(ls,:), Gy(18,')

Both Implementation 1 and Implementation 2 lead to a finalespsmatrix of di-
mensiongn, — 2)(ny — 2) x (ny— 2)(ny — 2).
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4.2 Compact local 13-node stencil (13-node CLS)

Figure 3 shows a schematic outline of a compact local 13-stetecil. The con-
struction of the final system matrix using 13-node CLS is kinid that with 5x 5-
node CLS. Since the present stencil involves 13 nodes rdtae25 nodes, a sparse
level (i.e. the number of zero entries) of the system matiGréases and its solution
is thus more efficient. However, one can expect that 13-ndd® i€ less accurate
than 5x 5-node CLS.

4.3 Compact local 3 x 3-node stencil (3 x 3-node CLS)

A 3 x 3-node CLS is constructed through a coupled set of two Poisgaations

0%v 9%y
W+d—3/2: f(x,y), (41)
d%u 0%
TV (42)

which represent the biharmonic equation (34).

Consider a grid nod€, j) (2<i<ny—1,2<j <ny—1)and its associated>33-
X3 X Xog

node stencil|x2 x5 Xg| ((i,]) = Xs).
X1 Xg4 X7

4.3.1 Discretisation of equation (41)

Over a 3x 3-node stencil, we construct the conversion system as

v A, o _1v]
o | = | A0 s [ %), 3)
vl PP Wy

¢l

whereV and 0 are vectors of length S(,A)[(V],VT/&V])T is the vector of length 30,

0, 749 are the matrices of dimensionsd5, and equatiorg”! = 4" &y’ +
%/y["]wg,"] can be used to represent extra information. Like 3-node ©L$D prob-
lems, we study here two cases@}f. For the first case, the vectéV! is used to
represent nodal values of the governing equation at therfodesxi, X3, X7 and
Xg. Hereafter, this stencil is referred to as 3-node CLS with GE. For the second
case, the vect@"! is set to null. Hereafter, this stencil is referred to as®node
CLS without GE.
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A mapping from the physical space into the RBF-coefficiertcgpis obtained by
solving (43)

iy v
<AM>=<%M>—1 0 |. (44)
Wy alvl

Making use of (44), one can express the PDE (41) at the ceunal of the stencil
as

v
-1 ~
[ 426, 4260 (V) | 0| =fx). (43)
avl
gl
It can reduce to
@£V]/‘;+@£V]§[V] = f(xs), (46)

where_@f’] and_@g’] are the first 9 entries and the last 4 entrieg/6f, respectively.
In (46), 7)"'8, and  (xs) are known values.

4.3.2 Discretisation of equation (42)

Unlike equation (41), we consider nodal values of the fieldakde at grid nodes,
Jdu/odx atxp andxg, anddu/dy at x4 andxs as unknowns in the discretisation of
(42). The conversion matrix is thus formed as

a A9, Vi
0 . — O all
ol =1 Lo . | (47)
0Aux 27([2,8],:), 17 v
duy o, A1 ((4,6),2)
@l

wheredu, = (du(xz)/dx,du(xg)/dx)T anddu, = (du(xs)/dy, du(xe)/dy) . Itis
noted that the present additional unknowhg andduy are defined and located in
the same way as in the FDM work [Stephenson (1984)].

Solving (47) results in

~[U] 1
W ) _ (ol
(W[“O = (% ) 5 |- (48)

y
Ouy

)o> )

)
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Equation (48) can be split into

W= (6) (a0 du. ay ) (49)
W = (%y[“])fl( g, 0, du, dJuy )T, (50)

where(%.")~1 and (4" )~ are the first and the last 15 rows @¥)~1.

Through (49) and (50), the first derivatives wt the central point of the stencil
can be computed by

a
-1l 0
d”;f"):«f“&(”(s,:)( D sl (51)
X
duy
a
d -1 ©
RO IC O P 2)
X
duy

Through (48), the discrete form of equation (42) over theagtean be written as

o) ©)

— V. (53)

{ H2, } (cg[u})*l .
gl ouy

Substitution of (53) into (46) leads to a discrete form of Hilearmonic equation
(34) at the central point of the stencil

a
0 -

Mg | = | =t (xs) — 2 k. (54)
OUy
duy

By applying (51), (52) and (54) at every interior node, welwibtain the final
system matrix of dimensiong8, — 2)(ny — 2) x 3(nx — 2)(ny — 2).

It can be seen that the proposed compact local IRBF stene# dot require the
calculation of cross derivatives explicitly. Furthermaieere is no need to derive a
computational boundary condition for the intermediatéalde v. When applying
the proposed % 3-node CLS to fluid flow problems, the variablasand v are
replaced with the streamfunction and the vorticity vaeasbrespectively.
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5 Numerical examples
The accuracy of the solution is measured using the relats@eatel, norm
n
3 (Ui —up)?
Ne(u) = -, (55)
3, (UP)?

wheren is the number of collocation nodes, andandu® are the computed and
exact solutions, respectively.

We will study the behavior of the solutianwith respect to (i) the grid sizk, and
(i) the MQ width 3.

5.1 One-dimensional problem

Consider the following fourth-order ODE

AU U msinhamx) 1 arsinh(2mg,  0<x< 2 56
ad Tae = sinh(2rnx) 4 4m°sinh(2mx), 0<x<2. (56)
Double boundary conditions are definedwas 0 anddu/dx = 2 atx = 0, and
u= 0 anddu/dx = 2mrcosh4m) atx = 2. The exact solution to this problem can
be verified to beu®(x) = sinh(2rx).

We employ 5-node CLS and 3-node CLS without and with GE tordise (56).
To assess the performance of the proposed stencils, thdastHocal 5-node IRBF
stencil is also implemented. We conduct the calculationth wéveral uniform
grids, (7,9,---,37).

Figure 4 displays the solution accuracy and the matrix ¢mrdnumbers against
the grid sizeh. In terms of accuracy (Figure 4a), the solution convergesusmntly
asO(h'49) for local 5-node stencil, an@(h>4°), O(h%6) andO(h*16) for 5-node
CLS and 3-node CLS without and with GE, respectively. Thegachforms, even
for the case of 3-nodes, thus outperform the standard forsnnoides as indicated
by not only the norm error but also the convergence rate. dtheaalso seen that
3-node CLS with GE is more accurate than that without GE.rimseof the matrix
condition number (Figure 4b), the 5-node CLS and the stalsiamode stencil yield
similar values. It can be also seen that the inclusion ofdiesivatives in the IRBF
approximations, i.e 3-node CLSs, leads to higher conditiambers of the system
matrix.

Figure 5a shows a comparison of the accuracy between Imptatien 1 and Im-
plementation 2 for the case of 5-node CLS, indicating thal himplementations
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give similar levels of accuracy. However, Figure 5b shova tmplementation 2
yields better condition numbers than Implementation 1bably owing to the fact
that the final system matrix of the former is composed of equatderived from
the ODE only.

As mentioned earlier, the value Bfwould have a strong influence on the solution
accuracy. Since the exact solution to this problem is dvlaldt is straightforward
to obtain the optimal value @ (i.e. at whichNe(u) is minimum). Table 1 shows
results obtained by a fixed value and the optimal valy@ fofr three different grids.

It can be seen that using the optimal valugBddignificantly enhances the solution
accuracy.

5.2 Two-dimensional problems
5.2.1 Example 1

Consider the biharmonic problem with the source funcfiGny) = 64r* sin(2rx) sin(2my),
the domain of interest as<0x,y < 1 and boundary conditions of the Dirichlet type.
The exact solution is®(x,y) = sin(27mx) sin(2mny).

Figure 6 shows the behaviour of the solutiomusing the proposed 13-node CLS
(B = 18) with respect to the grid size Results obtained by the FD 13-node stencil
are also included for comparison purposes. The IRBF metimoplémentation 2)

is much more accurate and converges much faster than the FigiMré 6a). The
rate of convergence is 4.90 for the former and 1.99 for therdatOn the other
hand, the IRBF matrix has higher condition nhumbers but grslightly slower
than the FD matrix (Figure 6b). The rate of growth is 3.25 fee former and
3.97 for the latter. Figure 7 indicates that Implementafoslightly outperforms
Implementation 1 in terms of the matrix condition and accuraHowever, an
improvement in the matrix condition here is not as significas in the case of
1D problems.

Table 2 presents results by the proposed®node CLS for a fixed value and the
optimal value of3. It can be seen that the MQ width has more influence on the
solution accuracy than on the system matrix condition numlds noted that a
chosen fixed valu@ = 2.5 is the optimal value for the grid with= 1/50.

Table 3 shows the accuracy and matrix condition number ag#ia grid size by the
proposed 3 3-node CLS without and with GE. The solution converge®&s-36)

for the former andO(h388) for the latter. It can be seen that the incorporation
of nodal values of the governing equation into the approkitna results in an
accuracy improvement.
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5.2.2 Example 2

Among our proposed compact stencils, the®node CLS does not require special
treatments for interior nodes close to the boundary. Tleisciltis applied here to
obtain the structure of the steady-state lid-driven cailty in the streamfunction-
vorticity formulation

2 2
Wow owow_ 1 (P dw) &)
dy dx 0x dy Rel\ dxz = 9y?
%Y 9%y
—w= e ey (58)

whereReis the Reynolds numbeg) is the streamfunction ang is the vorticity.
One can compute the- andy— velocity components according to the following
definitions

= oy andv = —a—l‘u.

oy ox
The boundary conditions are prescribed in terms of the rsifii@action as

oy

u

$=0 —= =0 atx=0andx=] (59)
_o ¥ _ -

Y =0, oy 0 aty=Q (60)
_a 9 _ _

Y =0, y 1 aty=1 (61)

We employ several gridg21 x 21,31 x 31,--- ,111x 111), in the simulation of

the flow. A wide range oRe (0,100 400 1000 3200 5000), is considered and the
resultant nonlinear set of algebraic equations is solvaugube Picard iteration
scheme

6=a8®+(1-a)gkD, (62)

where the superscrik) is used to indicate the current iteratianjs the relaxation
S~ o 0P dY ¢

f <1 = (0, =——, =)T.

actor 0O<a <1)andf8 = (¢ e dy)

The flow is considered to reach a steady state when
\/Z (Bt - §<k—1))2
~ 2
/3 (%)

<10°°. (63)
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As shown in Section 4.3, the proposed formulation does riptire the derivation
of a computational boundary condition for the vorticity amadal values of the
velocity components are obtained directly from solvingfihal system.

The value off3 is chosen to be 20 for all simulations, while the valueoofs
employed in the range of 0.8 to 18 The higher the value dRethe smaller the
value ofa will be.

The profile of thex—component of the velocity vector along the vertical ceirieel
and of they—component along the horizontal centreline Re= 1000 using sev-
eral grids are demonstrated in Figure 8 and Figure 9, raspictTo provide the
base for assessment, results obtained by the multi-grid EBiNR, Ghia, and Shin
(1982)], which are widely cited in the literature, are irddal. It can be seen that a
convergence with grid refinement is obtained for both véyogpiofiles.

Tables 4 and 5 give a comparison of the extreme values of tloeitye profile
on the centrelines obtained by the proposed method, FDMaGhihia, and Shin
(1982)], FVM [Deng, Piquet, Queutey, and Visonneau (1994 the pseudo-
spectral method [Botella and Peyret (1998)]. It can be deatthe present results
are in better agreement with the benchmark spectral saltiian the others even
for ‘coarse’ grids, e.g. 5% 51 in the case oRe= 100 and 91x 91 in the case of
Re= 1000.

Results concerning the distribution of of the streamfiorctnd vorticity over the
flow domain are shown in Figures 10 and 11, respectively. Toely feasible in
comparison with those in literature (e.g. [Ghia, Ghia, ahth$1982); Botella and
Peyret (1998); Deng, Piquet, Queutey, and Visonneau (1094)

6 CONCLUDING REMARKS

This paper is concerned with the development of several eotipcal IRBF sten-
cils for solving fourth-order ODEs and PDEs. The IRBF appr&tions are ex-
pressed in terms of not only nodal values of the field variabtealso nodal values
of the ODE/PDE and, in some cases, of first derivative(s).latter is incorporated
through the conversion system with the help of the integnatbnstants. In the case
of 3x 3-node stencil, the resultant discretisation system istcocted through a set
of two second-order PDEs, but there is no need to derive agtatipnal boundary
condition for the intermediate variable and no requirenfenthe calculation of
cross derivatives explicitly. The proposed stencils arzassfully verified using
problems with analytic solution, showing that high ratecofivergence and high
levels of accuracy are obtained. For the lid-driven cavityvfla convergent so-
lution is obtained for higlRenumbers and the obtained results are in very good
agreement with the benchmark solutions.
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Table 1. ODE, 5-node CLS, 3-node CLS with GE and 3-node CL8awit GE: Relative, errors of the solutiom using
some fixed and the optimal values®for three grids.

5-node CLS 3-node CLS
Without GE With GE
h Fixed =24 OptimalB Fixed =77 Optimalp Fixed =10 Optimalp
Ne(u) B Neu) Ne(u) B Neu) Ne(u) B Neu)
1/20 6.30E-4 1.2 4.04E-4 3.46E-3 6 9.50E-4 1.60E-3 2.6 240E
1/50 1.59E-5 29.5 7.18E-6 5.85E-5 57 2.17E-5 2.31E-5 7 1B6E
1/70 6.39E-6 30.3 3.93E-7 8.22E-6 77 8.22E-6 2.97E-6 10 E®7
o(h*21) o(h*27) O(h*39)

N
N

SIIND 01 paniwgns 1duosnuely
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Table 2: PDE, Example 1,65-node CLS: Condition numbers of the system ma-
trix A and relativelL, errors of the solutiou using a fixed value and the optimal
value of 3 for several grids.

Fixedp = 2.5 Optimal
h Cond@) Neu) B Cond@) Neu)
1/10 6.15E+2 1.54E-3 1 6.12E+2 1.44E-3
1/20 9.52E+3 1.65E-4 6.2 1.21E+4 7.59E-5
1/30 4.79E+4 8.24E-5 6.4 5.54E+4 1.34E-5
1/40 1.51E+5 4.41E-5 5 1.85E+5 1.35E-5
1/50 3.69E+5 6.47E-6 25 3.69E+5 6.47E-6

O(h3‘04) O(h3‘34)
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Table 3: PDE, Example 1,:833-node CLS: relativé., errors of the solutiom for
several grids.

h  Without GE,8 =145  With GE, = 1656

1/10 1.71E-02 1.29E-02
1/20 3.70E-03 3.43E-03
1/30 1.29E-03 1.23E-03
1/40 4.32E-04 4.05E-04
1/50 4.35E-05 8.13E-06

O(h3‘36) O(h3'88)
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Table 4: PDE, Example ZRe= 100, B = 20: Extreme values of the velocity
profiles on the centerlines by the proposed method and $@tbea methods. It is
noted thai is the polynomial degree.

Reference Grid  Umax Vimax Vimin

Present 3k 31 0.21252 0.17675 -0.24908
Present 5k 51 0.21354 0.17863 -0.25221
Present 7k71 0.21378 0.17910 -0.25302
Present 9k 91 0.21386 0.17928 -0.25334
Present 11% 111 0.21390 0.17937 -0.25350
FVM 64x64 0.21315 0.17896 -0.25339
FDM 129%x 129 0.21090 0.17527 -0.24533

Pseudo-spectral N=96  0.21404 0.17957 -0.25380

FVM, FDM and Pseudo-spectral refer to finite volume, finitéfedence and
pseudo-spectral methods results in [Deng, Piquet, Queaneyisonneau (1994)],
[Ghia, Ghia, and Shin (1982)], and [Botella and Peyret (}p%8spectively.
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Table 5: PDE, Example Re= 1000, 3 = 20: Extreme values of the velocity
profiles on the centerlines by the proposed method and $@tbea methods. It is
noted thai is the polynomial degree.

Reference Grid  Umax Vimax Vinin

Present 3k 31 0.32684 0.30773 -0.42971
Present 5k 51 0.37061 0.35703 -0.50010
Present 7k 71 0.38056 0.36802 -0.51530
Present 9k 91 0.38411 0.37195 -0.52063
Present 11% 111 0.38573 0.37376 -0.52305
FVM 128x 128 0.38511 0.37369 -0.52280
FDM 129%x 129 0.38289 0.37095 -0.51550

Pseudo-spectral N=96  0.3885698 0.3796447 -0.5270771

FVM, FDM and Pseudo-spectral refer to finite volume, finitéfedence and
pseudo-spectral methods results in [Deng, Piquet, Queaneyisonneau (1994)],
[Ghia, Ghia, and Shin (1982)], and [Botella and Peyret (}p%8spectively.
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Figure 1: A problem domain and a typical discretisation. dreds square, circle
and plus are used to denote the boundary nodes, the intedesmext the bound-
ary and the remaining interior nodes, respectively.
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Figure 2: A schematic representation of the proposed5ode stencil associated
with node(i, j). Over the stencil, nodes are locally numbered for bottonofo t
and left to right, where 1% (i, j). Nodal values of the governing equation used as
extra information are placed on a diamond shape.
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Figure 3: A schematic representation of the proposed 1&-stehcil associated
with node(i, j). Over the stencil, nodes are locally numbered for bottoropaaind

left to right, where 7%= (i, j). Nodal values of the governing equation used as extra
information are placed on a diamond shape.
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Figure 4. ODE: Relativé., errors of the solutiomm and condition numbers of the
system matrix against the grid size by the proposed steawtdshe standard local
IRBF one. It is noted that we emplg¥=24 for local and compact local 5-node
stencils,3=34 for 3-node CLS without GE, arnfé&=5.6 for 3-node CLS with GE.
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Figure 5: ODE, 5-node CL$ = 24: The solution accuracy and matrix condition
number against the grid size by Implementation 1 and Impteatien 2.
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Figure 6: PDE , Example 1, 13-node CLS$,= 18: The solution accuracy and
matrix condition number against the grid size. Results leyRD 13-node stencil
are also included.
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Figure 7. PDE, Example 1, 13-node CLS,= 18: The solution accuracy and
matrix condition number against the grid size by Implemgotal and Implemen-
tation 2.
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Figure 8: PDE, Example Re= 1000: Profiles of th&—component of the velocity
vector along the vertical centerline for several grids. UResby the FDM Ghia,
Ghia, and Shin (1982) are also included.
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Figure 9: PDE, Example Be= 1000: Profiles of thg—component of the velocity
vector along the horizontal centerline for several gridssitts by the FDM Ghia,
Ghia, and Shin (1982) are also included.
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Figure 10: PDE, Example 2,°33-node CLS, a grid of 11% 111: Streamlines of
the flow at several Reynolds numbers. It can be seen that d&gowmortices are
clearly captured.
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Figure 11: PDE, Example 2,:33-node CLS, a grid of 11% 111: Iso-vorticity
lines of the flow at several Reynolds numbers.



