
polymers

Article

A Novel Synergistic Flame Retardant of
Hexaphenoxycyclotriphosphazene for Epoxy Resin

Jiawei Jiang 1,2, Siqi Huo 1 , Yi Zheng 1, Chengyun Yang 1, Hongqiang Yan 1,*, Shiya Ran 1,* and Zhengping Fang 1

����������
�������

Citation: Jiang, J.; Huo, S.; Zheng, Y.;

Yang, C.; Yan, H.; Ran, S.; Fang, Z. A

Novel Synergistic Flame Retardant of

Hexaphenoxycyclotriphosphazene

for Epoxy Resin. Polymers 2021, 13,

3648. https://doi.org/10.3390/

polym13213648

Academic Editor: Emin Bayraktar

Received: 28 September 2021

Accepted: 18 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Polymer Materials and Engineering, NingboTech University, Ningbo 315100, China;
714413862@163.com (J.J.); sqhuo@nbt.edu.cn (S.H.); zy13357018173zy@163.com (Y.Z.);
yangchengyun991007@163.com (C.Y.); zpfang@nbt.edu.cn (Z.F.)

2 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence: yanhongqiang@nbt.edu.cn (H.Y.); ranshiya@nbt.edu.cn (S.R.)

Abstract: Hexaphenoxycyclotriphosphazene (HPCP) is a common flame retardant for epoxy resin
(EP). To improve the thermostability and fire safety of HPCP-containing EP, we combined UiO66-NH2

(a kind of metal-organic frame, MOF) with halloysite nanotubes (HNTs) by hydrothermal reaction to
create a novel synergistic flame retardant (H-U) of HPCP for EP. For the EP containing HPCP and
H-U, the initial decomposition temperature (T5%) and the temperature of maximum decomposition
rate (Tmax) increased by 11 and 17 ◦C under nitrogen atmosphere compared with those of the EP
containing only HPCP. Meanwhile, the EP containing HPCP and H-U exhibited better tensile and
flexural properties due to the addition of rigid nanoparticles. Notably, the EP containing HPCP and
H-U reached a V-0 rating in UL-94 test and a limited oxygen index (LOI) of 35.2%. However, with the
introduction of H-U, the flame retardant performances of EP composites were weakened in the cone
calorimeter test, which was probably due to the decreased height of intumescent residual char.

Keywords: epoxy resin; Hexaphenoxycyclotriphosphazene; metal-organic frame; halloysite nan-
otubes; flame retardancy; mechanical properties

1. Introduction

Epoxy resin (EP), as a crucial thermoset polymer, and is extensively used in various
industries for its excellent mechanical properties, electrical insulation, adhesion strength
and chemical resistances [1–5]. Nevertheless, EP is inherently flammable due to its chemical
constitution, which may bring hidden danger to people’s life and property. Once ignited,
EP burns vigorously, and a lot of heat and smoke will be released. Thus, it is of great
significance to improve its flame retardancy [6–8]. Traditionally, halogen-based flame
retardants (FRs) have been widely applied for their high efficiency in improving the
flame retardancy of EP. However, EP with halogen-based, especially brominated FRs, may
produce poisonous smoke and toxic halogenated dibenzodioxins and dibenzofurans during
combustion [9,10]. In consideration of environmental problems, halogen-free FRs have
consequently attracted a lot of attention [11–13]. Among all halogen-free FRs, phosphorus-
containing FRs are considered as a promising candidate for EP due to their low toxicity
and high efficiency [14,15].

Among different kinds of phosphorous-containing FRs, cyclotriphousphazene and its
derivatives have been widely used in flame-retardant EP [16,17]. When used alone, they
usually promote the formation of an intumescent char layer during combustion. However,
the intumescent char layer is not compact enough, which may restrain further improvement
in flame retardant performance [18]. Halloysite nanotubes (HNTs, Al2(OH)4Si2O5·nH2O)
are one class of common clays with a unique hollow tubular structure in nature [19]. HNT
is characterized by its rich surface pore structure, high adsorption properties, large aspect
ratio, and outstanding mechanical properties and thermal stability, and thus it has been
widely used in drug carriers, nanocomposites, and biosensors [20–23]. Additionally, HNT
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is also applied as a flame retardant for different polymeric materials. As a rigid and
thermally stable nanoadditive, HNT can not only improve the mechanical strength and
modulus of the composite materials, but can also greatly enhance the thermal stability and
wear resistance [24,25]. However, HNT is often combined with other FRs, because HNT
only slows down the combustion process and cannot reduce the amount of combustible
materials. Therefore, it is better to use HNT as a synergistic FR of P-containing FRs [26].
Metal-organic framework (MOF) is a porous crystalline polymer formed by coordination
bonds between organic ligands and metal ions or ion clusters, which has the advantages
of high porosity, large specific surface area, easy functionalization and modification [27].
MOF has made good progress in the fields of biomedicine, electrode materials, gas storage
and separation, showing great application potential [28–31]. Meanwhile, MOF has also
been used as a flame retardant for different polymeric materials. For example, Sai et al.
reported that the porous structure of MOF can delay the time to ignition while the flame
retardant efficiency improve due to the charring or crosslinking reaction catalyzed by metal
element [32]. Hou et al. reported that the combination of the adsorption and catalytic effect
of P-MOF enhanced the fire safety of EP [33]. Zhang et al. modified MOF(UiO66-NH2) with
phytic acid, which led to the reinforced char with a strong barrier and a higher polyaromatic
structure for EP samples [34].

In this paper, we developed a novel flame-retardant nanomaterial (H-U) by combining
HNT with UiO66-NH2, which was used as a synergistic flame retardant for hexaphe-
noxycyclotriphosphazene (HPCP) in epoxy resin. The effects of H-U and HPCP on the
thermal stability, mechanical properties and flame retardancy of EP were studied in detail.
Additionally, the flame retardant mechanism was studied by different tests.

2. Materials and Methods
2.1. Materials

Diglycidyl ether of bisphenol A (DGEBA) with an epoxy value of 0.53 mol/100 g
was provided by Yueyang Baling Huaxing Petrochemical Co., Ltd. (Hunan, China). Hal-
loysite was purchased from Runwo Materials Technology Co., Ltd. (Guangzhou, China).
2-Aminoterephthalic Acid (BDC, 95%) and zirconium (IV) tetrachloride (ZrCl4, 98%) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Trichloromethane (CHCl3), toluene,
methanol, ethanol and N, N-dimethylformamide (DMF) were provided by Sinopharm
Chemical Reagent. Co. Ltd. (Shanghai, China). 3-Aminopropyltriethoxy silane (APTES)
and trimethylamine (TEA) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Hexaphenoxycyclotriphosphazene (HPCP, 98%) was purchased from Macklin Biochemical
Co., Ltd. (Shanghai, China).

2.2. Preparation of HNTs-UiO66 (H-U)

There are plentiful active groups on the surface of HNTs, and thus different kinds
of functional groups can be introduced. In this work, the carboxyl functionalized HNTs
(HNTs-COOH) were synthesized based on previous research [35]. Firstly, in a 500 mL
single-necked flask, 10 g HNTs were uniformly dispersed in 250 mL of toluene through
ultrasonic dispersion and magnetic stirring. Then, 10 mL of TEA and 20 mL of APTES were
added to the flask, and the mixture was stirred for 24 h at 80 ◦C under nitrogen atmosphere.
The APTES-modified HNTs (HNTs-NH2) were centrifuged and washed with deionized
water and ethanol. In addition, then, HNTs-NH2 was placed in a vacuum oven at 50 ◦C for
24 h. After that, 5 g HNTs-NH2 powder and 2 g succinic anhydride were added into 200 mL
DMF, and the mixture was stirred at 25 ◦C for 24 h. Similarly, the obtained HNTs-COOH
was washed with deionized water and ethanol, and the washed product was dried at 50 ◦C
under vacuum for 24 h. Afterwards, based on our previous work [36], 3.50 g ZrCl4 and
2.49 g BDC-NH2 were dissolved in 210 mL DMF with magnetic stirring for 30 min, and
then 1 g HNTs-COOH was added into mixture with continuous stirring for 15 min. The
obtained mixture was transferred to a high-pressure autoclave, and placed at 120 ◦C in
an oven for 24 h. The obtained product was centrifuged, and washed with DMF, CHCl3
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and methanol for several times, and finally dried at 120 ◦C under vacuum for 24 h. The
synthetic route of H−U is shown in Figure 1.
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Figure 1. The synthesis of H-U.

2.3. Fabrication of EP Thermosets

The fabrication process of EP thermosets was as follows. A certain amount of HPCP
and H-U were added to a 250 mL three-necked flask, and then 30 mL acetone was added,
followed by ultrasonically dispersing for 15 min. A certain amount of epoxy resin was
added to the flask and then the mixture was mechanically stirred at 120 ◦C for 2 h. After
that, 4, 4’-diaminodiphenylsulfone (DDS) was added to the mixture, and stirred for 15 min.
The obtained mixture was heated to 130 ◦C and defoamed under vacuum for 5 min. After
the bubbles were removed, the mixture was poured into a mold that was preheated at
130 ◦C in an oven. The mixture was cured at 130 ◦C for 2 h, 180 ◦C for 5 h and 200 ◦C
for 2 h, respectively. Finally, EP thermosets were obtained after naturally cooled to room
temperature. The formulas of epoxy thermosets are listed in Table 1.

Table 1. Formulas of EP and its composites.

Sample ID EP/wt% DDS/wt% H-U/wt% HPCP/wt%

EP/DDS 75.2 24.8 - -
EP/DDS/HPCP-9 68.4 22.6 - 9.0

EP/DDS/HPCP-8/H-U-1 68.4 22.6 1.0 8.0
EP/DDS/HPCP-7/H-U-2 68.4 22.6 2.0 7.0
EP/DDS/HPCP-6/H-U-3 68.4 22.6 3.0 6.0

2.4. Characterization and Measurements

The Fourier transform infrared spectra were obtained using a Vector-22 FTIR spec-
trophotometer (IR, Bruker, Karlsruhe, Germany). Thermal gravimetric analysis (TGA)
was carried out in N2 and air conditions at a heating rate of 20 ◦C/min from 30 to 800 ◦C
using a TGA analyzer (209 F1, Netzsch, selb, Germany). Differential scanning calorimetry
(DSC) was performed on a PerkinElmer DSC 4000 (PerkinElmer, Waltham, MA, USA) at
a heating rate of 10 ◦C/min under nitrogen. Dynamic mechanical analysis (DMA) was
carried out on a DMA Q800 apparatus (TA Instruments, New Castle, DE, USA) under
single cantilever bending mode at a heat-up rate of 3.00 ◦C/min from 30 to 250 ◦C. Me-
chanical properties were evaluated by a CMT6104 universal testing machine (MTS Systems
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Co., Ltd., Nanjing, China). The tensile test was conducted based on ASTM D638 by using
the dumbbell-shaped samples. Three-point flexural measurements were undertaken in
accordance with ASTM D790. Five specimens for each sample were used, and the av-
erage values were reported. Limiting oxide index (LOI) was recorded on a LOI tester
(HC-2, Jiangning Analyzer Instrument, Nanjing, China) according to GB2406-80, and the
dimension of samples was 130 mm × 6.5 mm × 3 mm. UL-94 vertical burning tests were
conducted using a vertical burning instrument (CZF-3, Jiangning Analyzer Instrument,
Nanjing, China) with specimen dimensions of 130 mm × 13 mm × 3 mm according to
ASTM D3801. Cone calorimeter tests were performed on a cone calorimeter (CONE,
Fire Testing Technology, East Grinstead, UK) according to ISO-5660. Square specimens
(100 mm × 100 mm × 3 mm) were irradiated at a heat flux of 35 kW/m2. Typically, three
specimens were needed for each sample, and the error of the obtained data was repro-
ducible within ±5%. The morphology of residual char after cone calorimeter test was
observed by a scanning electron microscope (SEM, S-4800, Hitachi, Japan). A transmission
electron microscope (TEM, JEOL, 1230, Akishima, Japan) was used to acquire detect the
phase morphology of epoxy composites. Thermogravimetric analysis/infrared spectrom-
etry (TGA-FTIR) was conducted using a TGA analyzer coupl ed with a Thermo Nicolet
IS10 FTIR spectroscopy (TGA, 209 F1, Netzsch, selb, Germany; Nicolet IS10 FTIR, Madison,
Wisconsin, USA) under N2 conditions at a heating rate of 20 ◦C/min from 30 to 800 ◦C.
About 6.00 mg sample was used.

3. Results and Discussion
3.1. Characterization of H-U

TEM images of HNTs, HNTs-COOH, UiO66-NH2, and H-U, and SEM images of HNTs-
COOH and H-U are presented at Figure 2. As shown in Figure 2a, the HNTs possessed a
unique hollow tubular structure with large length-diameter ratio. When modified with
-COOH, the surface of HNTs became rough, and the diameter was larger than that of the
unmodified HNTs. Unlike HNTs, the UiO-66-NH2 was an irregular sphere (see Figure 2d).
For the H-U in Figure 2f, the surface of the tube was covered with a layer of irregular
spheres, which illustrated that UiO66-NH2 had been successfully wrapped onto the surface
of the HNTs of H-U tube.
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FT-IR technique was also employed to characterize the structure change of nanoma-
terials, with the spectra shown in Figure 3. The absorption peaks at 3695 and 3623 cm−1

belonged to the stretching vibration of the hydroxyl groups of HNTs. The sharp absorp-
tion peak at 913 cm−1 was attributed to the hydroxyl group attached to the aluminum.
Additionally, there was an absorption peak of Si-O bond at 1033 cm−1. For HNT-NH2,
the stretching peaks of -NH2 groups appeared around 3451 cm−1. The carbonyl vibration
peaks of HNTs-COOH could be observed at 1542 and 1646 cm−1, respectively. For UiO66-
NH2, the broad band between 3374 and 3470 cm−1 demonstrated the presence of the -NH2
groups. The absorption peaks around 1256 and 1435 cm−1 were assigned to the absorption
peaks of C-N and N-H groups. The peaks located at 1388 and 1560 cm−1 were assigned to
the asymmetric and symmetric stretching vibrations of the -COO- connected with Zr4+,
respectively. Generally, H-U showed similar absorption peaks to UiO66-NH2. However, an
absorption peak of Si-O bond appeared at 1033 cm−1 in the FT-IR spectrum of H-U, further
indicating that UiO66-NH2 had been successfully grafted on the surface of HNTs.

Polymers 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

FT-IR technique was also employed to characterize the structure change of nano-

materials, with the spectra shown in Figure 3. The absorption peaks at 3695 and 3623 cm−1 

belonged to the stretching vibration of the hydroxyl groups of HNTs. The sharp absorp-

tion peak at 913 cm−1 was attributed to the hydroxyl group attached to the aluminum. 

Additionally, there was an absorption peak of Si-O bond at 1033 cm−1. For HNT-NH2, the 

stretching peaks of -NH2 groups appeared around 3451 cm−1. The carbonyl vibration peaks 

of HNTs-COOH could be observed at 1542 and 1646cm−1, respectively. For UiO66-NH2, 

the broad band between 3374 and 3470 cm−1 demonstrated the presence of the -NH2 

groups. The absorption peaks around 1256 and 1435 cm−1were assigned to the absorption 

peaks of C-N and N-H groups. The peaks located at 1388 and 1560 cm−1 were assigned to 

the asymmetric and symmetric stretching vibrations of the -COO- connected with Zr4+, 

respectively. Generally, H-U showed similar absorption peaks to UiO66-NH2. However, 

an absorption peak of Si-O bond appeared at 1033 cm−1 in the FT-IR spectrum of H-U, 

further indicating that UiO66-NH2 had been successfully grafted on the surface of HNTs. 
 

 

Figure 3. FT-IR spectra of HNTs, HNTs−NH2, HNTs−COOH, UiO66−NH2, H−U. 

3.2. Thermal Properties 

The glass transition temperature (Tg) of the cured epoxy resin is important infor-

mation for evaluating its thermal resistance, and thus DSC was applied to investigate the 

influence of H-U on the Tg of EP samples. As shown in Figure 4, the Tg value of pure 

EP/DDS was as high as 195 °C. With the introduction of 9.0 wt% HPCP, the Tg value of 

EP/DDS/HPCP−9 obviously reduced to 185 °C due to the plasticizing effect of HPCP. No-

tably, replacing part of HPCP with H−U contributed to increasing the Tg values of 

EP/DDS/HPCP/H−U samples. For instance, the EP/DDS/HPCP−6/H−U−3 sample exhib-

ited a Tg value of 192 °C, which was very close to that of EP/DDS sample. It was supposed 

that the incorporation of rigid H−U restricted the mobility of epoxy chains and thus in-

creased the Tg value of EP samples. 

Additionally, TGA test was also performed to further estimate the thermal stability 

of the cured epoxy resins. The TG and DTG curves of epoxy thermosets are shown in 

Figure 5. The initial decomposition temperature (temperature at 5% weight loss, T5%), 

Figure 3. FT-IR spectra of HNTs, HNTs-NH2, HNTs-COOH, UiO66-NH2, H-U.

3.2. Thermal Properties

The glass transition temperature (Tg) of the cured epoxy resin is important information
for evaluating its thermal resistance, and thus DSC was applied to investigate the influence
of H-U on the Tg of EP samples. As shown in Figure 4, the Tg value of pure EP/DDS was as
high as 195 ◦C. With the introduction of 9.0 wt% HPCP, the Tg value of EP/DDS/HPCP-9
obviously reduced to 185 ◦C due to the plasticizing effect of HPCP. Notably, replacing
part of HPCP with H-U contributed to increasing the Tg values of EP/DDS/HPCP/H-U
samples. For instance, the EP/DDS/HPCP-6/H-U-3 sample exhibited a Tg value of 192 ◦C,
which was very close to that of EP/DDS sample. It was supposed that the incorporation of
rigid H-U restricted the mobility of epoxy chains and thus increased the Tg value of EP
samples.

Additionally, TGA test was also performed to further estimate the thermal stability of
the cured epoxy resins. The TG and DTG curves of epoxy thermosets are shown in Figure 5.
The initial decomposition temperature (temperature at 5% weight loss, T5%), temperature
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of maximum decomposition rate (Tmax), maximum decomposition rate (Rmax) and char
residue at 800 ◦C (CY) are listed in Table 2.

In N2 conditions, the T5% and Tmax values of pure EP/DDS reached 391 ◦C and 433 ◦C,
respectively. The addition of HPCP reduced the T5% and Tmax values of EP/DDS/HPCP-9
sample due to the promoting decomposition effect of phosphorus-based compounds from
HPCP [16,37]. With the increasing loading level of H-U, the T5% values of the cured epoxy
resins gradually increased, indicating that the thermal stability was effectively remedied.
This can be explained as follows: firstly, the increase in T5% can be primarily attributed
to the decreased content of phosphorus; secondly, the interfacial reaction between HNTs
and EP matrix can also retard the decomposition at initial stage [38]. At high temperature,
inorganic particles can hinder the movement of polymer chain in the interface region
between polymer and inorganic phase [39]. Meanwhile, the presence of thermally stable
UiO66-NH2 particles can also improve the thermal resistance of EP composites [40]. For
Tmax, it showed a similar trend to the initial decomposition temperature. Additionally, as
shown in Table 2, the char yield of EP composite was obviously increased when 9 wt%
HPCP was added, indicating that HPCP effectively promoted the carbon formation of
epoxy matrix. After replacing 1 wt% HPCP with H-U, the char yield increased from 20.0%
to 21.5%. However, the further increase in H-U content decreased the char yield of EP
thermosets, and the char yield of EP/DDS/HPCP-6/H-U-3 sample was basically consistent
with that of EP/DDS/HPCP-9 sample.

In air conditions, the cured epoxy resins showed two degradation stages. The first
stage was due to the degradation of principal polymer networks, while the second one
was attributed to the oxidative degradation of formed char [41,42]. In the initial thermal
oxidation degradation stage, the presence of H-U promoted the thermal oxidative stability
of EP/DDS/HPCP composite. At elevated temperature, H-U also increased the char yield
of EP/DDS/HPCP/H-U composites.

Polymers 2021, 13, x FOR PEER REVIEW 6 of 15 
 

 

temperature of maximum decomposition rate (Tmax), maximum decomposition rate (Rmax) 

and char residue at 800 °C (CY) are listed in Table 2. 

In N2 conditions, the T5% and Tmax values of pure EP/DDS reached 391 °C and 433 °C, 

respectively. The addition of HPCP reduced the T5% and Tmax values of EP/DDS/HPCP−9 

sample due to the promoting decomposition effect of phosphorus-based compounds from 

HPCP [16,37]. With the increasing loading level of H−U, the T5% values of the cured epoxy 

resins gradually increased, indicating that the thermal stability was effectively remedied. 

This can be explained as follows: firstly, the increase in T5% can be primarily attributed to 

the decreased content of phosphorus; secondly, the interfacial reaction between HNTs and 

EP matrix can also retard the decomposition at initial stage [38].At high temperature, in-

organic particles can hinder the movement of polymer chain in the interface region be-

tween polymer and inorganic phase [39]. Meanwhile, the presence of thermally stable 

UiO66−NH2 particles can also improve the thermal resistance of EP composites [40]. For 

Tmax, it showed a similar trend to the initial decomposition temperature. Additionally, as 

shown in Table 2, the char yield of EP composite was obviously increased when 9 wt% 

HPCP was added, indicating that HPCP effectively promoted the carbon formation of 

epoxy matrix. After replacing 1 wt% HPCP with H−U, the char yield increased from 20.0 

% to 21.5 %. However, the further increase in H-U content decreased the char yield of EP 

thermosets, and the char yield of EP/DDS/HPCP−6/H−U−3 sample was basically con-

sistent with that of EP/DDS/HPCP−9 sample. 

In air conditions, the cured epoxy resins showed two degradation stages. The first 

stage was due to the degradation of principal polymer networks, while the second one 

was attributed to the oxidative degradation of formed char [41,42]. In the initial thermal 

oxidation degradation stage, the presence of H−U promoted the thermal oxidative stabil-

ity of EP/DDS/HPCP composite. At elevated temperature, H−U also increased the char 

yield of EP/DDS/HPCP/H−U composites. 

 

Figure 4. Tgs of EP and its composites obtained by DSC. Figure 4. Tgs of EP and its composites obtained by DSC.



Polymers 2021, 13, 3648 7 of 15
Polymers 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 5. TG and DTG plots of EP samples, H−U and HPCP in N2 (a,c) and air (b,d) conditions. 

Table 2. TGA results of EP and its composites. 

Atmosphere. Sample 
T5% 

(°C) 

Tmax1 

(°C) 

Rmax1 

(%/min) 

Tmax1 

(°C) 

Rmax2 

(%/min) 

CY 

(%) 

N2 

EP/DDS 391 433 29.5 - - 14.8 

EP/DDS/HPCP−9 339 399 20.7 - - 20.0 

EP/DDS/HPCP-8/H−U−1 341 403 19.0 - - 21.5 

EP/DDS/HPCP-7/H−U−2 348 406 23.8 - - 20.8 

EP/DDS/HPCP-6/H−U−3 350 416 21.9 - - 19.6 

HPCP 362 431 36.6 - - 1.6 

H−U 147 538 1.8 - - 63.9 

Air 

EP/DDS 306 338 7.2 537 9.3 0.3 

EP/DDS/HPCP−9 295 330 11.0 540 10.5 1.8 

EP/DDS/HPCP-8/H−U−1 302 332 9.9 539 10.0 3.0 

EP/DDS/HPCP-7/H−U−2 308 338 10.6 550 10.1 2.3 

EP/DDS/HPCP-6/H−U−3 306 339 11.3 542 10.3 2.3 

HPCP 332 415 30.1 - - 0 

H−U 106 468 5.1 - - 49.4 

  

Figure 5. TG and DTG plots of EP samples, H-U and HPCP in N2 (a,c) and air (b,d) conditions.

Table 2. TGA results of EP and its composites.

Atmosphere. Sample T5%
(◦C)

Tmax1
(◦C)

Rmax1
(%/min)

Tmax1
(◦C)

Rmax2
(%/min)

CY
(%)

N2

EP/DDS 391 433 29.5 - - 14.8
EP/DDS/HPCP−9 339 399 20.7 - - 20.0

EP/DDS/HPCP-8/H−U−1 341 403 19.0 - - 21.5
EP/DDS/HPCP-7/H−U−2 348 406 23.8 - - 20.8
EP/DDS/HPCP-6/H−U−3 350 416 21.9 - - 19.6

HPCP 362 431 36.6 - - 1.6
H−U 147 538 1.8 - - 63.9

Air

EP/DDS 306 338 7.2 537 9.3 0.3
EP/DDS/HPCP−9 295 330 11.0 540 10.5 1.8

EP/DDS/HPCP-8/H−U−1 302 332 9.9 539 10.0 3.0
EP/DDS/HPCP-7/H−U−2 308 338 10.6 550 10.1 2.3
EP/DDS/HPCP-6/H−U−3 306 339 11.3 542 10.3 2.3

HPCP 332 415 30.1 - - 0
H−U 106 468 5.1 - - 49.4
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3.3. Mechanical Properties

The DMA test was conducted to study the dynamic mechanical properties of the
cured epoxy resins, and the curves of storage modulus (E′) and tan delta (Tanδ) versus
temperature are shown in Figure 6. Storage modulus is an important parameter to evaluate
the rigidity of materials. As shown in Figure 6, the E′ of epoxy thermoset at 30 ◦C was
significantly reduced after the addition of HPCP. With the addition of H-U, the E′ at 30 ◦C
was increased. For instance, the E′ of EP/DDS/HPCP-6/H-U-3 sample reached 2652 MPa,
which was little higher than that of pure EP/DDS sample. It was inferred that HNTs, as
a rigid nanotube, increased the rigidity of EP thermoset through the interface reaction
between HNTs and matrix [39]. Meanwhile, the amine groups on the surface of H-U might
also react with the epoxide groups during curing process, thus promoting the interfacial
strength [34]. In addition, the temperature corresponding to the peak value of the tan delta
curve is the glass transition temperature (Tg). Similar to E′, the Tg value of EP/DDS/HPCP-
9 sample was lower than that of EP/DDS sample. With the addition of H-U, the Tg was
almost unchanged, which may be assigned to two competitive factors: the rigid-phase
reinforcement and destroying of the epoxy network structure [43–45].

Additionally, the tensile and flexural properties of EP thermosets were also tested to
further study the effect of H-U on mechanical properties of the cured epoxy resins, and the
data is shown in Table 3. Apparently, the tensile and flexural strengths of EP thermosets
were reduced when adding 9 wt% HPCP, indicating the negative effect of HPCP on the
mechanical properties of EP thermosets. However, when a part of HPCP was replaced
by H-U, the mechanical properties were improved. Especially for EP/DDS/HPCP-7/H-
U-2 sample, the tensile and flexural strengths were 68.75 MPa and 108.01 MPa, which
were fairly close to those of EP/DDS sample. On the other hand, the elastic and flexural
moduli were continuously increased with the increasing content of H-U. In this study,
UiO66-NH2 was covalently bonded with HNTs to improve the compatibility between EP
and nanoparticles [46]. As shown in Figure 7, H-U was uniformly dispersed in the epoxy
matrix. As a result, EP/DDS/HPCP/H-U samples exhibited better mechanical properties
in comparison with EP/DDS/HPCP-9 sample, indicating that H-U, as a synergist of HPCP,
owned its practical significance.

Table 3. Mechanical properties of EP thermosets.

Sample Tensile Strength
(MPa)

Elastic Modulus
(MPa)

Flexural Strength
(MPa)

Flexural Modulus
(MPa)

E′

(MPa)
Tg

(◦C)

EP/DDS 71.2 ± 5.3 213 ± 100 109.0 ± 1.9 2932 ± 104 2642 225
EP/DDS/HPCP−9 58.6 ± 8.4 213 ± 71 91.5 ± 4.6 3124 ±143 2352 206

EP/DDS/HPCP−8/H−U−1 62.4 ± 2.4 281 ± 128 107.5 ± 2.8 3164 ± 107 2450 204
EP/DDS/HPCP−7/H−U−2 68.8 ± 7.5 343 ± 120 108.0 ± 5.0 2779 ± 120 2525 205
EP/DDS/HPCP−6/H−U−3 60.2 ± 2.1 514 ± 101 111.1 ± 6.6 3124 ± 115 2652 204

3.4. Flame Retardant Performance

To study the synergistic flame retardant effect of HPCP and H-U, limiting oxygen
index (LOI), UL-94 vertical burning and cone calorimeter tests were conducted. The
corresponding data are presented in Table 4. Pure EP burned vigorously in air, and it
suffered a low LOI value of 24.5% and could not pass any rating in the UL-94 vertical
burning test. For the EP/DDS/HPCP-9 sample, it could not self-extinguish after the flame
was removed in the UL-94 test, and thus its UL-94 rating was only NR. However, the
LOI value of EP/DDS/HPCP-9 increased to 28.4%. This phenomenon can be assigned
to the intumescent char layer immediately formed after ignition, which can suppress
the combustion to some extent, but the layer was not dense enough to inhibit further
combustion. With the increasing content of H-U, the LOI values and UL-94 ratings were
significantly improved despite the decreasing content of HPCP. For EP/DDS/HPCP-6/H-
U-3, its LOI reached up to 35.2%, UL-94 rating increased to V-0, and it showed good
self-extinguishing performance, indicating the flame retardant effect of H-U. Digital images
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of EP/DDS/HPCP-9 and EP/DDS/HPCP−6/H−U−3 samples after UL-94 tests are shown
in Figure 8. After the addition of H-U, the thermal resistance of EP nanocomposites was
improved (as described in Section 3.2), and thus the nanocomposites were easier to self-
extinguish after being ignited. Meanwhile, the denser residual char was formed with the
introduction of H-U, which prevented the transfer of heat and mass. This may be the reason
that EP/DDS/HPCP/H-U samples performed better than EP/DDS/HPCP-9 sample in
LOI and UL-94 tests.
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Additionally, a cone calorimeter test was also performed to assess the flammability
of polymers. The experimental results are listed in Figure 9 and Table 4. Similar to TG
results, the TTI of EP/DDS/HPCP-9 sample was reduced due to the catalytic effect of
phosphorus-based compounds. With the addition of H-U, the TTIs of EP/DDS/HPCP/H-
U samples increased. In addition, incorporating HPCP reduced the pHRR and THR
from 942 kW/m2 and 84.4 MJ/m2 of EP/DDS sample to 481 kW/m2 and 41.7 MJ/m2,
respectively. Such notable reductions may be due to the protection effect of intumescent
char layer formed by HPCP under long-term thermal radiation. However, with the addition
of H-U, the height of the char layer decreased significantly, as shown in Figure 10. The
decrease in the height of the intumescent char layer resulted in the weakening of heat
insulation and smoke suppression. Hence, the pHRR and THR of EP/DDS/HPCP/H-U
samples increased to some extent. The phosphorus-based fragments produced by HPCP
can promote the formation of stable intumescent char layer on the surface of epoxy matrix.
Under the circumstance of constant heat, such stable intumescent layer can reduce the
radiation of heat to the matrix, suppress the decomposition of the matrix and the release of
flammable gases. As a result, the heat release was reduced during the combustion process.
However, the thickness of the layer decreased with the introduction of H-U. Hence, the
flame retardant effect of the char in the condensed phase was weakened. Likewise, the
SPR and TSR values were also increased due to the decreased thickness of char layer. In
sum, the introduction of H-U can enhance the performances of EP/DDS/HPCP sample in
LOI and UL-94 tests due to its promotion effect in improving the char density, but under
constant heat radiation, introducing H-U reduced the height of char, which weakened the
flame retardancy and smoke suppression of EP samples.

Table 4. Combustion data of EP samples.

Sample LOI
(%)

UL-94 TTI
(s)

pHRR
(kW/m2)

THR
(MJ/m2)t1 (s) t2 (s) Rating

EP/DDS 24.5 80 - NR 100 942 84.4
EP/DDS/HPCP−9 28.4 - - NR 80 481 40.7

EP/DDS/HPCP−8/H−U−1 31.6 7 12 V-1 82 604 44.2
EP/DDS/HPCP−7/H−U−2 33.7 11 8 V-1 81 586 64.9
EP/DDS/HPCP−6/H−U−3 35.2 3 3 V-0 92 658 51.3
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3.5. Flame Retardant Mechanism

TG-IR under N2 conditions was conducted to detect the evolution of volatilized prod-
ucts for EP samples during thermal degradation. The TG-IR spectra of gas products of
EP thermosets are shown in Figures 11 and 12. As presented in Figures 11 and 12, both
EP/DDS/HPCP-9 and EP/DDS/HPCP-6/H-U-3 showed similar characteristic peaks at
3720–3860 cm−1 (O-H), 2020–2230 cm−1 (carbon monoxide), 1730 cm−1 (C-O), 1530 cm−1

(benzene), and 1160 cm−1 (aliphatic compounds). Figure 12a showed total absorbance
of decomposition products of EP composites. Obviously, the total absorbance of decom-
position products of EP/DDS reached a maximum while that of EP/DDS/HPCP-9 was
on the lowest level. Additionally, the absorbance of aliphatic compounds at 1160 cm−1

and hydrocarbons at 2970 cm−1 of EP/DDS/HPCP-6/H-U-3 were higher than that of
EP/DDS/HPCP-9. This phenomenon indicates that the introduction of H-U leads to a
worse carbon promotion effect, which matches the previous test results.

The morphology and chemical composition of the char residues after cone calorimeter
tests were analyzed to study the flame retardant effect in condensed phase by SEM. As
presented in Figure 13a, the char residue of pure EP/DDS was loose, with lots of pore
spaces, indicating that pure EP thermosets cannot form continuous and stable char during
combustion. In terms of EP/DDS/HPCP-9, the char residue was much denser due to
the introduction of P-containing flame retardant, which is conducive to heat and oxygen
isolation and combustible gas suppression. Noticeably, for EP/DDS/HPCP-6/H-U-3, the
char residue was compact and continuous. These results indicate that H-U can effectively
promote the carbon formation of epoxy resin during combustion, thus endowing the epoxy
resin with good flame retardancy. The EDS spectra showed that the carbon was the major
component of char residues. In addition, a lot of P elements appeared in the char residue
of EP/DDS/HPCP-9, indicating that the catalytic charring effect of P-containing groups
in the condensed phase. For EP/DDS/HPCP-6/H-U-3, the char residues contained Zr
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(4.69%) and Al (1.11%) elements, which suggested that the presence of Al and Zr might be
responsible for catalyzing the formation of denser char layers.
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In this study, H-U was synthesized via hydrothermal reaction by combining UiO66-
NH2 with HNT-COOH, which was used as a novel synergistic flame retardant of HPCP for
EP. The introduction of H-U can effectively improve the thermostability, tensile and fluxural
properties. Additionally, due to improved thermal resistance and the formation of a dense
char, EP/DDS/HPCP-6/H-U-3 reached a V-0 rating in UL-94 test and achieved a limited
oxygen index of 35.2%. However, the height of the char layer of the EP/DDS/HPCP/H-U
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