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Abstract
Background Monkeypox is a viral disease caused by the monkeypox virus (MPV). A surge 
in monkeypox infection has been reported since early May 2022, and the outbreak has been 
classified as a global health emergency as the situation continues to worsen. Early and 
accurate detection of the disease is required to control its spread. Machine learning meth-
ods offer fast and accurate detection of COVID-19 from chest X-rays, and chest computed 
tomography (CT) images. Likewise, computer vision techniques can automatically detect 
monkeypoxes from digital images, videos, and other inputs.
Objectives In this paper, we propose an automated monkeypox detection model as the first 
step toward controlling its global spread.
Materials and method A new dataset comprising 910 open-source images classified into 
five categories (healthy, monkeypox, chickenpox, smallpox, and zoster zona) was created. 
A new deep feature engineering architecture was proposed, which contained the following 
components: (i) multiple nested patch division, (ii) deep feature extraction, (iii) multiple 
feature selection by deploying neighborhood component analysis (NCA), Chi2, and Reli-
efF selectors, (iv) classification using SVM with 10-fold cross-validation, (v) voted results 
generation by deploying iterative hard majority voting (IHMV) and (vi) selection of the 
best vector by a greedy algorithm.
Results Our proposal attained a 91.87% classification accuracy on the collected dataset. 
This is the best result of our presented framework, which was automatically selected from 
70 generated results.
Conclusions The computed classification results and findings demonstrated that monkey-
pox could be successfully detected using our proposed automated model.

Keywords MNPDenseNet · Monkeypox detection · Image processing · Biomedical 
engineering
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1 Introduction

Poxviruses are complex viruses with large double-stranded deoxyribose nucleic acid 
(DNA), and they cause disease in humans and many other types of animals [1]. Pox-
viruses are from the family Poxviridae, where the latter is subdivided into two differ-
ent subfamilies: Chondropoxvirinae (poxviruses of vertebrates) and Entomopoxvirinae 
(poxviruses of insects) [2, 3]. In the subfamily Chondropoxvirinae, the orthopoxvi-
ruses genus that has infected humans include variola (smallpox) [4], monkeypox, and 
cowpox [1]. Smallpox was eradicated globally in 1979, while human cases of monkey-
pox and cowpox are still being reported to this day.

The rising number of monkeypox cases reported in countries where the disease is 
not endemic has alerted the global medical community. The disease is now considered 
of global public health importance as it spreads worldwide [5, 6]. The symptoms of 
monkeypox often include fever and rash, similar to smallpox [7]. These similarities are 
important for our diagnostic study.

Monkeypox, as the name implies, was a viral disease known at one time only to 
occur in monkeys [5, 6]. However, the disease was first identified in humans in 1970 
in the Democratic Republic of Congo [8, 9]. Since then, monkeypox outbreaks have 
mostly been confined to countries in West and Central Africa, such as Nigeria, the 
Central African Republic, Liberia, Sierra Leone, and Cameroon. The first outbreak of 
monkeypox outside of Africa was in the USA in 2003. In 2022, multiple cases of mon-
keypox have been identified in several regions of the world, including non-endemic 
countries.

The monkeypox virus is spread through physical contact with the blood, bodily 
fluid, or lesion material from infected individuals or contaminated materials. Hence, 
maintaining good personal hygiene such as frequent washing of hands with soap and 
water, regular washing of clothes and social distancing can prevent disease transmis-
sion. Besides human-to-human transmission, animal-to-human transmission may also 
occur by a bite or scratch from an infected animal, eating the uncooked meat of an 
infected animal, or handling infected animals [10].

There are no proven treatments or vaccines for monkeypox infection but the effec-
tiveness of two doses of the Jynneos vaccine is about 87% [11]. However, studies on 
the smallpox vaccine have shown it to provide some protection against other orthopox 
virus varieties, including monkeypox. In addition, approximately 85% of individuals 
previously vaccinated against smallpox were found to be resistant to the monkeypox 
virus [12, 13].

Computer vision models are very useful due to their high classification perfor-
mances [14, 15]. Especially, patch-based models, for instance, vision transform-
ers (ViT) [16], multilayer perceptron mixer (MLP-mixer) [17], and ConvMixer [18] 
have attained high classification performances. Several biomedical image classifica-
tion models have been proposed which have significant advantages. In the COVID-
19 pandemic, variable computer vision-based COVID-19 detection models have been 
proposed. We have proposed a new framework to detect monkeypox disorder using 
images in this research. Moreover, our main objective is to handle the time complexity 
problem of the fixed-sized patches-based feature extraction problems, since the opti-
mal size of the used patches is a nondeterministic polynomial problem. Thus, we have 
used nested patches, as discussed following.
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1.1  Literature Review

Skin image classification is one of the most popular topics in machine learning. Especially 
advances in artificial intelligence and image-based diagnosis and detection approaches 
offer important solutions in the field of healthcare. Table  1 summarizes the studies on 
machine learning-based classification of poxviruses.

Ahsan et  al. [19] collected the data for their research from Google. They performed 
two tests. The first test compares monkeypox and chickenpox. In the second test, monk-
eypox and others were compared. In this test, monkeypox data was subjected to data aug-
mentation. Sitaula and Shahi [20], tested the data collected by Ahsan et al. [19]. Sitaula 
and Shahi combined 13 pre-trained deep network architectures using majority voting and 
obtained an ensemble model. Islam et  al. [22] created their dataset consisting of a total 
of 804 images and 6 classes. In the test process, they applied the 5-fold CV strategy and 
achieved an average classification success of 83%. Sahin et al. [23] used an open-access 
dataset and applied binary classification. Abdelhamid et al. [25] performed binary classifi-
cation with this method and achieved a classification success rate of over 98%. Bala et al. 
[26] created their own dataset with four classes. They tested this dataset with the hold-out 
CV method and obtained 98.91% accuracy in the test process with the augmented method. 
Ozsahin et  al. [27] performed binary classification with a self-designed CNN. Yasmin 
et al. [28] classified monkeypox and others using an open-access dataset. In the research, 
they used their self-designed CNN method and increased the data with data augmentation 
method. As a result of this process, it achieved 100% classification success.

1.2  Motivation and our model

Machine learning and deep learning methods are useful in assisting researchers and medical 
professionals in the diagnosis and detection of COVID-19 cases [29–31]. Hence, we believe 
these methods could similarly be applied to monkeypox detection. In this paper, we propose 
to use machine learning for fast and accurate detection of monkeypoxes from imagery.

The dataset contains images of healthy skin and images from 4 different viral diseases that 
cause rash and blisters (monkeypox, chickenpox, smallpox, and zoster zona) obtained from 
the public database. In this work, we have proposed a novel deep feature engineering model 
to discern these classes automatically. Our model uses multiple nested patches of different 
initial sizes (14 × 14, 16 × 16, 28 × 28, 32 × 32, 56 × 56, and 112 × 112). The two deep 
learning features used (these are obtained from pretrained DenseNet201) are global average 
pooling and fully connected layers. Using six patch types and two feature extraction func-
tions, 12 (= 6 × 2) feature vectors of various sizes are extracted. Applying three selectors and 
SVM, 36 (= 12 × 3) predicted vectors are used as input of the IHMV. The IHMV then gener-
ates 34 (= 36 - 2) voted predicted vectors and the predicted vector with the highest accuracy.

1.3  Contributions and novelties

The novelty and contributions of this research are given below.

• Use of a new image dataset of four viral diseases that cause rash and/or blisters (monk-
eypox, chickenpox, smallpox, and zoster zona).

• A novel monkeypox image classification model is developed using a deep feature engi-
neering model.
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• A new multiple-patch division model is being proposed.
• We have also proposed a self-organized framework that automatically selects the best-

performing model.

2  Materials and Methods

2.1  Dataset

Nine hundred and ten skin images were collected from the web and classified into five 
categories. The categories are (i) monkeypox, (ii) chickenpox, (iii) smallpox, (iv) healthy, 
and (v) zoster zona. Skin images of smallpox, chicken pox, and zoster zona were included 
because these diseases cause similar skin afflictions (rash and/or blisters) to monkeypox. 
The collected images were stored as JPG and PNG and were of various sizes. The number 
of images in each category is tabulated in Table 2.

Representative skin images from each category are shown in Fig. 1.

2.2  Proposed image classification model

In this work, we have proposed deep feature engineering, with the feature extraction capa-
bility of the patch-based models. For a lightweight model, DenseNet201 [32], a popular 
pretrained CNN [33], was deployed. Global average pooling and fully connected layers of 
this CNN were used to extract deep features. Six nested patch divisions were utilized to 
evaluate the features and to find the most appropriate patch size. Three commonly used fea-
ture selection functions were used: NCA [34], Chi2 [35], and ReliefF [36]. From this, 36 
transfer learning-based feature engineering models were obtained and classified by deploy-
ing an SVM [37, 38] classifier. IHMV was employed to obtain voted results, with the best 
result chosen using a greedy algorithm. Since this model is implemented with variable-
sized nested patch divisions and DenseNet201 for image classification, we have named it 
MNPDenseNet, where the MNP stands for multiple nested patches. The block diagram of 
the proposed MNPDenseNet model is depicted in Fig. 2.

The schematic in Fig. 2 demonstrates that our proposed MNPDenseNet is a self-organized 
architecture, and it can automatically select the best result from the generated 70 predicted vec-
tors. As shown in Fig. 2, an end-to-end training approach was not used in this research. Instead, 
the DenseNet-201 architecture was chosen as the feature extractor. In this way, the network 
was not retrained and the weights of the network were not computed. In the model, the image 
was first divided into 6 patches and two separate feature vectors were obtained for each patch 
using 2 layers of the DenseNet-201 architecture. In this way, 12 feature vectors were obtained. 
The ensemble feature selection approach is used in the model. We favored 3 different feature 

Table 2  Number of images in 
each category of the skin dataset

Number Category Number of images

1 Monkeypox 217
2 Chickenpox 127
3 Smallpox 151
4 Healthy 195
5 Zoster Zona 220
Total 910
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Fig. 1  Representative images of the collected dataset: (a) Monkeypox, (b) Chickenpox, (c), Smallpox (d) 
Healthy, (e) Zoster zona

Fig. 2  Block diagram of proposed MNPDenseNet model with input imaged dataset
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selectors. These are NCA, Chi2, and ReliefF, respectively. A total of 36 (=3 feature selectors x 
12 feature vectors) selected feature vectors were obtained from each feature vector using these 
feature selectors. In the classification phase of the model, the 36 selected feature vectors were 
separately classified using the SVM algorithm, resulting in 36 classification results. These 
results are the prediction vectors. In the final stage of the model, the results of these predic-
tion vectors were combined using the IHMV algorithm and the best classification result was 
obtained using the Greedy algorithm. The MNPDenseNet architecture contains six layers. 
which are:

 (i) preprocessing,
 (ii) feature extraction,
 (iii) feature selection,
 (iv) classification,
 (v) majority voting, and
 (vi) selection of best result.

The details of these six layers are explained below.

Preprocessing: The multiple nested patch (MNP) division was applied to the original 
image. The original image was first converted to a 224 × 224 dimension before six 
nested patch divisions (14 × 14, 16 × 16, 28 × 28, 32 × 32, 56 × 56, and 112 × 112) 
were used to create six patch categories. These patch categories were then entered into 
the pretrained DenseNet201. The pseudocode of our MNP-based preprocessing layer is 
depicted in Algorithm 1.

Input: Skin image ( )

Output: Patch categories ( )

00: Load .

01: Resize to 224 × 224 sized images.

02: = {14,16,28,32,56,112} // defines patch array.

03: = 112;

04: for i=1 to 6 do

05:      =
( )

; // Herein, defines increasing value.

06:      = 1; // defines counter.

07:      for j=1 to 
( )

do

08:           = ( − + 1: + , − + 1: + )

// In Line 08, nested patch division has been given, and defines the patch category.

09:           = + 1;

10:      end for j
11: end for i

Algorithm 1.  The proposed MNP-based preprocessing method
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By using these six sizes (initial sizes are 14 × 14, 16 × 16, 28 × 28, 32 × 32, 56 × 56, and 112 
× 112), six patch categories resulted, which contain 16, 14, 8, 7, 4, and 2 non-fixed sized patches, 
respectively. By deploying these patches, feature extraction based on pretrained DenseNet201 
has been processed. In this section, the first step of the proposed architecture has been given.

Step 1: Apply Algorithm 1 to images for creating patches

In this phase, facial areas of images are segmented and the cropped/segmented images 
are converted to grayscale images. The obtained grayscale images are resized into 224 × 
224-dimensional images.

Feature extraction: We used two layers of a pretrained network to extract deep features, 
and incorporated a pretrained DenseNet201 as a feature extractor. The DenseNet201 was 
trained on ImageNet1K [33]. We used DenseNet201 feed-forwarded, and we did not use 
the Softmax layer. Outputs of two layers have been utilized as feature vectors: global aver-
age pooling (GAP) and fully connected (FC) layers. By using the GAP layer, 1,920 features 
have been extracted from the GAP layer, and 1,000 features have been extracted from the FC 
layer. By using two layers, two deep feature extractors have been obtained from pretrained 
DenseNet201. The GAP layer calculates the average value for each channel, summarizing 
the features of the image, and capturing general patterns and characteristics in the images, 
such as the type and prevalence of objects or patterns. These features are then processed 
by the FC layer, which is responsible for further refinement and classification, with each of 
the 1,000 features being essential for accurate image classification tasks, representing spe-
cific classes or object types. These features play a fundamental role in our deep learning 
model, enabling it to learn from the data, recognize important patterns, and accurately clas-
sify images. They serve as critical information for the success of image classification tasks. 
The graphical outline of the DenseNet201-based feature extractors is summarized in Fig. 3.

Step 2: Extract features from the created patches in the preprocessing layer by deploying 
the FC layer of the pretrained DenseNet201.

In this step, features are extracted from the created patches using the Fully Connected 
(FC) layer of the pretrained DenseNet201. This layer, represented by c , acts as a feature 
extractor and is defined as the function dfc(.) . It generates 1,000 features from each patch. 
The notation ck

j
 represents the feature vector extracted from the FC layer for the patch pk

j
 , 

where k varies from 1 to 6, j varies from 1 to n and n can take on values 16, 14, 8, 7, 4, or 2.

Step 3: Apply the GAP layer of the pretrained DenseNet201 to the generated patches.

In this step, the generated patches are further processed by applying the Global Aver-
age Pooling (GAP) layer of the pretrained DenseNet201. The features extracted through 
this process are denoted as gk

j
 . Each gk

j
 feature vector has a length of 1,920, and dgap(.) 

represents the function used for GAP-based feature extraction.

(1)ck
j
= dfc

(

pk
j

)

, k ∈ {1, 2,… , 6}, j ∈ {1, 2,… , n}, n ∈ {16, 14, 8, 7, 4, 2}

(2)gk
j
= dgap

(

pk
j

)
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Step 4: Create features using the concatenation function.

In the final step, features are created by concatenating the feature vectors obtained from 
the FC layer and the GAP layer. There are two sets of features created: F2k−1 and F2k . These 
merged feature vectors are represented by F . The function concat(.) is used for concatena-
tion. Altogether, a total of 12 feature vectors are generated through this process.

Feature selection: We used three common feature selection functions: neighborhood 
component analysis (NCA), Chi2, and ReliefF feature selectors to investigate the feature 
selection abilities. The brief explanations of these selectors are given below.
NCA: It is a distance-based feature selection function. Therefore, it is named the feature selec-
tion version of the kNN classifier. It uses L1-norm distance (Manhattan distance) and stochas-
tic gradient descent optimizer to compute the weights of the features, and these features are 
non-negative features. By using the computed weights, features have been qualified [34].
Chi2: It is a statistical-based feature selector, and indices of the sorted weights have 
been used for a Chi2 statistical function. The Chi2 selector is one of the fastest fea-
ture selectors described in the literature. Thus, we used the Chi2 feature selection 
function in our architecture [35].
ReliefF is a developed version of the Relief feature selection function and generates 
weights like NCA, but ReliefF generates both positive and negative weights. Nega-
tive weighted features are redundant features, according to ReliefF. Therefore, the 
best features have been selected by sorting the generated weights [39].

We employed these functions in the feature selection phase, where feature vectors 
were generated using DenseNet-201. The primary goal was to reduce the dimensionality 
of the feature vectors, subsequently lowering computational complexity.

(3)F2k−1 = concat
(

ck
1
, ck

2
,… , ck

n

)

(4)F2k = concat
(

f k
1
, f k
2
,… , f k

n

)

Fig. 3  Outline of the 
DenseNet201-based feature 
extractors using GAP and FC 
layers. Herein, transition layers 
have been denoted using Trans 
Layer and maximum pooling is 
demonstrated using Max Pooling
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• NCA, Chi2, and ReliefF for Feature Selection: NCA, Chi2, and ReliefF were applied 
to the feature vectors generated by DenseNet-201. These feature selection functions 
assess the relevance of individual features, allowing us to identify the most informa-
tive features in the dataset.

• Dimensionality Reduction: By utilizing NCA, Chi2, and ReliefF, we aimed to reduce 
the dimensionality of the feature vectors while preserving the most discriminative 
attributes. This dimensionality reduction enhances computational efficiency and 
reduces the risk of overfitting.

These feature selection functions allow working with more manageable feature vectors 
without compromising the quality of the feature vectors. Therefore, in our research, we 
have reduced the size of the feature vectors in a way that does not negatively affect the clas-
sification success and aimed for high classification success/low computational complexity.

Step 5: Apply NCA, Chi2, and ReliefF feature selection functions to the generated 12 
feature vectors.

In this step, three different feature selection functions are applied to the 12 feature vec-
tors generated in the previous steps. These functions are represented as �(.),�(.) and �(.) 
and correspond to NCA, Chi2, and ReliefF feature selection methods. The outcome of this 
step is the sorted indexes of the features, denoted as ind3h−2 , ind3h−1 and ind3h for each of 
the 12 feature vectors Fh (where h varies from 1 to 12).

Step 6: Choose the top 512 features (like ternary pattern) using the generated indexes.

In this final step, the top 512 features are selected from each feature vector using the 
generated indexes. The selected features are represented as sf 3h−2 , sf 3h−1 , and sf 3h for 
each of the 12 feature vectors. The notation sf  signifies the selected features, and there 
are 36 selected features in total, each with a length of 512. dim represents the number of 
images, which, in this dataset, is 910 images.

Classification: We used a shallow classifier to obtain classification results for the 36 
generated feature vectors. The shallow classifier utilized is SVM, and we selected 

(5)ind3h−2 = �
(

Fh
)

, h ∈ {1, 2,… , 12}

(6)ind3h−1 = �
(

Fh
)

(7)ind3h = �
(

Fh
)

(8)sf 3h−2(i, j) = Fh
(

i, ind3h−2(j)
)

, i ∈ {1, 2,… , dim}, j ∈ {1, 2,… , 512}

(9)sf 3h−1(i, j) = Fh
(

i, ind3h−1(j)
)

(10)sf 3h(i, j) = Fh
(

i, ind3h(j)
)
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it in the MATLAB Classification Learner toolbox. In the MATLAB Classification 
Learner tool, there are 30 shallow classifiers. We used this toolbox to select the most 
appropriate classifier and employed the classifiers with default settings. The best-
resulting classifier is Cubic SVM [40]. Hence, we classified the generated 36 feature 
vectors by deploying Cubic SVM with ten-fold cross-validation. In this layer, 36 pre-
dicted vectors have been generated.
Step 7: Generated predicted vectors were created by deploying a SVM classifier.

Herein, prv defines predicted vectors, �(., .) is a Cubic SVM function, and y repre-
sents real labels. The attributes of the used SVM classifier are:

Kernel: Polynomial,
Kernel order: 3,
Kernel scale: Automatic,
Box constraint: 1,
Coding: One-vs-all,
Validation: 10-fold CV.

Iterative Hard Majority Voting: The IHMV was proposed by Dogan et  al. [41] in 
2021 to calculate more voted results. In the IHMV, we use the mode function to 
obtain voted results. Firstly, the generated predicted vectors in the classification layer 
have been utilized as input for the IHMV algorithm, and these results are sorted by 
their classification accuracies. Then, a loop has been created, and the loop range is 
3 to 36. Therefore, 34 (= 36 - 3 + 1) voted results have been created in this layer. To 
better explain this function, the pseudocode of the IHMV is shown in Algorithm 2.

(11)prvt = �
(

sf t, y
)

, t ∈ {1, 2,… , 36}

Input: Predicted vectors ( )

Output: Voted vectors ( )

01: Calculate the classification accuracy of all predicted vectors.

02: Sort predicted vectors by their accuracies.

03: for q=3 to 36 do

04:      for i=1 to do

05:           for j=1 to q do

06:                ( ) = ( )( ); 

// Array creating for voting. defines sorted indexes

07:           end for j

08:           ( ) = ( );

// where (. ) is an array function. Herein, mode-based majority voting is processed.

09:      end for i
10: end for q

Algorithm 2.  IHMV algorithm
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Step 8: Created 34 voted vectors by deploying the IHMV function
Selection: In the classification and IHMV layers, 70 (=36+34) predicted vectors 
were created. The best-resulted vector has been selected in this layer by deploying 
the greedy method. The greedy algorithm is a commonly used selection method and 
it has been implemented in metaheuristic optimization techniques to select the best 
solution [42]. By using this layer in the developed model, maximum performance is 
achieved without the need for manual selection. Herein, 70 predicted vectors have 
been generated and the best accurate predicted vector was selected by deploying the 
greedy algorithm. Using this layer, our proposed MNPDenseNet architecture became 
a self-organized architecture. The last two steps of our proposal are given in this 
layer, i.e.:
Step 9: Calculate classification accuracies of the generated 70 predicted vectors.
Step 10: Select the highest accurate vector as a final result.

The transition of the MNPDenseNet model is summarized in Table 3.

3  Results

3.1  Experimental Setup

The proposed MNPDenseNet model was programmed using MATLAB ver. 2020a on a 
simple configured PC (16 GB main memory, intel i7 7700 processing unit, Windows 11) 
without the need for graphical or tensor processing units. Seven performance metrics - 
accuracy, overall recall (OR), overall precision (OP), overall F1-score (OF1), geometric 
mean (GM), cohen’s kappa (CK) and Matthews correlation coefficient (MCC) [43, 44] - 
were employed to evaluate the proposed model.

3.2  Results

We have proposed a framework, and this framework generates 70 results. The best 
result is the  38th result, and our proposed MNPDenseNet selected it. Therefore, the  38th 
 (2nd voted vector) result was generated, voting the top four results  (28th –  42 patches 
(56 × 56 sized patches) + GAP layer + NCA –,  10th –  142 patches (16 × 16 sized 
patches) + GAP layer + NCA –,  22nd –  72 (32 × 32 sized patches) patches + GAP layer 
+ NCA –, and  34th –  22 (112 × 112 sized patches) patches + GAP layer + NCA –). To 
generate these top four feature vectors, the used feature extraction function GAP layer 
of the DenseNet201 and the used selector is NCA. These top four results have been 
fused and the best-resulted output has been generated. The confusion matrix of the 
best result is also given in Fig. 4 to calculate classification performances.

The classification performances of the proposed MNPDenseNet are summarized in 
Table 4. As seen in Table 4, the proposed MNPDenseNet model attained over 91% for 
all performance metrics.

The class-wise recall, precision, and F1-score for the different classes are tabu-
lated in Table 5. The most accurate class was Healthy, with 98.46% recall for this cat-
egory, while the least accurate was Chickenpox with 86.61%. It has to be noted that the 
Chickenpox class had the smallest number of skin images (127).
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3.3  Time Complexity

Our model is a lightweight approach compared to classic CNN architectures. The proposed 
model uses deep feature extraction instead of the end-to-end training phase in classical 
CNNs. Therefore, there is no need to calculate the weights of the network. In this context, 
the time complexity of the developed model is calculated in Table 6.

4  Discussions

In this study, a new deep-feature engineering architecture was developed to automatically 
detect monkeypox from skin images. A new large dataset of skin images (from healthy 
individuals and those with monkeypox, smallpox, chickenpox, and shingles) was created 
from images obtained from the publicly available dataset and supplemented with relevant 
web images. The proposed MNPDenseNet model generated 70 results – the number of 
results denotes that the proposed MNPDenseNet tested all configurations to obtain the 
most accurate combination among the 70 result, and selected the best validation prediction 
vector for best classification result. The classification accuracies of the generated 70 results 
are depicted in Fig. 5.

As seen in Fig. 5, the most accurate predicted vector is the  38th predicted vector, gener-
ated using IHMV. Thus, the  38th predicted vector is a voted vector. This vector was gener-
ated using the most accurate four feature vectors (in the first 36 predicted vectors). These 
vectors are 28, 10, 22, and 34, and they achieved 91.65%, 91.32%, 91.32%, and 91.32% 

Table 3  Steps involved in MNPDenseNet model

Layers Process Size/output

Preprocessing Image resizing 224 × 224
MNP Number of patches

Categories
P1: 16, P2: 14, P3: 8, P4: 7, P5: 4, P6: 2

Feature extrac-
tion

Deep feature generation using FC 
and GAP layer of the pretrained 
DenseNet201

Length of features:
F1: 16000, F2: 30720 (extracted from P1)
F3: 14000, F4: 26880 (extracted from P2)
F5: 8000, F6: 15360 (extracted from P3)
F7: 7000, F8: 13440 (extracted from P4)
F9: 4000, F10: 7680 (extracted from P5)
F11: 2000, F12: 3840 (extracted from P6)

Feature selection NCA, Chi2, and ReliefF selectors 
were used to choose features.

36 feature vectors ( sf  ) have been selected. The 
length of each sf  is 512.

sf 3h−2 are generated using NCA,sf 3h−1 are generated 
using Chi2 and sf 3h are generated using ReliefF. 
Herein, h ∈ {1, 2,… , 12}.

Classification Cubic SVM with 10-fold CV 36 predicted vectors have been generated
Voting IHMV Loop range: [3, 36]

Voting function: Mode
Weighting: None
Number of voted vectors: 34

Selection of the 
best result

Greedy algorithm Selection of the best-predicted vector by classifica-
tion accuracies of the 70 predicted vectors.
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accuracies, respectively. These results belong to sf28, sf10, sf22 and sf34 . All of these features 
were generated using the GAP layer and NCA selectors. GAP is more effective in this case 
than the FC layer, and the top four features were created using the NCA selector. Moreover, 
these four vectors ( sf28, sf10, sf22, sf34 ) were generated using 56 × 56, 16 × 16, 32 × 32, 
and 112 × 112 sized nested patches, respectively. By voting these results, the best result is 
achieved. Moreover, the least accurate predicted vector is the  2nd predicted vector - gener-
ated using sf2 and using FC layer with 14 × 14 sized nested patch and Chi2 selector. Still, 
this vector resulted in an 81.98% classification accuracy.

4.1  Ablation of the proposed model

To discuss the effect of the size of the patches, average classification accuracies of the 
generated predicted vectors are calculated per the used sizes of the patches. Comparison 
results according to patch sizes are given in Fig. 6.

Figure 6 shows that the best patch division method is 56 × 56, with an average clas-
sification accuracy of 88.15%. Moreover, we have used two feature extractors and three 

Fig. 4  Confusion matrix of our 
proposal. 1: Monkeypox, 2: 
Chickenpox, 3: Smallpox, 4: 
Healthy, 5: Zoster zona

Table 4  Performance metrics (%) 
of the proposed MNPDenseNet 
model

Performance metrics Results (%)

Accuracy 91.87
Overall Recall 91.49
Overall Precision 91.73
F1-score 91.60
Geometric mean 91.41
Cohen’s Kappa 89.72
MCC 89.56
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feature selectors to create the feature vectors. The average classification accuracies of the 
feature vector creation methods are given in Fig. 7.

As shown in Fig. 7, the best feature creation method is GAP + NCA, and the average 
classification accuracy of this feature creation model is equal to 91.23%. Already, the 
best feature vector ( sf28 ) was created using 56 × 56 sized patches, a GAP feature extrac-
tor, and NCA feature selector. Figure  5 confirms the high classification result of the 
 28th selected feature. Furthermore, we can say that the best feature extractor and feature 
selectors are the GAP layer of the DenseNet201 and the NCA feature selector, respec-
tively. The effect of using patches in the ablation test phase of the model was observed. 
For this, patch and non-patch-based architectures were compared. The result of this com-
parison is given in Fig. 8.

As shown in Fig. 8, the patch-based method achieved about 20% higher classification 
performance. Another test conducted within the scope of ablation studies is the measure-
ment of the IHMV effect. In this test process, IHMV vs. Non-IHMV status was compared. 
The results of the test process are given in Fig. 9.

As shown in Fig. 9, the IHMV-based classification results are higher than the classifica-
tion results without IHMV. The results given in Figs. 6, 7, 8 and 9 prove the effectiveness 
of the methods used in the model. With these methods, our MNPDenseNet model achieved 
91.87% classification accuracy.

Table 5  Class-wise recall, 
precision, and F1-score of the 
proposed MNPDenseNet model

Class Recall (%) Precision (%) F1-score (%)

Monkeypox 88.94 87.33 88.13
Chickenpox 86.61 85.27 85.94
Smallpox 90.73 95.80 93.20
Healthy 98.46 97.96 98.21
Zoster zona 92.73 92.31 92.52

Table 6  Time complexity of the 
proposed model

*n : number of images, d : number of patches, t  : time complexity of 
DenseNet201, s : time complexities of feature selectors, f  : number of 
features, i  : number of iterations, l  : number of predicted vectors.

Phase Time Complexity

Image Resizing O(n)

Nested Patch Division O(nd)

Feature Extraction with 
DenseNet201

O(td)

Feature Selection with NCA, 
Chi2 and ReliefF

O(s)

Classification with SVM O(fd)

IHMV O(id)

Greedy Algorithm O(l)

Total O(n + nd + td + s + fd + id + l)
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4.2  Comparative Results

To obtain comparative results, pretrained AlexNet, MobileNetv2, DarkNet53, and 
ResNet50 were used. The comparative results from these pretrained networks and our 
MNPDenseNet model are tabulated in Table 7.

In MNPAlexNet, fc6 and fc7 layers were used as feature extractors. the remaining 
CNN, GAP and FC layers were utilized as feature extractors. It can be observed that the 
most appropriate pretrained CNN for our architecture to classify monkeypox images is 
DenseNet201. The least accurate model is MNPAlexNet since AlexNet uses fewer lay-
ers than the others. As presented in the previous sections, our model uses SVM for the 
classification phase. In this research, six different classifiers are considered in the test 
phase. These are Decision Tree (DT), Linear Discriminant (LD), Naive Bayes (NB), 
k-Nearest Neighbor (kNN), Support Vector Machine (SVM) and Neural Network (NN). 
The performance comparison of these classifiers is given in Fig. 10.

As shown in Fig. 10, the highest classification accuracy was achieved with the SVM 
algorithm and the lowest classification performance was achieved with DT. To prove the 
superiority of our model, we compared it with similar studies in the literature. Ahsan 
et al. [45] conducted a similar study using deep learning methods on monkeypox detec-
tion. They used a publicly available dataset containing 171 images with four classes 
[21, 46]: 1: Monkeypox, 2: Chickenpox, 3: Measles, 4: Healthy. Their deep learning-
based model classified monkeypox [45] into two cases of binary classification (Case 1: 
Monkeypox vs. Chickenpox and Case 2: Monkeypox vs. Others). We applied our MNP-
DenseNet model to this dataset and the comparative results are summarized in Table 8.

Table 8 demonstrated that our proposal attained higher classification accuracies than 
a VGG16-based image classification model used by Ahsan et al., and our model attained 
over 10% classification accuracy compared with the state-of-the-art method.

There are highly effective and efficient CNN models in the literature. However, 
the traditional approach involves end-to-end training of these CNN models with new 
data. Although these models produce high classification results, it is a time-consuming 

Fig. 5  Plot of calculated classification accuracies per calculated predicted vector



75077Multimedia Tools and Applications (2024) 83:75061–75083 

1 3

Fig. 6  Average classification 
accuracies according to the used 
patch divisions

Fig. 7  Average classification 
accuracies according to the used 
feature creation method

Fig. 8  Average classification 
accuracies according to the patch 
and non-patch-based method
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process. Moreover, these models require a lot of data for high classification success. The 
model proposed in this research is designed to address these and similar challenges. The 
technical advantages of the proposed model are given below:

• Reduced Time Complexity: Our model has lower time complexity compared to end-
to-end CNN models. It has an architecture that is prone to work with limited computa-
tional resources.

• Data Efficiency: Our model can handle a limited amount of data. Especially in areas 
where the dataset is limited (e.g. pox viruses), it has the capacity to produce very suc-
cessful results.

• Low Configuration Requirement: End-to-end models require computers with high con-
figuration. However, the model proposed in this research is capable of running on low-
configuration machines.

In summary, our research provides a practical and efficient solution in terms of time, data 
and computational resources. In addition, the results show that our model is capable of compet-
ing with classical CNN models. The main advantages of our proposed method are given below:

• Monkeypox is an infectious disease, and to control the global spread of the virus, a new 
skin image dataset was collected to detect it via machine learning.

Fig. 9  Average classification 
accuracies according to the 
IHMV and non-IHMV-based 
method

Table 7  Comparative results (%) obtained with other models

Method Accuracy(%) Overall Recall(%) Overall Precision(%) F1-score(%) Geometric 
mean(%)

MNPAlexNet 87.36 86.45 86.88 86.64 86.16
MNPMobileNet 88.24 87.68 87.76 87.71 87.49
MNPDarkNet 89.01 88.38 88.78 88.48 88.27
MNPResNet 90.22 89.57 89.93 89.71 89.42
MNPDenseNet 91.87 91.49 91.73 91.60 91.41
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• A transfer learning-based deep feature engineering model called MNPDenseNet is pre-
sented.

• To use the effectiveness of the patch-based models, new multiple patch-based algo-
rithms. We employed a nested patch division. By using a nested patch division, the 
complexity of the patch-based feature generation since the nested-patch division gener-
ates less patch as compared with a fixed-size patch division.

• It is a self-organized computer vision model.
• The proposed MNPDenseNet attained a 91.87% classification accuracy with our new 

image dataset and a 94.74% accuracy with the publicly available dataset.
• Our model consistently outperformed the other computer vision methods.

The limitations of our proposed method are given below:

• There are limited images of skin afflictions by monkeypox on the web and in the litera-
ture. The publicly available monkeypox image dataset is small, with N = 171 including 
other classes. Although we collected N = 910 images from the web, these images are 
from five different categories. The number of images depicting monkeypox is small at 
N = 217.

• A larger dataset should be collected in the future to implement a real-time monkeypox 
detection model.

Fig. 10  Average classification 
accuracies according to the clas-
sifier methods

Table 8  Comparative results 
with the proposed model using a 
publicly available dataset

Method Accuracy(%)

Ahsan et al. [45] for Case 1 83
Ahsan et al. [45] for Case 2 78
Our model for Case 1 96.67
Our model for four classes 94.74
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• A shallow classifier (SVM) was used to depict the classification capability of the gener-
ated features. However, an improved classifier can be used in this model, or the hyper-
parameters of the SVM can be optimized to obtain improved classification results.

5  Conclusions

A new image dataset related to monkeypox skin affliction was collected, and a new deep 
feature engineering architecture was proposed to detect monkeypox using these images. 
This model is named MNPDenseNet since multiple nested patches (six nested patch divi-
sions) were used. Moreover, two feature extractors were added to this architecture, and 
these feature extractors were created using a pretrained DenseNet201. The three feature 
selectors employed were NCA, Chi2, and ReliefF. Our proposed MNPDenseNet yielded 
a 91.87% classification accuracy. When we applied MNPDenseNet to the publicly avail-
able dataset, our architecture yielded a 94.74% accuracy. Furthermore, our presented 
MNPDenseNet outperformed the other CNN models (AlexNet, MobileNetv2, DarkNet53, 
and ResNet50). In summary, the critical points about the proposed MNPDenseNet are as 
follows:

• The most appropriate initial patch size has dimensions 56 × 56.
• In our architecture, two feature generators were incorporated: the GAP layer and FC 

layer of the pretrained DenseNet201. The best feature extractor is GAP, among the fea-
ture extractors noted for solving the monkeypox classification problem.

• NCA, ReliefF, and Chi2 selectors were used in this research, and the best feature selec-
tion function was NCA.

These results and findings confirm the high classification success of the proposed MNP-
DenseNet model for monkeypox classification using skin images.

In the near future, we plan to acquire more skin images for monkeypox detection and 
apply our presented MNPDenseNet model to create a trained dataset. As a result, a new 
generation of automatic monkeypox detection desktop/mobile applications can readily be 
developed, and these applications can be introduced at medical centers to assist medical 
professionals. Moreover, attention-based deep networks can be used to obtain higher clas-
sification results.

Nomenclature CNN: Convolutional Neural Network; FC: Fully Connected; GAP: Global Average Pooling; 
NCA: Neighborhood Component Analysis; Chi2: Chi-Squared; ReliefF: Relief Feature Selection; MNP-
DenseNet: Multiple Nested Patch DenseNet; IHMV:  Iterative Hard Majority Voting; DT: Decision Tree; 
LD:  Linear Discriminant; NB:  Naive Bayes; kNN:  k-Nearest Neighbor; SVM:  Support Vector Machine; 
NN: Neural Network; OR: Overall Recall; OP: Overall Precision; OF1: Overall F1-Score; GM: Geometric 
Mean; CK: Cohen’s Kappa; MCC: Matthews Correlation Coefficient
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