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ABSTRACT

The problem considered in this short note is the limit load determination of a vertical rock slope. The
classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming
to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope. The objective
function of the mathematical programming problem is such as to optimize a boundary load, which is
known as the limit load, resembling the ultimate bearing capacity of a strip footing. While focusing on
the vertical slope, parametric studies are carried out for several dimensionless ratios such as the
dimensionless footing distance ratio, the dimensionless height ratio, and the dimensionless rock strength
ratio. A comprehensive set of design charts is presented, and failure envelopes shown with the results
explained in terms of three identified failure mechanisms, i.e. the face, the toe, and the Prandtl-type
failures. These novel results can be used with great confidence in design practice, in particularly
noting that the current industry-based design procedures for the presented problem are rarely found.
© 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. The problem

Hoek and Brown (1980) developed a failure criterion that is
based on empirical approach for rock masses. It employed a series
of triaxial test results of intact and jointed rocks. The impact of
heavily fragmented rocks was further considered in the well-
known 2002 version of the Hoek-Brown (HB) rock material
model (Hoek et al., 2022). It can be used to describe mathematically
for the principal stresses (g1 and ¢3), as shown in Egs. (1)—(4).
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where GSI represents the geological strength index, m; is the
parameter for yielding, o is the uniaxial strength of the intact rock
mass, and D denotes the disturbance factor. The HB yield criterion
has been recently formulated into the advanced finite element limit
analysis (FELA) package, i.e. Optum G2 (Optum CE, 2021), and it is
employed as tool for the current study.

Fig. 1 shows the statement of the problem of a plane strain strip
footing on a vertical HB rock slope. The slope has a vertical height H.
The rigid strip footing has a width B and the distance from the edge
of the slope to the edge of the footing is L. It follows that the pro-
posed study has seven input variables, i.e. H, B, L, d¢;, GSI, mj, and the
rock unit weight vy. Note that D is assumed to be zero for undis-
turbed in situ rock masses. The footing is assumed to be very rigid
so that the strength of the footing is large enough and would not
fail before the underlying rock. The surface roughness of the footing
is fully rough since we assumed that the underlying rock is fully
connected to the footing. The theory of FELA is quite different from
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Fig. 1. Problem definition.

that of the displacement-based finite element method (FEM), as the
former is a direct method for the perfectly plastic soil or rock
model, and the elastic modulus plays no role in the computation.
Therefore, the solution and output are only for stability prediction,
but not displacement.

To reduce these input parameters, dimensionless parameters
were used throughout this paper. Consequently, for the output of
bearing capacity qy, it is normalised with respect to yB and the
relationship between the bearing capacity factor N = qu/ (vYB) and
all five dimensionless input parameters can be stated as follows:

_ Qup(% HL
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where L/B is the dimensionless footing distance, H/B is the
dimensionless height of a vertical cut slope, and ¢./(yB) is the
dimensionless strength ratio. The selected ranges of the HB
strength parameters would cover most practical ranges in design
practice since we follow the suggested ranges of GSI and m; from
Hoek et al. (2022). Note that the bearing capacity of a footing on a
vertical rock slope is largely affected by its developed failure
mechanism. In generally, there are three possible failure mecha-
nisms for the problem, i.e. the toe failure, the face failure, and the
Prandtl-type failure, as illustrated in Fig. 1.

Like most other numerical techniques, a finite element mesh is
needed for the FELA analysis. Fig. 2 shows a typical adaptive FELA
mesh for the problem. The domain needs to have sufficient size to
ensure that the overall velocity field is contained within the
domain. Note that the left-handed, the right-handed, and the bot-
tom boundaries have a distance of 2B, 4B and 2B, respectively so
that there is no intersection of the plastic zone at these boundaries.
On the contrast, no boundary constraints are placed at the other
surfaces, which are free to displace in all directions. The width B of
the footing is the boundary pressure to be optimized using the
proposed FELA technique. It is interesting to note that, from the
final adaptive mesh presented in Fig. 2, the technique allows one to
visually observing the locations of plastic zones and velocity dis-
continuities. All numerical simulations in this paper employed
5000 to 10,000 elements as the initial and the targeted number of
elements with five adaptive iterations. This has been extensively
tested and the accuracy of the results can be achieved with this
proposed number of elements.

Since both UB and LB solutions can bracket the true solutions to
within a few percentages, it is imperative that results produced by
other numerical methods in the future should be compared with
our rigorous solutions for validation. Interestingly, it is “theoreti-
cally” unnecessary to compare the current results with other

published solutions, if any available. The FELA technique has been
recently applied to several other geotechnical applications
(Ukritchon and Keawsawasvong, 2018; Keawsawasvong and
Ukritchon, 2019; Shiau and Al-Asadi, 2021; Keawsawasvong and
Shiau, 20223, b; Lai et al.,, 2022, 2023; Shiau et al.,, 2023). Due to
the space limit, more detailed discussions can also be found in
Sloan (2013) and Krabbenhoft and Lyamin (2015).

2. Previous study and motivation to the research

Assessing the stability of footings located near slopes is not
uncommon for geotechnical engineers in their daily design routine.
Several researchers have attempted to determine the bearing ca-
pacity solutions of soil slope by employing various numerical and
analytical techniques such as limit equilibrium method (Azzouz
and Baligh, 1983), slip-line method (Graham et al., 1988), finite
element analysis (Georgiadis, 2010a; Griffiths and Martin, 2020),
discontinuity layout optimization approach (Leshchinsky, 2015),
upper bound limit analysis (Georgiadis, 2010b), lower bound limit
analysis (Bhattacharya and Dutta, 2020), and FELA (Shiau et al.,
2004, 2006, 2011). It was noted that very few works were linked
to the study of footings on vertical rock slopes.

The yield criterion developed by Hoek and Brown (1980) and
later upgraded by Hoek et al. (2022) has been widely used to
compute the limit load of vertically loaded foundations on level
ground with rock masses (e.g. Serrano and Olalla, 1994; Yang and
Yin, 2005; Keawsawasvong et al., 2022). Nevertheless, research
on the effect of rock slopes on the bearing capacity solutions is quite
limited (Zhou et al., 2018, 2019). In this paper, the influences of rock
characteristics as well as several other geometrical parameters on
footing bearing capacity of vertical slopes are investigated by
employing the FELA. Furthermore, the associated failure mecha-
nisms are identified and grouped into three categories, i.e. the face,
the toe, and the Prandtl-type failures. Finally, a set of useful design
tables and charts are presented for practical uses.

3. Results and discussion

Fig. 3 presents the variation of bearing capacity factor N (average
of UB and LB) with L/B for the different values of H/B, o /(YB), m;
and GSI. In general, an increase in L/B yields a nonlinear increase in
N. When the footing is located away from the vertical slope, the
load transferring area becomes larger (potential failure zone),
resulting in greater values of the bearing capacity factor N. Noting
that N becomes a constant after a certain L/B value, indicating a
typical Prandtl-type ground failure mechanism. In Fig. 3a, the larger
the slope height ratio (H/B), the smaller the N. It follows that, in
Fig. 3b—d, the greater the values of o;/(vYB), m; and GSI, the less the
N. No “face failure” is observed in Fig. 3 since the height of vertical
slope is considered as small (H/B = 2). It was therefore decided to
present Fig. 4 using different parameters, in which face failure may
be demonstrated. Interestingly, it is found that “face failure” only
occurs at small values of L/B and large values of H/B (see the green
dashed lines). More discussions on the type of potential failure
mechanisms are discussed in a later section.

The effects of m; and GSI on the bearing capacity factor N are
shown in Figs. 5 and 6, respectively. Since the parameter m; is a
representative of the mineralogy, composition, and grain size of the
intact rock (Hoek et al., 2022), an increase in mj results in a linear
increase in N. The greater the o /(yB), the larger the N. The expo-
nential relationship between GSI and N is presented in Fig. 6. An
increase in GSI yields an increase in N nonlinearly. Indeed, this
nonlinear increasing curve is a result of the function in the HB
model (see the exponential equation in Egs. (2)—(4)). Interestingly,
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Fig. 2. A typical adaptive FELA mesh used in the study (L/B = 3, H/B = 4, 0 /(yB) = 100, m; = 2, GSI = 50).
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Fig. 3. Variations of N with L/B for different values of (a) H/B, (b) a;/(YB), (c) m;, and (d) GSI.

a greater GSI value represents a near undisturbed rock mass, and

therefore it would yield a greater N value, as shown in Fig. 6.
Several examples of potential failure mechanisms from the

studies are presented in Fig. 7. For H/B = 1 and 2 in Fig. 7a and b,

respectively, only two possible failure patterns are found in all
values of L/B (i.e. the toe and the Prandtl-type). The Prandtl-type
failure occurs at L/B = 8 and 10, respectively, for H/B = 1 and 2.
All others are for the toe failures. As the slope height ratio H/B
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Fig. 5. Variations of N with m; for different values of H/B and o /(yB): (a) GSI = 30 and (b) GSI = 90.

increases (see for example H/B = 4 in Fig. 7c), a third possible failure
surface is found at small values of L/B, i.e. the face failure as shown
in green colour. On the other note, the Prandtl-type failure occurs at
L/B = 12 (see Fig. 7c, H/B = 4).

A design chart is therefore developed to identify the various
failure patterns of a vertical slope. This is shown in Fig. 8 for
practical uses. In this chart, one can quickly determine a failure type
by knowing the values of H/B and L/B (see Zones I-IIl in the figure).
It is to be noted that Zone III (face failure) can only be identified for
small values of L/B and large values of H/B, whilst in contrast, Zone |
(Prandtl-type) can be found at large values of L/B. Zone II (i.e. toe
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failure) occurs in between Zones I and Ill, and by a larger proportion

of the design map, it is for moderate values of L/B and H/B.

4. Example

For a vertical rock slope with a strip footing sitting on the surface
with a distance of L = 4 m from a slope cut, it has a height of
H = 2 m. The footing has a width of B =1 m, and the rock has a
GSI = 70, m; = 5, ¢ = 2500 kPa, and vy = 25 kN/m°. The bearing
capacity (qu) of the footing is determined as follows:
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(1) Calculate H/B = 2/1 =2, L/B = 4/1 =4, and 0/ (YB) = 2500/
(25 x 1) = 100.

(2) The bearing capacity factor N can be obtained using Fig. 4a,
where N = 115.

(3) The

bearing

capacity (qu)

as = 115 x 25 x 1 = 2875 kPa.
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5. Conclusions

A vertical rock slope has been investigated with respect to its
stability under a strip footing using the HB failure criteria and the
advance FELA of upper and lower bounds with adaptive meshing
scheme. In this short technical note, both UB and LB solutions were
confidently obtained within 3% accuracy, and they can be used to
compare with new solutions from future research work. The cur-
rent study has also successfully identified three distinct failure
mechanisms for the problem, i.e. the toe, the face, and the Prandtl-
type. Practical design tables and charts for determining the limit
load and identifying a corresponding failure type are presented.
Finally, an application example was given to facilitate the deter-
mination of the ultimate capacity as well as the type of failure
pattern of a given vertical rock slope. In view of the current lacking
industry-based stability design procedures for a vertical rock slope,
this novel short letter is of practical importance in assisting engi-
neers in their daily design routine. A final note on the future work
recommendation is an extension for studying various rock slope
angles and the use of machine learning approach to provide a
predictive model. Besides, the current work can be expanded to a
full 3D analysis using rectangular or circular footings, as the current
solutions are limited to the cases of planar footings on homoge-
neous rock slopes.
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