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Abstract
This study aims to evaluate the usefulness and effectiveness of four machine learning (ML) models for modelling cyanobac-
teria blue-green algae (CBGA) at two rivers located in the USA. The proposed modelling framework was based on establish-
ing a link between five water quality variables and the concentration of CBGA. For this purpose, artificial neural network 
(ANN), extreme learning machine (ELM), random forest regression (RFR), and random vector functional link (RVFL) are 
developed. First, the four models were developed using only water quality variables. Second, based on the results of the 
first, a new modelling strategy was introduced based on preprocessing signal decomposition. Hence, the empirical mode 
decomposition (EMD), the variational mode decomposition (VMD), and the empirical wavelet transform (EWT) were used 
for decomposing the water quality variables into several subcomponents, and the obtained intrinsic mode functions (IMFs) 
and multiresolution analysis (MRA) components were used as new input variables for the ML models. Results of the present 
investigation show that (i) using single models, good predictive accuracy was obtained using the RFR model exhibiting 
an R and NSE values of ≈0.914 and ≈0.833 for the first station, and ≈0.944 and ≈0.884 for the second station, while the 
others models, i.e., ANN, RVFL, and ELM, have failed to provide a good estimation of the CBGA; (ii) the decomposition 
methods have contributed to a significant improvement of the individual models performances; (iii) among the thee decom-
position methods, the EMD was found to be superior to the VMD and EWT; and (iv) the ANN and RFR were found to be 
more accurate compared to the ELM and RVFL models, exhibiting high numerical performances with R and NSE values of 
approximately ≈0.983, ≈0.967, and ≈0.989 and ≈0.976, respectively.
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Introduction

Background

During the last few years, the degradation of freshwater 
ecosystems quality has become a serious concern for water 
resources planning and management (Beretta-Blanco and 
Carrasco-Letelier 2021). Specific and commonly problems 
and issues affecting the overall quality of freshwater are 
certainly the cyanobacteria harmful algal blooms (HAB) 
which has received great deal of attention for water man-
agers (Clercin et al. 2022). Reported as the first and major 
responsible of the production and proliferation of the cyano-
toxins in inland water bodies and aquatic ecosystems, HAB 
can cause eutrophication and contributes to a significant 
decrease in the quantity of available drinking water (Choi 

Highlights 
• Cyanobacteria blue-green algae are predicted using machine 
learning (ML) models.
• Different preprocessing signal decomposition methods are used 
for data analysis.
• The gamma test was used for input variables selection.
• Signal decompositions improved the prediction capacity of the 
applied ML models.

Responsible Editor: Marcus Schulz

 *	 Salim Heddam 
	 heddamsalim@yahoo.fr

Extended author information available on the last page of the article

/ Published online: 8 June 2022

Environmental Science and Pollution Research (2022) 29:77157–77187

http://orcid.org/0000-0002-8055-8463
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-21201-1&domain=pdf


1 3

et al. 2021). In addition, high level of eutrophication was 
considered as a serious water pollution problem (Zou et al. 
2014). Cyanobacteria blue-green algae (CBGA) expressed 
by a concentration in (cells/mL) is one of the well-known 
HAB and belongs into the category of “photosynthetic 
organisms” and is expanding rapidly under certain environ-
mental conditions (Gaget et al. 2022). High level of CBGA 
is considered as “detrimental” to freshwater ecosystems and, 
with rapid proliferation, the lake or reservoir becomes with a 
green colour (Sheng et al. 2012). Regarding its importance 
for water resources management and pollution control, it is 
necessary to understand the majors and significant factors 
controlling the growth of CBGA and their production of 
toxins (Te and Gin 2011).

Factors controlling the concentration of CBGA

It is well recognized that the major issues causing the growth 
of CBGA in freshwater ecosystems is mainly related to 
the anthropogenic activities, especially the excessive use 
of pesticides for agricultural purpose (Bano et al. 2021; 
Khaleefa and Kamel 2021), and further complicated by cli-
mate change (Mahmudi et al. 2020; Sanseverino et al. 2022). 
However, several environmental factors are responsible for 
rapid growth and fluctuation over time and space of the 
CBGA, and several authors worldwide have based on an 
experimental study conducted into three gorges reservoir 
(TGR) in China. (Yang et al. 2022) investigated whether or 
not hydrodynamic factors influence the variation, growth, 
and proliferation of HAB. It was found that the ratio of mix-
ing depth to euphotic depth (Zm/Ze) was a significant factor 
and significantly affects HAB growth and concentration. In 
a study conducted by Mahmudi et al. (2020) in the Ambon 
Bay, Indonesia, the authors reported that water quality vari-
ables, i.e., water temperature (Tw), pH, salinity (Sa), dis-
solved oxygen (DO), nitrate (NO3), and phosphate (PO4) 
significantly affect the abundance of the HAB in marine 
water. Descy et al. (2016) argued that the level of cyano-
bacteria abundance was highly linked to environmental 
conditions, i.e., phosphorus, dissolved inorganic nitrogen, 
epilimnion temperature, DO, pH, specific conductance (SC) 
euphotic depth, wind speed, rainfall, and surface irradiance. 
In another study, García Nieto et al. (2015) reported that 
water quality variables, i.e., Tw, pH, alkalinity, SC, DO, 
water turbidity (TU), air temperature (Ta), and Secchi disk 
depth (SD), are the most significant variables affecting the 
concentration of CBGA in water reservoir. Similarly, Reck-
nagel et al. (2006) demonstrated that NO3, PO4, TU, SD, 
Tw, and pH were the most significant factor controlling the 
concentration of blue-green algae and diatom populations 
in lakes freshwater. Indeed, Song et al. (2012) reported that 
Tw and light are the most significant factors affecting the 

growth of CBGA. Consequently, due to the high number 
of factors controlling the growth of HAB and especially 
CBGA, a complex physical, chemical, and biological pro-
cess were involved and need robust nonlinear models for its 
prediction., and generally speaking, modelling CBGA can 
be achieved using two distinguished approach process–based 
models and statistically based models (Maier and Dandy 
2000; Tiyasha et al. 2020).

Modelling CBGA using machine learning: state 
of the arts

Mentoring CBGA in River, lakes and reservoirs are mainly 
based on traditional sampling, laboratory analysis, and cell 
counting. However, these traditional approaches are labori-
ous and take considerable time to get right (Guo et al. 2021). 
Modelling using machine learning (ML) is an interesting 
area of research, and they have proven to be a powerful and 
credible alternative in the absence of direct in situ measure-
ments (Elzwayie et al. 2016; Sanikhani et al. 2018; Asadol-
lah et al. 2020). For modelling and forecasting the cyano-
bacteria harmful algal blooms (HAB) based on water quality 
variables, different ML-based models have been proposed 
so far. Indeed, numerous ML algorithms are currently being 
investigated to develop robust predictive models, using suite 
of predictors. Maier et al. (1998) used an artificial neural 
network, i.e., the multilayer perceptron neural network 
(MLPNN) for predicting weekly CBGA measured in (cells/
mL) at the River Murray at Morgan, Australia. They used 
several input variables namely, water colour (CO), TU, 
Tw, river flow (Q), soluble and total Phosphorus (SP, TP), 
nitrogen, and total iron. High performances were obtained 
with root-mean-squared error (RMSE) ranging from 318 
(cells/mL) to 355 (cells/mL). Maier et al. (2000) applied 
the B-spline associative memory network (AMN) model 
for forecasting the concentration of CBGA up to 4 weeks 
in advance. They used the same input variables reported 
in Maier and Dandy (1998), and the performances of the 
AMNs were compared to those of MLPNN and demonstrat-
ing its superiority. Vilán Vilán et al. (2013) conducted a 
comparative study for predicting CBGA based on several 
water quality variables, i.e., Ta, pH, Tw, DO, TU, SC, alka-
linity, and SD. They compared between MLPNN and three 
support vector regression (SVR) namely, linear (SVR-LN), 
radial basis function (SVR-RBF), and Pearson VII universal 
function (SVR-PUK). According to the obtained results, the 
SVR-RBF was found to be more accurate with coefficient 
of determination (R2) equal to 0.92, followed by the SVR-
PUK (R2 = 0.91), the MLPNN (R2 = 0.64), and the SVR-LN 
(R2 = 0.57). Harris and Graham (2017) compared between 
linear and several ML models for predicting CBGA in the 
Cheney Reservoir, Kansas, USA. The tested models were 
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respectively ordinary linear regression (Linear), partial least 
squares (PLS), elastic net (Enet), neural networks (Nnet), 
multivariate adaptive regression splines (MARS), support 
vector regression (SVR), single trees (CART), bagged trees 
(BagT), boosted trees (BT), conditional inference trees (CI-
Tree), random forest regression (RF), and Cubist models. 
For models’ development, they used several water quality 
variables, i.e., Tw, TU, DO, pH, suspended sediment concen-
tration (SSC), and reservoir surface elevation (RL). It was 
found that the Cubist model was the most accurate exhibit-
ing R value of approximately ≈ 0.87, followed by the ran-
dom forest regression (RFR) model (R ≈ 0.82), the BT (R ≈ 
0.80), and the SVR (R ≈ 0.72), while the other models were 
failed to correctly predict the CBGA.

Ostfeld et al. (2015) optimized the decision tree model 
using genetic algorithm (GA-DT) and modelling strategy for 
CBGA was proposed. Several water quality variables were 
linked to the CBGA concentration via the GA-DT model, 
i.e., Tw, Ta, relative humidity (RH %), and wind speed (U2). 
It was found that CBGA can be predicted very well with R 
value of approximately ≈ 0.91. Saboe et al. (2021) applied 
the long short-term memory (LSTM) neural network for pre-
dicting CBGA concentration based on several input water 
quality variables. From the obtained results, it was found 
that the LSTM can help in accurately predict CBGA with 
high performances exhibiting a correlation coefficient (R) 
of approximately ≈ 0.930 and normalized root mean square 
error (NRMSE) of ≈ 6.5%. Derot et al. (2020) used RFR for 
predicting cyanobacteria concentration in the Lake Geneva 
located in the north of the French Alps. However, they 
reported that obtaining high forecasting accuracy needs the 
inclusion of high number of predictors from the combina-
tion of several physical, chemical and biological variables, 
and the R2 was approximately ≈ 0.90. Su et al. (2022) dem-
onstrated that water Tw and nitrogen were the most signifi-
cant factors affecting the concentration of the algal blooms 
in the three gorges reservoir in China. Indeed, the authors 
compared between several ML namely, extra trees regres-
sion (ETR), the RFR, SVR, gradient boosting regression 
tree (GBRT), classification and regression tree (CART), 
MLPNN, and the K-neighbors regression (KNR), for pre-
dicting algal blooms, and they reported that the high R2 (≈ 
0.60) value was obtained using the ETR model. Park et al. 
(2021) compared between SVR and MLPNN for predict-
ing the algal concentration in (cells/mL). The authors used 
several input variables, i.e., nitrogen, nitrate, total dissolved 
phosphorus, SC, water level of the reservoir, discharge, 
precipitation, Ta, and WS. It was found that both models 
were able to accurately predict CBGA without providing 
any numerical results. Jafarzadeh et al. (2022) compared 
between four ML models namely, gene expression pro-
gramming (GEP), SVR, and hybrids wavelet SVR and GEP 

(W-SVR, W-GEP) for predicting cyanobacterial in Jajrood 
River, Iran. The models were calibrated using Q, DO, NO3, 
PO4, and biological oxygen demand (BOD), and it was found 
that the hybrid W-SVR was more accurate exhibiting Nash-
Sutcliffe efficiency (NSE) value of approximately ≈ 0.98 
compared to the value of ≈ 0.82 obtained using the W-GEP; 
it was demonstrated that the wavelet algorithm have helped 
in improving the models’ performances. Finally, Pyo et al. 
(2021) used convolutional neural network (CNN) for pre-
dicting CBGA in the Nakdong River in South Korea and 
reported a NSE value of approximately ≈ 0.76.

Objective, contributions, innovation, and article 
structure

Based on the reported literature review, it is clear that mod-
elling CBGA using ML models has attracted wide interest 
and there is high degree of its success (Giere et al. 2020; 
Nguyen et al. 2020; Rousso et al. 2022). In addition, a wide 
range of models was proposed and successfully applied 
exhibiting moderate to high level of accuracies (Park et al. 
2021). Indeed, it was found that models for CBGA were 
based on the use of measured water quality variables without 
preprocessing, and except the work conducted by Jafarzadeh 
et al. (2022), the use of signal decomposition for improving 
the performances of ML models was rarely reported in the 
literature, which constitutes the major motivation of our pre-
sent study. Therefore, in the current research, the investiga-
tion of how preprocessing signal decomposition contributed 
significantly to the prediction improvements of ML models 
for CBGA in river. The literature review has demonstrated 
on the implementation of signal decomposition algorithms 
for diverse engineering applications and approved their 
capacity (Bokde et al. 2020; Wang et al. 2021; Ahmadianfar 
et al. 2022; Jamei et al. 2022; Tao et al. 2022). Hence, three 
signal decomposition algorithms namely, empirical mode 
decomposition (EMD), variational mode decomposition 
(VMD), and empirical wavelet transform (EWT) were used 
for the modelling development. These three algorithms were 
used for decomposing five water quality variables selected 
as relevant predictors. The specific objectives of the present 
research are as follows:

	 (i)	 The application of four single ML models for pre-
dicting CBGA namely: (i) artificial neural network 
(ANN), (ii) extreme learning machine (ELM), (iii) 
random forest regression (RFR), and (iv) and random 
vector functional link (RVFL).

	 (ii)	 In the second stage of the investigation, new hybrid 
models were proposed based on the combination of 
the EMD, EWT, and VMD with the single models.
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	 (iii)	 The gamma test input variable selection was used 
for selecting the best input combination and in total 
seven input combination were adopted for models 
comparison.

	 (iv)	 All models were compared based on numerical and 
graphical comparisons.

Study area and data

Data used in the present study were collected at two 
US Geological Survey (USGS) (https://​or.​water.​usgs.​
gov). The two stations were (i) USGS 14202650 (lati-
tude 45°26′26.31″, longitude 123°07′30.00″NAD83) 
Wapato creek at SW Gaston road, at Gaston, Washington 
County, Oregon, USA, and (ii) USGS 14207200 (lati-
tude 45°21′24″, longitude 122°41′02″ NAD27) Tualatin 
river at Oswego dam, near west Linn, Clackamas County, 
Oregon, USA (Fig. 1). Six water quality variables were 
selected and used for developing the models. The mod-
elled variable was the cyanobacteria blue-green algae 
(CBGA: cells/mL), and five water quality variables 
were used as independents variables, i.e., the predictors, 
namely, water temperature (Tw: °C), water pH (std. unit), 

water dissolved oxygen concentration (DO: mg/L), water 
specific conductance (SC: uS/cm), and water turbidity 
(TU: FNU). For the USGS 14202650 station, data were 
measured at every 30 min (i.e., every half hour) during 
the period from 12 April 2010 to 29 May 2012 with a 
total of 9000 data. For the USGS 14207200 station, data 
were measured at every 60 min (i.e., every hour) during 
the period from 25 March 2010 to 18 May 2012 with a 
total of 9000 data. For each station, we split the data into 
training (70%) and validation (30%). For each station, we 
provide in Table 1 the statistical description of the five 
water quality variables and the cyanobacteria blue-green 
algae, and we highlighted the correlation coefficients (R) 
for all variables with the CBGA. According to Table 1, at 
the two stations, very low R values were found and none 
of the five water quality variables was highly correlated 
with CBGA, making them an attractive and promising 
modelling investigation as the simple linear regression 
does not allow a direct assessment and an effective esti-
mation of the CBGA. Two scenarios were tested in the 
present study: (i) standalone modelling strategy for which 
ML models were developed using water quality variables 
without preprocessing and (ii) three signal decomposition 
techniques (see details later); i.e., the empirical mode 

Fig. 1   Maps showings the loca-
tion of the two USGS stations
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decomposition (EMD), the variational mode decomposi-
tion (VMD), and the empirical wavelet transform (EWT) 
were used for decomposing the input variables into sev-
eral subcomponents. In addition, all data were normal-
ized using the Z-score method as follow:

where Z is the normalized score, xmean is the mean value, and 
xσ is the standard deviation.

(1)Z =
x − xmean

x�

Table 1   Summary statistics of 
cyanobacteria blue-green algae 
concentration and water quality 
variables

Xmean mean, Xmax maximum, Xmin minimum, Sx standard deviation, Cv coefficient of variation, R coeffi-
cient of correlation with CBGA, Tw river water temperature, CBGA cyanobacteria blue-green algae, DO 
dissolved oxygen, SC specific conductance, TU turbidity, FNU formazin nephelometric unit, uS/cm micro-
siemens per centimetre

Variables Subset Unit Xmean Xmax Xmin Sx Cv R

USGS 14202650 Willamette River at Portland, Oregon, USA
  CBGA Training cells/mL 3467.696 40130.000 47.000 5688.616 1.640 1.000

Validation cells/mL 3435.174 39641.000 51.000 5637.976 1.641 1.000
All data cells/mL 3457.939 40130.000 47.000 5673.178 1.641 1.000

  Tw Training °C 12.556 21.600 4.700 3.963 0.316 0.271
Validation °C 12.497 21.700 4.800 3.994 0.320 0.270
All data °C 12.538 21.700 4.700 3.972 0.317 0.271

  DO Training mg/L 9.145 12.800 4.000 1.360 0.149 -0.228
Validation mg/L 9.121 12.800 4.200 1.357 0.149 -0.248
All data mg/L 9.138 12.800 4.000 1.359 0.149 -0.234

  pH Training / 6.815 7.300 5.600 0.248 0.036 0.071
Validation / 6.813 7.300 5.500 0.248 0.036 0.072
All data / 6.814 7.300 5.500 0.248 0.036 0.071

  SC Training uS/cm 107.261 388.000 68.000 29.880 0.279 -0.060
Validation uS/cm 107.164 382.000 68.000 28.974 0.270 -0.063
All data uS/cm 107.232 388.000 68.000 29.609 0.276 -0.061

  TU Training FNU 27.581 149.000 2.600 17.946 0.651 0.115
Validation FNU 27.590 160.000 2.700 18.298 0.663 0.103
All data FNU 27.584 160.000 2.600 18.051 0.654 0.111

USGS ID 14207200 Willamette River at Portland, Oregon, USA
  CBGA Training cells/mL 522.728 2448.000 1.000 454.802 0.870 1.000

Validation cells/mL 516.548 2448.000 1.000 450.655 0.872 1.000
All data cells/mL 537.149 2321.000 4.000 464.101 0.864 1.000

  Tw Training °C 16.022 23.100 8.100 3.913 0.244 0.237
Validation °C 15.986 23.100 8.100 3.922 0.245 0.229
All data °C 16.106 22.800 8.100 3.894 0.242 0.254

  DO Training mg/L 7.606 10.400 4.600 1.042 0.137 0.171
Validation mg/L 7.610 10.400 4.600 1.040 0.137 0.177
All data mg/L 7.597 10.300 4.800 1.048 0.138 0.159

  pH Training / 7.004 7.300 6.800 0.097 0.014 0.255
Validation / 7.003 7.300 6.800 0.097 0.014 0.249
All data / 7.006 7.300 6.800 0.098 0.014 0.268

  SC Training uS/cm 231.545 361.000 92.000 72.450 0.313 -0.210
Validation uS/cm 231.305 361.000 92.000 72.432 0.313 -0.217
All data uS/cm 232.103 361.000 92.000 72.502 0.312 -0.195

  TU Training FNU 5.829 82.400 0.100 6.532 1.121 0.161
Validation FNU 5.916 82.400 0.100 6.666 1.127 0.161
All data FNU 5.625 70.200 0.600 6.204 1.103 0.163
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Methodology

Artificial neural network model

One of the most and impressive alternatives to the tradi-
tional statistical algorithm which has proved its effective-
ness for handling and solving high nonlinear tasks is cer-
tainly the artificial neural network (ANN) technique. The 
ANN is a specific approach inspired from the function of 
the human brain, which utilizes the concept of learning 
for providing a suitable response to a specific problem, 
and successful implementations of the ANN models can 
be found in the literature (Afan et al. 2014; Karimi et al. 
2020; Yaseen et al. 2020). An ANN model based on the 
backpropagation training algorithm possesses the capability 
of mapping and establishing a function between the input 
and output variables using a sequence of measured data-
set (Jha et al. 2022; Salman and Kadhum 2022). A simple 
ANN model with one input, one hidden, and one output 
layer is depicted in Figure 2. The first layer, i.e., the input 
layer, contains the predictor variables involved in the mod-
elling of the output variable. The connection between the 
input and the hidden neurons is established using a matrix 
of weights and biases (i.e., the Wij). The weighed sum of 
the input variables multiplied by the connection weights 
Wij should be moved to the next layer after passing via an 
activation function, generally the sigmoidal (Oboh et al. 
2022). Consequently, the final output of the hidden neurons 
becomes the input of the single output neuron. According 
to the Fig. 2, each neuron in the hidden layer calculates the 
weighted sum of the predictors as follow:

(2)Aj =

Z∑
i=1

(
Wij × xi

)
+ bj

The activation function in the hidden layer (i.e., the f) is 
the sigmoidal, while the output neuron uses a linear activa-
tion function; wij corresponds to the weights between the 
input and the hidden layer, wjk corresponds to the weights 
between the hidden and the output layer, bi is the bias of the 
ith hidden neuron, and finally, bk is the bias of the output 
neuron (Paul et al. 2022).

Extreme learning machine

Extreme learning machine (ELM) was introduced by Huang 
et al. (2006). Its popularity comes from its fast learning 
speed and high capacity in handling large dataset (Adnan 
et al. 2021). This is a result of the randomly generating of the 
hidden inputs weights and biases (i.e., form the input to the 
hidden layers) and the analytically calculation of the output 
weights matrix (Araba et al. 2021; Chen et al. 2022). For 
any training dataset, N for which the x is the input variable 
and y corresponds to the output variable (Yan et al. 2022):

The output of the ELM model with Z hidden neurons can 
be calculated as follows (Fig. 3):

(3)Ej = f
(
Aj

)

(4)f
(
Aj

)
=

1

1 + e−Aj

(5)OK =

n∑
j=1

(
Wjk × Ej

)
+ bk

(6)D =
{(

xi, yi
)|xi ∈ Rd

, yi ∈ R
}
, i = 1, 2, 3,⋯N

Fig. 2   Flowchart of the ANN model Fig. 3   Flowchart of the extreme learning machine (ELM) architecture
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where g(.) is the sigmoidal activation function, wij is the 
weights between the input and the hidden layer, bi is the bias 
of the ith hidden node, and βi is the output weights (i.e., from 
the hidden to the output layer). The previous equation can be 
reformulated as follows (Hai et al. 2020):

where

H is the output matrix, i.e., the activation of the hidden 
layer neurons. β is the output weights linking the hidden 
neurons to the output neuron, and T is the target matrix of 
ELM (Zhao and Chen 2022):

H+ corresponds to the Moore-Penrose generalized inverse 
of matrix H.

Random forest regression

Random forest regression (RFR) is a modified version of the 
original bagging algorithm proposed by Breiman (2001). 
The RFR uses the concept of trees to solve a classification 
and regression tasks; hence, the RFR could be viewed as a 
tree ensemble model (Fig. 4), for which each tree was built 
depending on the values of sample vector with the respect to 
the condition of an equal distribution for all calculated trees 
(Bhagat et al. 2020; Onyelowe et al. 2022). The final output, 
i.e., response of the RFR model, is calculated as an average 
of the response provided by the individual trees, leading to 
a significant improvement in the variance minimization by 
decreasing the correlation between the trees, which improve 
its capability to overcome the overfitting problem (Shoar 
et al. 2022).

According to Fig.  4, for a training dataset having 
(L) observations composed of one dependent, i.e., the 
response variable (Y) and an ensemble of independent 
variables, i.e., the predictors (x), an approximation func-
tion using the RFR model should be achieved as follows. 

(7)Yj = f
(
xj
)
=

Z∑
i=1

�i.g
(
wi, bi, xj

)
, j = 1, 2, 3,…… ,Z

(8)H� = T

(9)

(10)� =

⎡⎢⎢⎣

�T
1

⋮

�T
Z

⎤⎥⎥⎦Z×m
and � =

⎡⎢⎢⎣

tT
1

⋮

tT
N

⎤⎥⎥⎦
N×m

(11)� = H+T

First, the RFR generates uniformly (n) sampling, i.e., 
sample (1) to sample (n) using the bootstrap, i.e., the 
“bootstrap aggregation” procedure (Elmetwalli et  al. 
2022). Second, for each sample, grow a tree, and third, 
proceed by averaging the responses of all constructed 
trees (Fernández-Habas et al. 2022). It is important to 
note that the RFR should develop their own internal 
mechanism to calculate the prediction error designated 
as the “out-of-bag” error “OOB,” equal to the standard 
deviation (SD) error between calculated and measured 
values. It is used for ranking the predictors and predic-
tor selection (Rosecrans et al. 2022). More details about 
random forest can be found in Sharafati et al. (2020).

Random vector functional link

Random vector functional link (RVFL) is one of the 
fewer ML models characterized by their randomization 
in the training process, and it has a direct link between 
the input layer and the output layer (Fig. 5; black dashed 
line) (Almodfer et al. 2022). The basic structure of the 
RVFL is illustrated in Fig. 5 (PAO et al. 1992; Pao et al. 
1994). It is composed of one input layer with a num-
ber of neurons equal to the number of predictors (i.e., 
five), one hidden layer with several neurons also called 
enhancement nodes, and one output layer (Chauhan and 
Tiwari 2022). The input to the hidden layer weights are 
highlighted in red dashed lines, and they are randomly 
generated and remains fixed and unchangeable during the 
training process (Hazarika and Gupta 2022), while the 
weights between the hidden and the output layers (blue 
dashed line) and the direct weights linking the input to the 
output layer (black dashed line) need to be trained using 
the pseudo-inverse or gradient descent algorithms (PAO 
et al. 1992; Pao et al. 1994; Basilio and Goliatt 2022).

One of the most important features of the RVFL model is 
its highly efficient training algorithm based on the random 
initialization of part of their weights, leading to good com-
promise between the precision, simplicity and illustrating 
an alleged training cost and very high quality of nonlinear 
approximation function. For any dataset composed of a pairs 
if inputs and output variables (Cao et al. 2020):

Three steps are necessary for achieving the training pro-
cess of the RVFL model: (i) linear link between input and 
hidden neurons using the input weights and biases, i.e., Wij 
and b, (ii) the output of the hidden neurons obtained dur-
ing the first stage should be nonlinearly transformed using 
an activation nonlinear sigmoidal function g (.), and (iii) 
the output weights β was calculated using a lead-square 
approach (Cao et al. 2020).

(12)D =
{(

xi, yi
)|xi ∈ Rd

, yi ∈ R
}
, i = 1, 2, 3,⋯N
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Signal decomposition methods

In the present study, three signal decomposition methods were 
used namely, (i) the empirical mode decomposition (EMD), 
(ii) the variational mode decomposition (VMD), and (iii) the 
empirical wavelet transform (EWT). Hereafter, we provide 
only a short description of each method without in-depth the-
oretical description. For more theoretical description, inter-
ested readers are referred to those published papers for a full 
mathematical formulation and for more in-depth information 
of each algorithm: (Huang et al. (1998) for the EMD algorithm 

description, Dragomiretskiy and Zosso (2014) for the VMD 
algorithm, and Gilles (2013) for the EWT algorithm.

Huang et al. (1998) proposed the empirical mode decom-
position (EMD). The EMD decomposes nonlinear and non-
stationary signal into a sum of subcomponents called intrin-
sic mode functions (IMFs) and a residue RN using Hilbert 
transformation. The calculated IMFs were used as new input 
variables for the ML models. The variational mode decom-
position (VMD) is a signal decomposition method intro-
duced by Dragomiretskiy and Zosso (2014). The VMD uses 
an adaptive decomposition process for extracting a series of 

Fig. 4   Random forest regression (RFR) model architecture. The OOB is the out-of-bag
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IMFs. The VMD is considered as an adaptive, quasi-orthog-
onal, and non-recursive decomposition method (Cannizzaro 
et al. 2021). The provided IMFs were sent back to the ML as 
new predictors variables. Finally, Gilles (2013) introduced 
the empirical wavelet transform (EWT). The EWT uses a 
robust algorithm to extract the subcomponent, i.e., the mul-
tiresolution analysis (MRA) components, by performing 
spectrum segmentation of the Fourier spectrum of the x(t) 
into a set of segments (Wang and Hu 2015).

Gamma test input variable selection

In general, models based on ML paradigm have proved their 
efficacies and robustness. However, the implementation of the 
ML faces a number of challenges and clashes against several 
major difficulties, notably. Among a serious of problems, 
stemming the correct and effective use of ML is certainly 
the input variables selection (IVS), which becomes a chal-
lenging task. The idea behind the use of IVS is to select a 
suitable number of input variables among a large number of 

candidates. While several approaches have been proposed and 
available in the literature, in the present study, we use the 
famous gamma test method, simply called GT proposed and 
supported by Končar 1997; Stefánsson et al. (1997). Details 
and description of the GT algorithm is presented in the Text 
S1, and the obtained results are reported in Tables S1 and S2.

Performance assessment of the models

All models used in the present study calibrated during the 
training phase and their accuracies were evaluated using 
root-mean-square error (RMSE), mean absolute error 
(MAE), correlation coefficient (R), and Nash-Sutcliffe 
efficiency (NSE) (Yaseen 2021). Expressions are given as:

(13)RMSE =

√√√√ 1

N

N∑
i=1

[(CBGA
obs,i) − (CBGA

est,i)i]
2, (0 ≤ RMSE < +∞)

(14)

MAE =
1

N

N∑
i=1

|CBGA
obs,i − CBGA

est,i| , (0 ≤ MAE < +∞)

(15)R =

⎡
⎢⎢⎢⎢⎢⎣

1

N

N∑
i=1

�
CBGA

obs,i − CBGA
obs

��
CBGA

est,i − CBGA
est

�

�
1

N

n∑
i=1

�
CBGA

obs,i − CBGA
obs

�2

�
1

N

n∑
i=1

�
CBGA

est,i − CBGA
est

�2

⎤
⎥⎥⎥⎥⎥⎦

, (−1 < R ≤ +1)

Fig. 5   Random vector func-
tional link (RVFL) neural 
network architecture
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CBGAobs and CBGAest are the mean measured, and mean 
forecasted CBGA, respectively, CBGAobs and CBGAest 
specify the observed and forecasted cyanobacteria 

(16)

NSE = 1 −

⎡
⎢⎢⎢⎣

∑N

i=1

�
CBGAobs − CBGAest

�2
∑N

i=1

�
CBGAobs,i − CBGAobs

�2
⎤
⎥⎥⎥⎦
, (−∞ < NSE ≤ 1)

blue-green algae for ith observations, and N shows the 
number of data points.

Modeling development

Determination of the best input combination using 
GT algorithm

The purpose of this work is to develop predictive mod-
els for an accurate estimation of CBGA concentration 
based on several water quality variables. We refer to 
these inputs variables as water Tw, DO, pH, SC, and TU. 
Because large number of predictors leads to high number 
of possible input combination (i.e., 25–1 = 31), mean-
ingful input combination, it is necessary to use an input 
variables selection strategy to select the most significant 
input that contains the most predictive information. In 
this study, the GT algorithm was applied for each station 
separately and the obtained results are reported in Tables 

Table 2   The input combinations of different models

ELM RVFL ANN RFR Input combination Output

ELM1 RVFL1 ANN1 RFR1 Tw, DO, pH, SC, TU CBGA
ELM2 RVFL2 ANN2 RFR2 Tw, pH, SC, TU CBGA
ELM3 RVFL3 ANN3 RFR3 Tw, DO, SC, TU CBGA
ELM4 RVFL4 ANN4 RFR4 Tw, SC, TU CBGA
ELM5 RVFL5 ANN5 RFR5 Tw, pH, SC CBGA
ELM6 RVFL6 ANN6 RFR6 Tw, SC CBGA
ELM7 RVFL7 ANN7 RFR7 Tw, TU CBGA

Fig. 6   Resulting intrinsic mode functions (IMFs) and multiresolution analysis (MRA) components for one quality variable using a the empirical 
model decomposition (EMD), b the variational mode decomposition (VMF), and c empirical wavelet transform (EWT)
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S1–S2 using a full embedding, i.e., examining all possi-
ble input combinations (i.e., 31). The input variable com-
binations were reported as a “Mask,” for which the value 
(1) means that the variable was included and the value 
(0) means that the variable was excluded. According to 
Table S1–S2, the influence of the five water quality vari-
ables on CBGA was evaluated, and it is clear that the first 
input combination corresponds to the Mask (11111) and 
it is selected as the best input variable combination and 
determined by observing the gamma (Г) value. Hence, 
our strategy was to compare between several models hav-
ing several input combinations, i.e., five, four, three, and 
two input variables. It is important to note that increasing 
the number of omitted variable leads to an increase of the 
gamma (Г) value.

Using only four input variables, it is clear from 
Table S1 and S2 that the Mask (11011) is suitable for 
the two stations, for which the water pH was excluded 
and the Tw, DO, SC, and TU were selected as the relevant 
input variables. A second Mask was selected and cor-
responds to the (10111) for which DO was omitted and 
Tw, pH, SC, and TU were selected as the relevant input 
variables. Subsequently, the input combination based on 
only three input variables were also analysed and it is 
shown that the Mask (10011) is suitable for the two sta-
tions (Tables S1 and S2), and the choice should be made 
among another Mask, and we have selected the Mask 
(10110) was adopted. Finally, using only two input vari-
ables, we have selected two Masks (10010) and (10001), 
with respect to the statistical values reported in Tables S1 

Fig. 7   Flowchart of the pro-
posed modelling framework for 
cyanobacteria blue-green algae 
prediction
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and S2. Finally, the retained models’ structure is reported 
in Table 2 and it is important to note that among the 
five water quality variable, water Tw was included into 
all input combination (i.e., 7 combinations), followed by 
water SC which was included into six input combination, 
water TU was included into five input combination, while 
DO and pH were the input variables having the less sig-
nificant contribution.

Models’ configuration

CBGA was modelled using four machines learning, i.e., 
ELM, ANN, RFR, and RVFL models. First, the four mod-
els were applied and compared according to the input vari-
able combinations reported in Table 2, and the obtained 
results were discussed and deeply analysed for each station 
separately; thus, during this first part of the investigation, 

the models were designated as single models. Second, to 
improve the performances of the single models, a new 
modelling framework was proposed and based on com-
bining single ML with signal decomposition algorithms, 
i.e., the EMD, VMD, and the EWT, and the new mod-
els were designated as hybrid models, i.e., ELM_EMD, 
ELM_VMD, and ELM_EWT. The overall procedure of the 
second stage of the investigation was achieved by dividing 
the original water quality signal, i.e., pH, Tw, DO, SC and 
TU into a number of individual subseries, i.e., the IMF 
using the EMD and VMD, and the MRA using the EWT. 
An example of obtained IMF and MRA for one quality 
variable, i.e., the DO concentration, is shown in Fig. 6. 
Hence, the new subseries were used as new inputs vari-
ables. In order to demonstrate the effectiveness of the pro-
posed model approaches, in the next section, the predictive 
performances of the proposed methods were presented, 

Table 3   Performances of 
different standalone models at 
the USGS 14202650 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM1 0.756 0.571 3724.046 2219.280 0.741 0.549 3784.016 2254.217
ELM2 0.776 0.602 3588.702 2177.305 0.751 0.563 3725.382 2231.259
ELM3 0.747 0.558 3782.586 2159.998 0.729 0.531 3860.679 2181.597
ELM4 0.729 0.531 3894.050 2179.729 0.713 0.509 3951.264 2219.505
ELM5 0.619 0.383 4469.077 2483.625 0.591 0.349 4547.912 2500.810
ELM6 0.496 0.246 4938.190 2791.742 0.437 0.178 5111.601 2814.819
ELM7 0.595 0.354 4573.296 2434.374 0.540 0.289 4752.398 2530.584
RVFL1 0.777 0.604 3579.656 2085.049 0.759 0.575 3673.355 2131.864
RVFL2 0.792 0.627 3473.904 2048.362 0.765 0.585 3630.485 2124.916
RVFL3 0.771 0.595 3620.124 2030.167 0.749 0.561 3734.190 2074.307
RVFL4 0.752 0.566 3746.968 2029.327 0.736 0.542 3815.839 2092.055
RVFL5 0.633 0.401 4403.269 2429.416 0.595 0.353 4533.783 2477.578
RVFL6 0.553 0.305 4740.788 2544.218 0.468 0.190 5074.883 2606.888
RVFL7 0.611 0.374 4501.689 2292.672 0.497 0.208 5015.713 2431.017
ANN1 0.741 0.548 3824.826 2164.916 0.728 0.528 3873.537 2175.145
ANN2 0.744 0.554 3799.886 2044.296 0.723 0.522 3896.126 2108.762
ANN3 0.738 0.540 3856.448 2196.682 0.716 0.508 3955.319 2222.072
ANN4 0.752 0.565 3750.753 2079.567 0.731 0.535 3845.899 2155.935
ANN5 0.626 0.392 4434.440 2321.133 0.618 0.382 4429.797 2296.433
ANN6 0.540 0.292 4785.949 2634.546 0.517 0.267 4825.720 2584.096
ANN7 0.626 0.392 4436.373 2332.856 0.581 0.338 4587.742 2426.060
RFR1 0.972 0.940 1393.107 549.011 0.944 0.884 1923.787 762.349
RFR2 0.964 0.925 1554.692 587.973 0.930 0.861 2099.472 800.156
RFR3 0.970 0.935 1445.419 571.553 0.932 0.861 2097.951 821.071
RFR4 0.933 0.858 2143.568 910.691 0.878 0.756 2784.587 1198.149
RFR5 0.884 0.740 2900.974 1321.575 0.828 0.656 3306.579 1463.450
RFR6 0.789 0.610 3553.996 1689.790 0.704 0.493 4013.104 1881.958
RFR7 0.820 0.659 3322.150 1555.781 0.643 0.409 4333.611 2012.144
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analysed, and discussed. The flowchart of the proposed 
modelling framework is shown in Fig. 7.

Prediction results and analysis

USGS 14202650 station

Four error indexes were employed to validate the perfor-
mances of the proposed models and to evaluate the predic-
tive accuracies of the CBGA, i.e., the RMSE, MAE, R, and 
NSE indexes. Seven input combination were evaluated and 
compared and the prediction results using single models are 
presented in Table 3 for the USGS 14202650 station. Here-
after, only the results during the validation stage are pre-
sented and discussed. According to Table 3, the four afore-
mentioned models yielded different performances ranging 

from very poor predictive accuracy to excellent predictive 
accuracy. From Table 3, it can be found that: (i) numerical 
results for the ANN, ELM, and RFVL show that all models 
may no yielded satisfactory results and none of them was 
able to accurately and effectively predict CBGA concen-
tration. In addition, we find that increasing the number of 
input variables from two to five does not help in improv-
ing the models performances. Indeed, the mean R and NSE 
values calculated using the ELM models were ≈0.643 and 
≈0.424, respectively, showing the limited performances 
of the ELM models. In addition, high mean RMSE and 
MAE were obtained using the ELM models with values of 
≈4247.61(cells/mL) and ≈2390.40(cells/mL). Among the 
seven input combinations, i.e., ELM1 to ELM7, the high R 
(≈0.751), and NSE (≈0.563) values were obtained using the 
ELM2 for which DO was omitted from the input variables. 
The performances of ELM2 were slightly higher than those 

Table 4   Performances of hybrid 
models based on EMD at the 
USGS 14202650 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_EMD1 0.994 0.987 644.488 422.250 0.973 0.946 1313.095 802.604
ELM_EMD2 0.992 0.985 704.269 447.748 0.972 0.944 1339.559 829.133
ELM_EMD3 0.993 0.987 659.622 435.769 0.971 0.941 1368.372 859.778
ELM_EMD4 0.969 0.939 1410.203 952.895 0.944 0.890 1869.931 1205.565
ELM_EMD5 0.981 0.963 1098.431 699.261 0.963 0.927 1521.912 929.303
ELM_EMD6 0.978 0.956 1198.320 761.604 0.945 0.891 1860.696 1086.612
ELM_EMD7 0.993 0.986 665.845 424.681 0.960 0.920 1599.109 903.677
RVFL_EMD1 0.896 0.802 2529.747 1667.964 0.882 0.778 2655.929 1731.709
RVFL_EMD2 0.904 0.817 2431.898 1591.195 0.891 0.793 2563.386 1641.212
RVFL_EMD3 0.881 0.776 2690.292 1777.901 0.873 0.761 2754.160 1809.043
RVFL_EMD4 0.863 0.744 2880.468 1853.009 0.856 0.733 2911.785 1872.922
RVFL_EMD5 0.901 0.812 2465.227 1640.989 0.892 0.795 2553.041 1690.006
RVFL_EMD6 0.866 0.749 2848.195 1802.260 0.855 0.730 2929.980 1843.650
RVFL_EMD7 0.845 0.713 3046.617 2075.063 0.834 0.696 3108.749 2093.451
ANN_EMD1 0.992 0.984 711.822 370.580 0.989 0.977 851.589 496.193
ANN_EMD2 0.991 0.981 778.167 405.638 0.985 0.970 981.589 572.009
ANN_EMD3 0.992 0.984 713.404 380.000 0.988 0.976 864.837 491.387
ANN_EMD4 0.989 0.978 835.863 449.556 0.983 0.966 1043.880 637.653
ANN_EMD5 0.987 0.975 905.708 460.619 0.981 0.962 1098.774 596.446
ANN_EMD6 0.975 0.949 1286.431 666.125 0.967 0.935 1439.661 763.967
ANN_EMD7 0.988 0.976 881.872 490.599 0.983 0.965 1048.478 580.265
RFR_EMD1 0.997 0.994 455.424 195.892 0.971 0.943 1346.478 538.713
RFR_EMD2 0.997 0.994 457.959 198.301 0.970 0.940 1379.663 555.325
RFR_EMD3 0.997 0.994 454.314 197.417 0.970 0.941 1368.145 554.676
RFR_EMD4 0.997 0.993 462.284 201.682 0.965 0.932 1473.354 592.718
RFR_EMD5 0.997 0.993 466.121 205.298 0.966 0.932 1470.332 592.917
RFR_EMD6 0.997 0.993 474.844 209.029 0.960 0.921 1587.074 647.103
RFR_EMD7 0.997 0.993 476.591 207.763 0.978 0.956 1183.160 535.149
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of the ELM1 and ELM3, while the ELM6 having only water 
Tw and pH as input variables was the poorest model showing 
very poor predictive accuracy. Results obtained the RVFL 
and ANN models were relatively equal to those obtained 
using the ELM models with negligible differences dem-
onstrating the real limitations of the models to accurately 
predict the CBGA. The mean R and NSE values obtained 
using the RVFL and ANN were ≈0.653, ≈0.431, ≈0.659, 
and ≈0.440, respectively. In addition, the means RMSE and 
MAE were very high exhibiting the caps of ≈4211.61(cells/
mL), ≈2276.94(cells/mL), ≈4202.02(cells/mL), and 
≈2281.21(cells/mL); indeed, the comparison between the 
ELM, ANN, and RVFL models is not as obvious.

Comparisons of the overall results obtained using 
the RFR with respect to the R, NSE, RMSE, and MAE 
revealed interesting finding. From the results reported 
in Table 3, the mean R and NSE values obtained using 

the RFR models were ≈0.837 and ≈0.703, respectively, 
showing improvement rates of about ≈30.14% and 
≈65.76%, compared to the values obtained using the 
ELM models, and improvement rates of about ≈28.23% 
and ≈63.23%, compared to the values obtained using the 
RVFL models, and ≈26.98% and ≈59.74% compared to 
the ANN models, respectively. Thus, the comparisons 
demonstrate that modelling CBGA using the RFR is 
more effective that the other models and only the RFR 
was able to provide an acceptable and robust predictive 
accuracy. For further highlighting the superiority of the 
RFR models, we provide a term-by-term comparison of 
the RMSE and MAE errors and we found that the RFR 
improves the mean RMSE and MAE of the ELM, RVFL, 
and ANN models by ≈30.85% and ≈46.57%, ≈30.25% 
and ≈43.91%, and ≈30.10% and ≈44.01%, respectively. 
From the seven RFR models (Table 3), it is clear that the 

Table 5   Performances of hybrid 
models based on VMD at the 
USGS 14202650 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_VMD1 0.730 0.533 3889.033 2625.000 0.562 0.278 4789.549 3200.234
ELM_VMD2 0.688 0.474 4126.800 2714.739 0.525 0.232 4941.580 3268.259
ELM_VMD3 0.711 0.506 3998.456 2574.238 0.525 0.224 4966.578 3221.449
ELM_VMD4 0.696 0.484 4085.491 2631.810 0.518 0.219 4981.886 3249.790
ELM_VMD5 0.593 0.351 4581.836 2900.268 0.364 0.004 5624.692 3504.735
ELM_VMD6 0.505 0.256 4907.964 3037.953 0.283 0.127 5985.237 3720.452
ELM_VMD7 0.667 0.445 4237.913 2658.036 0.439 0.118 5295.082 3279.287
RVFL_VMD1 0.583 0.340 4622.337 2948.430 0.583 0.340 4621.544 2960.903
RVFL_VMD2 0.792 0.627 3473.904 2048.362 0.533 0.284 4812.460 3060.406
RVFL_VMD3 0.771 0.595 3620.124 2030.167 0.562 0.316 4704.845 2867.417
RVFL_VMD4 0.752 0.566 3746.968 2029.327 0.525 0.276 4841.616 3029.019
RVFL_VMD5 0.633 0.401 4403.269 2429.416 0.450 0.203 5078.705 3054.987
RVFL_VMD6 0.553 0.305 4740.788 2544.218 0.413 0.170 5180.897 3101.944
RVFL_VMD7 0.611 0.374 4501.689 2292.672 0.522 0.272 4852.350 2977.028
ANN_VMD1 0.979 0.959 1152.938 797.367 0.982 0.963 1087.129 748.496
ANN_VMD2 0.967 0.934 1457.740 934.100 0.965 0.931 1490.826 943.076
ANN_VMD3 0.979 0.959 1151.094 789.243 0.974 0.949 1283.820 882.770
ANN_VMD4 0.958 0.918 1628.581 1024.296 0.959 0.920 1607.665 975.427
ANN_VMD5 0.839 0.704 3095.363 1858.944 0.767 0.582 3675.997 2263.905
ANN_VMD6 0.720 0.513 3971.501 2299.887 0.689 0.474 4125.546 2404.928
ANN_VMD7 0.882 0.778 2679.757 1524.059 0.883 0.779 2676.106 1511.628
RFR_VMD1 0.997 0.992 507.592 224.967 0.997 0.992 507.592 224.967
RFR_VMD2 0.964 0.925 1554.692 587.973 0.996 0.992 518.836 231.308
RFR_VMD3 0.970 0.935 1445.419 571.553 0.996 0.990 566.032 248.897
RFR_VMD4 0.933 0.858 2143.568 910.691 0.995 0.987 645.156 290.285
RFR_VMD5 0.884 0.740 2900.974 1321.575 0.992 0.977 860.470 354.871
RFR_VMD6 0.789 0.610 3553.996 1689.790 0.989 0.967 1027.514 461.803
RFR_VMD7 0.820 0.659 3322.150 1555.781 0.991 0.973 942.880 436.983
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RFR1 was the strongest model slightly higher than the 
RFR2 and RFR3, and highly than the RFR4 and RFR5, 
while the RFR7 was the poorest model showing the low-
est predictive accuracy. As expected, we found that using 
all input variables (i.e., RFR1) yielded the best perfor-
mances and more accurate than the models having less 
input variables, and using only two input variables is not 
suitable for predicting CBGA.

In the second part of the present study, we use the com-
bined models based on EMD, VMD, and the EWT sig-
nal decomposition algorithms to decompose the original 
water quality signal and then employ the obtained sub-
signal as new input variables. All these models are based 
on the same input structure. In total, three modelling 
strategies are tested and compared as shown in Tables 4, 
5 and 6. From Table 4, based on the EMD decomposition, 
it is clear that all models improve their performances and 

all hybrid models performed best compared to the single 
models, showing the high contribution of the EMD in 
improving the models accuracies.

From Table 4, it is shown that the EMD approach 
achieves high decreases in MAE and RMSE, and high 
increase in R and NSE values in comparing with the 
single models. Compared to the single ELM models, 
the ELM_EMD obtains reductions of approximately 
≈63.43% and ≈60.45% in terms of means RMSE and 
MAE, and an increase of approximately ≈49.44% and 
≈117.62% in terms of means R and NSE, respectively. 
It is clear that the achievement in terms of NSE was 
the most notable and the most remarkable exceeding 
the rate of 100%. Similarly, the RVFL_EMD models 
improve the performances of the performances of the 
single RVFL models by decreasing the means RMSE and 
MAE by ≈33.92% and ≈20.43%, respectively, while the 

Table 6   Performances of hybrid 
models based on EWT at the 
USGS 14202650 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_EWT1 0.993 0.986 673.100 454.585 0.980 0.959 1137.207 788.185
ELM_EWT2 0.993 0.986 663.265 439.916 0.975 0.950 1258.937 831.618
ELM_EWT3 0.994 0.987 640.278 431.335 0.977 0.953 1217.009 796.498
ELM_EWT4 0.994 0.989 601.068 379.798 0.973 0.946 1309.420 816.295
ELM_EWT5 0.994 0.988 616.020 388.213 0.968 0.936 1429.369 870.072
ELM_EWT6 0.994 0.989 599.768 375.476 0.938 0.870 2031.542 1106.553
ELM_EWT7 0.995 0.989 595.060 376.998 0.982 0.964 1062.231 720.912
RVFL_EWT1 0.724 0.524 3925.903 2778.922 0.705 0.496 4002.203 2848.155
RVFL_EWT2 0.640 0.409 4373.054 3041.736 0.599 0.358 4516.229 3088.598
RVFL_EWT3 0.662 0.438 4263.271 2879.771 0.629 0.395 4384.247 2926.445
RVFL_EWT4 0.646 0.417 4342.258 3023.918 0.628 0.394 4386.850 3029.546
RVFL_EWT5 0.542 0.293 4782.286 3101.718 0.507 0.257 4859.247 3148.378
RVFL_EWT6 0.585 0.341 4615.839 3008.928 0.562 0.316 4662.909 3056.566
RVFL_EWT7 0.609 0.370 4513.428 3050.766 0.570 0.325 4632.946 3108.969
ANN_EWT1 0.988 0.975 891.379 591.896 0.983 0.967 1027.648 709.931
ANN_EWT2 0.965 0.930 1499.617 1073.255 0.961 0.923 1564.811 1137.849
ANN_EWT3 0.987 0.974 911.002 619.762 0.983 0.965 1057.018 757.996
ANN_EWT4 0.993 0.986 667.734 360.429 0.990 0.979 807.412 502.223
ANN_EWT5 0.993 0.985 686.651 372.868 0.988 0.976 865.358 539.564
ANN_EWT6 0.989 0.977 856.605 529.356 0.984 0.967 1019.300 690.072
ANN_EWT7 0.990 0.981 784.495 489.536 0.986 0.972 943.812 639.421
RFR_EWT1 0.997 0.994 450.718 200.783 0.989 0.976 866.691 389.270
RFR_EWT2 0.997 0.993 459.578 203.705 0.984 0.966 1041.408 426.202
RFR_EWT3 0.997 0.994 453.484 202.117 0.989 0.976 865.080 388.734
RFR_EWT4 0.997 0.993 469.933 206.888 0.980 0.958 1157.757 456.720
RFR_EWT5 0.997 0.993 472.779 212.686 0.972 0.940 1385.062 565.853
RFR_EWT6 0.997 0.993 482.622 215.867 0.971 0.936 1422.422 555.555
RFR_EWT7 0.996 0.991 526.521 231.071 0.987 0.971 954.844 419.747
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mean R and NSE values were improved by ≈33.13% and 
≈75.92%, respectively. In addition, ANN_EMD models 
yielded improvement rates of approximately ≈75.08% 
and ≈74.08%, in terms of means RMSE and MAE, and 
increase the mean R and NSE values by ≈49.02% and 
≈119.18%, respectively, exhibiting the high improve-
ments rates among all proposed hybrid models. Finally, 
the RFR_EMD models have also contributed to signifi-
cant improvements rates of the single RFR models per-
formance metrics, for which the means RMSE and MAE 
were decreased by ≈52.29% and ≈55.06%, respectively, 
while the mean R and NSE values were improved by 
≈15.71% and ≈33.42%, respectively. From the results 
reported in Table 4, it is clear that the ELM_EMD and 
RFR_EMD models are quite alike and none of them was 
able to significantly surpassed the other exhibiting negli-
gible differences in terms of models performances. Com-
paring all models reported in Table 4, the ANN_EMD 
models outperform all other models and yielded the high 

mean R and NSE values and the lowest mean RMSE and 
MAE values, and among the seven input combination, 
i.e., the ANN_EMD1 to ANN_EMD7, it is shown that 
the first five models (i.e., ANN_EMD1 to ANN_EMD5) 
have a value of R and NSE higher than 0.980 and 0.960, 
respectively. Further comparison between the hybrid 
models based on EMD signal decomposition revealed 
that (i) even with the EMD, all models have shown their 
numerical performances significantly improved, the 
ANN_EMD were the most models in terms of improve-
ment rates, while the RVFL_EMD models are those on 
which the improvement was less sensitive, and (ii) tak-
ing into account fewer input variables, it is interestingly 
shown in Table 4 that ANN_EMD7 and RFR_EMD7 
were very accurate and exhibiting very high predictive 
accuracy; indeed, RFR_EMD7 was the best accurate 
random forest model with R and NSE values of approxi-
mately ≈0.978 and ≈0.956, respectively, while the ANN_
EMD7 was remarkably interesting model exhibiting very 

Fig. 8   Scatterplots of measured 
against predicted (CBGA) using 
single models for the validation 
stage: USGS 14202650 station
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high R and NSE values of approximately ≈0.983 and 
≈0.965, respectively.

Figure 8 illustrates the scatterplot of measured and 
predicted CBGA using single models, and it is clear that 
the RFR model was the only model for which the data 
were less scattered compared to the ELM, ANN, and 
RVFL models. Similarly, Fig. 9 illustrates the scatterplot 
of measured and predicted CBGA using hybrid models 
based on the EMD decomposition algorithm, and it is 
clear that the ANN_EMD model was the only model for 
which the data were less scattered compared to the ELM_
EMD, RFR_EMD, and RVFL_EMD models.

The performances of all models based on variational 
model decomposition (VMD) are shown in Table 5. The 
analysis of the results in Table 5 revealed some important 
finding. First, it is clear that the predictive performances 
of the ELM and RVFL models degrade significantly with 
the use of the VMD algorithm. It can be observed that 
the measured CBGA was poorly fitted to the calculated 

data showing high RMSE and MAE values and very poor 
R and NSE values, and compared to the single model, the 
mean values of all performance metrics were deteriorated 
demonstrating the limitations of the VMD algorithm in 
improving the performances of these two kind of ML 
models. According to Table 5, the mean RMSE and MAE 
of the single ELM and RVFL models were increased by 
≈18.72% and ≈28.62%, respectively, while the mean R 
and NSE values were decreased by ≈40% and ≈146.92%, 
respectively. In contrast to the poor results obtained using 
the ELM and RVFL models, the performances of the sin-
gle ANN and RFR were significantly improved using the 
VMD algorithm, and more precisely, the obtained results 
using the RFR_VMD were very strong. More precisely, 
it can be observed from Table 5 that the RFR_VMD 
models were able to maintain a high means R, an NSE 
values, and yielded best performances compared to the 
all other models. An outstanding means R and NSE of 
approximately ≈0.994 and ≈0.983 were obtained using 

Fig. 9   Scatterplots of measured 
against predicted (CBGA) using 
hybrid models based on empiri-
cal mode decomposition (EMD) 
for the validation stage: USGS 
14202650 station
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the RFR_VMD, and a slightly difference between the 
seven input combination was very small, and the R and 
NSE values were ranged between ≈0.989 to ≈0.997 and 
≈0.967 to ≈0.992, respectively. However, regarding the 
ANN_VMD models, it is clear that the ANN_VMD5 and 
ANN_VMD6 were not able to significantly improve their 
accuracies showing a very limited improvement rates for 
which the R and NSE values does not surpassed the val-
ues of ≈0.770 and ≈0.580, respectively. Overall, using 
the VMD algorithm, the best performances were obtained 
using the RFR_VMD1 (R ≈ 0.997 and NSE ≈ 0.992) 
and followed by the ANN_VMD1 (R ≈ 0.997, NSE ≈ 
0.992). Figure 10 illustrates the scatterplot of measured 
and predicted CBGA using hybrid models based on the 
VMD decomposition algorithm, and it is clear that the 
RFR_VMD model was the only model for which the data 
were less scattered compared to the ANN_VMD, and it 
is clear that the ELM_VMD and RVFL_VMD models 

were very poor and showing high scattered data with 
very low R2 values.

The model performance among the different models 
based on the EWT is displayed in Table 6, in which the 
RMSE, MAE, R, and NSE are calculated and displayed. 
Generally speaking, the proposed ANN_EWT method 
performs best equally with RFR_EWT, following by 
the ELM_EWT, while the RVFL_EWT was failed to 
improve its performances showing very poor numeri-
cal indexes. Specifically, the ANN_EWT shows the 
minimal average for RMSE and MAE, which decreases 
by ≈75.23% and ≈68.83% compared with the original 
single ANN with respect to the seven input combina-
tions, respectively. The average reduction of RMSE 
and MAE are ≈62.58% and ≈64.18% of the RFR_EWT 
models, which are less than the values of the ANN_
EWT. Moreover, the proposed ELM_EWT models also 
help to decrease the means RMSE and MAE of the 

Fig. 10   Scatterplots of meas-
ured against predicted (CBGA) 
using hybrid models based on 
variational mode decomposition 
(VMD) for the validation stage: 
USGS 14202650 station
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original single ELM models by ≈68.23% and ≈64.56%, 
respectively. All of these findings indicate that the 

proposed EWT decomposition algorithm was found 
to be an effective and robust decomposition algorithm 

Fig. 11   Scatterplots of meas-
ured against predicted (CBGA) 
using hybrid models based on 
empirical wavelet transform 
(EWT) for the validation stage: 
USGS 14202650 station

Fig. 12   Boxplots of measured and calculated river cyanobacteria 
blue-green algae (CBGA: Cells/mL) at the USGS 14202650 (valida-
tion stage)

Fig. 13   Violin plot showing distributions of the measured and calcu-
lated river cyanobacteria blue-green algae (CBGA: Cells/mL) at the 
USGS 14202650 (validation stage)
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leading to significant predictive accuracy of the CBGA 
concentration.

Finally, according to the all results reported above 
(Tables 3, 4, 5 and 6), we can conclude that (i) RFR1 is 
the most accurate model among all single models, and 
the difference between its performances and the ANN1, 
RVFL1, and ELM1 is very larger; thus, neither ANN nor 
ELM or RVFL are suitable for CBGA prediction, and (ii) 
among the hybrid models, the ANN_EMD1 is the most 
accurate model based on EMD signal decomposition, the 
RFR_VMD1 is the most accurate model based on VDM 
signal decomposition, and ANN_EWT4 is the most accu-
rate model based on EWT signal decomposition, and in 
overall and based on the above experiments, the proposed 
RFR_VMD1 was the most accurate and possesses a more 
powerful predictive ability than all other models and they 
produced the lowest RMSE and MAE values of ≈507.59 
(cells/mL) and ≈224.96 (cells/mL), respectively, and the 

Fig. 14   Taylor diagram of cyanobacteria blue-green algae (CBGA: 
cells/mL) illustrating the statistics of comparison between the pro-
posed models at the USGS 14202650 (validation stage)

Table 7   Performances of 
different standalone models at 
the USGS 14207200 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM1 0.836 0.700 246.971 173.017 0.820 0.673 265.556 186.322
ELM2 0.798 0.636 271.691 187.037 0.795 0.632 281.709 196.877
ELM3 0.801 0.642 269.764 195.344 0.776 0.602 292.945 210.425
ELM4 0.766 0.586 289.853 214.812 0.744 0.554 310.323 230.466
ELM5 0.607 0.369 358.042 276.572 0.614 0.379 366.143 280.149
ELM6 0.751 0.564 297.405 218.304 0.727 0.529 318.820 235.594
ELM7 0.532 0.283 381.689 304.322 0.529 0.281 393.904 315.353
RVFL1 0.841 0.707 244.069 169.279 0.825 0.680 262.760 184.621
RVFL2 0.803 0.644 268.710 185.623 0.789 0.623 285.018 201.143
RVFL3 0.808 0.653 265.530 194.519 0.783 0.613 289.020 210.965
RVFL4 0.771 0.594 287.017 210.827 0.748 0.561 307.888 225.622
RVFL5 0.794 0.630 274.087 188.786 0.718 0.482 334.421 256.216
RVFL6 0.754 0.569 295.850 216.128 0.727 0.529 318.857 233.507
RVFL7 0.581 0.335 367.511 294.394 0.585 0.340 377.348 302.543
ANN1 0.802 0.642 269.467 186.366 0.797 0.637 280.031 196.149
ANN2 0.775 0.600 285.121 198.068 0.763 0.582 300.154 210.364
ANN3 0.780 0.608 282.264 206.777 0.754 0.568 305.281 222.929
ANN4 0.735 0.540 305.670 228.682 0.718 0.515 323.341 242.533
ANN5 0.750 0.562 298.202 212.565 0.735 0.541 314.779 226.563
ANN6 0.716 0.513 314.447 235.632 0.701 0.493 330.881 250.762
ANN7 0.611 0.373 356.891 280.040 0.622 0.388 363.281 284.544
RFR1 0.965 0.926 122.558 76.969 0.914 0.833 189.616 117.897
RFR2 0.940 0.878 157.611 96.530 0.870 0.755 229.776 144.469
RFR3 0.957 0.910 135.379 85.974 0.880 0.773 221.275 138.509
RFR4 0.909 0.814 194.183 131.352 0.805 0.646 276.323 189.475
RFR5 0.843 0.681 254.545 184.468 0.803 0.625 284.315 207.159
RFR6 0.873 0.756 222.522 151.461 0.750 0.562 307.487 209.776
RFR7 0.809 0.645 268.502 192.731 0.661 0.438 348.309 250.652
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higher R and NSE values of ≈0.997 and ≈0.992, respec-
tively. Figure 11 illustrates the scatterplot of measured 
and predicted CBGA using hybrid models based on the 
EWT decomposition algorithm, and it is clear that the 
RFR_EWT model was the only model for which the data 
were less scattered compared to the ANN_EWT, and it is 
clear that the ELM_EWT and RVFL_EWT models were 
very poor and showing high scattered data with very low 
R2 values. The boxplot, violin plot, and Taylor diagram 
for all developed models at the USGS 14202650 were 
depicted in Figs. 12, 13 and 14, showing the superior-
ity of one model compared to the other models and the 
improvement gained using the decomposition algorithms 
is clearly presented.

USGS 14207200 station

The obtained results for the USGS 14207200 station are 
reported in Tables 7, 8, 9 and 10. According to Table 7, 
using single models, the predictive accuracy was ranged 
from poor to moderate and only one model was found 
to be accurate, i.e., the RFR1. Results indicate that the 
RFR models were more accurate than the ANN, ELM, 
and RVFL models, exhibiting the high means R (≈0.812) 
and NSE (≈0.662) values, and the lowest mean RMSE 
(≈265.30) and MAE (≈179.70) values, respectively. It 
can be clearly seen from Table 7 that the single RFR1 
model can accurately predict the CBGA with very satis-
factory performances exhibiting the high R (≈0.914) and 

Table 8   Performances of hybrid 
models based on EMD at the 
USGS 14207200 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_EMD1 0.964 0.930 119.096 86.349 0.950 0.901 146.443 104.061
ELM_EMD2 0.970 0.941 109.135 78.296 0.947 0.896 149.737 105.582
ELM_EMD3 0.968 0.937 113.462 82.823 0.950 0.901 146.392 104.288
ELM_EMD4 0.967 0.934 115.468 80.894 0.940 0.883 158.740 109.869
ELM_EMD5 0.972 0.944 106.171 75.009 0.954 0.908 140.564 98.636
ELM_EMD6 0.963 0.927 121.653 85.290 0.940 0.883 158.834 109.211
ELM_EMD7 0.961 0.924 124.244 88.476 0.931 0.865 170.434 115.479
RVFL_EMD1 0.943 0.889 150.194 104.863 0.936 0.876 163.569 113.807
RVFL_EMD2 0.939 0.882 155.008 109.343 0.931 0.866 169.828 117.752
RVFL_EMD3 0.941 0.886 152.129 107.055 0.933 0.871 166.980 118.324
RVFL_EMD4 0.931 0.866 164.807 117.326 0.924 0.854 177.514 125.823
RVFL_EMD5 0.931 0.868 163.946 117.913 0.925 0.855 176.980 125.241
RVFL_EMD6 0.923 0.852 173.435 122.918 0.915 0.838 187.095 130.417
RVFL_EMD7 0.926 0.857 170.309 119.071 0.919 0.845 182.880 127.382
ANN_EMD1 0.979 0.959 91.753 62.902 0.964 0.929 124.011 83.732
ANN_EMD2 0.974 0.949 101.297 68.031 0.961 0.922 129.327 86.649
ANN_EMD3 0.978 0.956 94.966 64.920 0.965 0.931 121.755 82.667
ANN_EMD4 0.971 0.943 107.681 71.715 0.958 0.918 133.104 88.366
ANN_EMD5 0.972 0.944 106.739 70.646 0.960 0.920 131.586 84.964
ANN_EMD6 0.966 0.933 116.732 77.241 0.954 0.910 138.996 90.674
ANN_EMD7 0.968 0.937 112.943 74.734 0.955 0.911 138.181 89.825
RFR_EMD1 0.990 0.981 62.793 40.049 0.959 0.920 131.330 84.357
RFR_EMD2 0.990 0.980 64.223 40.994 0.958 0.917 134.159 86.458
RFR_EMD3 0.990 0.980 63.143 40.305 0.959 0.920 131.549 84.918
RFR_EMD4 0.990 0.979 64.933 41.453 0.956 0.914 136.003 87.776
RFR_EMD5 0.989 0.978 67.384 43.033 0.955 0.911 138.746 89.563
RFR_EMD6 0.988 0.977 68.444 43.745 0.954 0.909 140.101 91.092
RFR_EMD7 0.989 0.978 67.186 42.854 0.955 0.911 138.562 89.221
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NSE (≈0.833) values, and the lowest RMSE (≈189.61) 
and MAE (≈117.89) values, respectively, but beyond the 
RFR1 model, there is still a decreasing trend from RFR1 
to RFR7 for which the errors metrics between the meas-
ured and predicted CBGA concentration were becoming 
very large. Results indicate that ANN, ELM, and RVFL 
models were relatively equal showing negligible differ-
ence, and all were less accurate compared to the RFR 
models. RFVL model gave slightly lower mean RMSE 
(≈310.75) and MAE (≈230.66) values compared to the 
values obtained using ANN models (RMSE ≈ 316.82, 
MAE ≈233.40), and the values obtained using ELM 
models (RMSE ≈ 318.48, MAE ≈ 236.45). Taking into 
account the number of inputs variables, it can be seen 
from Table 7 that the best performances for all models 
were obtained using the first input combination based 

on the five water quality variables. Figure 15 illustrates 
the scatterplot of measured and predicted CBGA using 
single models for USGS 14207200 station, and it is clear 
that the RFR model was the only model for which the 
data were less scattered compared to the ANN, ELM, 
and RVFL models.

Table 8 gives the comparison results between the hybrid 
models based on the EMD signal decomposition. Accord-
ing to Table 8, it is clear that all single models have shown 
their performances significantly improved using the EMD 
algorithm. When comparing the single models with hybrid 
models, it is remarkable that (i) using the EMD, the means 
R, NSE, RMSE, and MAE of the single ELM models were 
improved by ≈32.10%, ≈70.87%, ≈51.95%, and ≈54.86%, 
respectively; (ii) the means R, NSE, RMSE, and MAE of the 
single RVFL models were improved by ≈25.27%, ≈56.87%, 

Table 9   Performances of hybrid 
models based on VMD at the 
USGS 14207200 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_VMD1 0.679 0.461 330.779 258.986 0.540 0.271 396.618 303.383
ELM_VMD2 0.729 0.532 308.366 239.597 0.567 0.293 390.512 296.720
ELM_VMD3 0.711 0.506 316.849 249.294 0.544 0.269 397.123 302.370
ELM_VMD4 0.733 0.537 306.586 240.706 0.547 0.258 400.202 307.308
ELM_VMD5 0.736 0.541 305.183 236.394 0.568 0.288 392.008 299.396
ELM_VMD6 0.725 0.526 310.162 241.655 0.581 0.309 386.194 296.662
ELM_VMD7 0.644 0.414 344.879 270.341 0.530 0.267 397.638 306.388
RVFL_VMD1 0.641 0.410 346.051 278.682 0.633 0.402 359.136 288.938
RVFL_VMD2 0.624 0.390 351.995 279.731 0.601 0.362 371.040 292.209
RVFL_VMD3 0.650 0.422 342.626 269.978 0.638 0.409 357.199 280.505
RVFL_VMD4 0.634 0.401 348.645 274.954 0.626 0.393 362.009 282.945
RVFL_VMD5 0.592 0.350 363.211 284.759 0.573 0.330 380.203 297.444
RVFL_VMD6 0.603 0.363 359.528 280.040 0.589 0.348 374.941 290.652
RVFL_VMD7 0.599 0.358 361.005 285.463 0.586 0.344 376.164 292.147
ANN_VMD1 0.979 0.958 92.037 68.714 0.922 0.846 182.361 126.400
ANN_VMD2 0.964 0.930 119.321 88.316 0.887 0.774 221.042 152.266
ANN_VMD3 0.972 0.945 105.806 80.550 0.910 0.823 195.368 136.284
ANN_VMD4 0.942 0.888 150.787 112.681 0.847 0.702 253.753 172.118
ANN_VMD5 0.952 0.906 138.022 102.135 0.873 0.752 231.329 158.197
ANN_VMD6 0.924 0.854 172.392 127.454 0.843 0.700 254.202 182.575
ANN_VMD7 0.922 0.850 174.236 129.092 0.822 0.667 268.186 193.930
RFR_VMD1 0.992 0.983 59.187 37.045 0.954 0.907 141.822 91.934
RFR_VMD2 0.991 0.982 61.191 38.706 0.949 0.895 150.805 98.743
RFR_VMD3 0.991 0.982 61.027 38.377 0.952 0.901 146.021 94.659
RFR_VMD4 0.990 0.979 65.301 41.984 0.945 0.886 156.709 103.081
RFR_VMD5 0.990 0.979 65.940 42.142 0.936 0.869 168.055 106.699
RFR_VMD6 0.988 0.973 73.738 48.105 0.924 0.847 181.416 116.109
RFR_VMD7 0.987 0.970 78.481 52.193 0.925 0.844 183.493 124.344
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≈43.69%, and ≈46.81%, respectively; (iii) the means R, 
NSE, RMSE, and MAE of the single ANN models were 
improved by ≈31.96%, ≈72.96%, ≈58.65%, and ≈62.85%, 
respectively; and (iv) the means R, NSE, RMSE, and MAE 
of the single RFR models were improved by ≈17.82%, 
≈38.21%, ≈48.82%, and ≈51.23%, respectively. In addi-
tion, it is clear that among the four hybrid models, the most 
significant improvement was gained by the ANN_EMD 
slightly higher than the RFR_EMD and much higher than 
the RVFL_EMD and ELM_EMD models. When comparing 
the ANN_EMD models with the ELM_EMD models, the 
predictive accuracy was higher than the later. For instance, 
promoting percentages of the means R, NSE, RMSE, and 
MAE by the ANN_EMD are ≈1.58%, ≈3.27%, ≈14.39%, 
and ≈18.77%, respectively. Similarly, the promoting per-
centages of the means R, NSE, RMSE, and MAE by the 

ANN_EMD compared to the RVFL_EMD models are 
≈3.60%, ≈7.26%, ≈25.13%, and ≈29.33%, respectively. 
Finally, the promoting percentages of the means R, NSE, 
RMSE, and MAE by the ANN_EMD compared to the RFR_
EMD models are ≈0.314%, ≈0.61%, ≈3.52%, and ≈1.06%, 
respectively, demonstrating that in overall the ANN_EMD 
and RFR_EMD were relatively equal. In conclusion, while 
all models have benefited from a significant improvement 
rate using the EMD algorithm, obtained results clearly 
indicate that adding the EMD to the single models is solid 
and credible way to improve the predictive accuracy of the 
CBGA. Figure 16 illustrates the scatterplot of measured and 
predicted CBGA using hybrid models based on the EMD 
algorithm, and it is clear that the ANN_EMD model was the 
only model for which the data were less scattered compared 
to the RFR_EMD, ELM_EMD, and RVFL_EMD models.

Table 10   Performances of 
hybrid models based on EWT at 
the USGS 14207200 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_EWT1 0.981 0.963 87.035 64.182 0.946 0.889 154.628 109.085
ELM_EWT2 0.965 0.932 117.482 87.152 0.943 0.885 157.435 116.521
ELM_EWT3 0.954 0.909 135.671 102.795 0.932 0.865 170.771 129.393
ELM_EWT4 0.967 0.936 114.212 83.823 0.942 0.885 157.452 115.169
ELM_EWT5 0.966 0.934 116.177 85.850 0.940 0.879 161.600 116.254
ELM_EWT6 0.969 0.940 110.760 79.874 0.952 0.904 143.977 105.207
ELM_EWT7 0.972 0.944 106.755 76.752 0.947 0.890 153.735 109.380
RVFL_EWT1 0.711 0.505 316.905 249.226 0.694 0.483 333.966 263.074
RVFL_EWT2 0.719 0.516 313.383 244.207 0.712 0.507 326.128 252.464
RVFL_EWT3 0.716 0.513 314.471 248.214 0.707 0.501 328.264 257.540
RVFL_EWT4 0.770 0.592 287.747 224.240 0.752 0.567 305.668 237.694
RVFL_EWT5 0.702 0.493 320.885 254.348 0.687 0.473 337.127 265.218
RVFL_EWT6 0.713 0.508 316.008 243.664 0.705 0.498 329.203 255.222
RVFL_EWT7 0.729 0.530 308.767 239.515 0.726 0.528 319.064 248.454
ANN_EWT1 0.986 0.972 76.062 53.843 0.959 0.916 134.286 92.522
ANN_EWT2 0.982 0.963 86.320 60.688 0.957 0.910 139.354 95.801
ANN_EWT3 0.984 0.968 80.970 57.889 0.962 0.924 128.251 88.832
ANN_EWT4 0.979 0.958 92.693 64.654 0.960 0.922 129.998 90.003
ANN_EWT5 0.979 0.958 91.989 63.379 0.960 0.921 130.615 90.603
ANN_EWT6 0.971 0.943 107.151 71.659 0.960 0.922 130.108 87.441
ANN_EWT7 0.971 0.943 107.348 73.486 0.958 0.915 135.358 93.061
RFR_EWT1 0.989 0.978 66.110 42.449 0.938 0.875 164.490 103.867
RFR_EWT2 0.989 0.977 67.720 43.465 0.932 0.863 171.823 105.674
RFR_EWT3 0.989 0.978 66.757 42.850 0.945 0.888 155.189 100.594
RFR_EWT4 0.988 0.977 69.009 44.434 0.941 0.882 159.318 100.691
RFR_EWT5 0.988 0.976 69.777 44.891 0.960 0.919 131.989 86.224
RFR_EWT6 0.988 0.975 71.191 46.096 0.962 0.924 128.208 84.366
RFR_EWT7 0.988 0.975 70.717 45.595 0.912 0.830 191.622 112.548
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Results obtained using hybrid models based on VMD sig-
nal decomposition are reported in Table 9. Overall, two mod-
els have shown their performances significantly improved 
and the two other models were deteriorated and showing a 
significant decrease in calculated performances. First, com-
bining the single ELM with the VMD algorithm, it is clear 
that the single ELM models show an average reduction in 
the means R and NSE values of approximately ≈29.09%, and 
≈86.70%, respectively, and an increase of the means RMSE 
and MAE values of approximately ≈19.23%, and ≈21.63%, 
respectively. For the RVFL_VMD, there is an increase of the 
means RMSE and MAE values of approximately ≈15.70%, 
and ≈20.26%, respectively, and a significant decrease in the 
means R and NSE values of approximately ≈21.88%, and 
≈47.92%, respectively. Consequently, this statement con-
firms what is already discussed in previous section regard-
ing the obtained results at the USGS 14202650 station that 
the VMD algorithm cannot be considered an efficient algo-
rithm for improving the performances of the single ELM 
and RVFL models.

Second, compared to the results of the single models 
reported in Table 7, using the VMD helps in significantly 
improving the performances of the single ANN and RFR 
models, for which the ANN_VMD improve the mean 
RMSE, MAE, R, and NSE values of the single ANN by 
≈19.92%, ≈41.35%, ≈27.57%, and ≈31.34%, respec-
tively. The RFR_VMD contributed significantly in the 
improvement of the mean RMSE, MAE, R, and NSE val-
ues of the single RFR by ≈15.87%, ≈32.75%, ≈39.24%, 
and ≈41.52%, respectively. Furthermore, the superiority 
of the RFR_VMD was clearly demonstrated, for which 
we can see that the RFR_VMD performs better than the 
ELM_VMD, RVFL_VMD and ANN_VMD exhibiting an 
improvement of the RMSE and MAE performance met-
rics of approximately ≈59.12% and ≈65.17%, ≈56.27%, 
≈ 63.67%, and ≈29.75% and ≈34.42%, respectively. Fig-
ure 17 illustrates the scatterplot of measured and pre-
dicted CBGA using hybrid models based on the VMD 
algorithm, and it is clear that the RFR_VMD model was 
the only model for which the data were less scattered 

Fig. 15   Scatterplots of meas-
ured against predicted (CBGA) 
using single models for the vali-
dation stage: USGS 14207200 
station
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compared to the ANN_EMD, ELM_EMD, and RVFL_
EMD models.

Table 10 provides a comparative study between the hybrid 
models based on the EWT algorithms. The RMSE and MAE 
criterions using ANN_EWT model have an average value 
of only ≈132.65 and ≈91.18, the lowest of all. The RMSE 
and MAE enhancements between ANN_EWT and the other 
models are ≈15.61% and ≈20.32% compared to the ELM_
EWT, ≈59.29% and ≈61.14% compared to the RVFL_EWT, 
≈59.29% and ≈61.14% compared to the RVFL_EWT, and 
≈15.84% and ≈8.06% compared to the RFR_EWT, respec-
tively, which is significant. It is clear that all models except 
the RVFL_EWT have gained significant improvement in 
terms of numerical performances and the enhancements 
between ANN_EWT model and the single ANN regarding 
the RMSE and MAE are ≈58.15% and ≈60.93%, between 
ELM_EWT model and the single ELM regarding the RMSE 
and MAE are ≈50.67% and ≈51.60%, and the enhancements 
between RFR_EWT model and the single RFR regarding 

the RMSE and MAE are ≈40.62% and ≈44.83%, respec-
tively, always above 40%, again significant. As we noted 
above for the USGS 14202650, the RVFL model was failed 
to improve its performances; the situation remains the same 
as the performances of the single RVFL were decreased 
using the EWT algorithm. Based on the predictive error 
results shown in (Tables 7, 8, 9, and 10), it can be observed 
that (a) for the single models, the RFR1 has obtained the 
minimum RMSE (≈189.61) and MAE (≈117.89), it achieves 
the maximal R value of 0.914, and it got the maximal NSE 
value of 0.833, respectively, and (b) the ANN_EMD3 clearly 
have higher prediction precision than all other hybrid mod-
els, i.e., RFR_VMD1 and RFR_EWT6. It denotes that the 
RVFL_VMD and RVFL_EWT perform worse than the other 
hybrid models. Figure 18 illustrates the scatterplot of meas-
ured and predicted CBGA using hybrid models based on the 
EWT algorithm, and it is clear that the ANN_EWT model 
was the only model for which the data were less scattered 
compared to the RFR_EMD, ELM_EMD, and RVFL_EMD 

Fig. 16   Scatterplots of meas-
ured against predicted (CBGA) 
using hybrid models based on 
empirical mode decomposition 
(EMD) for the validation stage: 
USGS 14207200 station
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models. The boxplot, violin plot, and Taylor diagram for all 
developed models at the USGS 14207200 were depicted in 
Figs. 19, 20 and 21, showing the superiority of one model 
compared to the other models and prediction improvement.

Conclusion

This study uses water quality variables to construct robust 
model for predicting cyanobacteria blue-green algae 
(CBGA) concentration in river using data collected at 
two USGS stations. The study focused on establishing a 
direct link between CBGA and water pH, Tw, DO, TU, and 
SC using four machines learning, i.e., ANN, ELM, RFR, 
and RVFL models. In the lights of the results obtained, 
several conclusions can be drawn. Overall, it appears that 
ANN, RVFL, and ELM models cannot provide reason-
able predictive relationships for CBGA using a variety of 
input variables combination involving low models’ per-
formances with high errors metrics. Conversely, using the 
RFR, the predictive accuracy has found to significantly 
increase, showing an excellent improvement in the model 

performances with R and NSE values reaching the cap 
of ≈ 0.944 and ≈ 0.884 for USGS 14202650 station and 
≈ 0.914 and ≈ 0.833 for USGS 14207200 station. This 
first concluding remark is important and revealed that 
RFR which belong to the category of ensemble learn-
ing methods is more suitable for CBGA compared to the 
standalone ML methods, although additional validation 
data are required to perform and provide a more thorough 
validation analysis.

As the present study highlighted limits in the applica-
bility of single ML models for CBGA prediction, a new 
modelling framework was proposed based on preprocess-
ing signal decomposition. Hence, three signal decomposi-
tion algorithms were tested, and in overall, the EMD algo-
rithm was found to be more suitable than the VMD and 
EWT algorithms. Using the EMD algorithm, the ANN 
model calibrated using the five water quality variables (i.e., 
water pH, Tw, SC, DO, and TU) was found to be more accu-
rate and yielded high R and NSE values of approximately 
≈ 0.989 and ≈ 0.977, followed by the ELM model with 
the values of ≈ 0.989 and ≈ 0.977, respectively, while the 
RFR and RVFL were ranked in the third and fourth place, 

Fig. 17   Scatterplots of meas-
ured against predicted (CBGA) 
using hybrid models based on 
variational mode decomposition 
(VMD) for the validation stage: 
USGS 14207200 station
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respectively. Subsequently, the VMD was also used, and in 
overall, it was found that the improvement gained in mod-
els performances was less important compared to the EMD 

for the ANN, ELM, and RVFL models, with the exception 
of the combined RFR-VMD who was found to be more 
accurate compared to the RFR-EMD. Regarding the EWT 

Fig. 18   Scatterplots of meas-
ured against predicted (CBGA) 
using hybrid models based on 
empirical wavelet transform 
(EWT) for the validation stage: 
USGS 14207200 station

Fig. 19   Box-plots of measured and calculated river cyanobacteria 
blue-green algae (CBGA: Cells/mL) at the USGS 14207200 (valida-
tion stage)

Fig. 20   Violin plot showing distributions of the measured and calcu-
lated river cyanobacteria blue-green algae (CBGA: Cells/mL) at the 
USGS 14207200 (validation stage)
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algorithm, it was found to be an excellent algorithm for 
improving the performances of the ML models and, CBGA 
estimation using the ELM, ANN, and RFR was significantly 
increased; on the contrary, the RVFL model does not ben-
eficed to any improvement; then, further losses of predictive 
accuracy are set to continue, demonstrating the specificity of 
this kind of ML algorithm. In overall, using the EWT, high 
performances were obtained and the R and NSE values have 
reached the cap of ≈ 0.989 and ≈ 0.976 using the combined 
RFR and EWT, the cap of ≈ 0.986 and ≈ 0.972 using the 
combined ANN and EWT, and the values of ≈ 0.982 and 
≈ 0.964 using the combined ELM and EWT, respectively.

In conclusion, the outstanding performances obtained 
in the present study show the robustness and the cred-
ibility of the proposed modelling framework based on the 
combined ML and signal decomposition. In the future, it 
is highly recommended to extend the present investigation 
to other location and using other water quality variables 
in order to investigate the efficacy of the proposed signal 
decomposition in improving the estimation of CBGA in 
river. It is also recommended applying other algorithms, 
i.e., wavelet transform and the complete ensemble empiri-
cal mode decomposition with adaptive noise.
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