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ABSTRACT 

Flooding is one of the most prevalent natural hazards, impacting numerous 

regions worldwide. The repercussions of such disasters are especially severe in 

developing nations, particularly in small island countries like Fiji. The absence of 

advanced flood risk monitoring resources and relevant data in these developing 

nations presents significant challenges to implementing effective early flood warning 

systems. To address this issue, this research develops innovative flood monitoring, 

assessment, and forecasting tools using artificial intelligence (AI) and copula-

statistical methods to enhance and contribute to developing effective early flood 

warning systems, thereby assisting in better flood preparation and management 

strategies to mitigate the severe impacts of flooding. The first objective is to develop 

a novel hourly flood monitoring index (SWRI24-hr-S) to identify flood events and compute 

their associated characteristics, including flood volume (V), duration (D) and peak (Q). 

The feasibility of this index as an hourly flood risk monitoring tool is demonstrated for 

various flood-prone sites in Fiji. The 3-dimensional (3D) vine copula model is 

employed to model the joint distribution between D, V, and Q to extract their joint 

exceedance probability for probabilistic flood risk assessment across these study 

sites. In the second objective, a hybrid deep learning model (C-GRU) is designed by 

fusing the Convolutional Neural Network (CNN) with the Gated Recurrent Unit (GRU) 

model to forecast the proposed SWRI24-hr-S over a short-term (i.e., 1-hourly forecast 

horizon) to assess the future flood risk for five flood-prone study sites in Fiji. The 

objective model is trained using the statistically significant lagged SWRI24-hr-S and real-

time hourly rainfall data. The state-of-the-art models, i.e., CNN, GRU, Long Short-

Term Memory (LSTM), and Random Forest Regression (RFR), were also developed 

for benchmarking. The hyperparameters of the objective and benchmarking models 

were optimised using the efficient Bayesian Optimization (BO) technique. Overall, the 

outcomes of this research are expected to assist Fiji and other flood-prone regions 

worldwide in enhancing their existing early flood warning systems by integrating the 

flood monitoring, assessment, and forecasting tools developed in this study. This 

integration will enhance the decision-support framework for flood preparedness and 

response efforts, thus mitigating the severe impacts of flooding and improving 

community risk management. 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Floods are among the most catastrophic natural disasters, capable of posing 

significant threats to populations through fatalities, injuries, displacement, and 

extensive damage to public and private infrastructure, cultural sites, the environment, 

and economic activities (Maranzoni et al., 2023). It results from various factors, 

including hurricanes, storm surges, excessive rainfall, and rapid snowmelt (Kumar et 

al., 2023). According to the Centre for Research on the Epidemiology of Disasters 

(CRED), floods constituted 44% of all disaster events between 2000 and 2019 (the 

highest figure compared to the other disaster types), impacting 1.65 billion people and 

resulting in 104,614 fatalities and economic losses totalling 651 billion USD worldwide 

(CRED, 2020; Maranzoni et al., 2023). The effects of climate change are expected to 

rapidly increase the intensity and frequency of flood events, leading to more severe 

damages in the near future (Nguyen-Huy et al., 2021). Therefore, it has become 

increasingly crucial to develop reliable and cost-effective tools for accurately 

monitoring, forecasting, and assessing the risk of extreme flood events to mitigate their 

severe impacts. In recent years, advanced mathematical and statistical methods and 

artificial intelligence (AI) algorithms have been used to develop practical tools for 

monitoring, assessing, and forecasting flood risks. 

In developing nations with limited flood monitoring resources and data, a 

mathematically derived flood index based solely on rainfall offers a crucial approach 

to assessing potential flood risks. The 24-hourly water resources index (WRI24-hr-S), 

proposed by Deo et al. (2018) in their pilot study, is one of the mathematical indices 

developed using only hourly rainfall data. This index was applied to monitor flood risk 

during sustained extreme rainfall periods in two study locations: Australia and South 

Korea. However, unlike the daily flood indices, such as the Flood Index (IF) (Deo et al., 

2015) and the Standardised Antecedent Precipitation Index (SAPI) (Nguyen-Huy et 

al., 2022), the primary limitation of the WRI24-hr-S is that it is unnormalised. Hence, it 

does not allow for the objective assessment of flood risk across geographically diverse 

study sites. Once normalised, the (normalised) index will serve as a uniform metric, 

ensuring consistent comparison of flood magnitudes and facilitating effective 

assessment of flood risks across geographically diverse regions. Consequently, it will 
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enable the identification of flood events and the derivation of their associated 

characteristics, such as flood volume, peak, and duration. 

Floods are multivariate stochastic phenomena characterised by mutually 

correlated variables, including flood peak, volume, and duration (Aminuddin Jafry et 

al., 2024; Daneshkhah et al., 2016; Ganguli & Reddy, 2013; Klaho et al., 2022; Latif & 

Mustafa, 2021, 2020; Nguyen-Huy et al., 2022; Tosunoglu et al., 2020). Potential risk 

and damage from floods are likely dependent on these interrelated flood 

characteristics, which should, therefore, be prioritised in risk assessment (Latif & 

Mustafa, 2020; Nguyen-Huy et al., 2022). Hence, it is essential to analyse the joint 

distribution properties of these characteristics in multivariate analysis to estimate the 

actual probabilities of flood occurrence (Chebana & Ouarda, 2009; Nguyen-Huy et al., 

2022). Previous studies have used vine copulas to model the joint distribution of flood 

event characteristics to derive important information for flood risk management, 

including the exceedance probability and joint and conditional return periods 

(Daneshkhah et al., 2016; Gräler et al., 2013; Latif & Mustafa, 2020; Nguyen-Huy et 

al., 2022; Shafaei et al., 2017; Tosunoglu et al., 2020). For instance, Nguyen-Huy et 

al. (2022), in their study, demonstrated the feasibility of the 3-dimensional (3D) vine 

copula in modelling the joint distribution of flood characteristics (i.e., flood duration, 

volume and peak) derived from the SAPI to extract their joint exceedance probability 

for probabilistic flood risk assessment. Such studies are critical for enhancing the 

evaluation of exceedance probability used in early flood warning systems and for 

accurately assessing flood risks, thereby facilitating the implementation of targeted 

risk management strategies. This is particularly crucial in developing nations with 

limited data and resources for flood monitoring and assessment. 

Moreover, it is imperative to be able to forecast future flood situations in addition 

to analysing past flood events. Flood forecasting is a crucial element of an early 

warning system, demanding relevant data, advanced technologies, and specialised 

expertise for its development. This presents a challenge in developing countries 

where these resources are often lacking. Hence, these countries must prioritise 

implementing a cost-effective solution that leverages readily available technology for 

the early flood warning system. 

Furthermore, it is essential to note that mathematically derived flood indices, 

such as IF, cannot predict the flooded state in advance unless a forecasting model for 

these indices is developed (Moishin et al., 2021a). The index-based flood forecasting 
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approach has recently gained significant popularity despite being previously 

underexplored. Artificial Intelligence (AI)-based models, including Machine Learning 

(ML), Deep Learning (DL), and hybrid models, have been developed and have 

demonstrated promising forecasting performance for the daily flood index (IF) to 

assess future flood risk for Australia (Prasad et al., 2021), Bangladesh (Ahmed et al., 

2023), and Fiji (Moishin et al., 2021a). However, implementing an early flood warning 

system that utilises more efficient and cost-effective AI techniques, along with copula-

statistical methods based on mathematically derived flood monitoring tools at shorter 

timescales (e.g., hourly), is crucial. This approach will enable relevant authorities and 

communities to take timely actions to mitigate potential risks associated with flooding, 

potentially saving lives and minimising property damage and economic losses. 

 

1.2. Statement of the problem  

Flooding is one of the most common natural disasters affecting numerous 

regions around the globe (CRED, 2020). Fiji, a Pacific Small Island Developing State 

(PSIDS) on which this study is focused, is also among the regions highly exposed to 

devastating natural hazards, where flooding is an annual event that causes loss of life, 

significant damage to housing, public infrastructure, agriculture, and economic 

disruption and losses (Government of Fiji, 2017; Lucas, 2020; McNamara, 2013). 

Apart from coastal flooding in low-lying areas, Fiji is significantly impacted by fluvial 

floods, which occur when rivers overflow due to prolonged or heavy rainfall, and pluvial 

floods (or flash floods) caused by intense precipitation overwhelming drainage 

systems, especially in flat and urban areas (Government of Fiji, 2017). 

Fiji has experienced some of the most severe floods in its history (McGree et 

al., 2010; Yeo & Blong, 2010). Between 1970 and 2016, Fiji experienced 44 major 

flood events that affected approximately 563,310 people and resulted in 103 fatalities 

(Government of Fiji, 2017). The March 2012 flash flooding was one of the most 

catastrophic events that hit Fiji, particularly the western division, where the country’s 

core industries, such as sugar, gold mining, and tourism, are located (McNamara, 

2013). A survey conducted by McNamara (2013) that assessed the aftermath of the 

March 2012 flooding in Fiji, reported four fatalities, the temporary displacement of 

15,000 individuals in evacuation centres, and initial damages exceeding 71 million FJD 

to key economic sectors.  
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The estimated average annual flood losses in Fiji exceed 400 million FJD, 

equivalent to 4.2% of the country’s Gross Domestic Product (GDP) (Government of 

Fiji, 2017). Such losses are significant for a small island nation with a population of 

less than a million and a GDP of less than 5 billion USD (The World Bank Group, 

2022). Given the assumption of significant increases in rainfall due to climate change, 

annual losses of flood-related assets in Fiji could surpass 5% of the GDP by 2050 

without adaptation measures (Government of Fiji, 2017). This poses a considerable 

challenge to the country’s long-term sustainable development and an economic threat. 

Consequently, effective early warning systems are much needed in Fiji to mitigate the 

severe impacts of flooding, a recommendation also highlighted by McNamara (2013) 

following the devastating effects of the March 2012 flooding in Fiji. Over the years, Fiji 

has significantly invested in flood monitoring and forecasting systems and recently 

adopted the Flash Flood Guidance System to enhance its flood preparedness and 

response efforts. 

Overall, the primary goal of this Master of Research thesis is to develop 

innovative flood monitoring, assessment, and forecasting tools using both AI and 

copula-statistical methods to enhance the existing and future early flood warning 

systems in Fiji. This research initiative aims to assist relevant stakeholders and the 

public in being better prepared, thereby potentially mitigating the severe impacts of 

such natural hazards. 

 

1.3. Research objectives  

The primary aim of this Master of Research thesis is to (a) develop a novel 

hourly flood monitoring with a probabilistic flood risk assessment and (b) develop an 

AI-based flood forecasting tool and test its practical utility in various flood-prone areas 

of Fiji. It is anticipated that these tools will assist relevant organisations in 

understanding the attributes of past flood events and forecasting future flood 

occurrences, thus enhancing the country’s early flood warning systems, potentially 

leading to improved flood preparedness, mitigation, and response strategies.  

The two specific objectives have been designed to meet the primary aim of this 

thesis, which are: 

1. To develop a novel hourly flood index (SWRI24-hr-S) (reported in the 

journal paper 1, Chapter 4). This index is then used to identify flood events 

and compute their characteristics, i.e., flood duration (D), volume (V), and 
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peak (Q) across various study sites in Fiji over the study period. The 3D vine 

copula is employed to model the joint distribution of flood characteristics to 

extract their joint exceedance probability for probabilistic flood risk 

assessment. The SWRI24-hr-S is formulated by normalising the existing 24-

hourly water resources index (WRI24-hr-S) in the literature, enabling objective 

flood risk assessment across geographically diverse regions. A 

comprehensive analysis is conducted to test and validate its practical utility 

in assessing flood risk on an hourly scale. The joint exceedance probability 

between the flood characteristics is derived by first quantifying the 

probability that the flood characteristics, i.e., D, V, and Q, exceed specific 

thresholds simultaneously. The thresholds were selected at the 50th-

quantile (median), 75th-quantile (moderate), and 95th-quantile (extreme).  

2. To develop a novel hybrid deep learning (DL) algorithm, C-GRU, for 

flood risk forecasting (reported in the journal paper 2, Chapter 5). The 

hybrid C-GRU model integrates Convolutional Neural Networks (CNN) with 

the Gated Recurrent Unit (GRU) model to forecast the SWRI24-hr-S over a 

short-term, i.e., 1-hourly forecast horizon to assess future flood risk for five 

flood-prone study sites in Fiji. The hybrid C-GRU model uses statistically 

significant lagged values of SWRI24-hr-S and real-time hourly rainfall as 

inputs. The hyperparameters of the proposed hybrid model (and benchmark 

models) are optimised using the Bayesian Optimization (BO) technique. The 

forecast performance of the hybrid C-GRU model is evaluated against the 

state-of-the-art benchmark models: CNN, GRU, Long Short-Term Memory 

(LSTM) and Random Forest Regression (RFR).  

 

The journal paper resulting from completing objective one of this research 

has been published in Water, 2024, Vol. 11, page 1560, 

https://doi.org/10.3390/w16111560. This journal is ranked Q1 in Water Science and 

Technology. The journal paper resulting from completing objective two of this research 

has been submitted for publication in Stochastic Environmental Research and Risk 

Assessment and is under review. This journal is ranked as Q1 in Water Science and 

Technology. 

 

https://doi.org/10.3390/w16111560
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1.4. Thesis Layout 

The schematic representation of the objectives formulated in this thesis is 

illustrated in Figure 1. It clearly outlines the processes from data acquisition to the 

application of innovative AI and copula-statistical methods for early flood warning and 

community risk management. This Master of Research thesis is organised into six 

chapters, given as follows: 

Chapter 1 This chapter provides the background of the research, presents the 

problem statement to highlight the study’s importance and outlines the 

study’s objectives.  

Chapter 2 This chapter presents a comprehensive literature review to summarise 

the existing research and identify gaps in the domain knowledge.  

Chapter 3 This chapter describes the study sites, dataset, and general methodology 

adopted in this research. While it provides a general overview, the 

specific study sites, datasets, and methodologies for each objective are 

detailed in their respective chapters.  

Chapter 4 This chapter is presented as a published article in the Water Journal 

(https://doi.org/10.3390/w16111560). It addresses the first objective of 

the research, introducing a novel hourly flood index (SWRI24-hr-S). This 

index is applied to seven study sites in Fiji to identify flood events and 

compute their characteristics over the study period. Subsequently, the 3D 

vine copula model is employed to model the joint distribution of flood 

characteristics to extract their joint exceedance probability for 

probabilistic flood risk assessment across these study sites. 

Chapter 5 This chapter is presented as a journal article submitted for publication in 

the Stochastic Environmental Research and Risk Assessment Journal 

and is under review. It addresses the second objective of the research. 

This chapter introduces a hybrid C-GRU model designed to forecast the 

SWRI24-hr-S over a short-term, i.e., 1-hourly forecast horizon, to assess 

future flood risk for five flood-prone study sites in Fiji. The Bayesian 

Optimization (BO) with the Tree-structured Parzen Estimator (TPE) 

algorithm is employed to optimise the hyperparameters of the proposed 

hybrid C-GRU and benchmark models. The performance of the proposed 

hybrid C-GRU model is compared to other benchmark models using 

https://doi.org/10.3390/w16111560
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various performance evaluation metrics, visual diagnostic plots, and a 

statistical test. 

Chapter 6 This chapter offers a comprehensive summary of the study, discusses its 

limitations, and provides recommendations for future research. 

 

Figure 1 Schematic view of this Master of Research thesis. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents the literature and relevant backgrounds of the study. It 

further outlines the knowledge gaps in the existing literature, consequently highlighting 

the innovative tools that can be adopted for designing an early flood warning system 

to mitigate the severe impacts of flood risk. 

2.1. Flood monitoring indices  

Floods are complex events influenced by several factors. These factors include 

the cumulative impact of various weather or climate events, such as temperature and 

precipitation, which may not be extreme individually, but their cumulative effect can 

cause severe consequences, along with the vulnerability and exposure of the affected 

area (Leonard et al., 2014; Seneviratne et al., 2012). Other factors, including 

topography, soil saturation, catchment size and shape, drainage networks, dam or 

levee construction, sea-level rise, and climate change, also contribute to flood 

occurrence. Therefore, an index that combines all these factors and the cumulative 

impacts of other weather or climate characteristics is crucial for a comprehensive flood 

risk assessment. However, in many developing countries, the lack of access to 

relevant data and flood monitoring and risk assessment facilities poses a significant 

challenge. Therefore, employing a mathematically derived flood index solely based on 

rainfall data offers an alternative strategy for evaluating an imminent flood risk 

situation. 

Over the years, numerous mathematical tools have been devised for flood 

monitoring solely based on rainfall data. These include the Standardised Precipitation 

Index (SPI) (Seiler et al., 2002), the Available Water Resources Index (AWRI) (Byun 

& Lee, 2002), the Weighted Average of Precipitation (WAP) (Lu, 2009), the 

Standardised WAP (SWAP) (Lu et al., 2014), the Flood Index (IF) (Deo et al., 2015), 

and the Standardised Antecedent Precipitation Index (SAPI) (Nguyen-Huy et al., 

2022).  However, when conducting flood risk assessment with indices (or indicators), 

emphasis should be placed on monitoring the changes in the remaining water volume 

due to rainfall over time and the capability of flood indices to reflect changing 

hydrological conditions accurately (Nguyen-Huy et al., 2022). Given that the start and 

end dates of flood events and monitoring can be unpredictable, ranging from 

spontaneous to short-term or long-term occurrences, flood monitoring based on flood 

indices should consider antecedent rainfall within each respective period (Nguyen-Huy 
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et al., 2022). Consequently, flood indices such as SWAP, IF, and SAPI are robust since 

they are designed to accommodate changes in antecedent rainfall by utilising 

appropriate time-dependent reduction functions that consider the depletion of water 

resources through various hydrological processes. The flood index, IF, has been 

applied in several locations and has demonstrated superior performance in daily flood 

monitoring, including Australia (Deo et al., 2018), Iran (Nosrati et al., 2010), 

Bangladesh (Deo et al., 2019), and Fiji (Moishin et al., 2021b). However, the primary 

limitation of IF and other indices, such as SPI, is their dependence on daily or 

monthly/annual accumulated rainfall data, which operate on significantly longer 

timescales than necessary for a real-time flood monitoring system. Consequently, 

these indices may not effectively capture flood risk during sudden bursts of high-

intensity rainfall, leading to rapid responses (i.e., flash floods). 

To enable real-time flood monitoring, Deo et al. (2018) proposed a 24-hourly 

water resources index (WRI24-hr-S) in their pilot study to monitor flood risk during 

sustained extreme rainfall periods and demonstrated its application in two study 

locations: Brisbane, Australia, and Dobong Observatory, South Korea. The WRI24-hr-S 

in that study was developed using hourly rainfall data to monitor flood risk by 

considering rainfall accumulation over the preceding 24 hours, whereby the rainfall 

contribution from preceding hours is subjected to a time-dependent reduction function, 

which accounts for the depletion of water resources through various hydrological 

processes, including evaporation, percolation, seepage, runoff, and drainage (Deo et 

al., 2018). However, unlike daily flood indices, IF, and SAPI, which are normalised 

metrics, the main limitation of the WRI24-hr-S is that it is unnormalised. Hence, it cannot 

be used to compare and objectively assess flood risk across geographically diverse 

study sites. This highlights a significant research gap addressed in the current study. 

 

2.2. Copula-based flood characteristics modelling 

Flooding is a multivariate probabilistic event that exhibits a complex 

interdependence among its three intercorrelated characteristics: flood peak, volume, 

and duration (Latif & Mustafa, 2020). Hence, the univariate flood frequency analysis 

approach for probabilistic flood risk assessment based on a single characteristic has 

been recognised as unreliable because such approaches give limited information and 

may underestimate or overestimate flood-related risk (Latif & Mustafa, 2020; Nguyen-

Huy et al., 2022). For instance, a flood risk assessment based solely on duration will 
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fail to account for the risks associated with high peak and volume (Nguyen-Huy et al., 

2022). Therefore, since flood event characteristics are generally interrelated, 

multivariate models that accurately represent the dependence structures of these 

characteristics are crucial for a comprehensive flood risk assessment (Nguyen-Huy et 

al., 2022; Tosunoglu et al., 2020).  

Copula models, first introduced by Sklar (1959), are considered the most 

efficient statistical tool for modelling multivariate distributions compared to 

conventional multivariate models (Latif & Mustafa, 2020). Copulas are functions that 

combine several univariate marginal cumulative distribution functions into a joint 

cumulative distribution (Daneshkhah et al., 2016; Gräler et al., 2013). By doing so, 

copulas describe the dependence structure between random variables and enable the 

calculation of joint probabilities independent of the marginal behaviour of the involved 

variables (Ganguli & Reddy, 2013; Gräler et al., 2013; Latif & Mustafa, 2020; Nguyen-

Huy et al., 2022; Tosunoglu et al., 2020). Among multivariate copula models, the vine 

copula (or pair-copula) provides the most flexible approach for modelling the 

dependence structure between multiple variables based on the mixing of (conditional) 

bivariate copulas (Aas et al., 2009; Daneshkhah et al., 2016; Gräler et al., 2013; 

Nguyen-Huy et al., 2022; Tosunoglu et al., 2020).  

The underlying theory for vine copula construction is detailed in Bedford and 

Cooke (2001, 2002), originating from the work presented by Joe (1997). The 

fundamental concept of vine copula-based methodology is to decompose the 

multivariate joint density function into a sequence of local building blocks comprised 

of best-fitted bivariate copula functions and their associated conditional and 

unconditional distribution functions rather than relying on a single fixed copula across 

all intercorrelated random variables (Aas et al., 2009; Daneshkhah et al., 2016; Latif 

& Mustafa, 2020; Latif & Simonovic, 2022a). Several studies have employed the vine 

copula approach to model the joint distribution of flood characteristics, such as flood 

volume, peak, and duration, to evaluate exceedance probability and joint and 

conditional return periods (Daneshkhah et al., 2016; Gräler et al., 2013; Latif & 

Mustafa, 2020; Nguyen-Huy et al., 2022; Shafaei et al., 2017; Tosunoglu et al., 2020). 

The present study draws inspiration from the research conducted by Nguyen-

Huy et al. (2022). In that study, the mathematically derived flood index (SAPI), which 

incorporates a time-dependent reduction function, was first calculated using only 

satellite-derived daily rainfall data. This index was then employed to identify all flood 
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events and compute their associated characteristics (i.e., flood duration, volume, and 

peak) in Myanmar. The 3D vine copula was used to model the joint distribution of these 

flood event characteristics to extract the joint exceedance probabilities in different 

combined scenarios (where flood characteristics simultaneously exceed various 

thresholds) for probabilistic flood risk assessment. The methodologies presented in 

that study are crucial for enhancing the evaluation of exceedance probability utilised 

in early flood warning systems, ensuring accurate flood risk assessment, and 

implementing targeted risk management strategies. However, such approaches 

remain unexplored for many flood-prone regions around the globe.  

 

2.3. Data-driven flood index forecasting 

Flood forecasting is crucial for an early flood warning system, yet it remains one 

of the most complex and challenging tasks in hydrology, primarily due to the complex 

dynamic processes involved (Nguyen-Huy et al., 2021; Prasad et al., 2021). Flood 

forecasting is more practical when conducted over a short-term (e.g., hourly), as it 

allows for better flood risk estimation, preparation time and implementation of 

appropriate mitigation strategies (Alexander et al., 2018; Hapuarachchi et al., 2011; 

Kant et al., 2013; Tiwari & Chatterjee, 2010). Hydrodynamic models are commonly 

employed for simulating detailed flood dynamics, as they can be directly integrated 

with hydrological and river models to enhance flood risk assessment, real-time flood 

forecasting, and scenario analysis (Teng et al., 2017). However, these models have 

high data requirements, demand intensive computational resources, and require 

specialised expertise, making them challenging to apply in operational flood 

forecasting (Kabir et al., 2020; Nevo et al., 2022; Teng et al., 2017).  

An index-based flood forecasting system using AI techniques to assess future 

flood risk has recently been proposed as a cost-effective tool, particularly useful for 

developing countries lacking hydro-meteorological datasets and with underdeveloped 

flood risk monitoring and forecasting facilities and resources. As previously mentioned, 

the feasibility of the daily flood index, IF in daily flood monitoring has already been 

demonstrated in Australia (Deo et al., 2018), Iran (Nosrati et al., 2010), Bangladesh 

(Deo et al., 2019), and Fiji (Moishin et al., 2021b). However, as a flood monitoring tool, 

IF cannot predict the flooded state in advance until a forecasting model is developed 

and tested (Moishin et al., 2021a). Consequently, a few recent studies have 

demonstrated the feasibility of the hybrid ML/DL-based IF forecasting system in 
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assessing future flood risk. For instance, in a study by Prasad et al. (2021), a hybrid 

ML by combining the multivariate empirical mode decomposition (MEMD) technique 

with the M5 tree (MEMD-M5 tree) model to forecast IF for the flood-prone Lockyer 

Valley region of Queensland, Australia was demonstrated. The data utilised in that 

study included the Effective Drought Index, Daily Precipitation, Available Water 

Resources Index, and Prediction Return to Normal. The performance of the MEMD-

M5 tree model was compared with the hybrid MEMD-RFR and the standalone M5 tree 

and RFR models. The results of that study demonstrated that the MEMD-M5 tree 

model outperformed the benchmark models in accurately emulating future IF values.  

Moreover, the present study draws inspiration from the study by Moishin et al. 

(2021a) that developed a hybrid DL algorithm, ConvLSTM, by integrating two DL 

algorithms, i.e., Convolutional Neural Network (CNN) with Long Short-Term Memory 

(LSTM) models to forecast IF across multiple forecast horizons for nine flood-prone 

sites in Fiji. The performance of the hybrid DL model was evaluated against 

benchmark models: CNN-LSTM, LSTM, and Support Vector Regression (SVR). All 

models developed in that study were trained using statistically significant lagged IF and 

real-time daily rainfall data. The results of that study demonstrated the feasibility of the 

ConvLSTM model in forecasting IF to assess the possibility of flood situations at 1, 3, 

7, and 14 days ahead forecast horizon in Fiji’s case studies. In a recent study, Ahmed 

et al. (2023) also proposed a hybrid DL (i.e., CNN-BiLSTM) model that combined CNN 

with bidirectional long short-term memory (BiLSTM) to forecast IF a week ahead for 

thirty-four selected stations in Bangladesh. The data utilised in that study included 

fifteen synoptic-scale climatic indices. The results of that study demonstrated the 

superior forecasting performance of the hybrid CNN-BiLSTM model compared to the 

benchmark models, SVR and BiLSTM. These studies demonstrate that hybrid ML/DL 

can be effectively utilised to accurately model and forecast IF in assessing future flood 

risk on a daily scale. However, designing a robust tool for assessing future flood risks 

on a shorter timescale (e.g. hourly) is essential for real-time flood monitoring and 

forecasting.  

Moreover, while the choice between ML and DL models highly depends on the 

problem, DL models offer distinct advantages when working with large datasets. Their 

capacity to process a vast number of features enables the design of highly effective 

data-driven models, making DL models a superior choice over traditional ML models 

(Sarker, 2021). Another distinct advantage of DL models over ML models is their ability 



 

13 

to extract high-level features directly from the data, significantly reducing the time and 

effort needed to construct a feature extractor for each problem (Sarker, 2021). One of 

the DL models specialised for modelling sequential or time-series data is Recurrent 

Neural Networks (RNNs), which utilise a hidden state to retain information from 

previous inputs. However, due to problems with vanishing and exploding gradients, 

standard RNNs encounter short-term memory issues that hinder their ability to 

effectively learn long-term dependencies in the data, limiting their accuracy in long-

term forecasting (Kim et al., 2018; Sarker, 2021).  

The LSTM, initially introduced by Hochreiter and Schmidhuber (1997) and later 

enhanced by Graves (2013), and the Gated Recurrent Unit (GRU), introduced by Cho 

et al. (2014), are two variants of RNN capable of effectively capturing long-term 

dependencies in sequential data. While the LSTM and GRU share similar 

architectures, the GRU has fewer trainable parameters than the LSTM, as it employs 

a simplified gating mechanism with only two gates (reset and update gates), whereas 

the LSTM incorporates three gates (input, output, and forget gates). The GRU’s 

structure allows it to adaptively capture dependencies from large data sequences 

without discarding information from earlier parts of the sequence (Sarker, 2021). 

Therefore, compared to LSTM, the GRU achieves comparable performance while 

significantly reducing computation time, owing to its streamlined structure and fewer 

parameters, resulting in faster training times (Kisvari et al., 2021; Li, 2023; Sarker, 

2021; Sharma et al., 2022; Wang et al., 2020; Zhang et al., 2022). In addition to 

temporal dependence models, one-dimensional CNN (Conv1D) can autonomously 

extract pertinent features from the input sequential data through their convolutional 

kernels with minimal human intervention (Ghimire et al., 2022). Therefore, integrating 

CNN with a temporal model such as GRU combines CNN’s feature extraction 

capabilities with GRU’s efficiency in temporal modelling, resulting in a robust approach 

to modelling sequential data.  

The integration of CNN with the GRU (i.e., hybrid C-GRU) model has proven 

effective in various applications, including water level prediction (Pan et al., 2020), 

river flooding forecasting and anomaly detection (Miau & Hung, 2020), short-term 

residential load forecasting (Sajjad et al., 2020), soil moisture prediction (Yu et al., 

2021), short-term canyon wind speed prediction (Ji et al., 2022), PM10 forecasting 

(Sharma et al., 2022) and evapotranspiration forecasting (Ahmed et al., 2021). 
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Therefore, the hybrid C-GRU model should also be explored for flood index 

forecasting.  

 

2.4. Research gaps 

The literature review outlined the key findings and identified a few notable 

research gaps in mathematically derived flood indices for flood risk monitoring, 

assessment, and forecasting. The WRI24-hr-S in the existing literature can be used to 

monitor flood risk during sustained extreme rainfall periods. This index is formulated 

to consider rainfall accumulation over the preceding 24 hours, whereby the rainfall 

contribution from the preceding hours is subjected to a time-dependent reduction 

function, accounting for water resource depletion through various hydrological 

processes. However, the primary limitation of this index is that it cannot objectively be 

used to monitor and compare flood risk across geographically diverse study sites as it 

is unnormalised. To overcome this issue, the hourly flood index (SWRI24-hr-S) derived 

from normalising the WRI24-hr-S is proposed in the current study as a universal index to 

identify flood events across geographically diverse study regions and derive its 

associated characteristics (i.e., flood volume, peak and duration).  

The literature also asserts that because flood event characteristics are 

generally interrelated, multivariate models that accurately capture these dependencies 

are essential for a comprehensive flood risk assessment. Consequently, an advanced 

statistical tool, i.e., copulas, can be employed for modelling multivariate distributions 

between random variables. The vine copula models among multivariate copula models 

have shown to be the most flexible approach for modelling the joint distribution 

between flood event characteristics to evaluate exceedance probability and joint and 

conditional return periods. Thus, the vine copulas can be utilised to model the joint 

distribution between the flood event characteristics derived from the proposed SWRI24-

hr-S to extract their joint exceedance probability for probabilistic flood risk assessment. 

Evaluating exceedance probabilities is essential for early flood warning systems to 

enable improved flood risk assessment and the development of targeted mitigation 

strategies. This approach is crucial for flood-prone regions, including Fiji, where no 

research of such nature has been conducted before.  

Lastly, the literature also shows the feasibility of index-based flood forecasting 

systems using hybrid DL/ML models to assess future flood risk, specifically 

demonstrated for the daily flood index (IF). Consequently, a hybrid model such as C-
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GRU, which integrates two powerful DL models—CNN for feature extraction and GRU 

for temporal modelling—should be designed and tested to model and forecast the 

proposed SWRI24-hr-S for assessing future flood risk. The current research, therefore, 

addresses and fills the aforementioned gap in the literature by developing novel and 

innovative flood monitoring, assessment, and forecasting tools using AI and copula-

statistical methods to enhance flood warning systems. These tools will assist decision-

makers in assessing flood risk more accurately, enabling them to better prepare for 

flood events and develop efficient plans to mitigate their severe impacts on 

communities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

16 

CHAPTER 3: STUDY AREA, DATA, AND METHODOLOGY 

This chapter offers a general overview of the case study area. Detailed 

information on the study locations and the data utilised to accomplish Objectives 1 

and 2 are provided in Chapters 4 and 5 of the thesis. Similarly, while the 

methodologies for each objective are elaborated in their respective chapters, this 

chapter only presents a general summary of the methods employed to achieve the two 

research objectives. 

3.1. Case study area 

The case study area for this research was Fiji, which is centrally located over 

the International Date Line (180°) within the South-West Pacific region (Sharma et al., 

2021), between latitudes 15°S and 22°S and longitudes 177°W and 174°E (see Figure 

2(a)). Fiji has a tropical marine climate, with warm temperatures year-round. The 

nation has two distinct seasons: a warm, wet period from November to April and a 

cooler, drier season from May to October. This seasonal variation is primarily due to 

the South Pacific Convergence Zone (SPCZ), the main rainfall-producing system in 

the region, which typically lies over Fiji during the wet season.  

Fiji has a total land area of about 18,333 km2 spread over 332 islands, of which 

approximately 111 are inhabited (Kuleshov et al., 2014). Viti Levu and Vanua Levu are 

two large mountainous islands covering about 87% of the total land area (Feresi et al., 

2000), with a maximum elevation of up to 1300 meters above sea level. Fiji has four 

divisions: Central, Eastern, Northern, and Western, with a population of 929,766 

people (The World Bank Group, 2022). 

Most of the population and infrastructure in Fiji are located on large floodplains 

susceptible to long-duration flooding or in small catchments prone to flash flooding 

(Government of Fiji, 2017). Fiji is severely affected by recurrent floods, primarily high-

frequency, low-intensity events; although not all of them get recorded, their frequent 

occurrence leads to substantial cumulative losses over time (Government of Fiji, 

2017). Therefore, developing and applying cost-effective and innovative tools to 

mitigate its severe impacts have become increasingly crucial. This research focused 

only on study sites in Viti Levu due to the lack of required rainfall data in other 

locations. Despite this limitation, the study is crucial for Viti Levu, which has the largest 

population and hosts the country’s core economic activities, including sugar 

production, gold mining, and tourism. Figure 2(b) shows the map of Fiji with 
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corresponding study sites for Objective 1 of this research. Two of these study sites, 

Navua and Nausori, are in the Central Division of Fiji, and the rest are in the Western 

Division. For Objective 2, this study focused on five flood-prone sites (Rakiraki, Tavua, 

Lautoka, Nadi, and Sigatoka) in the Western Division of Fiji, shown in Figure 2(c).  

 

3.2. Data  

The rainfall data for the Rakiraki, Tavua, Ba, Lautoka, Nadi, Sigatoka, Navua, 

and Nasinu sites from 1 January 2014 to 31 December 2018 (5 years) were 

successfully acquired from Fiji Meteorological Services (FMS).  For the Tavua, 

Rakiraki, Nasinu, Sigatoka, and Lautoka sites, the rainfall data were provided in 5-

minute intervals, whereas for the Ba, Nadi, and Navua sites, the data were provided 

in 10-minute intervals. The rainfall data for each site was aggregated to calculate the 

hourly rainfall required for this study. If at least 66.67% of the data points for a given 

hour were available, they were summed to determine the total rainfall for that hour. 

Otherwise, the rainfall for that hour was recorded as missing. The Ba site, which had 

approximately 24% missing data, was excluded from further experiments. The 

remaining sites had less than 5% missing data. Thus, the Iterative K-nearest 

Neighbors (IKNN) technique (Oriani et al., 2020) was employed to fill in all the missing 

data for these study sites.  
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Figure 2 The geographical map shows Fiji’s location in the South Pacific region 

(a) and a detailed inset map highlighting various study sites within Fiji for 

(b) Objective 1 and (c) Objective 2.   
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3.3. General methodology 

The main steps undertaken to accomplish Objective 1 of this research are 

shown in Figure 3. The code to obtain the SWRI24-hr-S was developed using Python. 

Once the missing values were filled for each of the seven selected sites (Rakiraki, 

Tavua, Lautoka, Nadi, Sigatoka, Navua, and Nasinu), the rainfall data from 1 Jan 2014 

to 31 December 2018 was used to calculate the WRI24-hr-S first. The SWRI24-hr-S, a 

normalised form of the WRI24-hr-S, was then calculated. The SWRI24-hr-S was then used 

to identify all the floods that occurred at each study site from 2014 to 2018 using the 

criteria SWRI24-hr-S > 0. For each of these flood events, their onset time, duration (D), 

volume (V), and peak (Q), along with total precipitation, total WRI24-hr-S, and maximum 

WRI24-hr-S, were calculated and analysed. The annual and monthly climate summaries 

published by the FMS were then utilised to validate some of the major flood events 

identified by the SWRI24-hr-S at each study site, evaluating its practical utility in 

identifying flood events at an hourly scale. A comprehensive analysis was also carried 

out to thoroughly examine the total flood frequency by site, month, and year, among 

other aspects. 

Moreover, for the probabilistic flood risk assessment across all study sites, this 

study focused on tri-variate cases to model the joint distribution of D, V, and Q 

(Nguyen-Huy et al., 2022). Before modelling, the flood characteristics dataset for each 

study site, which contained the duration (D), volume (V), and peak (Q) of each flood 

event, was further analysed by calculating its descriptive statistics, such as the five-

number summary, mean, standard deviation, skewness, and kurtosis. These statistics 

were utilised to understand the shape and distribution of the dataset. A comprehensive 

correlation analysis was conducted to understand the relationship between each 

characteristic pair for modelling their joint distribution (Daneshkhah et al., 2016; Latif 

& Mustafa, 2020; Nguyen-Huy et al., 2022). Both parametric measures, i.e., Pearson’s 

correlation coefficient (r), and nonparametric rank-based correlation measures, i.e., 

Spearman’s correlation coefficient (ρ) and Kendall’s tau (τ), were used to examine the 

relationship between each pair of flood characteristics. Mutual Information (MI) was 

also employed to assess the degree of dependence between each pair of flood 

characteristics.  
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After thoroughly analysing the attributes and dependency between each pair of 

flood characteristics across all study sites, the joint distribution between each flood 

characteristic was modelled using the 3D vine copula for each study site. These 

models were implemented using the R programming language, utilising the 

‘rvinecopulib’ library package (Nagler & Vatter, 2023). The best-fitted 3D vine copula 

selected at each study site was then utilised to derive the joint exceedance probability 

between D, V, and Q under different combination scenarios. This was achieved by first 

quantifying that the D, V, and Q exceed specific thresholds simultaneously. The 

thresholds were selected at the 50th-quantile (median), 75th-quantile (moderate), and 

95th-quantile (extreme). Finally, the joint exceedance probability between D, V, and 

Q, derived under various combination scenarios, was thoroughly analysed to 

understand the spatial pattern of flood risk across the study sites. 

 

 

 

Furthermore, Figure 4 illustrates a brief schematic of the main steps undertaken 

to accomplish Objective 2 of this research. The hybrid C-GRU model was designed to 

forecast the SWRI24-hr-S over a short-term, i.e., 1-hourly forecast horizon for five flood-

prone sites (Rakiraki, Tavua, Lautoka, Nadi, and Sigatoka) in Fiji. For this objective, 

only two datasets were utilised for each study site: the raw hourly rainfall data and the 

SWRI24-hr-S datasets, already available from Objective 1 for these study sites. Before 

commencing the model development, the Augmented Dickey-Fuller test (Cheung & 

Figure 3 Schematic view of the steps untaken to develop an hourly flood monitoring 

tool and copula-probabilistic flood risk assessment system.  
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Lai, 1995; Dickey & Fuller, 1979) was first employed to check the stationarity of the 

individual time series data, i.e., hourly rainfall and the SWRI24-hr-S datasets for each 

study site. This step was crucial because statistical properties change over time for 

nonstationary data, making it difficult for ML/DL models to capture consistent patterns. 

This, in turn, impedes the models’ ability to generalise to new data. After this, for each 

study site, the partial autocorrelation function (PACF) and cross-correlation function 

(CCF) were utilised to determine the most statistically significant lags for the SWRI24-

hr-S and hourly rainfall time series, respectively, to forecast SWRI24-hr-S at time t. Hence, 

the features used as model inputs included the lagged SWRI24-hr-S and hourly rainfall. 

Subsequently, the predictor (or input features) and target variables for each site were 

concatenated to form the final dataset for developing the forecasting models.  

The input features were then normalised in the range of 0 to 1 using the min-

max scaling technique. This step ensures that each input feature shares the same 

order of magnitude, facilitating faster and more efficient model training (Prasad et al., 

2024). The mathematical formula for this normalisation technique is given as follows 

(Joseph et al., 2024a): 

 

                                                  min

max min

act
n

X X
X

X X

−
=

−
                                                      (1)                                                     

where Xn, Xact, Xmin, and Xmax represent the normalised, actual, minimum, and 

maximum values of the input feature.  

The dataset for model development at each study site was partitioned into 

training, validation, and testing subsets. Given the absence of consensus on data-

splitting ratios, the first 80% of the data was allocated for training, with 20% of the 

training set reserved for validation and the remaining 20% for testing the model. These 

ratios were adopted from a related study (Moishin et al., 2021a). The validation dataset 

in this study was used for two purposes. First, it was used for model hyperparameter 

tuning. Second, for all DL models developed in this study, the validation data was 

employed to monitor the model’s performance during training using the early stopping 

technique. Once the training, validation, and testing data were obtained for each study 

site, the proposed hybrid C-GRU model was developed. The hybrid C-GRU model 

combines CNN’s feature extraction capabilities with GRU’s efficiency in temporal 

modelling, resulting in a robust approach to sequential modelling. In addition, three DL 
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models—CNN, GRU, and LSTM—and one ML model, RFR, were developed for 

benchmarking.  

All the models developed were highly parametric, particularly the hybrid and all 

DL models. Thus, effective hyperparameter tuning was necessary to optimise their 

performance and enhance their generalisation capabilities (Andonie, 2019; 

Eggensperger et al., 2013; Nguyen et al., 2020). This study employed an advanced 

BO technique utilising the Tree-structured Parzen Estimator (TPE) algorithm to fine-

tune the hyperparameters of all developed models. All forecasting models were 

implemented using Python programming. This implementation was done via the 

Google Colaboratory (Google Colab) platform, which provides a freely available 

Jupyter Notebook interface supported by both a Tensor Processing Unit (TPU) and a 

Graphics Processing Unit (GPU). The DL models were developed using the Keras 

(Ketkar, 2017) and TensorFlow (Abadi et al., 2016) libraries, while the RFR model was 

implemented using the Scikit-learn library (Pedregosa et al., 2011). The ‘Hyperopt’ 

library (Komer et al., 2014) was utilised to implement BO with the TPE algorithm for 

efficient hyperparameter selection. 

A diverse range of performance evaluation metrics was employed to evaluate 

the forecasting efficacy of the proposed hybrid C-GRU model against benchmark 

models across all study sites. Two categories of statistical metrics were utilised: 

Category A (ideal value = 1) and Category B (ideal value = 0). Within Category A, a 

total of five statistical metrics were employed, including Pearson’s Correlation 

Coefficient (r), Nash-Sutcliffe Efficiency Index (ENS), Willmott’s Index of Agreement 

(EWI), Legate-McCabe Efficiency Index (ELM), and Kling-Gupta Efficiency (KGE). In 

Category B, a total of three error metrics were included: Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Symmetric Mean Absolute Percentage Error 

(sMAPE; %). The Python package ‘HydroErr’ (Roberts et al., 2018) was used to 

implement these performance evaluation metrics. A Global Performance Indicator 

(GPI) was additionally utilised to combine the outcomes of all metrics, enabling 

convenient ranking and comparison of numerous models. Furthermore, the Diebold–

Mariano (DM) statistical test (Diebold & Mariano, 2002) was also employed to 

determine whether the proposed hybrid C-GRU model’s performance was statistically 

significantly superior to the benchmark models. In addition to the diverse statistical 

indicators, the performance of the proposed hybrid C-GRU models was compared with 
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benchmark models using various visual diagnostic plots, including line, scatter, and 

empirical cumulative distribution function (ECDF) plots across all study sites.  

 

 

 

 

 

Figure 4 Schematic view of the proposed hybrid C-GRU-based SWRI24-hr-S 

forecasting system.  
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CHAPTER 4: PAPER 1 – COPULA-PROBABILISTIC FLOOD 

RISK ANALYSIS WITH AN HOURLY FLOOD MONITORING 

INDEX 

4.1. Introduction 

This chapter is an exact copy of the published article in the Water Journal, Vol. 

11, page 1560 (2024) (Scopus Impact Factor 5.8).  

The chapter introduces a novel hourly flood index (SWRI24-hr-S) to monitor flood 

risk across geographically diverse study sites. The proposed SWRI24-hr-S is computed 

by first calculating the WRI24-hr-S using the site-based hourly rainfall data. The WRI24-

hr-S takes into account the rainfall accumulation over the preceding 24 hours, whereby 

the rainfall contribution from preceding hours is subjected to a time-dependent 

reduction function, which accounts for the depletion of water resources through 

various hydrological processes (Deo et al., 2018). The SWRI24-hr-S is then derived from 

normalising the WRI24-hr-S. The practical utility of the SWRI24-hr-S in identifying flood 

events on an hourly scale and computing their characteristics (i.e., flood volume (V), 

duration (D) and peak (Q)) is demonstrated for the seven flood-prone sites in Fiji. The 

results indicate that Fiji mainly experiences high rainfall during the wet/cyclone season 

from November to April, including the months of May and October. As a result, the 

frequency of flood events is higher, with greater flood volume during these months 

than others. Therefore, it is imperative that relevant authorities, such as Fiji’s NDMO, 

implement comprehensive and well-structured flood preparedness and risk mitigation 

measures for the wet/cyclone season (November to April), extending to include the 

months of May and October.  

The flood event characteristics and water-intensive properties for the five 

severe flood events at each of the seven study sites are also presented. The most 

severe flood event at each study site is validated using the climate summaries 

published by FMS. Relevant decision-makers are expected to use these findings to 

understand the characteristics of past flood occurrences at these sites, thus facilitating 

future decision-making and planning to mitigate the impacts of flooding for these study 

sites. 
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The flood event characteristics data, which included D, V, and Q of each flood 

event identified at each study site, are statistically analysed. Subsequently, the 3D 

vine copula is employed for each study site to model the joint distribution between 

flood characteristics to extract their joint exceedance probability for probabilistic flood 

risk assessment. The results indicate a moderate but notable variation in the spatial 

patterns of joint exceedance probabilities for flood event characteristics across 

different combination scenarios. 

 

4.2. Published paper 
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Abstract: Floods are a common natural disaster whose severity in terms of duration, water resource
volume, peak, and accumulated rainfall-based damage is likely to differ significantly for different
geographical regions. In this paper, we first propose a novel hourly flood index (SWRI24−hr−S)
derived from normalising the existing 24-hourly water resources index (WRI24−hr−S) in the literature
to monitor flood risk on an hourly scale. The proposed SWRI24−hr−S is adopted to identify a flood
situation and derive its characteristics, such as the duration (D), volume (V), and peak (Q). The
comprehensive result analysis establishes the practical utility of SWRI24−hr−S in identifying flood
situations at seven study sites in Fiji between 2014 and 2018 and deriving their characteristics (i.e.,
D, V, and Q). Secondly, this study develops a vine copula-probabilistic risk analysis system that
models the joint distribution of flood characteristics (i.e., D, V, and Q) to extract their joint exceedance
probability for the seven study sites in Fiji, enabling probabilistic flood risk assessment. The vine
copula approach, particularly suited to Fiji’s study sites, introduces a novel probabilistic framework
for flood risk assessment. The results show moderate differences in the spatial patterns of joint
exceedance probability of flood characteristics in different combination scenarios generated by the
proposed vine copula approach. In the worst-case scenario, the probability of any flood event
occurring where the flood volume, peak, and duration are likely to exceed the 95th-quantile value
(representing an extreme flood event) is found to be less than 5% for all study sites. The proposed
hourly flood index and the vine copula approach can be feasible and cost-effective tools for flood
risk monitoring and assessment. The methodologies proposed in this study can be applied to other
data-scarce regions where only rainfall data are available, offering crucial information for flood risk
monitoring and assessment and for the development of effective mitigation strategies.

Keywords: flood characteristics; flood monitoring; hourly flood index; joint distribution; risk mitigation;
vine copulas

1. Introduction

Flooding is a catastrophic natural disaster progressively increasing in frequency and
severity, primarily attributed to climate change–induced phenomena such as increased
rainfall intensity. Generally, there are three prevalent flood types: fluvial or river floods,
pluvial or flash floods, and coastal floods [1,2]. A flash flood is a sudden and severe local
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inundation often resulting from high-intensity rainfall (e.g., tropical cyclones, slow-moving
tropical depressions, or thunderstorms) within a short period (usually less than six hours)
and/or may also be caused by sudden discharge of impounded water (e.g., dam or levee
failures, ice jam release, or a glacier lake outburst) [3,4]. Flash floods can affect a range
of locations, including river plains, valleys, and areas with steep terrain, elevated surface
runoff rates, constrained stream channels, and persistent heavy convective rainfall [3].
They often necessitate prompt action to mitigate their severe impact, typically relying on
expeditious decision-making and emergency response. Flash floods make up about 85% of
all floods, resulting in more than 5000 deaths annually and causing severe social, economic,
and environmental impacts [5]. The repercussions of flood disasters are more devastating
in developing countries such as Fiji [6], where this study is focused. Therefore, developing
a real-time flood risk monitoring tool remains an ongoing research motivation to enable an
assessment of flood occurrences for early warning systems in Fiji.

Fiji experiences regular flooding events arising from orographic rainfall due to the
topography of its larger islands, including Viti Levu and Vanua Levu, which have a
maximum elevation of 1300 m above sea level, along with the impact of prevailing southeast
trade winds [7]. For Fiji, about 90% of its population resides in coastal areas susceptible to
floods [8]. Between 1970 and 2016, Fiji faced 44 major flood events, impacting approximately
563,310 people and resulting in 103 fatalities [9]. The most catastrophic floods occurred
in 2004, 2009, 2012 (including the January and March flood events), and 2014. The 2009
and 2012 events, considered among the worst in the nation’s history, resulted in over
200 million FJD in damages and losses, causing 15 fatalities and directly affecting more than
160,000 people [9]. For Fiji, the estimated average annual flood losses exceed 400 million FJD,
equivalent to 4.2% of Fiji’s Gross Domestic Product (GDP) [9]. These are substantial losses
for a small island nation with a population of less than a million and a GDP of less than
5 billion USD [10]. Under the assumption that climate change conditions will significantly
increase rainfall, the annual flood-related asset losses could exceed 5% of Fiji’s GDP by 2050
without adaptation measures [9]. As a result, it is imperative to develop reliable methods
for accurately monitoring flood risk on near real-time (e.g., hourly) timescales to mitigate
the severe impacts of flooding.

Intense and/or prolonged precipitation is among the primary causes of floods. How-
ever, to better understand flood risk, multiple factors must be considered. These include
the combined impact of various weather or climate events such as temperature and pre-
cipitation (while these events may not individually reach extreme levels, their cumulative
effect can result in severe impacts) as well as the vulnerability and exposure of the affected
area [11,12]. Climate change also induces changes in various flood-related factors, includ-
ing precipitation, soil moisture content, sea level, and glacial lake conditions, potentially
changing flood characteristics [12]. Other factors, such as land use and cover, catchment
size and shape, drainage networks, and dam or levee construction, can also influence
flood dynamics. Hence, an index that integrates all these factors and the accumulative
impacts of other weather or climate characteristics is essential for a comprehensive flood
risk assessment.

In many developing nations where flood monitoring resources, hydro-meteorological
datasets, and risk monitoring facilities are underdeveloped, applying a mathematically
derived flood index utilising only rainfall data provides a key strategy for assessing an im-
pending flood risk situation. Some of the key mathematical indices used previously in flood
risk monitoring include the Standardised Precipitation Index (SPI), the Available Water
Resources Index (AWRI), the Weighted Average of Precipitation (WAP), the Standardised
WAP (SWAP), the Flood Index (IF), and the Standardised Antecedent Precipitation Index
(SAPI) [13–18]. The flood indices, such as AWRI, SWAP, IF, and SAPI, are robust as they
are designed to account for changes in antecedent or immediate past rainfall by employing
a suitable time-dependent reduction function that accounts for the depletion of water
resources through various hydrological processes. For example, the daily flood index, IF,
applied in Australia [17,19,20], Iran [21], Bangladesh [22,23], and Fiji [6], has shown good
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performance in monitoring flood events on a daily scale. Despite its benefits, one primary
weakness of IF and other indices, such as SPI, lies in their utilisation of daily, monthly,
or annual accumulated rainfall data, which represent much longer timescales than what is
required in a flash flood monitoring system. Consequently, these indices fail to adequately
represent the flood risk caused by bursts of high-intensity rainfall and rapid responses
leading to flash flood events.

The present study draws relevance from a pilot study conducted by Deo et al. [24]
that proposed a 24-h water resources index (WRI24−hr−S) based on a concept similar to the
AWRI, which was applied in two study locations, Australia and South Korea, to monitor
the flash flood risk in sustained extreme rainfall periods. The WRI24−hr−S monitors flood
risk by considering the contribution of accumulated rainfall in the past 24 h, whereby the
rainfall contribution from the preceding hours is subjected to the time-dependent reduction
function that accounts for the depletion of water resources through various hydrological
processes such as evaporation, percolation, seepage, runoff, and drainage. However, unlike
SAPI and IF, which are normalised values derived from the Antecedent Precipitation Index
(API) and the AWRI, respectively, the identification of flood events and the computation
of their characteristics are not achievable with the current form of WRI24−hr−S. This is
primarily because this index is unnormalised and does not enable objective assessment of
flood risk across geographically diverse study sites.

To enhance the understanding of flood risks, it is essential to calculate the flood
characteristics, including the volume (V), peak (Q), and duration (D) that concurrently
result in major collateral damage. As the flood characteristics such as the D, V, and Q are
mostly interrelated, we envisage that these characteristics should be jointly considered in a
multivariate analysis model to estimate the actual probability of a flood occurrence [18,25].
Importantly, any model representing the joint distribution of D, V, Q, and other crucial
flood characteristics, such as the onset and withdrawal of a flood event, can provide
significant insights into the relative severity of any flood event. After the initial study
of Sklar [26], copula-based models became attractive in modelling interrelated variables,
albeit using a multivariate approach. As such, copulas can jointly model the distribution of
flood characteristics such as the D, V, and Q, regardless of their marginal distributions or
whether their dependence structure is linear or non-linear [18]. Vine copulas have recently
shown superior capabilities in modelling flood characteristics compared to traditional
Archimedean and elliptical copulas [18,27–29]. Therefore, this research follows a recent
study by Nguyen-Huy et al. [18], which used vine copulas to model the joint distribution
of extreme flood characteristics derived using the SAPI in Myanmar. Their study has
provided interesting insights into the probabilistic flood risk analysis. To the best of our
knowledge, no prior research has applied vine copulas to analyse the probabilistic flood
risk in Fiji despite floods being a catastrophic phenomenon on this small island nation.

The scientific contributions of this paper, with significant implications for flood risk
monitoring and assessment, are threefold. Firstly, the paper advances the concept of the
24 h water resources index pioneered by Deo et al. [24] and formulates a novel hourly
flood index (SWRI24−hr−S) (a normalised metric) by normalising the 24-hourly water
resources index in such a way that enables the objective assessment of flood risk across
geographically diverse study sites. Secondly, the present study adopts the SWRI24−hr−S,
which is computed using real-time hourly rainfall data from 2014 to 2018 obtained from
the Fiji Meteorological Services (FMS), to evaluate its practical utility in identifying flood
situations and computing their associated flood characteristics (i.e., D, V, and Q) for seven
different study sites in Fiji. Thirdly, the present study develops the vine copula approach for
the first time to model the joint distribution of D, V, and Q derived from the SWRI24−hr−S
for specific cases of Fiji’s flood events to extract their joint exceedance probabilities for
probabilistic flood risk assessment. Fiji is a Pacific Small Island Developing State (PSIDS)
that frequently experiences recurrent flooding. The lack of advanced infrastructure and
necessary data in Fiji makes continuous flood risk monitoring and assessment challenging.
The main aim of the present study is, therefore, to develop a novel hourly flood index,

28



Water 2024, 16, 1560 4 of 27

SWRI24−hr−S, using only hourly rainfall data (which are readily available for the present
study sites) and to conduct a probabilistic flood risk assessment by modelling the joint
distribution of extreme flood characteristics derived from the SWRI24−hr−S for Fiji’s case
studies. Hence, the methodologies presented in this study aim to enhance and contribute
to existing monitoring and early warning systems for flash floods in Fiji. Moreover, these
approaches may also be applied in other flood-prone regions globally, particularly those
facing similar data scarcity challenges. By adapting these methodologies, vulnerable
communities can benefit from improved flood preparedness and mitigation strategies.

The rest of the paper is structured as follows. Section 2 provides information on the
study area, the dataset used, and data pre-processing steps. It also encompasses the mathe-
matical methodology for computing the hourly flood index and the flood characteristics.
Additionally, it provides details on Vine copula models and equations used for computing
the joint exceedance probability of flood characteristics. Section 3 provides the results and
discussion. Section 4 highlights the key findings, the study’s limitations, and insights for
future research.

2. Materials and Methods
2.1. Study Area

The proposed copula-probabilistic flood risk analysis system based on the hourly flood
index was applied to geographically diverse sites in Fiji. Fiji is located in the South Pacific
Ocean at a latitude of 15° S to 22° S and a longitude of 177° W to 174° E (Figure 1), with a
tropical maritime climate characterised by warm temperatures throughout the year [30,31].
The nation comprises an archipelago of 332 islands, 111 of which are permanently inhabited,
with a total land area of about 18,333 km2 [30]. Viti Levu (10,400 km2) and Vanua Levu
(5540 km2) are two large mountainous islands covering about 87% of the total land area [31].

Figure 1. The geographical map shows Fiji’s location in the South Pacific region and a detailed inset
map highlighting various study sites within Fiji.
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Fiji has a distinct dry season (May–October) and wet season (November–April). This
seasonal variation is mainly attributed to the South Pacific Convergence Zone (SPCZ),
the primary rainfall-producing system for the region, which lies typically over Fiji during
the wet season [31,32]. The rivers and stream basins in Fiji are predominantly small in size
and flow from steep mountainous terrain, resulting in rapid shifts in water levels during
periods of intense rainfall, which can lead to flash floods within a few hours [33]. This
study included sites only in Viti Levu due to the lack of rainfall data in other locations.
These sites are areas in Fiji prone to recurrent and severe flooding events. Figure 1 shows a
map of the study area and the corresponding study sites.

2.2. Dataset

The rainfall data for the Lautoka, Sigatoka, Nasinu, Rakiraki, Navua, Nadi, Ba,
and Tavua sites from 1 January 2014 to 31 December 2018 (5 years) were successfully
acquired from Fiji Meteorological Services. The rainfall data were provided in 5 min inter-
vals for Tavua, Rakiraki, Nasinu, Sigatoka, and Lautoka and in 10 min intervals for the Ba,
Nadi, and Navua sites. During the data pre-processing phase, the rainfall data for each site
were aggregated to obtain the hourly rainfall needed for this study. If at least 66.67% of
the data points (i.e., at least 4 out of 6 data points for a 10 min interval or at least 8 out of
12 data points for a 5 min interval) were available for a particular hour, they were summed
to determine the total rainfall for that hour. Otherwise, the rainfall value for that hour was
marked as missing. This approach was adopted to maximise the recovery of data values.

Table 1 summarises the hourly rainfall datasets and geographic settings of the study
sites. The Ba site, which had a high percentage of missing values, was excluded from
this study. The remaining sites had less than 5% missing values; therefore, any gap-filling
method could fill in the missing values [34]. Based on the study by Oriani et al. [35],
the Iterative K-nearest Neighbour (IKNN) technique was used to fill in all the missing data.
The data from 1 January 2014 to 31 December 2018 were used for all the computations.
However, WRI24−hr−S followed by SWRI24−hr−S were calculated from 2 January 2014 as
antecedent rainfall of 24 h (the hourly rainfall data for 1 January 2014), which was necessary
to allow the calculations of these metrics.

Table 1. Overview of the hourly rainfall datasets for the 8 sites in Fiji. (Note: The hourly rainfall
spans from 1 January 2014 to 31 December 2018, with 43,824 expected observations.)

Study Site Location Missing Data Average Maximum
(%) Hourly Rainfall (mm) Hourly Rainfall (mm)

Ba 17.53° S, 177.66° E 23.76 0.24 56.00
Lautoka 17.62° S, 177.45° E 0.83 0.19 83.50
Nadi 17.78° S, 177.44° E 1.17 0.27 260.00
Nasinu 18.07° S, 178.51° E 1.18 0.33 72.00
Navua 18.22° S, 178.17° E 1.57 0.36 62.50
Rakiraki 17.39° S, 178.07° E 3.76 0.23 68.50
Sigatoka 18.14° S, 177.51° E 1.99 0.21 59.00
Tavua 17.44° S, 177.86° E 3.45 0.16 57.50

2.3. Development of the Hourly Flood Index and Vine Copula Model
2.3.1. Hourly Flood Index and Flood Characteristics

This research formulates a novel hourly flood index (SWRI24−hr−S), which is a normalised
version of the 24-hourly water resources index (WRI24−hr−S) proposed by Deo et al. [24]. Ap-
plying this index to Fiji is significantly advantageous because it is mathematically derived
using only hourly rainfall data, which are readily available for the present study sites.
The proposed SWRI24−hr−S is implemented using the Python programming language.

The following steps are taken to obtain the SWRI24−hr−S. The first step is calculating
the WRI24−hr−S. The WRI24−hr−S for the current (ith) hour is given by the following
equation [24]:
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WRIi
24−hr−S = P1 +

[P2(W − 1)]
W

+
[P3(W − 1 − 1/2)]

W
+ ... +

[P24(W − 1 − 1/2 − · · · − 1/23)]
W

(1)

where P1 is the total rainfall recorded an hour before, P2 is the total rainfall recorded 2 h before,
and so on; W is the time-reduction weighting factor (W ≡ 1+ 1/2+ 1/3+ ...+ 1/24 ≈ 3.8)
that incorporates the contributions of accumulated rainfall in the latest 24 h [24]. This weight-
ing factor ensures that the decay of accumulated rainfall or its potential impact on a flood event
depends on several hydrological effects such as evapotranspiration, percolation, seepage,
runoff, drainage, etc., in accordance with earlier works [15,24]. The substitution of W = 3.8
into Equation (1) yields the following:

WRIi
24−hr−S ≈ P1 + 0.74P2 + 0.61P3 + ... + 0.02P24 (2)

Notably, the WRI24−hr−S for a current (ith) hour is expected to accumulate 100% of
rainfall received an hour before, ≈74% of that received two hours before, ≈61% of that
received three hours before, and eventually ≈2% of that received 24 h before.

After calculating WRI24−hr−S for any study period, the mathematical form of
SWRI24−hr−S for a current (ith) hour is calculated as a normalised version of WRI24−hr−S:

SWRIi
24−hr−S =

WRIi
24−hr−S − WRImax

24−hr−S
σ(WRImax

24−hr−S)
(3)

where WRImax
24−hr−S is the mean monthly maximum values of WRI24−hr−S for the respective

study period and σ(WRImax
24−hr−S) is the standard deviation of the monthly maximum values

of WRI24−hr−S for the respective study period.
For the purpose of this paper, we follow the notion that if the magnitude of SWRI24−hr−S

for the current (ith) hour is greater than zero (or that the water resources are higher than
normal), it is regarded as a flood situation. In this paper, we defined flood characteristics
using the running-sum methodology of Yevjevich [36], which has also been used in several
other studies [6,17,18]. With reference to Figure 2, the flood duration, D, is estimated as the
number of hours between the start of a flood, tonset, and the end of a flood, tend, derived
from the SWRI24−hr−S time series. In accordance with the onset of a flood, the volume of
the flood, V, is calculated as the sum of all values of SWRI24−hr−S between tonset and tend of
a flood situation, and the peak of the flood, Q, is determined as the maximum SWRI24−hr−S
during any flood situation.

Figure 2. The SWRI24−hr−S developed to identify a flood event in January 2014 at the Nadi study
site, demonstrating its capability to determine the duration, volume, and peak of any flood event.
The flood volume, representing the accumulated water resources, is the cumulative SWRI24−hr−S
under the curve closed by the onset and end of a flood situation and the zero line.
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Equations (4)–(6) show the mathematical equations used to calculate the flood charac-
teristics before developing the copula-probabilistic flood risk analysis model.

V =
t=tend

∑
t=tonset

SWRI24−hr−S (4)

where SWRI24-hr-S > 0
D = tend − tonset(hours) (5)

Q = max(SWRI24−hr−S)tonset−tend
(6)

where tonset and tend are the onset and end timestamps of a flood situation, respectively.
To demonstrate the practical use of SWRI24−hr−S for hourly risk flood monitoring,

Figure 2 illustrates the SWRI24−hr−S applied to identify flood events in January 2014 at
the Nadi site located in the western division of Fiji. As illustrated in Figure 2, the onset
timestamp of the flood situation, i.e., the exact hour when the magnitude of SWRI24−hr−S
starts to rise above zero, was on 29 January 2014 at 8 a.m. To verify this particular flood
situation, we now refer to the report from the FMS [37], which showed indeed that an
active trough that caused widespread rain across Fiji was noticeable from 29 to 30 January
2014 and resulted in flooding, particularly in the western division of Fiji, where this study
site is located. Thus, this verification confirms that the proposed SWRI24−hr−S has correctly
identified this flood event, demonstrating its practicality in identifying a flood situation at
an hourly scale.

To further verify the potency of SWRI24−hr−S for hourly flood risk monitoring, in
Figure 3, WRI24−hr−S is plotted alongside the hourly rainfall data for the same study
site during the same period. Compared to SWRI24−hr−S or the raw hourly rainfall data,
SWRI24−hr−S simplifies the process of identifying a flood situation. This is because a simple
criterion, SWRI24−hr−S > 0, provides a good indicator of flood risk, which is impossible
when using WRI24−hr−S and the raw hourly rainfall values.

Figure 3. The WRI24−hr−S and rainfall since 29 January 2014 (72 h) for the Nadi site.

2.3.2. Joint Exceedance Probability between Flood Characteristics

For a comprehensive flood risk assessment, this study follows the original approach of
Nguyen-Huy et al. [18] to develop vine copula-based joint exceedance probability models.
This task entails developing a multivariate analysis system of flood characteristics that
considers the joint exceedance probability of a flood duration D, volume V, and peak Q
for the present study sites. This study specifically aimed to estimate the probability that
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the duration, volume, and peak were concurrently greater than or equal to some threshold
scenarios, as presented below:

P(D ≥ d ∧ V ≥ v ∧ Q ≥ q) (7)

Equation (7) requires the modelling of a joint distribution function of three variables,
F(xd, xv, xq). Thus, in this study, we have developed a copula-based model, described in the
following section, to estimate the joint exceedance probability of the flood characteristics,
i.e., D, V, and Q to perform a probabilistic flood risk analysis.

2.3.3. Copula Analytical Approach

A copula C(.) : [0, 1]n → [0, 1] is a function that links univariate marginal distribution
functions P(Xi ≤ xi) = Fi(xi) of random variables X1, . . . , Xn to form a joint cumulative
distribution function (JCDF), P(X1 ≤ x1, . . . , Xn ≤ xn) = F(x1, . . . , xn), i.e., [26]:

F(x1, . . . , xn) = C[F1(x1), . . . , Fn(xn)] (8)

with the corresponding joint density distribution function (JPDF) in terms of marginal and
copula probability density functions [26]:

f (x1, . . . , xn) =

[
n

∏
i=1

fi(xi)

]
c[Fi(xi), . . . , Fn(xn)] (9)

where fi(xi) and c(.) are the corresponding marginal and copula PDFs, respectively. When
the marginal distributions are continuous, a unique copula exists. Equations (8) and (9)
demonstrate an advanced capability of copulas, allowing a JCDF of random variables
to be constructed through two separate processes: (i) modelling a copula function that
captures the dependence structure among correlated variables and (ii) modelling the
univariate marginal distributions. This aspect of copulas presents a more flexible approach
for choosing suitable univariate distribution functions to fit the observed data in practical
applications. From Equation (8), the joint distribution of duration, volume, and peak given
in Equation (7) can be written using copulas as follows:

P(D ≥ d ∧ V ≥ v ∧ Q ≥ q)
= 1 − FD(d)− FV(v)− FQ(q) + FDV(d, v) + FVQ(v, q) + FDQ(d, q)− FDVQ(d, v, q)

= 1 − FD(d)− FV(v)− FQ(q) + CDV [FD(d), FV(v)] + CVQ
[
FV(v), FQ(q)

]
+

CDQ
[
FD(d), FQ(q)

]
− CDVQ

[
FD(d), FV(v), FQ(q)

]
(10)

Different copula families, such as empirical, Archimedean, extreme value, ellip-
tical, vine, and entropy copulas, can be used to model the copula function given in
Equation (10) [38,39]. Vine copulas, among other copulas, can be used to achieve the utmost
flexibility in constructing the JCDF and JPDF, given in Equations (8) and (9), respectively.
Vine copulas have been applied in recent studies across various fields, such as weather and
climate risk in agriculture [40,41], hydrology and water resources [27,42–48], and finance
and insurance [49–51]. The following section provides more details on vine copulas.

2.3.4. Vine Copulas

The vine copula was first introduced by Joe [52], whose concept was to decompose the
JPDF into a cascade of iteratively conditioned bivariate copulas, also called pair copulas.
While this decomposition is not unique, all possible decompositions can be organised into
a graphical model called a regular vine (R-vine) [53].

Within the R-vine framework, two main types of vine copula decomposition exist:
the canonical (C-vine) and drawable (D-vine) distributions. These modes determine the
parametric construction of an R-vine. The D-vine copula offers higher flexibility than
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the C-vine copula, especially when considering all mutual inter-correlations between
targeted random variables one after another [47]. However, the C- and D-vine frameworks
are the same when considering a 3-dimensional (3D) (or tri-variate) joint distribution
framework [18,47].

In this study, we have focused on tri-variate cases to model the joint distribution of
flood duration, volume, and peak for a detailed probabilistic risk analysis of any flood
event. Figure 4 shows a graphical representation of D- and C-vine copulas in the form of
trees, edges, and nodes.

Figure 4. Schematic diagram of different ways of constructing the 3D D-vine copula structure in this
study. (a) Case 1: the flood volume (V) as a conditioning variable, (b) Case 2: the flood duration
(D) as a conditioning variable, (c) Case 3: the flood peak (Q) as a conditioning variable, and (d) an
example of the C-vine copula structure. Source: Adapted from Nguyen-Huy et al. [18].

In the tri-variate case where D, V, and Q are modelled simultaneously, the C-vine
copula is the D-vine copula with a specified centre variable, as previously mentioned.
For instance, when the flood duration (D) variable serves as the centre variable, the D-vine
copula depicted in Figure 4b is identical to the C-vine copula shown in Figure 4d. The edges
are linked to bivariate copulas, such as the edge DV associated with the bivariate copula
CDV , which captures the dependence structure between D and V.

To fit the univariate marginal distribution functions, we employed the univariate
local-polynomial likelihood kernel density estimation method capable of handling discrete
(duration) and continuous (volume and peak) data [54]. Additionally, the following bi-
variate copula families were utilised to develop the 3D vine copula models in this study:
independence, parametric (elliptical, Archimedean, and their rotated versions), and non-
parametric (transformation kernel) families [54–56] (Table A1).

To estimate the parameters of bivariate copulas, we employed maximum likelihood for
parametric models and local-likelihood approximations for non-parametric models. More-
over, the modified vine copula Bayesian information criteria (mBICv) [57] was utilised to
select the bivariate copulas, and Kendall’s tau (τ) was adopted to select tree sequences [18].
The mBICv can address the issues of the Bayesian information criterion (BIC), which as-
sumes that the number of possible parameters grows sufficiently slowly with the sample
size n and that all models are equally likely. Additionally, the mBICv was explicitly tai-
lored to vine copula models [57]. The vine copula models were developed using the R
programming language utilising the ‘rvinecopulib’ library package [54].

3. Results and Discussion

We now provide a detailed appraisal of the hourly flood index SWRI24−hr−S for
detecting hourly flood possibility in terms of the onset and the end timestamps, duration,
peak, volume, and total accumulated rainfall during any flood situation for seven study
sites in Fiji over the study period (2014–2018). We also provide joint distribution model
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results using the newly proposed vine copulas to provide a probabilistic risk analysis
framework for flash floods.

3.1. Application of the Hourly Flood Index for Flood Event Analysis

The WRI24−hr−S, followed by the SWRI24−hr−S for the study period (2014–2018), were
successfully computed for each of the seven study sites. The practicality of SWRI24−hr−S
for determining a flood situation has already been demonstrated in Figure 2. Similarly,
the flood events between 3 and 6 April 2016 were quantified. This was first done for the
Tavua site as it was one of the severely flooding-impacted areas in the western division of
Fiji [58].

Our analysis identified four flood events using the criterion SWRI24−hr−S > 0 to
indicate a flood situation (Figure 5) for the Tavua site. Of four flood events, the two
significant events were predominantly caused by heavy rain in the past 24 h. The first
major flood event started on 3 April at 5 p.m. and ended on 4 April at 4 p.m. with a total
duration of 23 h, a volume of 20.37, and a peak of 2.36. Approximately 154 mm of rainfall
was recorded during this event. The second major flood event started on the 6th of April at
3 a.m. and lasted for 14 h. This flood event recorded a total volume of 8.77, with a peak of
1.03, while approximately 69.50 mm of rainfall was recorded for this event. The combined
volume of all four flood events for the Tavua site between 3 April 2016 and 6 April 2016
(96 h) was 30.59.

Figure 5. The SWRI24−hr−S applied to identify the flood events in April 2016 at the Tavua site (96 h).

The flood events for the same period were also determined for the other six sites.
The flood characteristics, i.e., D, V, and Q of the floods, varied among these sites, as shown
in Figure 6. The results showed that areas in the western division of Fiji were severely
affected by flooding, as was reported by FMS [58] [Tavua (V ≈ 30.59), Lautoka (V ≈ 25.63),
Sigatoka (V ≈ 19.45), Nadi (V ≈ 9.12), and Rakiraki (V ≈ 8.79)] compared to the areas
in the central division [Navua (V ≈ 0.12) (minor flood event), and Nasinu (no floods)].
These results demonstrate the utility of SWRI24−hr−S in identifying flood situations and
determining their characteristics. Consequently, the proposed SWRI24−hr−S can be consid-
ered a feasible and cost-effective tool to monitor the flash flood risk in Fiji. The variation
in flood characteristics among our study sites demonstrates the importance of flood risk
assessments for each site separately, despite the proximity of these sites, as also highlighted
in previous work [6]. Figure 7 depicts the occurrence of floods, encompassing minor events
with minimal volume and potentially insignificant impacts at each of the seven study sites
over 2014–2018. Over this five-year study period, a slight fluctuation in flood frequency
was observed across the study sites, as illustrated in Figure 7. Notably, the Tavua study site
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exhibited the highest frequency, while the Nasinu study site recorded the lowest frequency
of flood events.

Figure 6. The SWRI24−hr−S applied to identify the flood events in April 2016 at the other study sites
(96 h).

The occurrence of frequent severe weather events, such as tropical cyclones and
depressions, results in significant flood events in Fiji, and this usually occurs during the
wet season (November–April) and occasionally in the dry season (May–October), especially
in La Niña years [33]. This is evident in Figure 8, which indicates the wet season, including
May and October, experiencing high rainfall, leading to a higher frequency of flood events
and greater flood volume (Figure 9) compared to the other months. This emphasises
the need for Fiji’s National Disaster Management Office (NDMO) and other relevant
stakeholders to implement comprehensive flood mitigation and resilience measures. Public
education on flood safety and preparedness for the wet season is also crucial, particularly
for those residing in flood-prone areas.
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Figure 7. Geographic analysis of flood frequency between 2014 and 2018.

Figure 8. Temporal (monthly) analysis of flood frequency and total monthly rainfall aggregated
from 2014 to 2018.

Figure 9. Temporal (monthly) analysis of the combined volume of flood events across 7 study sites
from 2014 to 2018.
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The annual rainfall and the occurrence of flood events across seven sites from 2014 to
2018 are illustrated in Figure 10. This figure shows that the year 2015 had the lowest rainfall
among all years examined. According to FMS [59], the rainfall trends in 2015 exhibited
a typical El Niño pattern, characterised by below-average rainfall at most of the study
stations. Consequently, there were fewer flood events (Figure 10) and a lower flood volume
(Figure 11) in 2015 compared to the other years in the present study.

Figure 10. Frequency of floods and total rainfall across 7 study sites aggregated from 2014 to 2018.

Figure 11. Yearly combined volume of flood events across 7 study sites from 2014 to 2018.

Table 2 lists the five severe floods at each of the seven sites during the study period.
The flood severity was determined by ranking the flood events at each site based on their
volume, with 1 indicating the most severe and 5 indicating the least severe. For each of the
seven sites, the table displays the onset time, duration, volume, peak, total WRI24−hr−S,
total rain, and maximum WRI24−hr−S for each flood event. Statistics such as these may aid
relevant organisations in understanding past flood events at these sites, which will facilitate
future flood mitigation decisions to minimise the severity of floods at these locations.

A brief analysis of the most severe flood event at each study site was performed and
validated using the annual climate summaries published by the Fiji Meteorological Services
to ensure that the SWRI24−hr−S accurately identified them. The analysis of floods in Nadi
(Table 2a) showed that the most severe flood started on 29 January 2014 at 8 a.m. and
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recorded a volume of 157.28. This flood lasted 49 h and reached a peak of 6.80, making it
the most severe flood event with the most prolonged duration among all the study sites
during the 5-year study period. During this flood event, about 1590 mm of rainfall was
recorded. This flood event was described in Figure 2 and validated using Fiji’s annual
climate summary for 2014 [37].

Table 2b shows that the most severe flood event in Lautoka recorded a total volume of
25.05. This flood event started on 14 January 2018 at 2 p.m. and lasted 19 h, reaching a peak
of 3.29. During this flood event, about 175 mm of rainfall was recorded. This flood event
was verified using Fiji’s climate summaries 2018, which stated that heavy rainfall occurred
from 13 to 15 January 2018 due to an active trough of low pressure, resulting in widespread
flooding [60,61].

Table 2. Analysis of the 5 most severe flood events for different study sites in Fiji from 2014 to 2018.
(a) Nadi, (b) Lautoka, (c) Nasinu, (d) Navua, (e) Rakiraki, (f) Sigatoka, and (g) Tavua.

Study Site Onset Time Volume Duration Peak Total Total Rain Maximum
(tonset) (V) (D) (hrs) (Q) W RI24−hr−S (mm) W RI24−hr−S

a Nadi
1 29 January 2014 at 8 a.m. 157.28 49 6.80 10,557.06 1590 416.05
2 8 February 2017 at 4 a.m. 11.88 18 1.31 1316.32 195.40 109.56
3 4 April 2016 at 8 a.m. 6.86 20 0.87 1108.52 161.40 84.87
4 7 January 2014 at 6 p.m. 6.31 10 1.73 715.09 84 133.10
5 15 January 2014 at 6 p.m. 5.77 13 1.18 794.02 84 102.03

b Lautoka
1 14 January 2018 at 2 p.m. 25.05 19 3.29 1315.15 175 126.10
2 6 April 2016 at 2 a.m. 23.95 19 2.27 1283.34 180 96.59
3 1 April 2014 at 7 a.m. 18.39 13 3.49 935.98 109 131.92
4 6 February 2017 at 3 p.m. 11.48 20 1.53 954.55 131.50 75.40
5 8 February 2017 at 9 a.m. 10.85 13 1.49 718.16 98 74.18

c Nasinu
1 27 February 2014 at 9 a.m. 24.90 18 2.83 1388.83 173 115.53
2 21 February 2015 at 6 p.m. 23.15 16 2.48 1261.37 163.50 106.16
3 6 December 2014 at 4 a.m. 19.15 16 2.92 1155.37 140 117.79
4 11 November 2018 at 11 p.m. 7.46 8 1.91 521.64 37 91.16
5 28 May 2018 at 8 a.m. 7.20 7 2.10 474.23 21 96.15

d Navua
1 15 December 2016 at 6 a.m. 56.98 28 4.29 2732.99 392.50 161.35
2 17 March 2017 at 4 a.m. 16.37 14 2.10 1023.68 114.50 99.48
3 16 January 2014 at 1 a.m. 9.82 14 1.16 838.28 123.50 72.87
4 2 May 2016 at 6 a.m. 8.15 13 1.38 751.01 110 79.03
5 27 February 2014 at 3 p.m. 7.98 10 1.61 626.25 83.50 85.60

e Rakiraki
1 19 December 2016 at 5 a.m. 33.99 21 4.28 1783.89 265.50 170.39
2 14 January 2018 at 2 p.m. 19.89 17 2 1199.35 156.50 97.02
3 20 February 2016 at 8 p.m. 16.89 17 2.68 1103.01 112.50 119.05
4 17 December 2016 at 4 p.m. 11.28 19 1.25 989.33 145.50 73.09
5 5 March 2017 at 9 a.m. 10.06 15 1.52 818.03 114.50 81.73

f Sigatoka
1 30 January 2014 at 10 a.m. 23.32 16 2.84 999.93 121 92.83
2 3 February 2018 at 3 p.m. 15 12 2.25 695.39 93 79.78
3 1 May 2018 at 6 p.m. 11.10 14 1.67 671.12 65 67.25
4 4 April 2016 at 12 a.m. 10.91 18 1.33 789.16 103 59.79
5 1 April 2018 at 6 a.m. 9.74 11 1.55 549.66 73 64.62

g Tavua
1 8 February 2017 at 10 a.m. 45.88 23 4.04 1612.79 238 117.34
2 3 April 2016 at 5 p.m. 20.37 23 2.36 1023.74 154 78.55
3 17 May 2014 at 10 a.m. 17.16 17 1.81 805.30 103.50 65.93
4 6 February 2017 at 11 a.m. 14.77 18 1.69 774.08 89.50 63.11
5 6 March 2017 at 1 p.m. 14.23 17 1.75 737.52 98.50 64.47

According to Table 2c, the most severe flood in Nasinu started on 27 February 2014
at 9 a.m. and lasted 18 h. This flood had a volume of 24.90 and reached a peak of 2.83.
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Approximately 173 mm of rainfall was recorded during this flood event. As reported
by FMS [37], the tropical depressions TD14F and TD15F caused heavy rainfall in Fiji’s
central and eastern divisions between 25 and 27 February 2014. As a result, parts of Fiji,
particularly the major river systems in the central division (where this study site is located),
experienced flooding during this period.

The most severe flood, both in Navua (Table 2d) and Rakiraki (Table 2e), occurred in
December 2016. For Navua, this event started on 15 December 2016 at 6 a.m. and lasted for
28 h, during which it recorded a volume of 56.98 and reached a peak of 4.29. For Rakiraki,
it started on the 19th of December at 5 a.m. and lasted for 21 h, during which it recorded
a volume of 33.99 and reached a peak of 4.28. Approximately 392.50 mm and 265.50 mm
of rainfall were recorded during this flood event for Navua and Rakiraki, respectively.
The most severe flood event that occurred at the Navua and Rakiraki sites was validated
using Fiji’s climate summaries 2016, which stated that the trough of low pressure and active
rain bands associated with the tropical depression TD04F resulted in heavy rainfall that
caused severe flooding in some parts of the country’s main island of Viti Levu (where these
study sites are located) from 12 to 20 December 2016 [58].

Based on Table 2f, the most severe flood event in Sigatoka started on 30 January 2014
at 10 a.m. and lasted for 16 h. This flood had a volume of 23.32 and reached a peak of 2.84.
Approximately 121 mm of rainfall was recorded during this flood event. As mentioned
earlier, an active trough that caused widespread rain across Fiji from the 29 to the 30
January 2014 resulted in flooding, particularly in the western division of Fiji, where this
site is located [37].

Lastly, the analysis of floods in Tavua (Table 2g) showed that the most severe flood
started on 8 February 2017 at 10 a.m. and recorded a volume of 45.88. This flood lasted
23 h and reached a peak of 4.04. During this flood event, about 238 mm of rainfall was
recorded. As per FMS [62], the tropical depression TD09F affected the country between 6
and 8 February 2017 and led to flooding in parts of the western division of Fiji, where this
study site is located.

3.2. Application of the Vine Copula Model for Probabilistic Flood Risk Analysis

The frequency of flood events at each study site is demonstrated in Figure 7. Similarly,
the flood characteristics, i.e., D, V, and Q, for each flood event were calculated for all study
sites. Table 3 shows the five-number summary, including the mean, standard deviation,
skewness, and kurtosis for each flood characteristic at each study site.

Moreover, as shown in Table 3, the minimum flood duration was 1 h at all study
sites. The maximum flood duration, volume, and peak were recorded at the Nadi site
(this flood event is described in Figure 2). The skewness and kurtosis information of each
flood characteristic, which describes the shape and distribution of a dataset, were more
than +1 and +3, respectively, for all study sites, indicating that their distribution is highly
right-skewed. This means the flood characteristics dataset for all study sites contains
extreme flood duration, volume, and peak values.

The results in Table 3 also show that flood characteristics exhibit high variability across
all study sites in terms of their median and inter-quartile range (IQR). The median flood
duration for all study sites was 3 h, while the median volume and peak ranged from ap-
proximately 0.52 to 0.89 and 0.24 to 0.42, respectively. The IQR for flood duration, volume,
and peak varied from 4 to 7 h, 1.78 to 2.94, and 0.52 to 0.91, respectively. The high spa-
tiotemporal variation in flood characteristics highlights the importance of modelling these
characteristics simultaneously, and employing a robust model like the copulas used in this
study is crucial for accurately capturing the dependence among these flood characteristics.
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Table 3. Descriptive statistics of flood characteristics at each study site.

Flood Characteristic Site Min. Lower Quartile (Q1) Median (Q2) Upper Quartile (Q3) Max. Mean Standard Dev. Skewness Kurtosis

Duration (D) (hours)

Lautoka 1 1 3 6 20 4.796 4.791 1.771 5.511
Nadi 1 1 3 7 49 5.424 7.135 4.286 24.981
Rakiraki 1 1 3 8 21 5.681 5.801 1.248 3.243
Tavua 1 2 3 7 23 5.525 5.749 1.590 4.492
Sigatoka 1 1 3 5 18 4.413 4.578 1.746 4.848
Navua 1 1 3 5 28 4.367 5.003 2.753 11.676
Nasinu 1 2 3 6 18 4.415 4.153 1.962 6.236

Volume (V)

Lautoka 0.003 0.204 0.633 1.983 25 2.746 5.473 3.022 11.168
Nadi 0.002 0.132 0.517 2.271 157.276 4.156 20.404 7.538 55.625
Rakiraki 0.005 0.097 0.529 3.038 33.993 3.272 6.329 3.257 13.998
Tavua 0.016 0.185 0.617 2.272 45.879 3.190 7.123 4.230 22.984
Sigatoka 0.021 0.220 0.632 2.834 23.316 2.826 4.777 2.523 9.293
Navua 0.005 0.167 0.557 2.058 56.983 3.012 8.495 5.656 34.803
Nasinu 0.033 0.159 0.886 2.854 24.903 3.028 5.853 2.951 10.098

Peak (Q)

Lautoka 0.003 0.179 0.348 0.701 3.490 0.597 0.725 2.519 9.356
Nadi 0.002 0.108 0.244 0.674 6.803 0.527 0.940 5.369 35.042
Rakiraki 0.005 0.097 0.323 0.816 4.282 0.606 0.809 2.663 10.954
Tavua 0.016 0.124 0.338 0.799 4.040 0.573 0.688 2.719 12.339
Sigatoka 0.021 0.207 0.393 1.121 2.841 0.718 0.714 1.369 3.945
Navua 0.005 0.167 0.401 0.723 4.289 0.601 0.747 2.924 13.398
Nasinu 0.033 0.139 0.419 0.916 2.915 0.720 0.763 1.566 4.596
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Conducting a comprehensive correlation analysis among flood characteristics and un-
derstanding the relationship between each characteristic pair is another crucial step in mod-
elling their joint distribution [18]. In this study, both parametric measures—Pearson’s cor-
relation coefficient (r)—and nonparametric rank-based correlation measures—Spearman’s
correlation coefficient (ρ) and Kendall’s tau (τ)—were employed to examine the relationship
between each pair of flood characteristics. Additionally, Mutual Information (MI) was
utilised to examine the degree of dependence between each pair of flood characteristics.
The results obtained are presented in Table 4. The correlation coefficients, i.e., r, ρ, and τ,
obtained between each pair of flood characteristics, were statistically significant at the 1%
level of significance. Overall, a strong positive dependency is observed between each pair
of flood characteristics across all study sites, as shown in Table 4. However, there would
be cases where the peak value is extremely high while the duration is low or the peak is
moderate while the duration is long, and the volumes would also be different. For exam-
ple, as shown in Table 4, at the Tavua site, the linear correlation measured by Pearson’s
correlation coefficient between D and Q (rD&Q ≈ 0.859) is higher than that between D and
V (rD&Q ≈ 0.838). However, the rank correlation measured by Spearman’s and Kendall’s
tau correlation coefficients between D and Q (ρD&Q ≈ 0.902, τD&Q ≈ 0.698) are lower
than those between D and V (τD&V ≈ 0.946, τD&V ≈ 0.836). This implies complex and
non-linear relationships among flood characteristics. Subsequently, the risks of different
flood events are different. Therefore, this requires a robust model like copulas used in this
study to capture the full dependence among flood characteristics.

Additionally, it must be noted that across all study sites, the strongest dependencies
exist between D − V and V − Q compared to D − Q. This is particularly evident based
on Kendall’s tau (τ) coefficient utilised in this study to select the most optimal structure
of the vine copula model at each study site. This implies that the flood volume, V, can
be positioned between the other two flood characteristics (i.e., D and Q), as illustrated in
Figure 4a, to model the joint distribution of D, V, and Q using the 3D D-vine copula.

Table 4. The statistical correlation in terms of the Pearson’s correlation coefficient (r), Spearman’s
rank correlation coefficient (ρ), Kendall’s tau (τ), and Mutual Information (MI) computed between
the pairs of flood characteristics, i.e., Duration (D, in hours), Volume (V), and Peak (Q) for each
study site.

Site
D&V D&Q V&Q

r ρ τ MI r ρ τ MI r ρ τ MI

Lautoka 0.895 0.941 0.831 1.051 0.860 0.877 0.738 0.584 0.931 0.971 0.883 1.044
Nadi 0.863 0.950 0.849 0.966 0.929 0.891 0.740 0.619 0.924 0.978 0.890 0.771
Rakiraki 0.855 0.934 0.828 0.823 0.842 0.902 0.760 0.647 0.949 0.987 0.926 1.123
Sigatoka 0.895 0.929 0.820 0.851 0.810 0.869 0.721 0.616 0.887 0.979 0.888 1.129
Tavua 0.838 0.946 0.836 0.983 0.859 0.902 0.698 0.651 0.942 0.960 0.859 1.103
Navua 0.891 0.937 0.838 1.066 0.937 0.892 0.752 0.616 0.899 0.982 0.903 0.933
Nasinu 0.942 0.945 0.831 0.903 0.895 0.844 0.687 0.501 0.896 0.964 0.844 0.904

Table 5 shows the results obtained when the 3D D-vine copula is fitted to the flood
characteristics data at each study site. As depicted in Table 5, the results confirm that the
D-vine structure illustrated in Figure 4a with flood volume (V) as the conditioning variable
is the most appropriate to model the joint distribution of flood characteristics (i.e., D, V,
and Q) across all study sites. The table also shows the best-fitted bivariate copula function
and its associated parameters at each tree level for each study site. For instance, at the
Sigatoka site, in the first tree (Tree 1), the Frank (CDV) and Survival Gumbel (CVQ) copulas
are selected between D − V and V − Q, respectively. In the second tree (Tree 2), the Frank
copula is chosen as the most parsimonious for identifying the bivariate copula (CDQ|V).
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Table 5. Overall summary of fitted 3D D-vine copula framework at each study site. Note: τ = Kendall’s tau, logLik = Log-Likelihood, AIC = Akaike Information
Criterion, and BIC = Bayesian Information Criterion.

Site D-Vine Structure
(Conditioning Variable)

Tree
Level

Flood Characteristic
Pairs

Best-Fitted
Copula

Copula Dependence
Parameter (s) τ logLik AIC BIC

Lautoka
Tree 1

D-V Gaussian ρ = 0.93 0.77

102.58 −199.16 −193.19V-Q Gaussian ρ = 0.94 0.78

Tree 2 DQ|V Gumbel θ = 1.1 0.08

Nadi
Tree 1

D-V Frank θ = 15 0.77

142.45 −278.89 −272.66V-Q BB7 θ = 2.1;
δ = 11.6 0.81

Tree 2 DQ|V Independence NA 0

Nasinu
Tree 1

D-V Gaussian ρ = 0.93 0.75

72.98 −141.96 −138.53V-Q Gaussian ρ = 0.92 0.75

Tree 2 DQ|V Independence NA 0

Navua D-V-Q
(V is placed in the centre)

Tree 1
D-V Frank θ = 16 0.78

111.65 −219.29 −215.51V-Q Survival Gumbel
(Rotated Gumbel 180 degrees) θ = 6.4 0.84

Tree 2 DQ|V Independence NA 0

Rakiraki
Tree 1

D-V Gaussian ρ = 0.93 0.75

118.13 −230.25 −224.70V-Q BB7 θ = 3;
δ = 15 0.83

Tree 2 DQ|V Independence NA 0

Sigatoka
Tree 1

D-V Frank θ = 20 0.82

123.88 −241.76 −236.27V-Q Survival Gumbel
(Rotated Gumbel 180 degrees) θ = 7 0.86

Tree 2 DQ|V Frank θ = −3.6 −0.36

Tavua
Tree 1

D-V Survival BB7
(Rotated BB7 180 degrees)

θ = 5.2;
δ = 3.6 0.77

148.44 −288.87 −280.43
V-Q BB7 θ = 4.3;

δ = 13.4 0.82

Tree 2 DQ|V Independence NA 0
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To derive the joint exceedance probability of the flood event characteristics (i.e., D,
V, and Q) for different combination scenarios using the best-fitted 3D D-vine copula
selected at each study site, we first quantify the probability that the flood duration, volume,
and peak exceed specific thresholds simultaneously (Equation (7)). The thresholds were
selected at the 50th quantile (median), 75th quantile (moderate), and 95th quantile (extreme).
The quantile values of each flood characteristic were computed and subsequently averaged
for all study sites, as presented in Table 6. As seen in Table 6, for example, the averaged
50th-quantile value of duration is qD(0.5) = 3 h. Similarly, the averaged 75th-quantile
value of duration is qD(0.75) = 6 h, and the averaged 95th-quantile value of duration is
qD(0.95) = 15 h. As for the spatial pattern, Table 6 demonstrates a moderate variation in
the quantile values of each flood characteristic across all study sites.

Table 6. The duration (D) (hours), volume (V), and peak (Q) at the 50th quantile (median), 75th
quantile (moderate), and 95th quantile (extreme) for each study site.

Flood Characteristic Study Site 50th Quantile 75th Quantile 95th Quantile

D (hours)

Lautoka 3 6 15
Nadi 3 7 13
Rakiraki 3 8 17
Tavua 3 7 17
Sigatoka 3 5 16
Navua 3 5 14
Nasinu 3 6 16
Average 3 6 15

V

Lautoka 0.633 1.983 13.898
Nadi 0.517 2.271 6.365
Rakiraki 0.529 3.038 15.205
Tavua 0.617 2.272 14.767
Sigatoka 0.632 2.834 11.054
Navua 0.557 2.058 9.149
Nasinu 0.866 2.854 19.153
Average 0.622 2.473 12.799

Q

Lautoka 0.348 0.701 1.840
Nadi 0.244 0.674 1.365
Rakiraki 0.323 0.816 1.976
Tavua 0.338 0.799 1.750
Sigatoka 0.393 1.121 2.305
Navua 0.401 0.723 1.694
Nasinu 0.419 0.916 2.477
Average 0.352 0.821 1.915

By applying the vine copula probabilistic model, we show the joint exceedance prob-
abilities of the duration, volume, and peak in different combination scenarios for each
study site in Figures 12–14. From a flood risk analysis perspective, the present results
clearly demonstrate a moderate yet notable difference in spatial patterns of the joint ex-
ceedance probability of flood event characteristics in different combination scenarios.
As shown in Figure 12a, the probabilities of a flood event occurring where both the vol-
ume and peak exceed the 50th-quantile (median) values (i.e., V ≥ q (0.50) = 0.622 and
Q ≥ q (0.50) = 0.352) and the duration (D) exceeds the median (i.e., D ≥ q (0.50) = 3 h),
moderate (i.e., D ≥ q (0.75) = 6 h), and extreme (i.e., D ≥ q (0.95) = 15 h) values are approx-
imately 50–59%, 23–39%, and 4–10% across all study sites, respectively.
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Figure 12. Flood risk assessment presented in terms of the joint exceedance probability of a flood
event’s duration (D) being greater than or equal to the 50th quantile (median) (i.e., D ≥ q (0.5) = 3 h),
75th quantile (moderate) (i.e., D ≥ q (0.75) = 6 h), and 95th quantile (extreme) (i.e., D ≥ q (0.95) = 15 h)
combined with the following: (a) both the volume and peak being greater than or equal to the 50th
quantile (i.e., V ≥ q (0.5) = 6.222 & Q ≥ q (0.5) = 0.352)), (b) the volume being greater than or equal to
the 50th quantile and the peak being greater than or equal to the 75th quantile (i.e., V ≥ q (0.5) = 6.222
& Q ≥ q (0.75) = 0.821), and (c) the volume being greater than or equal to the 50th quantile and the
peak being greater than or equal to the 95th quantile (i.e., V ≥ q (0.5) = 6.222 & Q ≥ q (0.95) = 1.915).

Figure 13. Flood risk assessment presented in terms of the joint exceedance probability of the flood
duration (D) being greater than or equal to the 50th quantile (median) (i.e., D ≥ q (0.5) = 3 h), 75th
quantile (moderate) (i.e., D ≥ q (0.75) = 6 h), and 95th quantile (extreme) (i.e., D ≥ q (0.95) = 15 h)
combined with the following: (a) the volume being greater than or equal to the 75th quantile and the
peak being greater than or equal to the 50th quantile (i.e., V ≥ q (0.75) = 2.473 & Q ≥ q (0.5) = 0.352),
(b) both the volume and peak being greater than or equal to the 75th quantile (i.e., V ≥ q (0.75) = 2.473
& Q ≥ q (0.75) = 0.821), and (c) the volume being greater than or equal to the 75th quantile and the
peak being greater than or equal to the 95th quantile (i.e., V ≥ q (0.75) = 2.473 & Q ≥ q (0.95) = 1.915).
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Figure 14. Flood risk assessment presented in terms of the joint exceedance probability of the flood
duration (D) being greater than or equal to the 50th quantile (median) (i.e., D ≥ q (0.5) = 3 h), 75th
quantile (moderate) (i.e., D ≥ q (0.75) = 6 h), and 95th quantile (extreme) (i.e., D ≥ q (0.95) = 15 h)
combined with the following: (a) the volume being greater than or equal to the 95th quantile and the
peak being greater than or equal to the 50th quantile (i.e., V ≥ q (0.95) = 12.799 & Q ≥ q (0.5) = 0.352),
(b) the volume being greater than or equal to the 95th quantile and the peak being greater than
or equal to the 75th quantile (i.e., V ≥ q (0.95) = 12.799 & Q ≥ q (0.75) = 0.821), and (c) both the
volume and peak being greater than or equal to the 95th quantile (i.e., V ≥ q (0.95) = 12.799 &
Q ≥ q (0.95) = 1.915).

A similar probabilistic flood risk analysis conducted with both the volume and peak ex-
ceeding the 75th-quantile (moderate) values (i.e., V ≥ q (0.75) = 2.473 and Q ≥ q (0.75) = 0.821)
and the duration (D) exceeding the median (i.e., D ≥ q (0.50) = 3 h), moderate (i.e.,
D ≥ q (0.75) = 6 h), and extreme (i.e., D ≥ q (0.95) = 15 h) values showed that the probability
of flood occurrence was approximately 18–35%, 18–28%, and 4–9% across all study sites,
respectively (Figure 13b).

In general, the probability of a flood event with a volume exceeding the 50th-quantile
(median) or 75th-quantile (moderate) values and both the peak and duration exceeding
the 95th-quantile (extreme) value was less than 5% across all study sites. In the case
when both the flood volume and duration exceeded the 95th-quantile (extreme) value,
the probability of a flood event with the peak exceeding the 50th-quantile (median) or
75th-quantile (moderate) values was less than 6% across all study sites.

In the worst-case scenario, when the flood risk could be more severe, we found that
the probability of a flood event occurring where the volume, peak, and duration exceeded
the extreme values (i.e., V ≥ q (0.95) = 12.799, Q ≥ q (0.95) = 1.915, and D ≥ q (0.95) = 15 h)
was less than 5% at all study sites (Figure 14c). These findings imply a moderate prob-
ability of a flood event characterised by median (i.e., 50th-quantile) duration, volume,
and peak values across all study sites. The results also suggest that the likelihood of a flood
event characterised by extreme duration, volume, and peak is exceptionally low across all
study sites.
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4. Conclusions, Limitations of the Study and Future Research Directions

This study has made novel contributions to flood risk monitoring and assessment by
developing a mathematically convenient hourly flood index, SWRI24−hr−S, and testing its
practical use in identifying flood situations over 2014-2018 at seven different study sites in
Fiji while jointly modelling flood characteristics such as flood duration, volume, and peak
using a vine copula model for probabilistic flood risk assessment.

The results have unambiguously established the practical use of the newly proposed
SWRI24−hr−S as a potent indicator to identify the flood situation at an hourly scale while
computing the associated flood characteristics that were impossible with a 24-hourly water
resources index used in the literature. The results also showed that Fiji mainly experienced
high rainfall during the wet/cyclone season (November to April), including May and
October. Consequently, the number of flood events was higher in these months than in
the other months. This highlights the critical importance of implementing comprehensive
and well-structured flood preparedness and risk mitigation strategies tailored explicitly
for these months characterised by increased rainfall and flood events, thus ensuring the
safety and security of communities and their properties. This study also presented the
flood characteristics and water-intensive properties of five severe flood events for each
study site. Relevant organisations, such as Fiji’s NDMO, are expected to use these findings
to understand the attributes of past flood events at these study sites. This, in turn, can
support future decision-making on flood mitigation, ultimately reducing the severe impacts
of such events.

The results also demonstrated a strong positive dependency between each pair of
flood characteristics across all study sites. The D-vine structure with flood volume (V) as
the conditioning variable was identified as the most appropriate for modelling the joint
distribution of flood characteristics (i.e., D, V, and Q) across all study sites. Therefore, it
was utilised to model the joint distributions among the extreme flood characteristics to
extract their joint exceedance probability, providing crucial information for probabilistic
flood risk assessment at each study site. The findings revealed moderate variations in the
spatial patterns of joint exceedance probability of extreme flood event characteristics across
different combination scenarios, underscoring exceptionally low probabilities of floods
with extreme duration, volume, and peak at all study sites.

Despite the merits of the present study, a primary limitation of this research was
the unavailability of rainfall data required for many of the flood-prone sites across Fiji.
Consequently, this research was confined to selected sites within the western and central
divisions of the country. As a result, this study could not perform a comparative analysis
across all four divisions (i.e., the western, central, northern, and eastern divisions), which
could have provided valuable insights into extreme flood risk areas in the nation. It is
important to note that the Ba study site in the western division of Fiji, a frequent flooding
zone, had to be excluded due to a high percentage of missing rainfall data. Therefore,
in future research, our methodology can be improved with SWRI24−hr−S derived from
satellite-based rainfall products covering a wider area, including major towns and cities,
following the recent approach for Myanmar [18].

Another limitation of the present study was using a prior/fixed time-dependent
reduction function with the weighting factor, W = 3.8, derived in an earlier study [24]
to determine the contributions of accumulated rainfall in the latest 24 h. As discussed,
the proposed SWRI24−hr−S is a normalised version of an existing WRI24−hr−S that used a
suitable time-dependent reduction function to account for the depletion of water resources
through various hydrological processes. It must be noted that the results of this study are
sensitive to the value of W. A change in W will alter the contributions of accumulated
rainfall in the latest 24 h in Equation (2). Consequently, both WRI24−hr−S and the proposed
SWRI24−hr−S will change accordingly.

In the future, further studies can test the correctness of this weighting factor (W)
more comprehensively for study sites where the topography may vary considerably. This
could require a major correlation of this weighting factor against rainfall-runoff and other
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physical models to capture more accurately the actual value of the decay of accumulated
rainfall and its impacts on a flood event [15,24]. Several tests with hydrological parameters,
including evapotranspiration rates, percolation, seepage, surface runoff, and drainage
conditions, etc., may be required to ascertain the time-dependent reduction function for
SWRI24−hr−S. In regions with different decay rates of rainfall-accumulated water volume, it
is crucial to incorporate them when formulating SWRI24−hr−S. The proposed SWRI24−hr−S
must also be verified for its broader adoption as an index-based risk monitoring tool.
Therefore, its feasibility is expected to be demonstrated in other flood-prone regions globally
in future studies, contingent on the availability of well-documented flood records for
validation and hourly rainfall data. While doing so, a different technique to normalise
the existing WRI24−hr−S may be selected, depending on how the normalised WRI24−hr−S
index represents flood risk situations in those climatic conditions.

This study has undertaken a purely mathematical-based approach to monitoring flood
risk, so in future studies, it is anticipated that the proposed SWRI24−hr−S, in conjunction
with additional data such as the catchment hydrology, drainage information, and river
flows, will be utilised to develop hourly hydrographs for various sites. This approach
will further cement the accuracy of flood characteristic estimation and the monitoring of
flash flood events. There is also the potential to develop an innovative SWRI24−hr−S-based
forecasting system with sufficient lead time, presenting a novel approach for early flash
flood warnings in Fiji and other regions.

A key advantage of SWRI24−hr−S, as an hourly flood risk monitoring tool, is its sim-
plistic mathematical formula that is easy to compute, analyse, and interpret for non-expert
audiences compared to physical or hydrological models, including rainfall-runoff models
for flood risk monitoring that involves complex development. However, in the future,
especially in varied hydrological and topographic settings, it is crucial to comprehensively
compare the proposed SWRI24−hr−S with other established flood monitoring systems,
including the Flash Flood Guidance System (FFGS).

Despite these limitations, using SWRI24−hr−S has demonstrated acceptable accuracy
in detecting flood situations on an hourly scale. Therefore, our proposed methodology can
be considered a feasible and cost-effective tool for hourly flood risk monitoring in Fiji and
perhaps other similar geographical locations. Applying the proposed probabilistic flood
risk analysis using vine copulas can enhance the nation’s overall flood risk assessment and
mitigation strategies.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike Information Criterion
API Antecedent Precipitation Index
AWRI Available Water Resources Index
BIC Bayesian Information Criterion
D Flood Duration
FFGS Flash Flood Guidance System
FJD Fijian Dollar
FMS Fiji Meteorological Services
GDP Gross Domestic Product
IF Daily Flood Index
IQR Interquartile Range
JCDF Joint Cumulative Distribution Function
JPDF Joint Density Distribution Function
logLik Log-Likelihood
mBICv Modified Vine Copula Bayesian Information Criteria
NDMO Fiji’s National Disaster Management Office
PDF Probability Density Function
PSIDS Pacific Small Island Developing State
Q Flood Peak
r Pearson’s Correlation Coefficient
SAPI Standardised Antecedent Precipitation Index
SPCZ South Pacific Convergence Zone
SPI Standardised Precipitation Index
SWAP Standardised Weighted Average of Precipitation
SWRI24−hr−S Hourly Flood Index
USD United States Dollar
V Flood Volume
WAP Weighted Average of Precipitation
WRI24−hr−S 24-Hourly Water Resources Index
ρ Spearman’s Rank Correlation Coefficient
τ Kendall’s Tau Correlation Coefficient

Appendix A

Table A1. The bivariate copula families utilised to develop the 3D D-vine copula models in this study.

Copula
Type

Bivariate Copula
Family

Name

Parametric

Elliptical Gaussian
Student-t

Archimedean

Frank
Gumble
Rotated Gumbel 90 degrees
Rotated Gumbel 180 degrees (Survival Gumbel)
Rotated Gumbel 270 degrees
Clayton
Rotated Clayton 90 degrees
Rotated Clayton 180 degrees (Survival Clayton)
Rotated Clayton 270 degrees
Joe
Rotated Joe 90 degrees
Rotated Joe 180 degrees (Survival Joe)
Rotated Joe 270 degrees
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Table A1. Cont.

Copula
Type

Bivariate Copula
Family

Name

Clayton-Gumbel (BB1)
Rotated BB1 90 degrees
Rotated BB1 180 degrees (Survival BB1)
Rotated BB1 270 degrees
Joe-Gumbel (BB6)
Rotated BB6 90 degrees
Rotated BB6 180 degrees (Survival BB6)
Rotated BB6 270 degrees
Joe- Clayton (BB7)
Rotated BB7 90 degrees
Rotated BB7 180 degrees (Survival BB7)
Rotated BB7 270 degrees
Joe-Frank (BB8)
Rotated BB8 90 degrees
Rotated BB8 180 degrees (Survival BB8)
Rotated BB8 270 degrees

Non-
parametric - Transformation kernel

- - Independence
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4.3. Links and implications 

Developing innovative and cost-effective flood monitoring and assessment 

tools is crucial for flood-prone regions lacking advanced risk monitoring resources and 

relevant datasets. In this chapter (Paper 1), a novel hourly flood monitoring tool, i.e., 

SWRI24-hr-S, is proposed, which is a normalised metric derived from normalising the 

existing WRI24-hr-S (Deo et al., 2018) in the literature. The SWRI24-hr-S can serve as a 

universal index for objectively assessing flood risk across geographically diverse study 

sites. The feasibility of the proposed SWRI24-hr-S to identify flood events on an hourly 

scale and derive their associated characteristics, i.e., flood volume (V), duration (D), 

and peak (Q), is demonstrated for seven flood-prone sites in Fiji.  

Furthermore, the vine copula is employed to model the joint distribution of D, V, 

and Q at each study site to extract their joint exceedance probability under various 

combination scenarios for probabilistic flood risk assessment. The joint exceedance 

probability between D, V, and Q, derived under various combination scenarios, 

provides insights into the spatial pattern of flood risk across the study sites. 

Consequently, integrating the SWRI24-hr-S as an hourly flood monitoring tool with the 

copula-statistical method to more accurately assess flood risk across the study sites 

is beneficial for enhancing flood warning systems. This, in turn, will aid relevant 

authorities in accurately assessing flood risk, thereby improving preparedness for flood 

events and devising effective plans and strategies to mitigate their severe impacts on 

communities.  

Although the approaches proposed in this chapter (Paper 1) are practical and 

can be adopted by other flood-prone regions around the globe to enhance flood risk 

monitoring and assessment, the main limitation could be the required rainfall data, 

especially for data-scarce regions. It is imperative to note that the proposed SWRI24-

hr-S, in its formulation, only requires one externally sourced data, i.e., hourly rainfall. 

For Fiji, most flood-prone sites could not be included in the research due to the 

unavailability of the required rainfall data. In addition, the Ba site, a high flood-risk 

area, had to be excluded due to the high rate of missing data. Therefore, further 

studies are suggested to use satellite-based rainfall products to address this issue 

while covering wider locations, following the recent approach for Myanmar for better 

flood risk monitoring and assessment.  

Another limitation of this study is using a predetermined time-reduction 

weighting factor (W≈3.8) established in prior research (Deo et al., 2018). As mentioned 
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earlier, the proposed SWRI24-hr-S is a normalised metric derived from normalising the 

existing WRI24-hr-S that employs a suitable time-dependent reduction function 

incorporating a weighting factor to account for the depletion of water resources through 

various hydrological processes. However, future research can assess the 

appropriateness of this weighting factor (W≈3.8) in areas characterised by significant 

variations in topography and climatic conditions, aiming for a more accurate 

representation of the decay of accumulated rainfall.  

Moreover, this research focused on only three flood event characteristics (i.e., 

D, V, and Q) derived from the proposed SWRI24-hr-S to develop the vine copula model 

for probabilistic flood risk assessment. However, future studies can include additional 

flood event characteristics, such as peak time, annual maximum 24-hour rainfall and 

highest storm surges and river discharge (Latif & Simonovic, 2022a, 2022b; Shafaei 

et al., 2017). While the proposed SWRI24-hr-S is a practical tool for assessing flood risk 

on an hourly scale, as demonstrated in Fiji’s case studies, it cannot predict the flooded 

state in advance unless a forecasting model is developed and tested. Therefore, in its 

second objective, this research focused on developing a hybrid DL model to forecast 

the SWRI24-hr-S to assess future flood risk. The next chapter will elaborate on the 

research findings of this second objective. 
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CHAPTER 5: PAPER 2 – HYBRID CONVOLUTIONAL 

NEURAL NETWORK FUSED WITH GATED RECURRENT 

UNIT-BASED HOURLY FLOOD INDEX FORECASTING 

FRAMEWORK: CASE STUDIES FOR FIJI ISLANDS 

5.1. Introduction 

This chapter is an exact copy of the article submitted for publication in the 

Stochastic Environmental Research and Risk Assessment Journal and is under review 

(Scopus Impact Factor 7.1).  

This chapter designs a hybrid C-GRU model to forecast the SWRI24-hr-S over a 

short-term (i.e., 1-hourly forecast horizon) to assess future flood risk for five flood-

prone study sites in Fiji. The study utilises only two datasets, i.e., the SWRI24-hr-S and 

hourly rainfall for each study site for model development. The PACF and CCF are 

utilised to determine the most statistically significant lags for the SWRI24-hr-S and hourly 

rainfall time series, respectively. Three DL models (i.e., CNN, GRU, and LSTM) and 

one ML model (i.e. RFR) are developed for performance comparison. An advanced 

BO with the TPE algorithm is employed to fine-tune the hyperparameters of all 

developed models. For all study sites, the forecasting performance of the proposed 

hybrid C-GRU model is meticulously evaluated against the four benchmark models 

using various performance evaluation metrics and visual diagnostics plots. The 

Diebold–Mariano (DM) statistical test is additionally used to ascertain whether the 

proposed hybrid C-GRU model’s performance is statistically significantly better than 

that of the benchmark models. 

The comprehensive performance evaluation shows the proposed hybrid C-

GRU model’s superior forecasting capabilities. The integration of CNN for feature 

extraction with GRU for temporal modelling in the hybrid C-GRU model effectively 

enhances the accuracy of hourly SWRI24-hr-S forecasts across five study sites in Fiji. 

Hence, the effectiveness of this newly proposed hybrid C-GRU-based SWRI24-hr-S 

forecasting framework underscores its potential use in decision support systems for 

early flood warning and risk evaluation in Fiji. It can also be adopted by other flood-

prone regions to enhance their disaster preparedness and risk mitigation strategies. 

5.2. Published paper 
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Abstract13

Developing flood forecasting techniques at short timescales can improve an early warning system, mitigate severe14

flood risk and facilitate effective emergency response strategies in vulnerable regions. In this study, we introduce15

an hourly flood index (SWRI24−hr−S) derived by normalising the water resources index (WRI24−hr−S)16

to monitor flood risk. We develop a hybrid deep learning algorithm, C-GRU, by integrating Convolutional17

Neural Networks (CNN) with Gated Recurrent Unit (GRU) model and evaluate its effectiveness in forecast-18

ing hourly SWRI24−hr−S in five flood-prone sites in Fiji. The model incorporates statistically significant19

lagged SWRI24−hr−S with real-time hourly rainfall, and comparative analysis is performed against benchmark20

models: CNN, GRU, Long Short-Term Memory (LSTM) and Random Forest Regression (RFR). The results21

demonstrate that the proposed hybrid C-GRU model outperforms all the other models in accurately forecasting22

SWRI24−hr−S over a 1-hourly forecast horizon. Across all of the study sites, the proposed model consistently23

generates the highest r (0.996−0.999) and the lowest RMSE (0.007−0.014) and MAE (0.003−0.004)24

in the testing phase. The proposed hybrid C-GRU model also achieves the highest Global Performance Index25

(GPI) values and the largest percentage of forecast errors (FE) (≈ 98.9-99.9%) within smaller error brackets26

(i.e., |FE| < 0.05) across all study sites. Using the methodologies developed, we show the practical application27

of the proposed framework as a decision support system for early flood warning, demonstrating its potential to28

enhance real-time monitoring and early warning systems with broader application to flood-prone regions.29

Keywords: Floods, deep learning, hourly flood forecasting, flood index, flood risk mitigation30

1 Introduction31

Flooding, a global crisis, is a devastating natural disaster affecting numerous regions world-32

wide. Flood occurs when excessive water overflows onto land which is usually dry, often due to33

heavy rainfall, snow melt, storm surges, dam release, or water overflow from natural watercourses34

(e.g., rivers). Floods can cause widespread devastation, including significant economic loss, loss35

of life, and substantial damage to public and personal property, agriculture, and the environ-36

ment (Nguyen-Huy et al., 2021). According to the Centre for Research on the Epidemiology of37

Disasters (CRED), flooding was the predominant natural disaster, representing 43% of all inci-38

dents, impacting roughly 2.5 billion individuals and resulting in 160,000 fatalities from 1994 to39

2013 (CRED, 2015). The estimated economic loss from flooding during this period (1994-2013)40

amounted to 636 billion USD (CRED, 2015).41
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The consequences of a flood disaster are particularly devastating in developing countries like42

Fiji (Moishin et al., 2021b), where this study is focused. Such countries do not have the advanced43

infrastructure for monitoring flood events, and most, if not all, evaluations of flood risk are carried44

out using accumulated rainfall over days or weeks. However, the exact measurement of a flash45

flood event due to a sudden downpour is somewhat unrealistic due to the estimated probability46

of flooding and the lack of an objective method for risk evaluation. Hence, developing a real-time47

flood monitoring and forecasting system that uses rainfall data with a time-dependent reduction48

function can offer a new promise for risk management in developing nations. This remains a49

crucial area of research driven by an urgent need to enhance early warning systems to mitigate50

the devastating consequences of flooding in Fiji and other small Pacific Island nations.51

Fiji is a Pacific Small Island Developing State (PSIDS), with most of its population and infras-52

tructure situated on large floodplains susceptible to long-duration flooding or in small catchments53

prone to flash flooding (Government of Fiji, 2017). The estimated average annual flood losses54

exceed 400 million FJD, equivalent to 4.2 percent of Fiji’s Gross Domestic Product (GDP) (Gov-55

ernment of Fiji, 2017). Between 1970 and 2016, Fiji experienced 44 major flood events, which56

impacted approximately 563,310 people and resulted in 103 fatalities (Government of Fiji, 2017).57

With the anticipated substantial increases in rainfall intensity due to climate change, flood-related58

asset losses in Fiji are projected to escalate, potentially exceeding 5 percent of the GDP by 205059

(Government of Fiji, 2017). This projection underscores the long-term economic threat posed by60

flooding in Fiji. Therefore, developing reliable methods for accurate flood forecasting and risk61

assessment is crucial to mitigate the severe impacts of flooding in Fiji.62

Flood forecasting is essential in flood warning systems and remains among the most critical63

tasks in hydrology (Prasad et al., 2021). Flood forecasting is more beneficial when done in near64

real-time (e.g., on an hourly scale) with sufficient lead time as it allows for better estimation of65

flood risk and implementation of appropriate flood mitigation plans, evacuation, and rehabilita-66

tion measures (Alexander et al., 2018; Hapuarachchi et al., 2011; Kant et al., 2013; Tiwari and67

Chatterjee, 2010). Hydrodynamic models are the most widely used tool for simulating detailed68

flood dynamics (Teng et al., 2017). They can be directly integrated with hydrological and river69

models to facilitate flood risk assessment, real-time flood forecasting, and scenario analysis (Teng70

et al., 2017). However, studies have shown that these models are challenging to apply in opera-71

tional flood forecasting, have high data requirements, and are highly computationally expensive72

(Kabir et al., 2020; Nevo et al., 2022; Teng et al., 2017).73

In many developing nations with limited flood monitoring resources, hydrometeorological74

datasets, and risk monitoring facilities, a mathematically derived flood index based solely on rain-75

fall data offers a valuable means to evaluate an impending flood risk situation. For instance, the76

flood index (IF ) is one of the most robust flood monitoring indices widely applied in various places77

globally, including Australia (Deo et al., 2015), Iran (Nosrati et al., 2011), Bangladesh (Deo et al.,78

2019; Ahmed et al., 2023), Myanmar (Nguyen-Huy et al., 2022), and Fiji (Moishin et al., 2021b),79

to monitor flood events on a daily scale. Despite its benefits, one primary limitation of IF is its80

reliance on daily rainfall data, which spans a much longer timeframe than necessary for a near81

real-time flood risk monitoring system. Hence, flood indices based on shorter-term rainfall data82

(e.g., hourly) can be more practical for real-time assessment of flood situations.83

In their pilot study, Deo et al. (2018) proposed the 24-hourly water resources index84

(WRI24−hr−S) as a near real-time flood risk monitoring tool. This index was applied at two study85

locations, Australia and South Korea, demonstrating its potential for continuous flash flood risk86

monitoring during sustained extreme rainfall. The WRI24−hr−S monitors flood risk by considering87

the contribution of accumulated rainfall in the past 24 hours, whereby the rainfall contribution88

from the preceding hours is subjected to the time-dependent reduction function that accounts89

for the depletion of water resources through various hydrological processes such as evaporation,90

percolation, seepage, runoff, and drainage (Deo et al., 2018). However, unlike IF , which is a nor-91

malised index, the WRI24−hr−S in its current form cannot effectively be used to identify a flood92

risk as it is unnormalised.93
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In this study, we propose a novel hourly flood index (SWRI24−hr−S) by normalising the94

WRI24−hr−S, originally proposed by Deo et al. (2018), and test and validate its practical util-95

ity to enable an objective assessment of flood risk at an hourly scale. However, it is essential to96

emphasise that the SWRI24−hr−S cannot be used to predict the flooded state in advance unless a97

forecasting model for this index is developed and thoroughly tested, which is the primary goal of98

this paper for Fiji’s case studies. Accurate and reliable forecasting of the SWRI24−hr−S is crucial99

for assessing flood risk on an hourly scale, thereby enhancing decision-support systems for early100

flood warnings and enabling more effective flood risk management and mitigation strategies in101

Fiji.102

It is imperative to note that although index-based flood forecasting has developed rapidly in103

recent years, no research has developed a forecast model for SWRI24−hr−S and explored its impli-104

cations for hourly flood forecasting in a region like Fiji. Notably, Artificial Intelligence (AI)-based,105

i.e., Machine Learning (ML), Deep Learning (DL) and hybrid models have been developed to106

forecast IF for daily flood forecasts. For instance, Prasad et al. (2021) in their study proposed the107

hybrid ML by combining the multivariate empirical mode decomposition (MEMD) technique with108

the M5 tree model to forecast daily IF for the flood-prone Lockyer Valley region of Queensland,109

Australia.110

The present study is also inspired by an earlier study of Moishin et al. (2021a) that has111

developed a hybrid DL algorithm, ConvLSTM, by integrating the predictive capabilities of Con-112

volutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models to forecast IF113

across multiple forecast horizons. The hybrid DL model’s performance was compared to bench-114

mark models, including CNN-LSTM, LSTM, and Support Vector Regression (SVR). All the115

models developed were trained using statistically significant lagged values of IF and real-time116

daily precipitation data. The study’s results demonstrated the feasibility of the ConvLSTM-based117

IF forecasting model in determining the possibility of flood situations in Fiji on a daily scale.118

Similarly, Ahmed et al. (2021) also proposed a hybrid DL model that integrated a CNN with119

a bi-directional long-short term memory (BiLSTM) to forecast IF a week ahead for thirty-four120

selected stations in Bangladesh. The results of this study also demonstrated the superior forecast-121

ing performance of the hybrid DL, CNN-BiLSTM model, compared to the benchmark models,122

including SVR and BiLSTM.123

While ML models are generally more interpretable and computationally efficient, requiring124

relatively less training time than DL models, the latter can automatically learn and extract crucial125

features from raw data without explicit feature engineering (Sarker, 2021). This autonomous126

feature extraction capability enables DL models to capture complex patterns and dependencies127

in the data, often resulting in superior performance when provided with sufficient training data128

(Sarker, 2021). Recurrent Neural Networks (RNNs) are a type of DL model known for their129

capability to capture sequential dependencies facilitated by their internal memory. However, RNNs130

often suffer from short-term memory caused by vanishing and exploding gradient problems, which131

impede their capacity to learn long-term dependencies in the data.132

To address this issue, more advanced RNN variants have been developed, such as LSTM,133

initially introduced by Hochreiter and Schmidhuber (1997) in 1997 and further improved by134

Graves (2013) in 2013, and the Gated Recurrent Unit (GRU), introduced by Cho et al. (2014)135

in 2014. The LSTM and GRU models share similar architectures, except that the GRU model136

features a simplified gating mechanism compared to the LSTM. Specifically, while the LSTM137

incorporates three gates (i.e., input, forget, and output), the GRU utilises only two (i.e., reset138

and update). Consequently, compared to LSTMs, GRUs have simpler architecture and fewer139

trainable parameters, often leading to faster training times while effectively capturing long-term140

dependencies in sequential data (Kisvari et al., 2021; Li, 2023; Sharma et al., 2022; Wang et al.,141

2020; Zhang et al., 2022).142

Considering the advantages of the GRU over an LSTM model, the present study proposes a143

hybrid DL algorithm that integrates CNN with GRU algorithms (C-GRU, hereafter) to forecast144

SWRI24−hr−S over a 1-hourly forecast. This integration is robust, leveraging the CNN algorithm’s145
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capability to extract crucial temporal features from sequential data through convolutional opera-146

tions (Ghimire et al., 2019; Joseph et al., 2024), and the GRU algorithm’s proficiency in learning147

long-term dependencies and effectively modelling sequential data. The proposed hybrid C-GRU148

model has been successfully applied in various other studies, demonstrating its efficacy in areas149

such as water level prediction (Pan et al., 2020), river flooding forecasting and anomaly detection150

(Miau and Hung, 2020), short-term residential load forecasting (Sajjad et al., 2020), soil moisture151

prediction (Yu et al., 2021), short-term wind power forecasting (Zhao et al., 2023), wind speed152

prediction (Ji et al., 2022), PM10 forecasting (Sharma et al., 2022), evapotranspiration forecast-153

ing (Ahmed et al., 2021), classification of dust sources (Gholami and Mohammadifar, 2022), fault154

diagnosis for chiller system (Wang et al., 2020), prediction of heart disease (Almulihi et al., 2022),155

Dysarthria speech detection (Shih et al., 2022), and human activity recognition (Dua et al., 2023).156

However, as mentioned earlier, no prior study has developed a hybrid C-GRU model and tested157

its capability to forecast SWRI24−hr−S for hourly flood predictions in any region, including Fiji.158

The novelty and scientific contributions of this study are as follows:159

(a) To design and evaluate the performance of the hybrid C-GRU model that can forecast160

SWRI24−hr−S representing flood risk over a short-term, i.e., 1-hourly forecast horizon.161

(b) To train the proposed hybrid C-GRU model on statistically significant lagged SWRI24−hr−S162

with real-time hourly rainfall data following a similar methodology to Moishin et al. (2021a)163

in such a way that only the rainfall data are required to build the model and provide a realistic164

assessment of flood risks.165

(c) To enhance the performance of the proposed hybrid C-GRU model by adopting the Bayesian166

Optimization (BO) algorithm for efficient hyperparameter selection.167

(d) To fully ascertain the proposed hybrid C-GRU model’s performance against competing bench-168

mark models: CNN, GRU, LSTM, and Random Forest Regression (RFR) using a diverse169

range of performance evaluation metrics and visual analysis of forecasted and observed (or170

actual) SWRI24−hr−S values.171

This study, therefore, presents a practical framework using the hybrid C-GRU model, which is172

tested at diverse sites in the Fiji Islands, with an opportunity for its potential use in decision173

support systems for early flood warning and risk evaluation. The outcomes of this study are174

expected to contribute significantly towards disaster risk reduction and mitigation strategies by175

enhancing or strengthening Fiji’s real-time monitoring and early warning systems, thus improving176

disaster preparedness, mitigation, and response efforts. Overall, the results show that the proposed177

hybrid C-GRU model outperforms all benchmarked models to accurately forecast SWRI24−hr−S178

over a 1-hourly forecast horizon. Therefore, the methodologies proposed could also be explored179

in other flood-prone regions around the globe.180

2 Theoretical Overview181

This section provides an overview of the proposed hybrid C-GRU (objective model) network182

developed to forecast SWRI24−hr−S. This section also provides theoretical details of CNN and183

GRU algorithms used for model benchmarking. The theoretical details of other benchmark models,184

i.e., LSTM (Chung et al., 2014; Ghimire et al., 2022, 2019; Hochreiter and Schmidhuber, 1997;185

Nguyen et al., 2020; Wang et al., 2020) and RFR (Breiman, 2001; Chen et al., 2017; Ghimire186

et al., 2023; Liaw et al., 2002), are comprehensively elucidated elsewhere since they are well-187

known methodologies. We also provide an overview of the Bayesian Optimization algorithm used188

for hyperparameter tuning.189

2.1 Convolutional Neural Network (CNN)190

The one-dimensional convolutional neural network (Conv1D) was adopted to develop a hybrid C-191

GRUmodel for SWRI24−hr−S forecasting. CNN is a popular feedforward neural network originally192
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introduced by LeCun et al. (2015). It has two main features: weight sharing and local connections,193

which reduce the number of trainable parameters, thus reducing computations (Ghimire et al.,194

2022). Another advantage of CNN is its ability to automatically learn crucial spatial features195

without manual intervention (Ghimire et al., 2022). While CNN models are frequently employed196

for image recognition tasks, using the Conv1D model for prediction tasks involving time series197

data has emerged more recently (Ghimire et al., 2022). A notable advantage of the Conv1D model198

lies in its simple and compact design, which facilitates efficient and cost-effective implementation199

due to its operation with one-dimensional convolutions (Ghimire et al., 2022). A standard CNN200

typically comprises two interconnected layers: a feature extraction layer and a fully connected201

(FC) layer. The feature extraction layer, positioned after the input layer in the architecture,202

consists of multiple layers. Within the feature extraction layer, there are two types of layers: the203

convolutional layer and the pooling layer. Each convolutional layer employs several convolutional204

kernels to extract hidden features and generate a feature map. This feature map then undergoes205

a nonlinear activation function f(.) to produce the output ci of the ith input as follows (Joseph206

et al., 2024):207

ci = f (wi ∗ xi + bi) (1)

where ∗ represents the convolution operation, and wi, xi, and bi are the weight matrix, input, and208

bias vector, respectively.209

The output of the convolutional layer is then reduced by the pooling layer, also known as sub-210

sampling (Ghimire et al., 2022). The pooling layer in CNNs serves two main functions. Firstly,211

it reduces the spatial dimensions of feature maps, thereby reducing computational complexity212

and expediting training time (Zhao and Zhang, 2024). Secondly, it extracts crucial features while213

reducing redundant information, thus enhancing the model’s generalisation capability and inter-214

pretability (Zhao and Zhang, 2024). The pooling layer partitions each feature map into fixed-size215

regions and performs operations such as selecting the maximum value (max pooling) or com-216

puting the average value (average pooling) within each region (Ghimire et al., 2022; Zhao and217

Zhang, 2024). In this study, we have used max pooling layers for pooling operations. The result-218

ing reduced feature map is then flattened into a one-dimensional (1-D) array (using the flattening219

layer) and passed into one or more FC layers. The output of the last FC layer is usually fed into220

a softmax layer (for classification tasks) or a regression layer (for regression tasks) to produce the221

final output.222

2.2 Gated Recurrent Unit (GRU)223

GRU, introduced by Cho et al. (2014), is one of the variants of the RNN algorithm known for224

capturing long-term dependencies and effectively modelling sequential data. Unlike traditional225

RNNs, which suffer from the vanishing and exploding gradient problem during backpropagation226

through time, GRUs mitigate this problem through their simplified gating mechanisms that con-227

trol the flow of information through the network (Chung et al., 2014; Li, 2023; Sharma et al.,228

2022; Zhang et al., 2022). The GRU unit features two gates regulating information flow: the reset229

and update gates. The update gate determines the extent to which the previous hidden layer230

state ht−1 is retained in the current hidden layer state ht. The update gate first receives informa-231

tion from ht−1 and current input vector xt and subsequently processes this information using an232

activation function σ. The update gate zt can be expressed as (Zhang et al., 2022):233

zt = σ (Wzxxt +Wzhht−1 + bz) (2)

where Wzx and Wzh represent the learnable weight matrix for the update gate; bz denotes the234

bias for the update gate.235

The reset gate determines how much information from the previous time step is written into236

the candidate memory state h̃t. Like the update gate, the reset gate processes ht−1 and xt using237

an activation function σ. The reset gate rt can be expressed as (Zhang et al., 2022):238
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rt = σ (Wrxxt +Wrhht−1 + br) (3)

where Wrx and Wrh represent the learnable weight matrix for the reset gate; br denotes the bias239

in the reset gate.240

Next, the reset gate rt is combined with ht−1 and xt to create a candidate memory state h̃t.241

The expression for h̃t is as follows (Zhang et al., 2022):242

h̃t = tanh
(
W̃hxxt + W̃hh [rt ∗ ht−1] + bh̃

)
(4)

where W̃hx and W̃hh represent the learnable weight matrix for the candidate memory state; bh̃243

denotes the bias in the candidate memory state.244

The current hidden layer state ht is then derived by combining the previous hidden layer state245

ht−1 with the candidate memory state h̃t The expression for ht is as follows (Zhang et al., 2022):246

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (5)

2.3 Hybrid C-GRU Model247

This study designs the proposed hybrid C-GRU model by combining CNN’s robust feature extrac-248

tion capability with GRU’s powerful nonlinear time sequential predictive ability, enhancing its249

overall predictive performance for SWRI24−hr−S forecasting. Fig. 1 illustrates the topological250

structure of the proposed hybrid C-GRU model. As shown in Fig. 1, the hybrid C-GRU model251

comprises two Conv1D layers, two max-pooling layers, one flattening layer, and two GRU lay-252

ers. The GRU layers have replaced the FC layer of CNN. In this configuration, crucial features253

extracted from the CNN are flattened into 1-D arrays and then fed into the GRU layers to254

incorporate these features for the low-latency forecasting of the SWRI24−hr−S.255

Fig. 1: The topological structure of the proposed hybrid C-GRU model for near real-time hourly
forecasting of SWRI24−hr−S for flood risk evaluation.

2.4 Hyperparameter Tuning Using Bayesian Optimization (BO) Algorithm256

Tuning hyperparameters to enhance prediction accuracy is challenging and time-consuming257

(Ghimire et al., 2022). The performance of numerous ML and DL algorithms depends heavily on258

the values assigned to these hyperparameters, making it essential to employ an effective method259

of configuring them (Eggensperger et al., 2013; Nguyen et al., 2020). Bayesian optimisation (BO)260

methods have been shown to outperform traditional optimisation approaches like grid search and261

random search (Bergstra and Bengio, 2012; Nguyen et al., 2020; Eggensperger et al., 2013).262

The primary advantage of BO, which sets it apart from traditional optimisation methods, is its263

ability to achieve optimal hyperparameter configuration with fewer function evaluations (Nguyen264
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et al., 2020). This efficiency emanates from its unique capability to model the distribution of hyper-265

parameter configurations and their corresponding fitness scores from previous iterations (Nguyen266

et al., 2020). By learning from this distribution, BO strategically selects the most promising267

configurations to evaluate next, thus accelerating the search for optimal hyperparameters. Con-268

sequently, BO thoroughly evaluates the most promising candidates for hyperparameter choices269

by probabilistically guiding and reducing the number of samples drawn from the hyperparameter270

search space (Nguyen et al., 2020). This process prioritises evaluating promising candidates, effec-271

tively guiding the optimisation process towards regions of the hyperparameter space expected to272

yield better performance. Conversely, in the grid and random search, each evaluation within their273

iterations is independent of prior iterations, leading to unavoidable assessments of hyperparameter274

search space regions with unsatisfactory performance, ultimately resulting in high computational275

costs (Prasad et al., 2023).276

In this study, we utilise a variant of BO, known as Tree-structured Parzen Estimator (TPE)277

(Bergstra et al., 2011; Komer et al., 2014), to automatically optimise the hyperparameters of both278

the proposed hybrid C-GRU and benchmarking models. TPE has been introduced recently to279

overcome the limitations of conventional BO methods when dealing with categorical and condi-280

tional parameters, aiming to enhance the hyperparameter selection process (Bergstra et al., 2011;281

Komer et al., 2014; Nguyen et al., 2020). In the TPE algorithm, every sample from the empirical282

data defines a Gaussian distribution characterised by a mean equivalent to the hyperparameter283

value and a specified standard deviation (Nguyen et al., 2020). To initiate the optimisation iter-284

ations, the TPE algorithm employs a random search to initialise the distributions by sampling285

the response surface
{
θ(i), y(i), i = 1, . . . , Ninit

}
where θ represents the hyperparameter set, y is286

the corresponding value on the response surface (i.e., the validation loss or the fitness value), and287

Ninit is the number of start-up iterations (Nguyen et al., 2020). Next, the hyperparameter space288

is partitioned into two groups, namely good and bad samples, determined by their fitness values289

and a predefined threshold value y∗, as follows (Nguyen et al., 2020):290

p (θ |y ) =
{
Prgood (θ) ify < y∗

Prbad (θ) ify ≥ y∗
(6)

where Prgood and Prbad are the probabilities that the hyperparameter set θ is in the good and bad291

groups, respectively.292

This approach ensures that the selection of optimal hyperparameters depends not solely on293

the best observation but on a collection of the best observations and their distributions. Following294

this, the algorithm computes an expected improvement (EI ) as follows (Nguyen et al., 2020):295

EI (θ) =
Prgood (θ)

Prbad (θ)
(7)

Finally, the hyperparameter configuration θ∗ that maximises the EI at each iteration is296

selected. For more information, readers can refer to Feurer and Hutter (2019). This study imple-297

mented the TPE algorithm using the ‘Hyperopt’ package, an open-source Python library for298

hyperparameter optimisation using BO, developed by Komer et al. (2014).299

3 Materials and Method300

3.1 Study Area and Dataset301

The proposed hybrid C-GRU model for near real-time SWRI24−hr−S forecasting is applied to302

geographically diverse sites in Fiji. Fiji is an archipelago of 332 islands with two main islands303

(Viti Levu and Vanua Levu) in the South Pacific Ocean. It is part of the continent of Oceania.304

The nation experiences two distinct seasons: a warm, wet period from November to April and305

a cooler, drier season from May to October. This seasonal variation is mainly attributed to the306

South Pacific Convergence Zone (SPCZ), the primary rainfall-producing system for the region,307

which typically lies over Fiji during the wet season (Feresi et al., 2000; Kumar et al., 2014). River308
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flooding is common during almost every wet season in Fiji and occasionally during the dry season,309

particularly during La Niña events (McGree et al., 2010). The current study focuses on five sites310

within the western division of Fiji, which are prone to recurrent and severe flooding events. Fig.311

2 shows the map of the study area and the corresponding study sites.312

The rainfall data for Lautoka, Sigatoka, Rakiraki, Nadi, and Tavua sites from 1st January313

2014 to 31st December 2018 (5 years) were successfully acquired from the Fiji Meteorological314

Services. During the data pre-processing phase, rainfall data for each site was aggregated to315

derive the hourly rainfall necessary for this study. If at least 66.67% of the data points (i.e., at316

least 4 out of 6 data points for a 10-minute interval and at least 8 out of 12 data points for a 5-317

minute interval) were available within a particular hour, they were summed to calculate the total318

rainfall for that hour; otherwise, the rainfall value for that hour was recorded as missing. This319

approach aimed to maximise data recovery. After data aggregation, all study sites were found to320

have less than 5% missing values. Following the methodology outlined in Oriani et al. (2020), the321

Iterative K nearest Neighbour (IKNN) technique was employed to fill in all missing data. Table 1322

summarises the hourly rainfall datasets and geographic settings of the 5 study sites. As depicted323

in Table 1, the average hourly rainfall is spatially different. The maximum hourly rainfall of 260324

mm was recorded for the Nadi site over the study period. The skewness and kurtosis of the hourly325

rainfall data, which describe the shape and distribution of the dataset, were found to be greater326

than +1 and +3, respectively, for all study sites. This indicates that their distribution is highly327

right-skewed. Such skewness is primarily attributed to the frequent presence of zero values within328

these datasets. Consequently, extreme hourly rainfall values significantly impact the distribution,329

resulting in a highly right-skewed distribution. To visualise, Fig. 3 illustrates the hourly rainfall330

trend over a 5-year period using data from the Lautoka site.331

Fig. 2: The map of Fiji shows the various study sites where the hybrid C-GRU flood forecasting
framework was developed

3.2 Proposed Hourly Flood Index332

In this study, we propose the hourly flood index (SWRI24−hr−S), a normalised version of the333

WRI24−hr−S and develop the proposed hybrid C-GRU model to forecast this index to assess flood334

risk on an hourly scale. The SWRI24−hr−S is a practical tool for real-time flood risk monitoring335
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Fig. 3: Hourly rainfall for the Latuoka study site from 2014 to 2018

Table 1: Geographic settings and descriptive statistics of hourly rainfall
dataset for the five study sites. Note that the hourly rainfall spans from
January 1, 2014, to December 31, 2018, with 43,824 observations

Site
Location
(Latitude, Longitude)

Ave. hourly
rainfall (mm)

Max.
hourly rainfall (mm)

Skewness Kurtosis

Lautoka 17.62 °S, 177.45 °E 0.19 83.50 16.56 421.51
Nadi 17.78 °S, 177.44 °E 0.27 260.00 36.35 2090.02
Rakiraki 17.39 °S, 178.07 °E 0.23 68.50 17.00 428.86
Sigatoka 18.14 °S, 177.51 °E 0.21 59.00 15.24 316.25
Tavua 17.44 °S, 177.86 °E 0.15 57.50 16.40 381.76

as it is mathematically derived using only the hourly rainfall data, which are readily available336

for the present study sites. The proposed hourly flood index is implemented using the Python337

programming language.338

The following steps are taken to obtain the SWRI24−hr−S. The first step is calculating the339

WRI24−hr−S. The WRI24−hr−S for the current (ith) hour proposed by Deo et al. (2018) is given340

by the following equation:341

WRI
(i)
24−hr−S = P1 +

[P2 (W − 1)]

W
+

[P3 (W − 1− 1/2 )]

W
+ . . .

+
[P24 (W − 1− 1/2− . . .− 1/23 )]

W

(8)

where P1 is the total rainfall recorded an hour before, P1 is the total rainfall recorded 2 hours342

before, and so on;W is the time-reduction weighting factor (W = 3.8) verified by Deo et al. (2018)343

that incorporates the contributions of accumulated rainfall in the latest 24 hours. This weighting344

factor ensures that the decay of accumulated rainfall or its potential impact on a flood event345

depends on several hydrological phenomena, including evapotranspiration, percolation, seepage,346

run-off, drainage, etc., as established in prior studies (Deo et al., 2018; Lu, 2009). The substitution347

of W = 3.8 into Eq. 8 yields:348

WRI
(i)
24−hr−S ≈ P1 + 0.74P2 + 0.61P3 + . . .+ 0.02P24 (9)

It is noted that WRI24−hr−S for a current (ith) hour is expected to accumulate ≈ 100% of349

rainfall received an hour before, ≈74% of that received two hours before, ≈ 61% of that received350

three hours before, and eventually, ≈2% of that received 24 hours before. Following the calculation351
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of WRI24−hr−S for any study period, the mathematical form of the novel SWRI24−hr−S for a352

current (ith) hour is calculated as a normalised version of WRI24−hr−S:353

SWRI i24−hr−S =
WRI i24−hr−S −WRImax

24−hr−S

σ(WRImax
24−hr−S)

(10)

where WRImax
24−hr−S is the mean monthly maximum values of WRI24−hr−S for the respective354

study period and σ(WRImax
24−hr−S) is the standard deviation of the monthly maximum values of355

WRI24−hr−S for the respective study period.356

In this paper, we follow the notion that if the magnitude of SWRI24−hr−S for the current (ith)357

hour is greater than zero (or that the water resources are higher than normal), it is considered358

as a flood situation. For all the study sites, the WRI24−hr−S followed by SWRI24−hr−S were359

computed starting from January 2, 2014, as antecedent rainfall data for 24 hours (the hourly360

rainfall data for January 1, 2014) was required to enable the computation of these metrics. Fig.361

4 demonstrates how the SWRI24−hr−S can be practically applied to identify flood events at the362

Nadi site in April 2016. As shown in Fig. 4, the flood situation at the Nadi site began at 8 a.m.363

on April 4, 2016, precisely when the magnitude of SWRI24−hr−S first exceeded zero and lasted364

for 20 hours. To confirm the occurrence of this flood event, we refer to the Fiji Meteorological365

Services (FMS) annual report 2016 (Fiji Meteorological Service, 2016), which showed indeed that366

a tropical depression TD14F caused heavy rainfall in some parts of the county between the 3rd367

and 5th of April 2016. This led to severe flooding, particularly in some major towns in western368

Viti Levu, including Nadi. Therefore, this verification confirms the practicality of the proposed369

SWRI24−hr−S in identifying a flood situation on an hourly scale.370

Fig. 4: The SWRI24−hr−S is applied to identify a flood event in April 2016 at the Nadi study
site, demonstrating its ability to monitor the flood risk hourly

3.3 Design of the proposed hybrid C-GRU model371

This study used Python programming to implement the objective model, i.e., the hybrid C-GRU372

and all other benchmarking models. The implementation was done via a Google Colaboratory373

(Google Colab) platform offering a freely available Jupyter Notebook interface supported by a374

Tensor Processing Unit (TPU) and a Graphical Processing Unit (GPU). Google Colab provides375

an advanced virtual environment for executing ML and DL algorithms. The DL models were376

developed using the Keras (Ketkar, 2017) and Tensorflow (Abadi et al., 2016) libraries, and the377

RFR model was developed using the Sklearn library (Pedregosa et al., 2011). The ’Hyperopt’378
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library (Komer et al., 2014) was used for BO. The R programming language was also used to plot379

the correlograms to determine the relevant model input features.380

The primary scope of this study is to design a hybrid C-GRU model illustrated in Fig. 1 that381

can forecast the SWRI24−hr−S for each study site over a 1-hourly forecast horizon. To accomplish382

this, we have utilised the real-time hourly rainfall and the hourly flood index (SWRI24−hr−S)383

datasets for each study site, following a similar methodology outlined in the related study by384

Moishin et al. (2021a). The step-by-step procedure to develop the forecasting models at each385

study site is as follows:386

Step 1: Using the Augmented Dickey-Fuller test, we first checked whether the SWRI24−hr−S387

and hourly rainfall time series data were stationary for each study site (Cheung and Lai, 1995).388

The null hypothesis (H0) of this test must be rejected for the data to be stationary. The result389

showed that both datasets were stationary for all the study sites.390

Step 2: The partial auto-correlation function (PACF) and cross-correlation function (CCF)391

were statistically assessed using the correlogram plots to determine the significant time-lagged392

inputs for the forecasting models at each study site. The correlogram plot of CCF and PACF was393

used to determine the most statistically significant lags of hourly rainfall and SWRI24−hr−S time394

series, respectively, to forecast SWRI24−hr−S at time t. A 95% confidence band was employed395

in the correlogram plots to assess the significance of variable lags, whereby any lags within this396

boundary were deemed insignificant. Both the plots were generated by considering only 20 lags397

(i.e., past 20 hours) of each input variable.398

Fig. 5 shows the PACF and CCF plots for the Lautoka site. Upon analysing the PACF plot,399

only the first three lags of the SWRI24−hr−S time series were the most significant for the Lautoka400

site. Similarly, upon examining the CCF plot for the Lautoka site, only the most significant lag401

with the highest cross-correlation coefficient (rcross) of the hourly rainfall time series was selected.402

This process was repeated for the other study sites to ascertain significant model input features,403

and the results obtained are furnished in Table 2. Hence, the features used as model inputs404

included the antecedent SWRI24−hr−S and hourly rainfall, and the target variable consisted of405

SWRI24−hr−S at time t for each study site. Subsequently, we concatenated the predictor and406

target variables for each site to form the final dataset to develop the forecasting models.407

Step 3: The input data for the model were then normalised between 0 and 1 using the min-408

max scaling technique provided in the Sklearn library in Python (Pedregosa et al., 2011). This was409

done to ensure that each input variable has the same order of magnitude, leading to faster and410

more efficient training of the forecasting model (Prasad et al., 2024). Next, the dataset for model411

development for each study site was partitioned into training, validation, and testing subsets.412

Given the lack of consensus on data splitting ratios for training, validation and testing, this study,413

following the approach of a related study (Moishin et al., 2021a), allocated the first 80% of the414

dataset for training the model, with 20% of the training data used for validation and utilising415

the remaining 20% for testing the model. This train-test split was consistently applied across all416

study sites, as outlined in Table 2.417

The validation dataset served two purposes in this study. Firstly, it was used for model hyper-418

parameter tuning. Secondly, for all DL models developed in this study, the validation data was419

used to monitor the model’s performance during training using the early stopping technique, which420

is discussed later in this section. The benchmarking DL models, i.e., the CNN model was con-421

structed using three Conv1D layers; the LSTM model was constructed using three LSTM layers;422

the GRU model was constructed using three GRU layers. During training, the hyperparameter423

optimisation for all the forecasting models was executed using BO with the TPE algorithm, with424

a maximum of 40 evaluations. The parameter search space used for BO optimisation for each425

forecasting model is furnished in Table 3. While some hyperparameters are specific to the model,426

four common hyperparameters used in any DL model, which are also utilised in this study, are427

as follows:428

• Activation Function: All layers within a network, except for the output layer, typically use429

the same activation function, the Rectified Linear Unit (ReLU). The primary advantage of430
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using ReLU compared to other activation functions, such as sigmoid and tanh, is that ReLU431

introduces nonlinearities into the model by setting its negative values to zero. This helps432

overcome the issue of vanishing gradients, enabling a model to learn faster and achieve better433

performance (Ghimire et al., 2022).434

• Dropout (Ghimire et al., 2019): Dropout is employed as a regularisation technique to mitigate435

overfitting and enhance training performance. It accomplishes this by randomly selecting a436

fraction of neurons during each iteration and preventing them from undergoing training. This437

fraction of neurons, termed a dropout rate, is a real hyperparameter ranging from 0 to 1. In438

this study, this parameter was set to a fixed value of 0.1 for all DL models.439

• Epochs and early stopping technique (Ghimire et al., 2023, 2024a, 2022, 2019): The number440

of epochs was set to 1000 during model training. However, we implemented early stopping441

as a regularisation method to monitor the model’s performance during training. A stopping442

criterion was defined based on the performance metric (i.e., mean squared error (MSE)) on443

the validation data, such that the training process was terminated when the validation loss444

stopped decreasing for a certain number of epochs specified by the “patience” term, or when445

the validation loss started to increase, indicating model’s potential overfitting to the training446

data. The training was terminated once the early stopping criterion was met, and the model447

with the lowest validation loss was saved. This method helped prevent overfitting and saved448

computational time. In this study, the “patience” hyperparameter for early stopping criteria449

was set to 20.450

• Backpropagation optimisation algorithm: Optimisation algorithms are used in backpropa-451

gation to update a network’s weights during training. In this study, the Adaptive Moment452

Estimator (Adam) optimiser with a learning rate of 0.001 was used as the backpropaga-453

tion learning algorithm. Adam combines the advantages of the Adaptive Gradient Algorithm454

(AdaGrad) and the Root Mean Square Propagation (RMSProp) (Kingma and Ba, 2014; Zou455

et al., 2019). This approach calculates adaptive learning rates for each parameter based on456

estimates of the first and second moments of the gradients (Kingma and Ba, 2014). Adam457

optimiser is computationally efficient, has low memory requirements, and is well-suited for458

large datasets (Ghimire et al., 2022).459

Step 4: Finally, the various performance evaluation metrics (discussed in the next section)460

were used to compare the performance of the proposed hybrid C-GRU model with the benchmark461

models, i.e., CNN, LSTM, GRU, and RFR models.462
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Fig. 5: Significant model input feature selection using (a) the correlogram plot of the partial
auto-correlation function (PACF) of the SWRI24−hr−S series showing the three most significant
lags for the Lautoka site and (b) the correlogram plot of the cross-correlation function (CCF) for
the SWRI24−hr−S versus the real-time hourly rainfall for the Lautoka site
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Table 3: Parameter search space assigned to the Bayesian optimisation (BO)
algorithm for developing the proposed hybrid C-GRU and benchmark models

Forecasting models Model hyperparameters Hyperparameter search space

Hybrid C-GRU
(Objective Model)

CNN filter 1 {50, 60, 100, 200, 250, 300}
CNN filter 2 {50, 60, 100, 200, 250, 300}
GRU cell unit 1 {30, 40, 50, 60, 80, 100, 150, 200}
GRU cell unit 2 {30, 40, 50, 60, 80, 100, 150, 200}
Batch {64, 128, 256, 512}

GRU

GRU cell unit 1 {30, 40, 50, 60, 80, 100, 150, 200}
GRU cell unit 2 {30, 40, 50, 60, 80, 100, 150, 200}
GRU cell unit 3 {30, 40, 50, 60, 80, 100, 150, 200}
Batch {64, 128, 256, 512}

LSTM

LSTM cell unit 1 {30, 40, 50, 60, 80, 100, 150, 200}
LSTM cell unit 2 {30, 40, 50, 60, 80, 100, 150, 200}
LSTM cell unit 3 {30, 40, 50, 60, 80, 100, 150, 200}
Batch {64, 128, 256, 512}

CNN

CNN filter 1 {50, 60, 100, 200, 250, 300}
CNN filter 2 {50, 60, 100, 200, 250, 300}
CNN filter 3 {10, 20, 30, 40, 50, 80}
Batch {64, 128, 256, 512}

RFR

Number of trees in the forest
(n estimators)

{50, 100, 150, 200, 250, 300, 350, 400}

Minimum number of samples required
to be at the leaf node (min samples leaf)

Uniform {0, 0.5}

Minimum samples to split an internal node
(min samples split)

Uniform {0, 1}

Maximum features to consider for the best split
(max features)

{1, ‘sqrt’, ‘log2’, ‘None’}

3.4 Model Performance Evaluation Criteria463

The performance of the hybrid C-GRU model against the benchmark models was evaluated using464

two sets of statistical metrics: Category A (ideal value = 1) and Category B (ideal value = 0).465

Different metrics were utilised within each category to address limitations and take advantage of466

various statistical metrics available (Joseph et al., 2024).467

In this study, within category A, five statistical metrics were employed, namely the Pearson’s468

Correlation Coefficient (r), Nash-Sutcliffe Efficiency Index (ENS), Willmott’s Index of Agreement469

(EWI), Legate-McCabe Efficiency Index (ELM), and Kling-Gupta Efficiency (KGE). In category470

B, three error metrics were utilised: Mean Absolute Error (MAE), Root Mean Square Error471

(RMSE), and Symmetric Mean Absolute Percentage Error (sMAPE) (%). The statistical met-472

rics in Category A assessed the variance between forecasted and observed SWRI24−hr−S values,473

while the error metrics in Category B were utilised to examine model bias (Joseph et al., 2023).474

As bias and variance contribute to reducible error, the models were compared based on their475

ability to minimise bias and variance (Joseph et al., 2023).476

The Python package ‘HydroErr’ (Roberts et al., 2018) was used to implement these477

performance evaluation metrics. The mathematical expression of these metrics is as follows:478

r =

n∑
i=1

(
Oi −O

) (
Si − S

)
√

n∑
i=1

(
Oi −O

)2√ n∑
i=1

(
Si − S

)2 , (−1 ≤ r ≤ 1) (11)

ENS = 1−

n∑
i=1

(Si −Oi)
2

n∑
i=1

(
Oi −O

)2 , (−∞ < ENS ≤ 1) (12)
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EWI = 1−

n∑
i=1

(Si −Oi)
2

n∑
i=1

(∣∣Si −O
∣∣+ ∣∣Oi −O

∣∣)2 , (0 ≤ EWI ≤ 1) (13)

ELM = 1−

n∑
i=1

|Si −Oi|
n∑

i=1

∣∣Oi −O
∣∣ , (−∞ < ELM ≤ 1) (14)

KGE =

√
(r − 1)2 +

(
CVS

CVO

− 1

)2

+

(
S

O
− 1

)2

, (−∞ < KGE ≤ 1) (15)

RMSE =

√√√√ 1

n

n∑
i=1

(Si −Oi)
2, (0 ≤ RMSE < +∞) (16)

MAE =
1

n

n∑
i=1

|Si −Oi|, (0 ≤ MAE < +∞) (17)

sMAPE =
1

n

n∑
i=1

|Si −Oi|
|Si|+ |Oi|

× 100, (0 ≤ sMAPE < +∞) (18)

where S is the forecasted SWRI24−hr−S, O is the observed (or actual) SWRI24−hr−S, S is the479

mean of forecasted SWRI24−hr−S, O is the mean of the observed SWRI24−hr−S, n is the number480

of values, CVS is the coefficient of variation of forecasted SWRI24−hr−S and CVO is the coefficient481

of variation of observed SWRI24−hr−S.482

Despite using various performance evaluation metrics to compare the proposed hybrid C-GRU483

model’s performance with the benchmark models, ranking the forecasting models solely based484

on such metrics is challenging as each metric has distinct advantages and limitations (Ghimire485

et al., 2024b). To overcome this challenge, this study used a robust global performance indicator486

(GPI) (Behar et al., 2015; Ghimire et al., 2022, 2023, 2022, 2024b, 2023; Joseph et al., 2023,487

2024) to rank and establish overall model performance. The GPI combines the outcomes of all488

eight metrics used in this study for a comprehensive model performance evaluation, with a higher489

GPI indicating greater model accuracy. For the ith model, the GPI is calculated as (Joseph et al.,490

2024):491

GPI =
N∑
j=1

αj (ȳj − yij), (−∞ < GPI < +∞) (19)

whereN is the total number of performance evaluation metrics used (i.e., 8 in this study), αj = −1492

for Category A metrics and αj = +1 for Category B metrics, yij is the scaled value of metric j493

for model i, and ȳj is the median value of scaled values of metric j.494

4 Results and Discussion495

This section provides an account of the empirical results of the modelling experiments carried out496

and the assessments of the hybrid C-GRU model’s performance in forecasting the SWRI24−hr−S497

over a 1-hourly forecast horizon for each study site compared to benchmark models, including498

CNN, LSTM, GRU, and RFR. The proposed hybrid C-GRU model’s robustness against the499

benchmark models to forecast the SWRI24−hr−S was comprehensively assessed using various500

performance evaluation metrics given in section 3.4 and visual plots using the testing datasets for501

five study sites. In this section, we also propose the practical application of the proposed hybrid502

C-GRU model in the decision support system for early flood warnings.503
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4.1 Forecasting performance of the hybrid C-GRU vs. benchmark models504

The initial evaluation of the hybrid C-GRU model’s forecasting capability was based on the505

scatterplot between the forecasted SWRI24−hr−S (SWRIfor24−hr−S) and observed SWRI24−hr−S506

(SWRIobs24−hr−S) in the testing phase for all five study sites (Fig. 6).507

The scatter plots also include the coefficient of determination R2, the 1:1 line and the equation508

of the goodness-of-fit line; SWRIfor24−hr−S = m×SWRIobs24−hr−S +C, where m is the gradient, and509

C is the y-intercept of the goodness-of-fit line. The 1:1 line represents an exact match between510

observed and forecasted SWRI24−hr−S values. The closer the data points align with this line, the511

better the model fits the data, indicating minimal discrepancies between observed and forecasted512

SWRI24−hr−S values. Consequently, a perfectly fitting regression model should have m = 1,513

C = 0, and R2 = 1. While there was generally a good agreement between observed and forecasted514

SWRI24−hr−S values across all tested models, it was observed that the hybrid C-GRU model515

yielded notably more accurate forecasted SWRI24−hr−S values compared to all other models for516

all the study sites.517

As depicted in Fig. 6, across all the study sites, the data points closely align with the 1:1 line518

in the scatterplot, and the values of m and R2 were close to unity for the hybrid C-GRU model.519

This indicates a high level of agreement between the forecasted and observed SWRI24−hr−S values520

compared to other benchmark models. The values of m and R2 in pairs (m|R2) for the hybrid521

C-GRU model were 1.01|0.996 for the Lautoka site, 1.02|0.993 for the Nadi site, 0.99|0.998 for the522

Rakiraki site, 0.97|0.998 for the Sigatoka site, and 1.01|0.997 for the Tavua site. Alternatively,523

the y-intercept (Ideal value=0) for the hybrid C-GRU model for all the study sites was found524

to be close to naught, i.e., 0.01 for the Lautoka, Nadi, Rakiraki and Tavua sites and 0.04 for525

the Sigatoka site. Among the models tested, RFR consistently performed poorly across all study526

sites, as shown in Fig. 6.527

More specifically, Fig. 6 revealed that RFR, compared to the other models, was underfitting528

for SWRI24−hr−S > 0 across all the study sites. Hence, it is not a very suitable forecasting529

model in this study, as accurately forecasting SWRI24−hr−S > 0 is crucial since it indicates a530

flood situation. To further visualise the similarity between forecasted and observed SWRI24−hr−S531

values, we employed a line plot, as depicted in Fig. 7, for the Rakiraki site. This plot compares532

the SWRI24−hr−S generated by the hybrid C-CGRU model with those of benchmark models, i.e.,533

GRU, LSTM, CNN, and RFR. The plot illustrates that SWRI24−hr−S values forecasted by the534

hybrid C-CRU model exhibit greater similarity to the observed SWRI24−hr−S values than the535

other models. These primary results already demonstrate the superior forecasting capability of536

the proposed hybrid C-GRU model compared to other benchmarking models.537

The hybrid C-GRU model’s superior forecasting capability against the benchmarking models538

was further assessed using various performance evaluation metrics for each site study in the539

testing phase (Table 4, Figs. 8 and 9). The metric r is a non-dimensional and absolute metric that540

assesses the strength and direction of the linear relationship between the observed and forecasted541

SWRI24−hr−S values (Joseph et al., 2023). The RMSE and MAE measures are derived from542

the aggregating residuals between observed and forecasted SWRI24−hr−S values (Joseph et al.,543

2023). The value of r closer to 1, along with lower values of RMSE and MAE (ideally around544

0), indicates the optimal model.545

Table 4 shows that the proposed hybrid C-GRU model obtained the highest r (0.996− 0.999)546

and the lowest RMSE (0.007− 0.014) and MAE (0.003− 0.004) for all study sites. The r metric547

for three sites (Nadi, Sigatoka, and Tavua) was the same for the proposed hybrid C-GRU model,548

and one or two other benchmarking models (i.e., GRU model for Nadi, GRU and CNN models549

for Sigatoka, GRU and LSTM models for Tavua). Also, the RMSE of the proposed hybrid C-550

GRU and LSTM models for the Tavua site were the same. On the contrary, the MAE at these551

sites was lower for the proposed hybrid C-GRU model than these benchmarking models. It should552

be noted that all DL models developed in this study performed exceptionally well based on the553

r metric. Nevertheless, a primary drawback of r is its susceptibility to outliers. Also, while r554

is a scale and offset invariant of the data, it can sometimes yield higher values for models that555
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Fig. 6: Scatterplot of the forecasted SWRI24−hr−S (SWRIfor24−hr−S) vs. observed SWRI24−hr−S

(SWRIobs24−hr−S) generated from the proposed hybrid C-GRU model, compared with the four other
benchmarking models (i.e., GRU, LSTM, CNN, and RFR) for the five study sites: (a) Lautoka,
(b) Nadi, (c) Rakiraki, (d) Sigatoka, and (e) Tavua, in the testing phase. The scatterplots also
show the 1:1 line (red dashed line), the equation of the goodness-of-fit line, and the coefficient of
determination (R2) displayed in each panel
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Fig. 6: (continued)

perform only moderately well (Joseph et al., 2023). Additionally, squaring residuals in RMSE can556

introduce a bias towards higher SWRI24−hr−S values (Joseph et al., 2023). Therefore, these two557

metrics (i.e., r and RMSE) can sometimes be unreliable. The absolute computation of residuals558

in MAE mitigates biases, making it more reliable than r and RMSE. However, while MAE559

is often considered an alternative to RMSE, both are absolute error indicators unsuitable for560

comparing models across geographically diverse sites (Joseph et al., 2024, 2023). This is simply561

because sites with higher SWRI24−hr−S values will essentially yield larger absolute error values562

than sites with lower SWRI24−hr−S values, regardless of model performance.563
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Fig. 6: (continued)

Table 4: Evaluation of the proposed objective model (i.e., C-
GRU) vs. all other comparative models in the testing phase
for all study sites using the Pearson’s Correlation Coefficient
(r), Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Nash-Sutcliffe Efficiency Index (ENS), Willmott’s
Index of Agreement (EWI), and Legate-McCabe Efficiency
Index (ELM)

Site Forecasting models r RMSE MAE ENS EWI ELM

Lautoka

C-GRU 0.998 0.014 0.003 0.996 0.999 0.963
GRU 0.997 0.020 0.006 0.993 0.996 0.940
LSTM 0.942 0.077 0.015 0.887 0.970 0.835
CNN 0.997 0.025 0.007 0.988 0.997 0.929
RFR 0.791 0.413 0.024 0.612 0.847 0.745

Nadi

C-GRU 0.996 0.008 0.003 0.992 0.998 0.933
GRU 0.996 0.011 0.006 0.985 0.996 0.868
LSTM 0.932 0.032 0.008 0.888 0.963 0.803
CNN 0.995 0.015 0.005 0.971 0.992 0.879
RFR 0.940 0.031 0.008 0.882 0.967 0.812

Rakiraki

C-GRU 0.999 0.008 0.004 0.998 0.999 0.956
GRU 0.994 0.023 0.009 0.985 0.996 0.888
LSTM 0.996 0.017 0.006 0.992 0.998 0.928
CNN 0.998 0.025 0.007 0.982 0.995 0.914
RFR 0.866 0.093 0.018 0.749 0.920 0.782

Sigatoka

C-GRU 0.999 0.012 0.004 0.998 0.999 0.965
GRU 0.999 0.015 0.005 0.996 0.999 0.957
CNN 0.999 0.025 0.009 0.991 0.998 0.926
LSTM 0.998 0.026 0.006 0.990 0.997 0.955
RFR 0.828 0.149 0.031 0.673 0.879 0.754

Tavua

C-GRU 0.998 0.007 0.003 0.997 0.999 0.946
GRU 0.998 0.009 0.005 0.994 0.999 0.906
LSTM 0.998 0.007 0.004 0.997 0.999 0.926
CNN 0.997 0.014 0.007 0.987 0.996 0.869
RFR 0.951 0.040 0.009 0.899 0.975 0.840

To overcome the limitations of the absolute measures, in this study, we have used the relative564

error measure, i.e., Symmetric Mean Absolute Percentage Error (sMAPE) (%) (Fig. 8), to assess565
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Fig. 7: Observed vs. forecasted SWRI24−hr−S generated by the (a) proposed hybrid C-GRU
model compared to four benchmarking models: (b) GRU, (c) LSTM, (d) CNN and (e) RFR for
the Rakiraki Site in the testing phase (for closer examination, the plot displays results for only
250 data points from the test set, equivalent to 250 hours)

model bias across different study sites. The sMAPE is a symmetrical measure that avoids the566

issue of division by zero (Ghimire et al., 2024b). Conversely, the conventional Mean Absolute567

Percentage Error (MAPE) metric tends to be overinflated when the observed value is close to568

zero (note that we do have observed and forecasted SWRI24−hr−S values around zero for all the569

study sites), whereas sMAPE does not encounter this problem (Ghimire et al., 2024b). The570

model yielding the lowest sMAPE is deemed superior.571

As illustrated in Fig. 8, the proposed hybrid C-GRU model exhibited superior performance by572

consistently achieving lower sMAPE values than all benchmark models. A closer examination of573

Fig. 8 revealed that the proposed hybrid C-GRU model, compared with the standalone models,574

i.e., GRU and CNN, demonstrated a significant percentage decrease in sMAPE across all the575

study sites. The proposed model achieved significant sMAPE reductions ranging from -56.5% to576
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Fig. 8: Evaluation of the proposed objective model (i.e., C-GRU) vs. all other comparative models
using the Symmetric Mean Absolute Percentage Error (sMAPE) (%) for the five study sites: (a)
Lautoka, (b) Nadi, (c) Rakiraki, (d) Sigatoka, and (e) Tavua, in the testing phase

Fig. 9: Evaluation of the proposed objective model (i.e., C-GRU) vs. all other comparative
models using the Kling-Gupta Efficiency (KGE) for the five study sites: (a) Lautoka, (b) Nadi,
(c) Rakiraki, (d) Sigatoka, and (e) Tavua, in the testing phase

-11.6% compared to GRU and from -61.4% to -50.4% compared to CNN across all study sites.577
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When compared with the poorly performing benchmark model RFR, the proposed hybrid C-578

GRU model also demonstrated a significant percentage decrease in sMAPE: Lautoka (-84.4%),579

Nadi (-66.8%), Rakiraki (-83.6%), Sigatoka (-81.7%), and Tavua (-74.8%). This clearly establishes580

the proposed hybrid C-GRU model’s superior performance compared to all benchmark models581

developed in this study.582

Furthermore, Table 4 also provides additional metrics, including ENS, EWI , and ELM , to583

analyse the forecasting performance of the proposed hybrid C-GRU model and the benchmarking584

models. The ENS (Nash and Sutcliffe, 1970) is a dimensionless metric, which is a scaled version585

of MSE. It assesses the goodness-of-fit between the observed and forecasted data by comparing586

the residual variance and observed data variance (Joseph et al., 2023; Prasad et al., 2019). The587

ideal value of ENS = 1, indicating a perfect agreement between the forecasted and observed588

SWRI24−hr−S values. The ENS for the proposed hybrid C-GRU was closer to unity for all the study589

site sites (Lautoka: 0.996; Nadi: 0.992; Rakiraki and Sigatoka: 0.998; Tavua: 0.997), showcasing its590

superior forecasting performance compared to all benchmarking models. However, likeRMSE and591

MSE, which are biased towards larger values, the ENS tends to overestimate larger SWRI24−hr−S592

values while neglecting lower SWRI24−hr−S values (Joseph et al., 2023).593

The EWI (Willmott, 1984, 1981) addresses this issue by examining the ratio ofMSE instead of594

differences. This approach proves advantageous in detecting additive and proportional disparities595

between the forecasted and observed means and variances (Joseph et al., 2023, 2024; Prasad et al.,596

2019). The EWI ranges from 0 to 1, where values closer to unity indicate a higher agreement597

between the forecasted and observed SWRI24−hr−S values. Across all five study sites, the average598

EWI of the proposed hybrid C-GRU model demonstrated improvements of 0.16%, 1.34%, 0.34%,599

and 8.85% over the benchmark GRU, LSTM, CNN, and RFR models, respectively. While the600

EWI is an improvement over r and ENS, it remains sensitive to peak residuals due to the squaring601

of residuals in the numerator (Joseph et al., 2024; Krause et al., 2005).602

Therefore, the EWI can assign higher values to even poor-performing models (Joseph et al.,603

2024; Krause et al., 2005). The ELM (Legates and McCabe Jr, 1999) (ideal value = +1) addresses604

these issues by substituting the squaring of the residual term in the numerator with the absolute605

value (Joseph et al., 2023, 2024; Prasad et al., 2019). Consequently, ELM is not inflated and is606

unaffected by extreme SWRI24−hr−S values. Hence, ELM can used as a reliable model assessment607

metric that is also easy to interpret (Joseph et al., 2023; Prasad et al., 2019). Table 4 illustrates608

that the proposed hybrid C-GRU model attained the highest ELM values, which were also close to609

unity across all study sites (Lautoka: 0.963; Nadi: 0.933; Rakiraki: 0.956; Sigatoka: 0.965; Tavua:610

0.946) compared to all benchmarking models.611

The efficiency of the proposed hybrid C-GRU model was also verified using the Kling-Gupta612

efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) metric, which also overcomes the limi-613

tations of ENS. The KGE assigns an equal weighting to the three components (i.e., correlation,614

bias, and variability measures) of the observed and forecasted SWRI24−hr−S values to ensure that615

the bias and variability ratios are not cross-correlated (Ghimire et al., 2019; Joseph et al., 2023).616

The KGE ranges from −∞ to 1, where values closer to unity indicate a perfect fit. As illustrated617

in Fig. 9, the proposed hybrid C-GRU model demonstrates superior performance, exemplified by618

its high KGE value close to unity, outperforming all benchmark models.619

Our proposed hybrid C-GRU model is further appraised using the GPI, as depicted in Fig. 10.620

As previously discussed, while various performance evaluation metrics were employed to compare621

all the forecasting models developed, solely relying on these metrics to identify the best-performing622

model can be challenging. Therefore, the GPI, which incorporates all the performance evaluation623

metrics in this study, was employed as a more robust metric.624

Fig. 10 illustrates that the proposed hybrid C-GRU model achieved the highest GPI across625

all study sites compared to the benchmarking models. Therefore, after conducting a compre-626

hensive performance evaluation of all forecasting models developed in this study, using various627

performance evaluation metrics, including the GPI metric, it is evident that the proposed hybrid628
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C-GRU model outperforms all benchmark models. Hence, it can be considered the optimal model629

for accurately forecasting the SWRI24−hr−S over a 1-hourly forecast horizon.630

Fig. 10: Evaluation of the proposed objective model (i.e., C-GRU) vs. all other comparative
models using the Global Performance Indicator (GPI) for the five study sites: (a) Lautoka, (b)
Nadi, (c) Rakiraki, (d) Sigatoka, and (e) Tavua, in the testing phase

In addition to the model evaluation conducted thus far, we further assess our objective model631

using empirical cumulative distribution functions (ECDF ) of absolute forecast error (|FE|), as632

depicted in Fig. 11. Ideally, the |FE| value should be close to zero for the best-performing model,633

with its distribution closely clustered around zero. The ECDF plot of |FE| across all the study634

sites revealed that while the profiles for the benchmarking models exhibited similarities, the pro-635

posed hybrid C-GRU model demonstrated a distinctly narrower distribution across all the study636

sites. This indicates that forecast errors for the proposed C-GRU model consistently registered637

minimal spreads in forecasting errors, which were closer to 0, indicating superior forecasting638

accuracy compared to the other models evaluated.639

A detailed analysis of Fig. 11 revealed that for |FE| < 0.05, the proposed hybrid C-GRU640

model registered significantly high percentages across all the study sites: ≈ 99.5% for the Lautoka641

and Nadi sites, ≈ 99.8% for the Rakiraki site, ≈ 98.9% for the Sigatoka site, and ≈ 99.9% for the642

Tavua site. In contrast, the standalone GRU model registered a slightly lower percentage, with643

≈ 99% for the Lautoka site, ≈ 98.9% for the Nadi site, ≈ 98.4% for the Rakiraki site, ≈ 98.6%644

for the Sigatoka site, and ≈ 99.6% for the Tavua site. The RFR model, however, recorded the645

lowest percentage for |FE| < 0.05, with ≈ 92.5% for the Lautoka site, ≈ 96.4% for the Nadi646

site, ≈ 92.8% for the Rakiraki site, ≈ 89.8% for the Sigatoka site, and ≈ 95.5% for the Tavua647

site. These findings provide additional evidence supporting the efficiency of the proposed hybrid648

C-GRU model over the benchmark models.649

Lastly, the Diebold–Mariano (DM) (Diebold and Mariano, 2002) statistical test was used to650

determine whether the proposed hybrid C-GRU model’s performance is statistically significantly651

better than that of the benchmark models. The null hypothesis (H0) and the alternative hypothesis652

(HA) of the DM test were set as follows (Prasad et al., 2022, 2024): H0: There is no significant653

observed difference between the performances of the two predictive models, and HA: the observed654

difference is significant. The DM test was performed at a 5% level of significance such that we655

reject H0 if the DM test statistic is > 1.96 or < −1.96. The outcomes of the DM test for all656

study sites are presented in Table 5, where the DM test statistic is consistently less than -1.96657
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Fig. 11: Empirical cumulative distribution function (ECDF ) of the absolute forecasting error
(|FE|) generated by the proposed C-GRU vs. CNN, GRU, LSTM and RFR models for the five
study sites: (a) Lautoka, (b) Nadi, (c) Rakiraki, (d) Sigatoka, and (e) Tavua, in the testing phase

across all the study sites. Consequently, we reject H0, concluding that the proposed hybrid C-658

GRU model has demonstrated higher forecasting accuracy than all the benchmark models across659

all the study sites. Hence, we assert that the our proposed hybrid C-GRU model is optimal for660

forecasting SWRI24−hr−S over a 1-hourly forecast horizon.661

Overall, the results demonstrate the robustness and efficiency of the proposed hybrid C-GRU662

model in forecasting SWRI24−hr−S over a 1-hourly forecast horizon compared to its counterparts.663

Various performance evaluation metrics, diagnostic plots, and statistical tests were employed to664

comprehensively assess the proposed model’s performance and compare it with all benchmark665

models. The findings reveal that our proposed hybrid C-GRU model demonstrated superior per-666

formance, achieving high R2 values and showing excellent agreement between forecasted and667

observed SWRI24−hr−S values, as evidenced by the scatterplot across all the study sites. The668

proposed model also registered high r and very low MAE and RMSE values. The results also669

demonstrated that the proposed model achieved significant reductions in sMAPE compared to670
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Table 5: Evaluation of the proposed hybrid CGRU model with benchmark mod-
els using Diebold–Mariano (DM) test at a 5% significance level in the testing
phase across all the study sites

Site DM test C-GRU vs. GRU C-GRU vs. LSTM C-GRU vs. CNN C-GRU vs. RFR

Lautoka
DM test statistic -11.329 -16.675 -14.386 -14.326
p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Nadi
DM test statistic -34.999 -18.430 -18.240 -18.630
p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Rakiraki
DM test statistic -33.220 -15.046 -16.551 -15.686
p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Sigatoka
DM test statistic -9.683 -6.459 -31.061 -17.838
p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Tavua
DM test statistic -37.031 -18.718 -37.070 -14.890
p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

all benchmarking models across all study sites. The proposed hybrid C-GRU model’s superior-671

ity was highlighted by its higher values on the most stringent and reliable metric, ELM , across672

all the study sites. Moreover, the proposed model consistently attained the highest GPI values673

across all the study sites, showcasing its superior performance. Analysis of the empirical cumula-674

tive distribution functions (ECDF ) of absolute forecast error (|FE|) revealed that the proposed675

hybrid C-GRU model exhibited significantly higher percentages (≈ 98.9− 99.9%) within smaller676

error brackets (i.e., |FE| < 0.05) across all study sites, highlighting its superior forecasting accu-677

racy compared to other evaluated models. Additionally, the DM statistical test also confirmed678

the efficiency of the proposed hybrid C-GRU model over the benchmark models.679

The superior performance of the proposed hybrid C-GRU model primarily stems from its680

integrated architecture, combining CNN and GRU layers. Within the C-GRU algorithm, CNN681

layers extract crucial features from the input data while minimising redundant information. Sub-682

sequently, the salient feature map produced by the CNN is fed to the GRU layers, effectively683

capturing both past and future long-term dependencies in the historical sequential data. The684

results also showed that the RFR model exhibited poor performance among all forecasting models685

due to its limited capability to capture complex patterns in the time series data. Specifically, the686

results indicated that the RFR model could not accurately forecast the value of SWRI24−hr−S > 0687

across all study sites, which is a crucial aspect in this study as SWRI24−hr−S > 0 signifies a flood688

situation.689

4.2 Practical application of the proposed framework690

Considering the promising forecasting results of the proposed hybrid C-GRU model, we have691

further exemplified its potential for real-life application in the decision support system for early692

flood warnings, as illustrated in Fig. 12.693

The proposed system is designed to operate through both offline and online systems. The694

online system utilises the optimal pre-trained hybrid C-GRU model to forecast SWRI24−hr−S695

over a 1-hourly forecast horizon using the new input data as it becomes available. An expert end-696

user, preferably a flood forecaster, interprets the results from the online system. After reviewing697

the forecasted SWRI24−hr−S value, if SWRI24−hr−S > 0, indicating a potential flood situation,698

the public will be promptly informed about the risk of floods. Concurrently, the proposed hybrid699

C-GRU model is continuously trained and fine-tuned through the offline system using historical700

data from the database. The updated model from the offline system periodically replaces the pre-701

trained online model, ensuring accurate and reliable forecasts are consistently generated. This702

decision support system can be implemented in Fiji’s major towns and cities. It aims to enhance703
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and strengthen Fiji’s real-time monitoring and early warning systems for floods, thus improving704

disaster preparedness, mitigation, and response efforts.705

Fig. 12: Schematic representation of the proposed hybrid C-GRU model for practical application
in the decision support system for early flood warnings

5 Conclusions, limitation and future research directions706

This study supports ongoing efforts to enhance early flood warning systems by developing an707

accurate and reliable flood forecasting model for near real-time forecasting.708

In this study, we proposed a hybrid C-GRU model, integrating two powerful deep learn-709

ing algorithms, i.e., CNN integrated with GRU, to forecast the proposed hourly flood index710

(SWRI24−hr−S) over a 1-hourly forecast horizon to assess flood risk at an hourly scale at five flood-711

prone sites in Fiji. The proposed model is trained using statistically significant lagged values of712

SWRI24−hr−S and real-time hourly rainfall data for each study site. Bayesian optimisation (BO)713

is utilised to efficiently optimise the hyperparameters of the proposed model. The performance714

of the proposed hybrid C-GRU model is compared with other benchmarking models, including715

CNN, GRU, LSTM and RFR. Various performance evaluation metrics and diagnostic plots con-716

firm the excellent forecasting capability of the proposed hybrid C-GRU model compared to other717

counterpart models.718

The results demonstrate that the proposed model outperforms all benchmarking models with719

substantial reductions in sMAPE observed across all study sites. The proposed model also con-720

sistently achieved the highest GPI values across all sites. It also registered the largest percentage721

of forecast errors (≈ 98.9 − 99.9%) within smaller error brackets (i.e., |FE| < 0.05) amongst all722

evaluated sites. Furthermore, the DM statistical test confirmed the efficiency of the proposed723

hybrid C-GRU model over the benchmark models. Moreover, the practical implementation of the724

proposed framework in a decision support system for early flood warnings is demonstrated, show-725

casing its potential to enhance Fiji’s real-time monitoring and early warning systems for floods,726

thereby improving disaster preparedness, mitigation, and response efforts.727

Nonetheless, it is crucial to recognise that the methodologies proposed in this study have728

certain limitations, and addressing these limitations is a potential future research direction. These729

are as follows:730

1. This research was the first to use the proposed SWRI24−hr−S and develop the hybrid DL731

algorithm for hourly flood forecasting. However, a comprehensive study must validate the732
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proposed SWRI24−hr−S for its broader adoption as an index-based flood risk monitoring tool733

for Fiji and other flood-prone regions globally. This is contingent upon the availability of734

well-documented flood records for validation and hourly rainfall data.735

2. Several factors, including land topography, land use changes, soil conditions, and catchment736

and drainage systems, are crucial for effective flood risk management and mitigation strate-737

gies. The proposed model was trained using only antecedent real-time hourly rainfall and738

SWRI24−hr−S data. Despite incorporating only two features, the forecasting performance was739

excellent. However, in future studies, enhancing the model’s robustness is recommended by740

identifying and incorporating additional useful features.741

3. In this study, a single-step forecasting strategy was utilised, which does not forecast742

SWRI24−hr−S at a longer forecast horizon than 1 hour. Forecasting SWRI24−hr−S with suf-743

ficient lead times is crucial. This is paramount for early warning systems, ensuring the744

effective implementation of flood mitigation strategies and better preparedness for flood risk.745

Consequently, given the excellent performance of the proposed hybrid C-GRU model at single-746

step forecasting, in future studies, a multiple-input multiple-output (MIMO) strategy, as747

demonstrated in the related study by Moishin et al. (2021a), should be tested to forecast748

SWRI24−hr−S at a longer forecast horizon.749

4. The single-step outputs from the hybrid C-GRU model are depicted as point forecasts.750

Nonetheless, it is recommended that future studies delve into interval and probabilistic fore-751

casting methodologies. These approaches offer the ability to estimate both the potential future752

range of SWRI24−hr−S values and the uncertainty associated with the forecasts.753

5. The study does not test model hybridisation through data decomposition strategies. To754

further enhance the proposed model’s performance, it is recommended that multivariate755

decomposition methods such as MEMD, as demonstrated in a related study by Prasad et al.756

(2021), and stationary wavelet transform (SWT), etc., be explored. In addition, other DL,757

such as the BiLSTM algorithm and hybrid algorithms, should also be tested for SWRI24−hr−S758

forecasting. The results of this study can serve as a benchmark for new models.759

6. The proposed hybrid C-GRU is presented as a non-interpretable “black-box” model. There-760

fore, in future studies, it would be beneficial to utilise model-agnostic eXplainable Artificial761

Intelligence (xAI) methods like Local Interpretable Model-Agnostic Explanations (LIME)762

and SHapley Additive exPlanations (SHAP) to gain insight into the underlying mechanism763

of this proposed black-box model.764

7. The proposed model’s practical application in a decision support system for early flood765

warnings has been demonstrated. However, finding expertise to implement these advanced766

techniques within relevant organisations is a significant challenge. Therefore, it is recom-767

mended that future studies focus on developing more user-friendly tools, perhaps leveraging768

platforms like “Streamlit” for enhanced accessibility and usability.769

Finally, despite these limitations, our proposed methodologies can be considered a viable and770

cost-effective tool for hourly flood forecasting in Fiji and can be applied to other flood-prone771

regions worldwide.772
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Ghimire, S., Deo, R.C., Casillas-Pérez, D., Salcedo-Sanz, S.: Efficient daily electricity demand867

prediction with hybrid deep-learning multi-algorithm approach. Energy Conversion and Man-868

agement 297, 117707 (2023) https://doi.org/10.1016/j.enconman.2023.117707869
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5.3. Links and implications 

Hourly flood forecasting is an essential component of early flood warning 

systems, providing timely information and supporting the implementation of effective 

mitigation strategies to protect lives, properties, and the environment. This study uses 

an AI-based model to design an innovative and cost-effective hourly flood forecasting 

framework for early warning systems. The outcomes of objective 1 of this research 

already demonstrated the feasibility of the novel SWRI24-hr-S in assessing flood risk on 

an hourly scale for Fiji’s case studies. However, this index cannot predict the flooded 

state in advance unless a forecasting model is developed and tested. Consequently, 

the newly developed hybrid C-GRU model demonstrates outstanding performance in 

forecasting the SWRI24-hr-S over a short-term, i.e., 1-hourly forecast horizon. The 

diverse performance evaluation metrics employed for model comparison strongly 

affirm the superiority of the hybrid C-GRU model against all benchmark models tested 

across all five case study stations. Therefore, the newly proposed hybrid C-GRU-

based SWRI24-hr-S forecasting framework can be integrated into the decision-support 

system for early flood warnings. This integration will strengthen Fiji’s real-time flood 

monitoring and forecasting capabilities, improving flood risk preparedness, mitigation, 

and response efforts. 

Despite the superior performance of the proposed hybrid C-GRU model in 

forecasting SWRI24-hr-S at a 1-hourly forecast horizon, it suggests several potential 

directions for future research aimed at broader applications. For instance, the 

proposed model is trained using only two features, i.e., the lagged SWRI24-hr-S and 

hourly rainfall. However, future studies can identify and include more useful features, 

such as synoptic-climate indices (Ahmed et al., 2023), river discharge and streamflow 

data, and hydrometeorological data to enhance its effectiveness. The proposed hybrid 

C-GRU model is highly parametric. Therefore, the BO with the TPE algorithm is 

employed to efficiently optimise model hyperparameters. However, future studies can 

explore using the BOHB technique, which combines Bayesian optimisation (BO) and 

Hyperband (HB) for more efficient hyperparameter optimisation (Falkner et al., 2018). 

Moreover, although the hybrid C-GRU model yields highly accurate forecast 

results, it is a complex and non-interpretable "black-box" model. To address this issue, 

it is essential to integrate model-agnostic eXplainable Artificial Intelligence (xAI) tools, 

as they provide explanations for both local and global model outcomes (Joseph et al., 

2024b; Prasad et al., 2023). Lastly, given the hybrid C-GRU model’s superior 
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performance in forecasting SWRI24-hr-S at a 1-hourly forecast horizon, future studies 

should explore its effectiveness for longer forecast horizons to determine its 

robustness. Additionally, accurate forecasting of SWRI24-hr-S over a longer forecast 

horizon is crucial for assessing impending flood risk, thereby improving flood 

preparedness and implementing effective mitigation strategies. 
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CHAPTER 6: CONCLUSIONS AND FUTURE SCOPE 

 

6.1. Synthesis and important findings 

This research aims to provide innovative flood monitoring, assessment, and 

forecasting tools using AI and copula-statistical methods to enhance early warning 

systems and contribute to disaster risk reduction and mitigation strategies. Flooding is 

a catastrophic natural disaster that affects many nations worldwide. Its severe impact 

is particularly felt in developing countries, such as Fiji, on which this research focused. 

The methodologies proposed in this research rely on only one externally sourced data, 

specifically site-based, real-time hourly rainfall data (the other datasets were 

generated using the hourly rainfall data). For Fiji, rainfall data for various sites were 

obtained from FMS and pre-processed to generate the hourly rainfall data necessary 

for this study. However, this research could only focus on one of the two main islands 

in Fiji, Viti Levu, due to the unavailability of required data at other sites. The proposed 

methodologies can be applied to other data-scarce regions with similar rainfall data 

availability, aiding in effective flood risk monitoring, assessment, forecasting and 

mitigation strategies. 

The following are the key findings of this research, achieved through its two 

main objectives. The outcomes from Objective 1 (Chapter 4) revealed that the 

proposed novel hourly flood index (SWRI24-hr-S), a normalised metric, could be utilised 

as a practical tool to monitor flood risk and compute the flood event characteristics 

(i.e., D, V, and Q). This was impossible with the existing WRI24-hr-S (Deo et al., 2018) 

in the literature. The SWRI24-hr-S was employed to identify all the flood events for seven 

flood-prone sites and compute their characteristics between 2014 and 2018. The 

results were analysed, which showed that the wet season (November to April), 

including May and October, receives substantially higher rainfall than other months. 

Consequently, the frequency of floods and flood volume increased during these 

months. This has important implications for relevant authorities, such as Fiji’s NDMO, 

in developing comprehensive flood preparedness and risk management strategies to 

mitigate the severe impacts of flood risk during these periods. The flood event 

characteristics and water-intensive properties, including the total rainfall recorded for 

five severe flood events at each of the seven study sites, were also provided. These 
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findings will help relevant organisations evaluate past flood events at these study sites 

and develop risk management strategies to mitigate their severe impacts.  

Furthermore, the results also revealed that flood event characteristics (i.e., D, 

V, and Q) showed significant spatiotemporal variability and highly complex, non-linear 

relationships among them. Consequently, the 3D vine copula was employed across 

all study sites to capture the full dependence among flood characteristics by modelling 

the joint distribution and extracting their joint exceedance probability under different 

combination scenarios (i.e., flood event characteristics simultaneously exceed various 

thresholds) for probabilistic flood risk assessment. The results revealed that the 3D D-

vine copula with flood volume (V) as the conditioning variable was the most 

parsimonious to model the joint distribution of flood characteristics across all study 

sites. The results evidently showed a moderate yet significant disparity in spatial 

patterns of the joint exceedance probability of flood event characteristics under 

different combination scenarios. The probability of a flood event characterised by 

median (i.e., 50th-quantile) duration, volume, and peak values across all study sites 

was found to be moderate, while the probability of an extreme flood event (where the 

flood volume, peak, and duration exceed the 95th-quantile value) was found to be 

exceptionally low across all study sites. This suggests that relevant authorities and 

communities in Fiji must implement risk management strategies not only for infrequent 

large floods but also for frequent smaller flood events with lower volume, peak and 

duration that may still cause considerable impacts (Government of Fiji, 2017). The 

hourly flood monitoring tool and evaluation of exceedance probability demonstrated in 

Objective 1 can be integrated into early flood warning systems to monitor and assess 

flood risks accurately, thus facilitating the implementation of targeted risk management 

strategies.  

Moreover, although the outcomes of Objective 1 demonstrated the practical 

utility of SWRI24-hr-S to monitor flood risk, it is imperative to note that this index cannot 

predict the flood risk ahead of time unless a forecasting system is implemented and 

tested. Consequently, the outcomes of Objective 2 (Chapter 5) demonstrate the 

superiority of the proposed hybrid C-GRU model in forecasting the SWRI24-hr-S over a 

short-term, i.e., 1-hourly forecast horizon to assess future flood risk for the five flood-

prone sites in the Western Division of Fiji. The hybrid C-GRU model was trained using 

the statistically significant lagged SWRI24-hr-S and hourly rainfall. Three DL models, i.e., 

CNN, GRU, and LSTM, and one ML model, i.e., RFR, were also developed for 
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comparison. To enhance the forecasting performance, the hyperparameters of all the 

models developed were optimised using an efficient BO with the TPE algorithm. The 

CNN and GRU layers of the hybrid C-GRU model proved highly effective, with the 

CNN layers excelling in feature extraction and the GRU layers adept at capturing long-

term dependencies in sequential data. The outstanding performance of the hybrid C-

GRU model in forecasting the SWRI24-hr-S over a short-term can be integrated within a 

decision support framework of early flood warning systems, thus improving Fiji’s 

disaster preparedness and implementing appropriate flood mitigation strategies and 

response efforts.  

The outcomes of this research offer innovative frameworks for an early flood 

warning system, particularly suited for data-scarce and flood-prone regions such as 

other developing Pacific Island countries experiencing recurrent flooding. Therefore, 

the major contributions of this research are succinctly summarised as follows: 

• This research was the first to propose a novel hourly flood index (SWRI24-hr-S) 

to identify flood events and compute their associated characteristics. Its 

practical utility in identifying flood events was tested and validated for various 

flood-prone sites in Fiji. 

• The vine copula model was employed to model the joint distribution of flood 

characteristics and extract their joint exceedance for probabilistic flood risk 

assessment in Fiji’s case studies. This approach is novel for Fiji, as no previous 

studies have demonstrated this methodology.   

• A novel hybrid C-GRU-based SWRI24-hr-S flood forecasting system, a cost-

effective and efficient tool, was developed and tested for Fiji’s case studies.  

• An efficient hyperparameter fine-tuning algorithm, i.e., the BO with the TPE 

algorithm, was integrated into its design architecture to improve the hybrid DL 

forecasting model’s forecasting accuracy. 

• The research also demonstrated the practical implementation of the proposed 

forecasting framework in the decision-support of early flood warning systems. 

This will enable relevant authorities and communities to better prepare for 

floods and implement appropriate mitigation measures to save lives, safeguard 

essential resources, and reduce economic losses. 
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6.2. Limitations and recommendations for future research 

This research designed innovative tools for flood monitoring, assessment, and 

forecasting. These tools can be easily integrated into the decision-support systems of 

early warning, particularly in data-scarce regions. This integration will enhance and 

improve flood prediction and assessment strategies, thereby mitigating the 

devastating impacts of floods. However, the study elucidates some minor limitations 

that could be addressed in the future to further enhance its practical applications. The 

limitations and recommendations are summarised as follows: 

• Due to the unavailability of the required rainfall data across various flood-prone 

sites, this study was limited to locations in the Western and Central Divisions of 

Fiji. Consequently, no sites from Fiji’s Northern and Eastern Divisions were 

included. As a result, this study could not perform a comparative analysis 

across all four divisions to better identify high flood-risk areas in Fiji. 

Additionally, the Ba site, one of the main towns in the Western Division 

frequently affected by flooding, had to be excluded due to a high percentage of 

missing data. However, future studies can employ satellite-based rainfall 

products and apply the proposed methodologies to cover all major towns and 

cities in Fiji susceptible to flooding, following the recent approach used for 

Myanmar (Nguyen-Huy et al., 2022). 

• This study employed a predetermined time-reduction weighting factor (W≈3.8) 

established in prior research (Deo et al., 2018). It must be noted that the 

proposed SWRI24-hr-S is the normalised metric derived from normalising the 

existing WRI24-hr-S, which used a suitable time-dependent reduction function 

incorporating a weighting factor to account for the depletion of water resources 

through various hydrological processes. Consequently, the deviation of WRI24-

hr-S followed by SWRI24-hr-S is contingent upon the value of W. However, future 

studies can test the appropriateness of this weighting factor (W) in locations 

where topography and climatic conditions exhibit substantial variability. Future 

studies could involve extensive correlational analyses of this weighting factor 

against rainfall-runoff relationships and other physical models to capture the 

decay of accumulated rainfall more accurately and its implications for flood 

events across diverse regions. 
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• Moreover, in future studies, the feasibility of the proposed SWRI24-hr-S as an 

hourly flood risk monitoring tool must be demonstrated to other flood-prone 

regions globally, contingent upon the availability of well-documented flood 

records for validation and hourly rainfall data. During this process, an alternative 

method for normalising the existing WRI24-hr-S could be chosen based on how 

effectively the normalised WRI24-hr-S index reflects flood risk under those 

specific climatic conditions. 

• This study focused on only three flood event characteristics derived using the 

proposed SWRI24-hr-S to develop the vine copula model for probabilistic flood 

risk assessment. Nevertheless, future studies can consider incorporating 

additional flood event characteristics, where available, such as peak time, 

annual maximum 24-hour rainfall and highest storm surges and river discharge 

(Latif & Simonovic, 2022a, 2022b; Shafaei et al., 2017).  

• This study developed a novel hybrid C-GRU-based SWRI24-hr-S flood 

forecasting system utilising only two features: lagged SWRI24-hr-S and hourly 

rainfall data. However, future studies can enhance the model’s robustness by 

identifying and integrating additional pertinent features, such as synoptic-scale 

climate indices (Ahmed et al., 2023), river discharge and streamflow data, and 

hydrometeorological data to enhance the effectiveness of the proposed hybrid 

model for broader application.  

• This study focused only on short-term (1-hour) SWRI24-hr-S forecasting. 

However, future studies should also test the model’s performance for medium-

term and long-term forecasting to scrutinise its robustness. Accurately 

forecasting SWRI24-hr-S at a longer forecast horizon is also critical for early 

warning systems, as it ensures that decision-makers receive crucial insights 

into evolving flood patterns and can take proactive measures to mitigate 

potential impacts and protect vulnerable communities. 

• This study presents the prediction results as point forecasts, providing single-

value estimates of SWRI24-hr-S. While point forecasts are straightforward to 

interpret, they do not capture the inherent uncertainty in the predicted values. 

Future studies should investigate interval forecasting, which presents the 

expected range within which the predicted value will fall. Alternatively, 

probabilistic forecasting represents a viable approach, offering a nuanced 
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understanding of uncertainty by assigning probabilities to different predicted 

values. 

• This study proposed a hybrid C-GRU model for accurately modelling SWRI24-

hr-S, which is a complex DL model with a large number of hyperparameters. 

Therefore, implementing these models for real-time applications may incur 

significant computational costs. Although an efficient BO with the TPE algorithm 

was employed for hyperparameter optimisation, future studies can also explore 

other techniques, such as the BOHB technique (Falkner et al., 2018). In 

addition, other DL and hybrid algorithms, such as CNN-BiLSTM, demonstrated 

in a related study (Ahmed et al., 2023), should also be explored for SWRI24-hr-S 

forecasting. The results of this study can establish a benchmark for new 

models. 

• The proposed hybrid C-GRU model for SWRI24-hr-S forecasting is a non-

interpretable “black-box” model. Thus, in future studies, it is recommended that 

the model-agnostic xAI methods like Local Interpretable Model-Agnostic 

Explanations (LIME) and SHapley Additive exPlanations (SHAP) are employed 

to understand the underlying mechanism of this proposed black-box model 

(Joseph et al., 2024b; Prasad et al., 2023).  

 

To conclude, this Master of Research presented innovative, cost-effective tools 

that primarily rely on rainfall data alone. These tools are particularly useful for flood-

prone areas lacking the financial and scientific resources to invest in advanced 

flood monitoring, assessment, and forecasting systems. The limitations and future 

research directions outlined above establish a baseline for further enhancement 

and improvement of the methods proposed in this study. Further improvement is 

crucial, as it significantly impacts the effectiveness of integrating these tools into 

decision-support systems for early flood warning. Finally, it is anticipated that more 

developing nations will adopt the methodologies presented in this study for flood 

risk management and mitigation. 
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