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Abstract 

Inflammatory Bowel Disease (IBD), including Crohn’s disease and ulcerative 

colitis, is an uncontrolled inflammation of the gastrointestinal tract with unclear 

aetiology affecting over 85,000 Australians and 5 million globally. IBD produces 

symptoms such as weight loss, bloody diarrhoea and severe abdominal pain. Multiple 

factors are involved in IBD pathogenesis including genetic predisposition, gut 

microbial imbalance, mucosal barrier malfunction, immune system dysfunction and 

environmental factors. 

Current drug therapy for IBD includes sulphasalazine, aminosalicylates, 

corticosteroids, tumour necrosis factor blockers, immunomodulators (azathioprine-

mercaptopurine/methotrexate), anti-integrins alpha4beta2 (vedolizumab), anti-

interleukin-12 (ustekinumab), and small molecules including janus kinase inhibitor 

(tofacitinib). As nutrition can influence some of the causative factors, dietary 

modulation in IBD patients may be a preventive and therapeutic approach. In 

particular, anthocyanins such as cyanidin 3-glucoside (C3G) present in common foods 

such as Queen Garnet plum and purple carrots and pelargonidin 3-glucoside (P3G) in 

strawberry have anti-inflammatory activities that may be effective in IBD. The aim of 

my thesis is to understand whether these anthocyanin-containing functional foods 

improve the structure and function of the gastrointestinal tract, and improve gut 

bacteria in a rat model of chronic IBD. 

The first objective of my thesis was to mimic chronic human IBD in rats. I 

developed a model of reversible chronic IBD in young male Wistar rats using 0.5% 

dextran sodium sulphate (DSS) in drinking water for 12 weeks. DSS induced IBD with 

increased diarrhoea, haematochezia (passage of fresh blood through the anus, usually 

with stools), infiltration of inflammatory cells in ileum and colon, depletion of mucosal 

epithelial layer including villi, crypts, goblet cells, and gut microbiota imbalance with 

increased Proteobacteria phylum and decreased commensal bacteria. IBD symptoms 

were reversed with replacement of 0.5% DSS with water or the standard IBD drug 

treatment, sulphasalazine (300 mg/kg body weight/day) for the final 6 weeks. 

The second objective was to investigate the effects of functional foods to 

attenuate IBD in the rat model. For the last 6 weeks of the protocol, either Queen 



ii 

 

Garnet plum juice, purple carrot juice or pure C3G at 8mg/kg/day, or strawberry 

powder at 8mg P3G/kg/day was added in the food to the rats fed with either 0% or 

0.5% DSS water. Queen Garnet plum, purple carrot and C3G improved IBD symptoms 

with reduced diarrhoea and haematochezia. The ileum and colon showed reduced 

infiltration of inflammatory cells and increased villi length and crypt depth. C3G 

improved the gut bacteria homeostasis. Similarly, P3G-containing strawberry 

mitigated the signs of IBD with reduced stool bleeding and diarrhoea, improved ileum 

and colon structure, suppressed infiltration of inflammatory cells and restored goblet 

cells. C3G and P3G were as effective as the standard drug sulphasalazine in this model 

suggesting their promising role in human IBD therapy. 

My PhD thesis concludes that functional foods containing anthocyanins may 

be an alternate or complementary treatment for IBD patients owing to their anti-

inflammatory activity, and the ability to balance gut bacteria. Further mechanistic 

studies and clinical trials are warranted for their inclusion in complementary therapy 

of human IBD. 
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Introduction 

Overview of IBD 

Inflammatory bowel disease (IBD) is defined as an uncontrolled chronic 

inflammation of the gastrointestinal tract (1). IBD is widespread across the world and 

there has been a steady increase in its incidence (2, 3). Over the last 50 years, IBD has 

become a common disease from an unusual one (2). There has been a steady increase 

in the incidence of IBD in Western countries and now it is also increasing in previously 

low incidence areas of Europe and Asia (3). It is more common in industrialised 

regions, possibly due to the rise in adopting a Westernised lifestyle indicating strong 

environmental influences on its development (4, 5). As of 2018, more than 85,000 

Australians have IBD and 1 in 250 Australians are affected with IBD (6). There is a 

possibility of more than 100,000 IBD patients in Australia by 2022 (6), which is 

supported by increasing hospitalisations over the years (7). The prevalence of IBD is 

higher in developed countries than in developing countries and it is predominantly 

seen in higher socio-economic groups (3).  

IBD produces symptoms such as weight loss, diarrhoea with blood and severe 

abdominal pain. The initial diagnosis for IBD relies on laboratory tests for stool and 

blood examination. Further examination may involve imaging and endoscopy methods 

(3). The precise aetiology and pathology of IBD is yet to be clarified however it is 

hypothesised that IBD could be due to genetic, microbial, environmental and host 

immune factors that interact in a complex manner (8).  

Possible molecular players in IBD 

In IBD, there is an imbalance between immune tolerance and activated defence 

against intestinal microbiota and this can lead to aberrant and excessive immunological 

responses (9). Higher permeability of the intestine is observed in IBD due to 

breakdown of epithelial tight junctions and this leads to imbalance between gut 

microbiota and the immune system (10). There is also an enhanced production of pro-

inflammatory cytokines and chemokines and increased expression of adhesion 

molecules (11). The pro-inflammatory cytokines interleukin 1-beta and tumour 

necrosis factor (TNF) can trigger the release of free radicals. TNF can also initiate 

inflammation. The TNF signalling pathway controlled by nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-Κb) is responsible for the expression of 



adhesion molecules that are key in leukocyte recruitment to the inflamed intestine (12). 

In IBD patients, leukocytes infiltrate the inflamed bowel wall, generating large 

amounts of reactive oxygen species (ROS) that cause intestinal tissue damage (13). 

Excessive production of ROS or reduced removal of ROS can lead to IBD (14).   

Treatments for IBD 

IBD has no medical cure so it requires lifetime healthcare. Treatment options 

for treating IBD include corticosteroids (15), aminosalicylates (16), antibiotics (17), 

immunosuppressants (18) and biologics (19). To minimise the adverse effects of drugs, 

new methods of drug delivery are being investigated such as artificial cell 

microencapsulation (20). Surgery is available in severe cases to remove the extremely 

affected parts of the intestine (21).  

Chronic drug administration increases the risk of adverse effects in IBD 

patients (22). Biologics treatment and surgery are expensive for IBD patients (23). An 

alternative to the drug therapy alone are the dietary interventions which may be a 

valuable complementary therapy along  with conventional drugs with lower dose for 

chronic treatment of IBD (24). 

Diet as cause and treatment in IBD 

Diet as an environmental factor is of great importance in IBD patients as it can 

modulate the disease determinants (12, 25). Diet can influence the intestinal 

microbiota, affect intestinal permeability, improve immune function and alter gene 

expression of gut cells (26). Diet has a prominent role in defining the microbiota in the 

intestine, possibly transforming commensal microflora to pathogenic microflora 

thereby inducing IBD, as nearly 57% of intestine microflora changes are due to diet 

whereas genetics causes nearly 12% (27).    

The incidence of IBD is increased by adopting the Westernised lifestyle and 

diet. Epidemiological studies showed that high consumption of sugar and fast food, 

and low consumption of fruits and vegetables, increased the risk of IBD (23, 28). Due 

to methodological limitations in these epidemiological studies, the role of specific 

dietary components in IBD development is suggestive but inconclusive (26, 29, 30). 

  



Nutraceuticals or functional foods are defined as foods or food components 

that improve physiological processes that lead to disease. Foods rich in antioxidants 

prevent ROS accumulation and have been proposed as treatments for IBD. Curcumin, 

a phytochemical in turmeric showed anti-inflammatory activity when tested on colonic 

mucosal biopsies from active IBD patients (31). Therefore, curcumin may be useful in 

treating IBD patients. An increased intake of omega-3 fatty acids improved the 

symptoms of IBD patients whereas diet rich in omega-6 fatty acids and inadequate in 

omega-3 fatty acids can worsen the symptoms (32). Foods containing fibre such as 

Plantago ovata seeds and germinated barley foodstuff are beneficial for patients with 

severe IBD (33). Thus, nutraceuticals can be a major player in IBD therapy as a 

therapeutic intervention to suppress active IBD (30). 

Animal models of human IBD  

It is a general experimental approach to investigate the efficacy of an 

intervention in an animal model before proceeding to studies in diseased humans. 

Thus, if a nutraceutical has shown clear promising results as a positive intervention in 

an animal model of IBD that mimics the human disease, the efficacy of this 

intervention can then be tested in IBD patients. It is easier to perform controlled 

experiments in animals with a standardised diet and the intestines of the animals can 

be investigated with ease, unlike humans. The animal model is used since metabolic 

responses by the body to pathophysiological changes following an inflamed gut 

involve different organ systems that cannot be represented in non-animal or in vitro 

studies. Cell culture studies only help us to understand about one cell type and not the 

complex interactions between the tissues in the body. Whole animal studies are the 

only way in which we can indicate the therapeutic potential of treating IBD with 

natural anti-inflammatory agents preceding studies in humans with IBD. For these 

studies, we need to use a reliable whole animal model.   

There are many models for studying IBD pathogenesis and treatment, usually 

in mice and sometimes in rats. IBD can be induced chemically, genetically or by germ-

free gut environment (34). The most commonly used chemically induced model is with 

administration of dextran sodium sulphate (DSS). DSS is administered in the drinking 

water to the animals, causing both inflammation in the gastrointestinal tract by 

disruption of the intestinal epithelial membrane and an imbalance of the gut microflora 



which mimics human IBD (34). It is hypothesised that the toxic effects of DSS lead to 

loss of gastrointestinal tract epithelial membrane. This loss leads to movement of gut 

microbiota from the intestinal lumen to the intestinal crypts and causes inflammation 

due to excess innate and adaptive immune reactions (34). Thus, a pathological scenario 

of IBD is established which mimics the human IBD condition (35). DSS induces 

imbalance of gut microbiota in the mice with a decreased population of Lactobacillus 

and an increased population of Akkermansia and Desulfovibrio (36) and mimics 

human gut microbacterial changes in IBD. Therefore, this model is extensively used 

to investigate the efficacy and mechanisms of action of drugs and nutraceuticals in 

IBD.  

There are limitations with the existing animal models of IBD. Most of the 

studies with DSS are acute IBD models with DSS administration for around 7 days 

only using high concentrations of 1.5-10% DSS (37-39).  The concentration of DSS 

and the duration of DSS administration determine the severity of the symptoms (40). 

The high concentration of DSS induces an acute inflammatory response in the intestine 

within a few days. However, human IBD is a chronic condition that gradually 

aggravates and can last for decades with many relapses. Therefore, it is essential to 

characterise interventions in a chronic DSS animal model for the treatment of IBD. An 

appropriate DSS concentration for an appropriate time needs to be chosen to produce 

marked but relatively constant symptoms for a prolonged period without causing 

severe disease or death of the animal. Many of the studies have used mice as the animal 

model but a rat model may be more suitable owing to the larger size of the rat with 

more blood and tissue sample for analysis. A model with these characteristics can then 

be used to investigate interventions with functional foods. Sulphasalazine, the standard 

drug treatment for treating IBD, can be used as a positive control in the development 

of the chronic IBD rat model and the interventions in treating DSS-induced IBD (41). 

DSS-induced IBD and diet  

The acute DSS model has been widely used to study dietary interventions with 

anti-inflammatory and anti-oxidant activity. Antioxidants such as green tea 

polyphenols when administered to DSS-induced IBD mice ameliorated IBD symptoms 

(42). Green tea is a good source of nutraceuticals such as the catechins that can 

effectively promote intestinal health by reducing inflammation. Diet supplemented 



with peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) improved the symptoms 

of DSS-induced colitis in mice (37). A dietary combination of quercitrin and olive oil 

supplemented with fish oil containing eicosapentaenoic acid and docosahexaenoic acid 

which are omega-3 polyunsaturated fatty acids fed to rats with DSS-induced IBD 

ameliorated the intestinal inflammation (43). Ellagic acid found in pomegranate fruit 

reduced intestinal inflammation in acute and chronic models of DSS-induced IBD in 

mice (38). These studies indicate that DSS-induced IBD animal model is a good choice 

to test the efficacy of functional foods to treat IBD in humans. 

Possible treatments for IBD 

 Purple foods are rich in natural anthocyanins, including cyanidin 3-O-β-D-

glucoside (C3G), that are potential therapeutic agents in IBD due to their antioxidant 

and anti-inflammatory actions especially in intestinal cells, and also by modulation of 

the gut microbiota (44, 45). Anthocyanins extracted from blueberries showed 

protective effects on trinitrobenzene sulfonic acid (TNBS)-induced IBD model of mice 

(46). Our research group showed that Queen Garnet plum juice given to diet-induced 

obese rats at 8mgC3G/kg bw/day reversed the symptoms of metabolic syndrome 

including hepatic and cardiac inflammation (47). Our previous studies on purple 

carrots (Daucus carota subsp sativus), another food source of C3G, reported improved 

structural and functional changes of the heart and liver due to its anti-inflammatory 

action in diet-induced metabolic syndrome rats as a model of chronic low-grade 

inflammation (48). Strawberry (Fragaria × ananassa) contains pelargonidin 3-

glucoside (P3G), another important anthocyanin present in many fruits (49, 50). P3G 

has anti-inflammatory and radical scavenging properties observed in human whole 

blood cell cultures and in carrageenan induced pleurisy mouse model (51, 52). 

Therefore, these foods rich in C3G or P3G may be potential treatments for IBD and it 

is a good approach to test them in an appropriate DSS-induced chronic IBD rat model.  

Aim 

To determine the changes in the structure and function of the gastrointestinal 

tract in inflammatory bowel disease (IBD) following treatment with anti-inflammatory 

compounds from food.  

Objectives 



 The study will develop a chronic model of inflammatory bowel disease (IBD) 

that mimics human IBD in young male Wistar rats by administration of dextran 

sodium sulphate (DSS); and 

 This chronic IBD rat model will be studied to assess various functional foods 

as possible interventions to reverse the structural and functional changes of the 

inflamed gastrointestinal tract. 

Hypotheses 

 That low chronic dosage of DSS in rats will mimic the symptoms of human 

IBD; and 

 That functional foods will reverse the gastrointestinal tract symptoms in IBD. 
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A B S T R A C T

Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of all or part of the digestive tract.
Nutraceuticals include bioactive compounds such as polyphenols with anti-inflammatory activities, thus these
products have the potential to treat chronic inflammatory diseases. We have emphasized the role of nu-
traceuticals in ameliorating the symptoms of IBD in rodent models of human IBD through modulation of key
pathogenic mechanisms including dysbiosis, oxidative stress, increased inflammatory cytokines, immune system
dysregulation, and inflammatory cell signaling pathways. Nutraceuticals have an important role in IBD patients
as a preventive approach to extend remission phases and as a therapeutic intervention to suppress active IBD.
Further clinical trials on nutraceuticals with positive results in rodent models are warranted.

1. Introduction

Inflammatory bowel disease (IBD) is an umbrella term for un-
controlled inflammation of the mucosa in the gastrointestinal tract that
primarily includes two chronic disorders, ulcerative colitis and Crohn’s
disease, in humans [1]. Ulcerative colitis mainly involves the colon,
commonly the distal end and rectum, affecting the inner lining of the
gut or mucosa. Crohn’s disease involves any part of the gastrointestinal
tract with the terminal ileum and colon most commonly affected
through the gut wall including mucosa and submucosa [2,3]. The
symptoms of IBD are similar in humans and rodent models, although
there are differences in behavioral and dietary patterns such as copro-
phagy, and the cause of IBD in animal models. Thus, animal models
cannot fully mimic human disease but we can understand the devel-
opment of the disease which strengthens the use of rodent models to
test treatments [4,5]. Human and rodent gut microbiota composition
are different and definition of their gut microbiota may help to develop
a closely-related rodent model of human IBD [6]. Genetic factors are
being discovered to link with human IBD and novel genetic mice
models are being developed to study the mechanism of IBD, despite
differences in human and mice genetics that may cause differences in
intestinal physiology [6]. Potential treatments include nutraceuticals,
defined as extracts of foods that help in preventing or treating diseases
or disorders [7]. Rodent models of human IBD treated with nu-
traceuticals as prevention or reversal treatments either acutely for 1–3
weeks or chronically for 8–18 weeks showed attenuation of disease

symptoms [8,9]. This review emphasizes that nutraceuticals have po-
tential roles in the therapy of IBD in humans, often suggested by pre-
clinical studies in rodent models of IBD. The papers were selected based
on relevant keywords such as IBD; Crohn’s disease; ulcerative colitis;
inflammation; gut microbiota; cytokines; phytochemicals; polyphenols;
nutraceuticals; probiotics; prebiotics; animal model; dextran sodium
sulfate (DSS); and 2,4,6-trinitrobenzenesulfonic acid (TNBS) in the
search engine PubMed from 1979 to February 2018. References cited by
key studies and reviews were also checked.

2. Epidemiology

The number of patients with IBD is constantly increasing as IBD is
now a global disease although it is more prevalent in developed wes-
ternized countries such as western Europe, Canada, USA, Australia, and
New Zealand than in developing areas including countries in Asia,
Africa, and South America [10,11]. The prevalence of IBD is highest in
Europe followed by North America. In Europe, the highest prevalence
of ulcerative colitis was reported as 505 per 100,000 in Norway with
Crohn's disease highest in Germany with 322 per 100,000; in North
America, ulcerative colitis was 286 per 100,000 in the USA; Crohn's
disease was 319 per 100,000 in Canada [12]. The highest prevalence of
IBD in Africa was reported in Algeria in both ulcerative colitis at 19 per
100,000 and Crohn's disease at 11 per 100,000 [12]. In South America,
the prevalence of ulcerative colitis was 41 per 100,000 in Puerto Rico
and Crohn’s disease was 44 per 100,000 in Barbados; in Asia, Lebanon
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was highest in both Crohn’s disease at 53.1 per 100,000 and ulcerative
colitis at 106 per 100,000 [12]. Since the Second World War, there has
been a steady increase in the incidence of ulcerative colitis in Western
countries and now it is increasing in previously low incidence areas of
Europe and Asia [13,14]. The prevalence of Crohn’s disease is higher in
developed countries than in developing countries and it is pre-
dominantly seen in higher socio-economic classes [15]. Since the turn
of the 21st century, the incidence of IBD has stabilized or reduced in
developed countries while there has been a rapid increase in newly
industrialized developing countries, but its prevalence is still higher in
developed westernized countries [11]. This may have widespread
consequences with the prediction for 2027 that millions of mostly
younger IBD patients in the newly industrialized countries will be ready
to enter the work-force if the increase in IBD cases continues at the
current pace [11]. The difference in prevalence of IBD between devel-
oped and developing nations has been explained by the “hygiene hy-
pothesis” which states that the people living in the developed countries
are less exposed to infections or unhygienic conditions so they are
prone to lose protective organisms that promote immune response, but
putative pathogens are increased, leading to chronic immune diseases
in these individuals [15]. However, an increased risk of ulcerative co-
litis in a north Indian population with poor hygiene does not support
this “hygiene hypothesis” [16].

IBD produces symptoms such as weight loss, diarrhea with blood
loss, and severe abdominal pain that can markedly increase morbidity
[17]. Patients are diagnosed by fecal examinations, colonoscopy, gas-
troscopy, and blood tests, and often with imaging modalities such as
computer tomography, magnetic resonance imaging, and capsule en-
doscopy [15].

The precise etiology of IBD is still unclear. IBD is more common in
industrialized regions, indicating that there are strong environmental
influences [17,18]. A single causative agent or mechanism cannot ex-
plain all aspects of IBD. The chronic intestinal inflammation in IBD
could result from microbial factors, genetic factors, mucosal barrier
malfunction, immune system dysfunction, and environmental factors,
all of which are interlinked [3,19–24]. IBD has no medical cure and
requires medication that extends the time in remission which improves
quality of life [25]. Many rodent models have been used to test medi-
cations that may improve symptoms and extend remission in human
IBD. However, these models do not completely reproduce the causes or
symptoms of human IBD. As an example, TNBS/DNBS-induced colitis in
rodents follows rectal administration of TNBS/DNBS and ethanol of
varying concentrations which results in Th1 inflammation and ulcera-
tion of colon and rectum similar to Crohn’s disease patients [26,27].
However, depending on the species or strains of rodents, TNBS can
affect Th2 inflammation that is an ulcerative colitis model [27]. Orally
given DSS and rectally administered acetic acid models affect the colon
predominantly and produce ulcerative colitis symptoms [28,29],
whereas genetic models of IL-10 knockout and HLA-B27 develop
spontaneous colitis similar to human IBD [29].

3. Current drug treatment options for IBD in humans

Treatment options for IBD include corticosteroids such as budeso-
nide and prednisolone [30,31], aminosalicylates including sulfasalazine
as a pro-drug of 5-aminosalicylate [32–34], antibiotics such as me-
tronidazole [35,36], immunosuppressants including azathioprine and
mercaptopurine [37–40], and antibodies such as infliximab and adali-
mumab referred to as biologics [41–48]. Some of the recent drugs for
IBD treatment include further biologics, including ustekinumab [49]
and tofacitinib [50,51]; the anti-TNF (tumor necrosis factor) antibody,
golimumab [52]; and the humanized monoclonal antibody, vedoli-
zumab [53,54]. Another option is budesonide MMX as a novel oral
formulation of budesonide using Multi-Matrix System (MMX®, Cosmo
Pharmaceuticals, Milan) technology which extends the drug release in
the colon [55]. New methods of drug delivery to minimize the adverse

effects of drugs are being investigated such as artificial cell micro-
encapsulation that allows the drug to cross the low pH of the stomach
for controlled time delivery in the colon [56]. Surgery may be necessary
in severe cases to remove the extremely affected parts of the intestine in
Crohn’s disease [57]. Nearly 70% of Crohn’s disease patients and 30%
of ulcerative colitis patients undergo surgery when medications are not
effective in disease control [15]. Personalized medicine is patient-spe-
cific medication that aims to optimize the efficacy of the treatment with
reduced adverse drug effects and at a lower cost [25], so getting the
right medicine to the right patient at the right time. Infliximab, a TNF
antagonist drug, was found to have better efficacy for Crohn’s disease
patients with specific characteristics such as young age, Crohn’s colitis,
and increased CRP concentrations [58,59]. Home-based screening is a
rapid, simple, and cost-effective method used by the patient at home to
test stool calprotectin with a smartphone and IBDoc software [60]. The
test gave similar results to ELISA calprotectin assay with reduced cost of
traveling to the clinic, reduced burden on the clinic resources and pa-
tient-friendly sampling techniques [60]. Telemedicine is the application
of information and communication technology to interact with the
patient without direct contact [61]. A study in Dartmouth-Hitchcock
Medical Center showed that telemedicine is a low-cost method which
improved the quality of life with reduced hospital visits and increased
office visits by the IBD patients [62]. Internet-based patient manage-
ment tools are another approach to improve patient adherence to
treatment and keep track of any changes in the symptoms of IBD [63]. A
Danish study showed improved adherence of Crohn’s disease patients to
infliximab treatment through web-based patient management [64].

Drug therapy of IBD requires chronic administration of drugs that
are not effective in all patients and may increase the risk of adverse
effects [57,65–67]. Treatment with biologics is very expensive, as is
surgery [68]. Surgical treatment of IBD can lead to malabsorption of
nutrients [57]. Therefore, dietary interventions with nutraceuticals may
be one of the complementary methods of chronic treatment for IBD, if
they can improve the remission phase when given with conventional
drugs and possibly reduce the adverse effects from these conventional
drugs [69]. Different animal models, mostly in rodents such as mice and
rats, are used for in vivo testing of nutraceuticals as treatments for IBD
as detailed in Table 1.

4. Modulation of gut microbiota by nutraceuticals

Any imbalance in the local distribution, metabolic function, or
qualitative and quantitative changes of the microbiota leads to a state
known as dysbiois, which is associated with chronic diseases including
IBD [76–79]. It is yet to be proven that dysbiosis has a direct causal link
with IBD [76].

Prebiotics are food components or supplements which selectively
stimulate the growth or activity, or both, of one or many microbes of a
genus or species in the gut resulting in improved health of the host [80].
Prebiotics are mostly complex carbohydrates derived from fruits, ve-
getables, and grains which are not metabolized in the stomach or small
intestine but are fermented in the colon leading to improved metabolic
activity of the gut microflora [81]. Lactulose displayed its prebiotic
properties on TNBS colitis rat model by promoting the growth of Lac-
tobacilli and Bifidobacteria, reducing the production of colonic pro-
inflammatory markers including TNF and leukotriene B4 (LTB4), and
inhibition of iNOS expression [82]. In mice with DSS-induced colitis,
oral administration of inulin attenuated gut inflammation and in-
creased Lactobacilli counts [83]. Prebiotics were also tested on trans-
genic models such as spontaneous colitis HLA-B27 rats in which fructo-
oligosaccharides, unlike inulin, increased the counts of cecal and fecal
Bifidobacteria, and also increased the cecal Bacteroides counts. How-
ever, fructo-oligosaccharides did not change the diversity of Bifido-
bacteria [75]. The increased Bifidobacteria correlated negatively with
chronic intestinal inflammation in HLA-B27 colitis rats [75]. Bifido-
bacteria and Bacteroides reduced intestinal inflammation in HLA-B27
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rats, IL-10 KO mice, and children as well [84–86]. Chitosan oligo-
saccharide, a biodegradation product of the dietary fiber chitosan, was
effective in treating the acute and chronic models of DSS-induced IBD in
mice. Chitosan oligosaccharide decreased apoptosis of the intestinal
epithelial cells and inhibited NF-κB signaling, thus it could lower in-
testinal inflammation [87].

The role of prebiotics is yet to be well established clinically in IBD
patients compared to animal studies, so many clinical trials are in
progress. The reduction of C. difficile overgrowth by fructo-oligo-
saccharides and inulin supports their therapeutic use as ulcerative co-
litis patients suffer from C. difficile toxin that causes dysbioisis [88,89].
Human studies with fructo-oligosaccharides resulted in increased fecal
and mucosal Bifidobacteria content in Crohn’s disease patients and
decreased disease activity [90]. In a clinical trial on active ulcerative
colitis, patients were randomized to 2 groups and were either given
oligofructose-enriched inulin (12 g/d) or placebo for 2 weeks together
with 3 g/d of mesalazine [62]. The oligofructose-enriched inulin test
group had reduced disease activity and lower amounts of the in-
flammatory marker, fecal calprotectin, compared to placebo group,

suggesting that this prebiotic along with mesalazine can ameliorate gut
inflammation [91]. Prebiotics such as inulin, resistant starch, and β-
glucan could not maintain remission in active Crohn’s disease patients
even when formulated as Synbiotic 2000 [92]. However, the drawbacks
of the study were its small size of which many did not have in-
flammatory state of the disease, and a low daily dose of synbiotic. The
low fermentable, oligo-, di-, mono-saccharides, and polyol (FODMAP)
diet, which includes prebiotics such as inulin, is being studied as a
dietary intervention to treat IBD patients with some studies showing
positive results, but more clinical trials are warranted [93–95].

Since ulcerative colitis and Crohn’s disease patients have dysbiosis,
modulation of gut microbiota by intake of probiotics or prebiotics may
be a strategy to restore the gut homeostasis [96–98]. However, it is still
in the experimental stage, and more investigations on prebiotics and
probiotics are being conducted in rodents and humans to find new
treatments for IBD. Diet supplemented with dietary fiber from Plantago
ovata seeds that breaks down to butyrate in colon controlled the re-
appearance of severity of the disease in ulcerative colitis patients [99].
DSS-induced IBD rats given fiber of germinated barley in their food

Table 1
Rodent models of IBD and the research outcomes after treatment with nutraceuticals.

Animal model Treatment Research outcome Remarks

TNBS colitis rat (female
Wistar)
n= 10

Rosmarinic acid, apigenin, and luteolin [70].
(10 and 25mg/kg of L. dentata and L. stoechas
extracts, treatment from day 1–7, preventive)

Lowered the degree of mucosal ulceration and
leukocyte infiltration, goblet cells regenerated
partially, decreased colonic MPO activity,
increased GSH content, downregulated colonic
iNOS expression, decreased colonic expression of
the pro-inflammatory cytokines IL-1β and IL-6,
MCP-1, and ICAM-1 and increased TFF-3 and
MUC-3.

Rosmarinic acid, apigenin, and luteolin from
L. dentata and L. stoechas led to repair of
intestinal epithelial barrier and down-
regulated the immune response.

TNBS colitis rat (male
Wistar) n= 6

(-)-Hydroxycitric acid [71]. (0.5 and 1 g/kg of
G. cambogia extract (51.2% (-)-hydroxycitric
acid), treatment from day 1–6, preventive)

Improved Reduced colonic macroscopic damage,
reduced MPO activity, COX-2, iNOS, PGE2, and
IL-1β colonic concentrations, prevented DNA
damage.

(−)-Hydroxycitric acid in Garcinia cambogia
extract reduced colon injury through its anti-
inflammatory activity.

DSS IBD mice (female
C57BL/6) n= 6

Curcumin polymer [8]. (50mg/kg of
curcumin, treatment from day 1–7, preventive)

Less weight loss, severe diarrhea reduced, colon
length increased, epithelium and crypt
architecture restored, reduced neutrophil
invasion, decreased colonic MPO activity and
MDA content, IL-6 and TNF production reduced
in colonic tissue.

Solubility and partition coefficient of
curcumin increased, alleviated symptoms of
IBD.

(female Balb/c mice) n= 10 Anthocyanins [9]. (1 & 10% anthocyanin
extract (60–70% anthocyanins), treatment
from 2 weeks prior to DSS administration, 3
weeks (acute) and 10 weeks (chronic),
preventive)

Improved the colon tissue lining, increased colon
length, lowered production of IFN-γ, TNF, and IL-
6 from mesenteric lymph node cells.

Anthocyanins from bilberry had anti-
inflammatory effect on colon and reduced
acute and chronic colitis.

DNBS colitis rat (male
Sprague–Dawley) n= 6

Punicalagin [72]. (4 mg/kg of punicalagin,
treatment from 10 days before colitis and one
week after colitis induction, preventive)

Stool characteristics improved, colon mucosal
damage and severity of inflammation reduced,
lowered MDA concentrations and MPO activity,
decreased NO concentrations and increased SOD
activity, mRNA levels of TNF, IL-18, IL-1β, and
NF-κβ reduced.

Punicalagin from pomegranate juice was
effective in ameliorating IBD symptoms.

Acetic acid colitis rat (Male
Wistar) n= 12

Amentoflavone [73]. (10mg/kg of
amentoflavone, treatment from 5 days before
colitis and one day after colitis induction,
preventive)

Inhibited colonic ulceration, normal epithelium
and mucosa with cryptitis absent, reduced MPO
activity, TNF, IL-1β, IL-6; normalized colonic
tissue concentrations of GSH, SOD activity;
inhibited NF-κB signaling pathway.

Amentoflavone from Biophytum sensitivum
was as effective as sulfasalazine in treating
IBD symptoms.

IL-10 KO spontaneous colitis
mice n= 7

6-Gingerol and 6-shoagol [74]. (0.3 mg/rat of
GDNPs 2, treatment for 18 weeks, preventive)

Increased colon length, decreased spleen weight,
reduced colonic MPO activity, reduced mucosal
inflammation, decreased expression of colonic
pro-inflammatory cytokines TNF and IL-1β.

Nanoparticles with 6-gingerol and 6-shoagol
targeted inflamed colon and showed anti-
inflammatory activity.

HLA-B27 spontaneous
colitis rat
n= 12

Fructo-oligosaccharide and inulin [75]. (8 g/kg
of inulin and fructo-oligosaccharide, treatment
from 4 to 16 weeks, preventive)

Reduced cecal and colonic inflammation, reduced
colonic IL-1β expression, increased cecal and
fecal Bifidobacteria, decreased Clostridium
cluster XI, decreased Enterobacteriaceae and
Clostridium difficile toxin B, inflammatory score
correlated with gut microbiota analysis.

Fructo-oligosaccharide and inulin reduced
chronic intestinal inflammation by
modulation of gut microbiota.

TNBS, 2,4,6-Trinitrobenzenesulfonic acid; MPO, Myeloperoxidase; GSH, Glutathione; iNOS, Inducible nitric oxide synthase; IL-1β, Interleukin 1 beta; IL-6,
Interleukin 6; MCP-1, Monocyte chemoattractant protein 1; ICAM-1, Intercellular adhesion molecule 1; TFF-3, Trefoil factor 3; MUC-3, Mucin 3; TNF, Tumor necrosis
factor; COX-2, Cyclooxygenase 2; PGE2, Prostaglandin E2; NF-κB, Nuclear factor-κB; DSS, Dextran sodium sulfate, MDA, Malondialdehyde; IFN-γ, Interferon gamma;
DNBS, Dinitrobenzene sulfonic acid; NO, Nitric oxide; SOD, Superoxide dismutase; IL-18, Interleukin 18; IL-10 KO, Interleukin-10-/- knockout; GDNP, ginger-derived
nanoparticles.
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showed reduced diarrhea and mucosal damage with an increased repair
process of the damaged colonic mucosa structure, thus ameliorating
IBD [100]. Further, due to the positive effect of fiber in germinated
barley foodstuff, this food also reduced the clinical activity of ulcerative
colitis and prolonged the remission time of ulcerative colitis in humans;
as a prebiotic, germinated barley increased butyrate concentrations in
intestinal lumen that effectively triggered the growth of commensal
bacteria [101,102]. In Crohn’s disease patients, a fiber-rich, unrefined-
carbohydrate diet was associated with reduced hospital visits and sur-
gical treatments, thus improving prognosis of the disease and
prolonging the relapse time [103].

Gut microbial homeostasis may be improved by other interventions,
including the use of probiotics, synbiotics, and fecal microbiota trans-
plantation. Probiotics such as VSL#3 and I3.1 are mixtures of live mi-
crobes that can improve gut homeostasis and health [104] by de-
creasing enteric pathogens, promoting commensal and symbiotic
microbiota by interacting with the gut microflora and regulating innate
immunity [81,105,106]. Most probiotics contain Lactobacillus and Bi-
fidobacteria species [107,108]. Synbiotics, the combination of probio-
tics and prebiotics, were tested for their efficacy in treating IBD in
spontaneous colitis rats [109] and in ulcerative colitis patients [110].
Fecal microbial transplantation reverses dysbiosis by introducing stool
of healthy person to IBD patients thereby transferring the commensal
gut microbiota into the gut of the IBD patient and inhibiting the disease
[111–113]. Due to complexity of the relationship between the host and
gut microbiota, more research is needed to define the role of microbiota
in human and animal studies to improve our understanding in the pa-
thogenesis of IBD.

5. Activation of antioxidant defense

Increased production of reactive oxygen species leads to oxidative
stress causing oxidative modification of macromolecules and finally
tissue damage [114]. In IBD patients, leukocytes infiltrate the inflamed
bowel wall, generating increased reactive oxygen species that causes
intestinal tissue damage [115]. Excessive production of reactive oxygen
species or reduced removal of reactive oxygen species by antioxidants
can lead to IBD [116]. Many enzymes such as myeloperoxidase, nitric
oxide synthases (NOS), and cyclooxygenases (COXs) play vital roles in
endogenous reactive oxygen species generation [117,118]. However,
the antioxidant cellular system normalizes the increased oxidative state
with many intracellular enzymatic antioxidants, including superoxide
dismutase (SOD), glutathione peroxidase, catalase as well as none-
nzymatic glutathione [119]. Studies on butyrate usually obtained from
dietary fiber showed reduced reactive oxygen species concentrations
thus inhibiting intestinal inflammation [120]. Punicalagin from po-
megranate juice was effective in increasing anti-oxidant status in the
colon tissue by increasing SOD [121].

Polyphenols from concentrated apple extract, predominantly
chlorogenic acid, when given to rats with acetic acid-induced colitis,
downregulated iNOS and upregulated copper and zinc superoxide dis-
mutase (CuZnSOD) [122]. Many biologically active food components
such as (−)-hydroxycitric acid, curcumin, punicalagin, amentoflavone,
6-gingerol, and 6-shoagol decreased colitis in animal models by
downregulation of myeloperoxidase, iNOS, COX-2, and MDA, upregu-
lation of antioxidant enzymes such as catalase, and reduced glutathione
concentrations [8,71–74].

Antioxidants such as green tea polyphenols given to DSS-induced
IBD mice prevented the reduction of colon length, improved blood
concentrations of reduced glutathione, and lowered TNF and serum
amyloid A concentrations [123]. Green tea is a good source of nu-
traceuticals such as catechins that can promote intestinal health by
reducing inflammation. Anti-oxidant rich foods can mitigate the free
radical-derived inflammatory conditions in the intestine and improve
the symptoms of IBD [124,125].

6. Modulation of anti-inflammatory activity

In IBD patients, there is an increased production of pro-in-
flammatory cytokines including TNF, INF-γ, IL-6, IL-1β, and chemo-
kines, and increased expression of adhesion molecules [126]. IL-10 is an
immune regulator in intestinal mucosa and prevents the rise of pro-
inflammatory agents [127]. The pro-inflammatory cytokines IL-1β and
TNF can trigger the release of free radicals such as NO which aggravates
the inflammation cascade [128]. The TNF signaling pathway controlled
by NF-κB is responsible for the expression of adhesion molecules such as
vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion
molecule 1 (ICAM-1) in the endothelium [129]. These adhesion mole-
cules are major determinants of leukocyte recruitment to the inflamed
intestine [23]. Anthocyanins prevented inflammation in colitis mice
and improved the colon by lowering the concentrations of the pro-in-
flammatory cytokines, IFN-γ, TNF, and IL-6 [9]. In ulcerative colitis
patients, these anthocyanins reduced the colonic tissue expression of
IFN-γ R2, the signal transducing part of the IFN-γ receptor, thereby
inhibiting the inflammatory activity of IFN-γ in the colon [130], and
increased the serum concentrations of tissue protective cytokines IL-22
and IL-10. However, in the same study, only patients in remission had
decreased serum concentrations of pro-inflammatory cytokines TNF
and MCP-1. These studies indicate that anthocyanins from fruits in-
cluding bilberry are potential therapeutic interventions for IBD.

Curcumin, a phytochemical in turmeric with anti-inflammatory
activity, was tested on colonic mucosal biopsies and myofibroblasts
cultured ex vivo from patients with active IBD. Curcumin-treated
biopsies increased IL-10 production, decreased p38 MAPK (mitogen-
activated protein kinases activation), and IL-1β production while cur-
cumin-treated myofibroblasts inhibited matrix metalloproteinase-3
(MMP-3) expression [131]. Therefore, curcumin may be useful in
treating IBD patients.

In rats with DSS-induced IBD, a dietary combination of quercitrin
and olive oil supplemented with fish oil containing eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) ameliorated the intestinal
inflammation [132]. The inflammation was suppressed through various
mechanisms by the antioxidant activity and also by inhibition of the
production of TNF and IL-1β by quercitrin. Fish oil also caused in-
hibition of TNF and LTB4 production along with its antioxidant activity.
A nested case-control study within a European prospective cohort study
reported that higher intake of linoleic acid, an omega-6 poly-
unsaturated fatty acid (PUFA), increased the risk of ulcerative colitis
[133]. However, an increased intake of omega-3 PUFA such as EPA or
DHA lowered gut mucosal disease activity and histological scores im-
proved in ulcerative colitis patients [134], indicating that a diet rich in
omega-6 PUFA and inadequate in omega-3 PUFA can activate intestinal
pro-inflammatory reactions.

Aloe has anti-inflammatory properties and its components aloe,
aloin, and aloe-gel were tested individually in DSS-induced IBD mice
[135]. These aloe components reduced the colonic mucosal TNF and IL-
1β concentrations and decreased the plasma concentrations of LTB4 and
TNF. Thus, aloe could effectively reduce the intestinal inflammation in
IBD mice [135].

Inflammatory cytokines greatly exacerbate the mucosal barrier da-
mage and some of the nutraceuticals mentioned in Table 1 lowered
concentrations of pro-inflammatory cytokines such as ICAM-1, IFN-γ,
TNF, IL-6, and increased mucosal protective proteins in animal models
of colitis. Diets rich in anti-inflammatory foods can mitigate the in-
flammatory insult in IBD patients and improve their treatment out-
comes.

7. Modulation of immune system dysregulation

Dysregulation of the immune system is a common feature in IBD
pathogenesis and the role of innate and adaptive immune cells in IBD
has been reviewed [136]. Foods that can regulate the immune cells such
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as T cells and B cells can improve the condition of IBD patients. There is
an imbalance of regulatory and effector cells in active IBD, with effector
T cells (Th1, Th2) increased over regulatory T cells (Th3, Treg)
[137,138]. IL-23 can trigger chronic intestinal inflammation mediated
through innate or adaptive immune mechanisms and elicits IL-17-de-
pendent autoimmunity [139–141]. IL-17 activates the NF-κB and MAPK
signaling pathways, and upregulation of inflammatory molecules such
as IL-6, IL-8, and MCP-1 [142]. Dysfunctional dendritic cells can cause
disruption of intestinal mucosal barrier by activating inflammatory
cells, including primed T cells to secrete pro-inflammatory cytokines
[143]. This causes imbalance between the pro-inflammatory and anti-
inflammatory responses leading to IBD.

In DSS-induced colitis mice, TCRαβ cells are essential for their anti-
inflammatory action, along with IL-10, B cells, and γδ Τ cells, to induce
the protective action of apple polyphenols [144]. Curcumin amelio-
rated colitis in TNBS colitis mice by inactivating the dendritic cells
because of inhibition of the phosphorylation of the three members
(JAK2, STAT3, and STAT6), thus modulating the JAK/STAT/SOCS
signaling pathway [145]. Epigallocatechin-3-gallate (EGCG) and DHA
inhibited the production of IL-17 and TNF in the cell line Kit 225, si-
milar to Th17 cells [146]. The conjugate of DHA and 5-HT, doc-
osahexaenoyl serotonin (DHA-5-HT), a gut-specific endogenously pro-
duced mediator, modulated the IL-17/Th17 signaling response by
inhibiting Th17 pro-inflammatory mediators, IL-17 and CCL-20 [147].
Kaempferol, a flavonoid with anti-inflammatory and immune-mod-
ulatory activities, ameliorated colitis in DSS-treated mice by decreasing
inflammatory mediators and improved repair of damaged intestinal
epithelial layer [148]. This suggests that modulation of im-
munoregulatory activity can be a major target for therapy with nu-
traceuticals to treat IBD.

8. Modulation of cell signaling pathways

Major cell signaling pathways affected in IBD are the MAPK, Janus
kinase-signal transducer and activator of transcription (JAK/STAT), NF-
κB signaling, and nuclear factor erythroid 2-related factor 2 (Nrf2)
pathways. MAPK cascades are divided into three subgroups: extra-
cellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK),
and p38 which are implicated in IBD [149]. Activation of NF-κB sig-
naling pathway causes release of pro-inflammatory cytokines TNF and
IL-1 β in IBD [2]. Nrf2 is a master regulator in activation of transcrip-
tion of anti-inflammatory and anti-oxidant proteins such as NAD(P)
H:quinone oxidoreductase 1 (NQO1), glutathione-S-transferase, glu-
tathione peroxidase (GPX2), thioredoxin and heme oxygenase-1 (HO-1)
[150]. Diet supplemented with peracetylated (−)-EGCG improved the
symptoms of DSS-induced colitis in mice [151]. The positive effect of
peracetylated EGCG against colitis correlated with higher expression of
HO-1 which is activated through signaling of ERK1/2 and acetylation of
Nrf2, thereby abating DSS-induced colitis [125].

Curcumin can modulate more than one of these pathways to inhibit
the production of pro-inflammatory cytokines. Curcumin-treated biop-
sies of IBD children and adults decreased p38 MAPK activation [131].
In TNBS colitis mice, curcumin modulated JAK/STAT/SOCS signaling
pathway and repaired the gut tissue [145]. Curcumin reduced colonic
inflammation by inhibition of pro-inflammatory pathways, including
the NF-κB and MAPK pathways, in multidrug resistance gene-deficient
(Mdr1a−/−) IBD mice [152]. Further, curcumin treatment of (Mdr1a−/

−) IBD mice inhibited key pro-inflammatory transcription factors such
as ERK and PI3 K complex [153].

Polyphenols found in Marie Ménard apples reduced colitis when fed
to HLA-B27 transgenic rats by downregulating the pathways of pros-
taglandin synthesis, MAPK signaling, and TNF and NF-κB pathways
[154]. Zingerone and punicalagin also ameliorated IBD by inhibition of
the NF-κB pathway [72,155]. Ellagic acid found in pomegranate fruit
has been studied in acute and chronic models of DSS-induced IBD in
mice where it reduced intestinal inflammation thereby decreasing the

severity of the disease by down-regulating COX-2 and inducible nitric
oxide synthase (iNOS) and blocking the signaling pathways, NF-κB,
Signal transducer and activator of transcription 3 (STAT3), and p38
MAPK [156]. The anti-inflammatory ellagitannins from pomegranate
reversed the gastrointestinal changes in DSS-induced IBD rats [157].

Broccoli and pak choi containing glucosinolates up-regulated the
expression of Nrf2 target genes such as Nqo1 and GPx2 in azox-
ymethane (AOM)/DSS induced colitis-associated cancer in mice and
inhibited colon inflammation and carcinogenesis [158]. In general,
Nrf2 is inactively bound to Kelch-like ECH-associated protein 1 (Keap
1). Nrf2 is activated by either Keap1 cystein thiol modification or
phosphorylation of Nrf2 by upstream kinases such as ERK, JNK, and
P38 MAPK. Further, Nrf2 is translocated into the nucleus, where it
binds to antioxidant response elements located in the promoter region
of genes that activate transcription of phase-2 detoxifying enzymes and
anti-oxidant proteins [150]. Some of the polyphenols found in Perilla
frutescens have shown anti-inflammatory activity [159]. Luteolin ef-
fectively inhibited TNF, IL-1β, IL-6, and IL-17A in monocytes on LPS
stimulation; apigenin decreased secretion of IL17A and increased IL-10
whereas rosmarinic acid had no effect on TNF, IL-6, and IL-17A but
inhibited IL-1β secretion and increased Treg population [160]. How-
ever, rosmarinic acid inhibited the expression of IL-1β, IL-6, and IL-22
in colonic tissues of DSS-induced colitis in mice and suppressed COX-2
and iNOS through inhibition of NF-κB and STAT3 signaling pathways
[159]. This suggests that, if Perilla frutescens extract was given as a
treatment, the positive effects of the individual polyphenols would help
in reducing colitis. In a recent study, Perilla frutescens extract suppressed
DSS-induced colitis is mice by inhibiting NF-κB and STAT3 signaling
pathways and activating Nrf2 signaling pathway thereby increasing
HO-1 levels [161].

IL-8 is released by macrophages during intestinal inflammation and
recruits neutrophils thereby increasing the inflammation at the tissue
site [162,163]. Treatment of CCD841CoN human normal colon epi-
thelial cells with Perilla frutescens extract after TNF-α insult reduced the
expression of inflammatory CXCR2, a receptor of IL-8 [161]. Further,
probiotics such as VSL#3 prebiotic formula inhibited DSS-induced co-
litis in rats by decreasing the colonic tissue expression of TNF, COX-2,
NF- κB, pAkt, and IL-6, and increasing IL-10. This suggests that the
treatment acts by suppressing the PI3 K/Akt and NF-κB inflammatory
pathways [105]. Amentoflavone also reduced colitis by inhibiting the
activation and translocation of NF-κB inflammatory pathway [73].
Modulation of cell signaling pathways, especially the NF-κB pathway, is
the key in regulating gut homeostasis by nutraceuticals. The NF-κB
pathway linked to the production of TNF is suppressed by many nu-
traceuticals, thereby improving the intestinal homeostasis and ameli-
orating the inflammation. These studies suggest that foods as a whole or
enriched extracts of active ingredients rather than individual active
compounds play a vital role in regulating IBD pathogenesis through
modulation of gut microbiota, anti-oxidant, anti-inflammatory, im-
munomodulatory, and cell-signaling pathways as shown in Fig. 1
[75,122,123,131,156]. These mechanisms may work together to
maintain a healthy gastrointestinal tract in IBD patients. However, the
potential limitations of translating results obtained in rodent models to
human IBD patients should be noted, including calculating a suitable
dose and length of intervention, mimicking disease severity and periods
of remission, differences in gastrointestinal anatomy and physiology
between rats and humans, and the possibility of providing long-term
follow-up and care of the human patients.

9. Conclusions

Nutraceuticals have an important role in IBD patients as a pre-
ventive approach to extend remission phases and also as a therapeutic
intervention to suppress active IBD [164]. Active nutraceuticals may
work as a low-cost complementary approach with minimal adverse
effects to ameliorate the signs of IBD as effectively as current
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therapeutic options. More studies especially clinical trials are necessary
to ascertain the limits of the usefulness of nutraceuticals as therapies in
IBD.
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Abstract 22 

Background: Inflammatory bowel disease (IBD), an uncontrolled inflammation of the 23 

gastrointestinal tract, can be induced in rodents with dextran sodium sulfate (DSS). DSS causes 24 

inflammation in the gastrointestinal tract by disruption of the intestinal epithelial barrier.  25 

Methods: This project developed a model of chronic IBD in young male Wistar rats testing 26 

responses to DSS (0%, 0.25%, 0.5%, or 1% in drinking water) for six weeks and further with 27 

0.5% DSS for twelve weeks.  28 

Results: Gastrointestinal tract changes were observed as diarrhea and bloody stools. Extra-29 

intestinal parameters including oral glucose tolerance test, systolic blood pressure, bone 30 

mineral content, fat and lean mass, and left ventricular stiffness were measured. Rats given 31 

0.5% DSS for twelve weeks showed increased, chronic, and sustained gastrointestinal changes 32 

with bloody diarrhea and anal bleeding, with a small loss of body weight. Histological 33 

examination showed marked infiltration of inflammatory cells throughout the gastrointestinal 34 

tract with crypt distortion. Gut bacteria diversity profiling data analyzed from fecal samples 35 

showed increases in Proteobacteria phylum. The replacement of DSS with water or 36 

sulfasalazine treatment for the final six weeks reversed these symptoms. No changes were 37 

observed in extra-intestinal parameters, so DSS-induced inflammation and cellular damage 38 

was limited to the gastrointestinal tract. Thus, chronic 0.5% DSS produces selective 39 

gastrointestinal changes mimicking chronic IBD in humans and is reversible.  40 

Conclusion: This study provides an improved model using a lower dose of DSS for longer 41 

duration to mimic the chronic nature of gastrointestinal inflammation in human IBD. This 42 

model will be useful to test proposed interventions to treat human IBD. 43 

Keywords: inflammatory bowel disease, rats, dextran sodium sulfate, sulfasalazine  44 
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INTRODUCTION 45 

Inflammatory bowel disease (IBD) in humans, primarily Crohn’s disease and ulcerative 46 

colitis, is an uncontrolled chronic inflammation of the mucosa in the gastrointestinal tract that 47 

gradually worsens and can last for decades with many relapses (1). There has been a steady 48 

increase in IBD incidence in Western and developed countries, with increasing incidence in 49 

Asia (2). IBD is more common in industrialized regions, possibly due to the increase in 50 

adopting a Westernized lifestyle, suggesting strong environmental influences on its 51 

development (3). IBD produces symptoms such as weight loss, bloody diarrhea, and severe 52 

abdominal pain (4). Microbial and genetic factors, mucosal barrier malfunction, 53 

immune/inflammatory system dysfunction and environmental factors contribute to the 54 

development of chronic intestinal inflammation (3). The gut bacterial compostion varies in IBD 55 

patients from healthy people due to thinning of mucosal barrier caused by inflammation (5-9).  56 

Treatments for human IBD are developed from interventions in rodent models, induced 57 

either chemically or genetically (10). The most commonly used method in rodents is by oral 58 

treatment with dextran sodium sulfate (DSS) in the drinking water (10). DSS has been usually 59 

given at concentrations of 2% and greater in the drinking water for 5-7 days to induce acute 60 

IBD, and to lesser extent used at 1-2.5% for 10-28 days to induce chronic IBD in mice and rats 61 

(11-14). However, these models do not present a stable disease state, and interventions are 62 

usually for prevention rather than reversal, so different to clinical treatment in humans. IBD 63 

treatment options have been widely available for many years with sulfasalazine approved in 64 

1950 in the USA and on the WHO List of Essential Medicines for treating intestinal 65 

inflammation including Crohn’s disease and ulcerative colitis (15). In the USA and Canada, 66 

mesalamine (mesalazine or 5-aminosalicylic acid) as the active metabolite of sulfasalazine is 67 

one of the most prescribed drugs for IBD (16).  68 
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The aim of this study was to develop a stable chronic model that mimics human IBD 69 

and can be used to test interventions for reversal. We have characterized treatment with 70 

different DSS doses for 6 weeks, then with 0.5% DSS for 12 weeks in rats, then determining 71 

whether reversal of inflammation in the intestine is possible by replacing 0.5% DSS with 72 

normal water for the final six weeks. We also determined whether DSS-induced changes were 73 

restricted to the intestine by measuring cardiovascular, liver, and metabolic parameters. We 74 

then analyzed the responses to chronic sulfasalazine treatment as a reversal protocol in this 75 

IBD rat model. This is the first study to analyze whether chronic low-dose DSS induced stable 76 

IBD in rats with similar changes as in humans that can be reversed by an intervention used in 77 

humans for IBD.  78 

MATERIALS AND METHODS 79 

Diets and measurements in living rats 80 

All experiments were approved by the University of Southern Queensland Animal 81 

Ethics Committee under the guidelines of the National Health and Medical Research Council 82 

of Australia. Male Wistar rats (8-9 weeks old, weighing 338 ± 1 g, n = 96) were purchased 83 

from the Animal Resource Centre, Perth. In the first study, rats were randomly divided into 84 

four experimental groups (n=10) and were fed with standard laboratory chow diet. Group one 85 

received normal drinking water. Groups two, three, and four received 0.25%, 0.5%, or 1% DSS 86 

(molecular weight: 36,000-50,000 Da, MP Biomedicals) in drinking water, respectively, for 87 

six weeks. In the second study, the rats were randomly divided into two experimental groups 88 

(n=12) and were fed with standard laboratory chow diet. One group was administered 0.5% 89 

DSS in drinking water for twelve weeks and the other group was administered 0.5% DSS in 90 

drinking water for the first six weeks and normal water for the next six weeks. In the third 91 

study, the rats were randomly divided into four groups (n = 8). Two groups were fed with only 92 

powdered food either with normal water (C) or 0.5% DSS water (D) for twelve weeks.  The 93 
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remaining two groups received powdered food and normal water (CS) or 0.5% DSS water (DS) 94 

for twelve weeks together with powdered food containing sulfasalazine (4.6 g/kg food) for the 95 

final six weeks of the twelve week protocol. All rats were provided free access to food and 96 

water and were individually housed in temperature-controlled (20 ± 2°C), 12-hour light-dark 97 

conditions. Rats were monitored daily for body weight, and food and water intakes. 98 

Rat stool scores were measured every day to assess the onset and progress of IBD. The 99 

stool consistency score was defined as 0-formed, 1-mild-soft, 2-very soft, and 3-watery soft 100 

(diarrhea). The stool bleeding score was taken as follows 0-normal color, 1-brown color, 2-101 

reddish color, and 3-bloody red (17). Instead of disease activity index, it was more informative 102 

to show changes in individual components such as stool consistency and stool bleeding. 103 

Dual-energy X-ray absorptiometric measurements were performed at the end of the 104 

protocol using a Norland XR36 DXA instrument (Norland Corp, Fort Atkinson, WI) under 105 

anesthesia with Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg, i.p.) and Ilium Xylazil 106 

(xylazine 6 mg/kg, i.p.). Scans were analyzed using the manufacturer’s recommended software 107 

for use in laboratory animals (Small Subject Analysis Software, version 2.5.3/1.3.1; Norland 108 

Corp) (18). The precision error of lean mass for replicate measurements, with repositioning, 109 

was 3.2%. 110 

For measurement of gastrointestinal permeability, rats were deprived of food for 4 111 

hours, then gavaged with 2 mL of the probe solution containing 0.5g/mL sucrose, 0.04g/mL 112 

mannitol, 0.06g/mL lactulose, and 0.03g/mL sucralose (Sigma-Aldrich Australia, Sydney, 113 

NSW, Australia) (19). For the next 3 hours, rats were deprived of food and water. The urine 114 

was collected in 100µL of a 10% thymol in isopropanol solution at regular intervals for 24 115 

hours. 116 
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Systolic blood pressure was measured non-invasively under anesthesia with Zoletil 117 

(tiletamine 10 mg/kg, zolazepam 10 mg/kg; i.p.). The measurements were recorded using 118 

physiological pressure transducers and Chart software on a MacLab system (ADI Instruments) 119 

(20). Abdominal circumference was measured at the same time with a measuring tape. 120 

For oral glucose tolerance testing, rats were food-deprived for 12 hours (20). Basal 121 

blood glucose concentrations were measured following the food deprivation period using 122 

Medisense Precision Q.I.D. glucose meter in blood taken from the tail vein. The rats were given 123 

2g/kg body weight via 40% glucose solution by oral gavage. Tail vein blood samples were then 124 

taken after 30, 60, 90, and 120 minutes and blood glucose concentrations were measured (20). 125 

Two hours before euthanasia, rats in the third study were deprived of food. At the time 126 

of food deprivation, rats were administered 0.1mL charcoal solution/10g bodyweight of a 10% 127 

charcoal solution in 5% gum arabic by oral gavage. At euthanasia, the furthermost point the 128 

charcoal had moved from the pyloric sphincter was determined. The upper gastrointestinal tract 129 

motility was estimated as a percentage of the travelled distance to the total length from the 130 

pyloric sphincter to the ileocecal junction (21). 131 

Measurements after euthanasia 132 

Euthanasia was induced by i.p. injection of pentobarbitone sodium (Lethabarb®, 133 

100mg/kg; Virbac, Peakhurst, NSW, Australia). Heparin (200 IU; Sigma-Aldrich Australia) 134 

was administered into the right femoral vein. The abdomen was then opened and blood (~5 135 

mL) was withdrawn from the abdominal aorta and collected into heparinized tubes. Blood was 136 

centrifuged at 5000g for 15 minutes to obtain plasma. Plasma was stored at -20°C for further 137 

characterization. Hearts were then removed from rats for isolated Langendorff heart 138 

preparation. A latex balloon catheter was inserted into the left ventricle of the isolated heart 139 

connected to Capto SP844 MLT844 physiological pressure transducer and Chart software on 140 
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a MacLab system (ADI Instruments, Sydney, NSW, Australia). Isovolumetric function of the 141 

isolated heart was measured to calculate diastolic stiffness constant (, dimensionless) (20). 142 

The small intestine and large intestine were separated and their lengths were measured. 143 

A small portion of the distal ileum and distal colon were separated for histological examination. 144 

The distal ileum and distal colon (~1.5 cm) were separated and placed in Tyrode’s buffer. The 145 

lumen was washed with Tyrode’s buffer and the tissue was placed in an organ bath chamber 146 

filled with Tyrode’s buffer bubbled with 95% O2–5% CO2, maintained at 35°C and allowed to 147 

stabilize at a resting tension of approximately 10mN. Concentration-response (contraction) 148 

curves were recorded with acetylcholine (Sigma-Aldrich Australia) using pressure transducers 149 

and Chart software on a MacLab system (ADI Instruments). 150 

After the heart perfusion, the left ventricle along with septum and the right ventricle 151 

were separated and weighed. Kidney, spleen, and liver were collected, blotted dry, and weighed 152 

from each rat. Abdominal fat pads were removed as retroperitoneal, epididymal, and omental 153 

fat pads and weighed. All organ weights were normalized to the tibial length at the time of 154 

organ isolation (expressed as mg/mm) (20). 155 

Plasma lipid concentrations and activities of plasma enzymes were determined using 156 

kits and controls supplied by Olympus using an Olympus analyser (AU 400, Tokyo, Japan) 157 

(20). 158 

The isolated portions of ileum and colon for histology were fixed in 10% neutral 159 

buffered formalin for three days. Thereafter, the tissues were dehydrated and embedded in 160 

paraffin wax. Thin 5µm sections were cut from the paraffin embedded tissues. The cut sections 161 

of the tissues were stained with hematoxylin and eosin stains and were observed by using 20× 162 

objective lens of an Olympus BX51 microscope (Olympus, Melville, NY, USA) to determine 163 

the infiltration of inflammatory cells and damage to the intestinal tissue (20). 164 
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Analysis of the sugars present in the urine samples was performed at the Central 165 

Analytical Research Facility of the Queensland University of Technology, Gardens Point, 166 

Brisbane. Myo-inositol (Sigma-Aldrich Australia) was added to the urine samples as the 167 

internal standard (1 mg/mL). Calibration curves of the four sugars (mannitol, sucrose, 168 

lactulose, and sucralose; stock solutions, 1mg/mL) were undertaken from 0.075 to 1 mg/mL 169 

with myo-inositol (1mg/mL). 50µL of urine sample was added to 450µL of cold methanol and 170 

vortexed followed by centrifugation for 5 minutes at 14000g and 5°C. 3µL of the supernatant 171 

was aliquoted in a glass insert tube. All samples were vacuum-concentrated to dryness for 30 172 

minutes before derivatization of the samples in two steps (22). In the first step, the samples 173 

underwent oximation under incubation with 20µL of 30mg/mL Meox (methoxyamine + 174 

pyridine) (Sigma-Aldrich, Sydney, Australia) for 2 hours at 37°C and 500 rpm in a 175 

thermomixer (Eppendorf, Melbourne, Australia). The second step was silylation of the samples 176 

by incubation with 40µL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) + 1% 177 

trichloromethylsilane (TMCS) silylation reagent (Thermo Scientific, Scoresby, Australia) for 178 

40 minutes under similar conditions. The glass insert tubes with the samples were transferred 179 

to auto-sampler GC vials. 180 

Sugar analysis was performed using GCMS Shimadzu TQ8040 (Shimadzu, Sydney, 181 

Australia). Samples (1µL) were injected in split ratio (2:1) in the injection port at 250°C, and 182 

the sugars were separated on the SH-Rxi-5Sil-MS column (30m × 0.25mm × 0.25µm film 183 

thickness) with the column flow of 0.76 mL/minute, and helium carrier gas flow of 4.15 184 

mL/minute. The initial oven temperature was set at 200°C for 1 minute and then increased at 185 

10°C/minute to 250°C, 1°C/minute to 260°C, 3°C/minute to 275°C and held for 2 minutes, 186 

15°C/minute to 300°C and held for 1 minute. The total run was 25.67 minutes. The MS detector 187 

ion source temperature was 250°C and the interface temperature was 280°C. The samples were 188 
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detected in Selected Ion Monitoring method. Cumulative percent recovery of each sugar and 189 

intestine permeability were calculated (23-25). 190 

The fecal samples of the rats were collected from the colon at euthanasia and stored at 191 

-80 °C for analysis of gut microbiota diversity profiling. Microbiota profiling was performed 192 

at the Austrlaian Genomic Research Facility, Adelaide, Australia (26). The PCR amplification 193 

of the gDNA was undertaken with primers specific to V3–V4 region of 16S rRNA gene. The 194 

primers used were F341 (5′-CCTAYGGGRBGCASCAG-3′) and R806 (5′-195 

GGACTACNNGGGTATCTAAT-3′). R statistical software was used according to the 196 

developer’s instructions to generate heatmaps for relative abundance of bacterial phyla and 197 

species. Venn diagrams were prepared for observed taxonomical units (OTUs) indicating 198 

richness of species, in not less than 50% of the samples of each group using the online plotting 199 

tool Venny 2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Complex heatmaps of 200 

the bacterial phyla and species greater than 1% in abundance were generated by R software 201 

using R/bioconductor package (27).  202 

Statistics 203 

All data are expressed as mean ± standard error of the mean (SEM). Results from 204 

control, 0.25% DSS, 0.5% DSS, and 1% DSS were analyzed for variance by using one-way 205 

ANOVA. The data were tested with Neumann-Keuls multiple comparison post hoc test and 206 

P<0.05 was considered as significant. The results of 0.5% DSS for 6 and 12 weeks were 207 

compared by using unpaired Student’s t test. The results from the sulfasalazine study were 208 

analyzed for variance by using two-way ANOVA followed by Neumann-Keuls multiple 209 

comparison post hoc test. The statistical analyses were run by using GraphPad Prism version 6 210 

for Windows (GraphPad Software, La Jolla, CA, USA). 211 

RESULTS  212 
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DSS dose-dependent changes over 6 weeks  213 

DSS produced dose- and time-dependent increases in stool consistency and stool 214 

bleeding scores (Fig. 1A and 1B). Control rats maintained normal stool texture and color 215 

whereas 1% DSS rats had the most marked changes with watery bloody stool, with occasional 216 

anal bleeding. DSS treatment had no effect on small intestinal length but there was a dose-217 

dependent reduction of colon length in DSS groups (Table 1). Histological examination of the 218 

colon and ileum showed dose-dependent predicted changes in the epithelial membrane and 219 

crypt architecture of control, 0.25%, 0.5%, and 1% DSS rats (Fig. 2). In the colon and ileum 220 

of 0.5% DSS and 1% DSS groups, there was marked loss of epithelial layer and branched 221 

crypts, crypt and mucosal atrophy, reduction of villi length and crypt height along with 222 

inflammatory cell infiltration (Fig. 2C, 2D, 2G and 2H). 0.25% DSS rats had only minimal 223 

inflammation (Fig. 2B and 2F) while the controls had healthy tissue (Fig. 2A and 2E). Fig. 3 224 

shows the fecal bacteria taxonomic diversity in rats treated with 0% DSS or 0.5% DSS for 6 225 

weeks, 0.5% DSS for 12 weeks and replacement of 0.5% DSS with water at 6 weeks. This 226 

figure highlights the mean abundances of the major bacterial phyla, Venn diagram of 227 

operational taxonomic units and relative abundances of species among the groups. The gut 228 

bacteria analyzed from fecal samples showed that 0.5% DSS treatment for 6 weeks decreased 229 

Bifidobacterium pseudolongum of phylum Actinobacteria and increased order Clostridiales, 230 

Ruminococcus gnavus and genus Oscillospira which belong to phylum Firmicutes compared 231 

to control (0% DSS) rats (Fig. 3D).  232 

DSS rats had higher food intake and energy intake than control rats (Table S1). 233 

However, DSS produced dose-dependent decreases in the feed conversion efficiency which is 234 

reflected as the reduced body weight gain, and final body weight in 1% DSS rats (Tables 1 and 235 

S1; Fig. 1C). 0.5% DSS for 6 weeks caused no body weight change because DSS caused 236 

localized effects in the intestine causing inflammation without causing changes in food 237 
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absorption, mimicking low grade chronic inflammation. DSS rats showed no differences in 238 

metabolic parameters with the exception of increased blood glucose area under the curve and 239 

higher total cholesterol in 0.5% DSS rats (Tables 1 and S1). Only 0.5% DSS rats had small 240 

increases in systolic blood pressure (Table S1). The heart function and organ weights were 241 

unchanged except for the increased spleen weight in 1% DSS rats which is uncommon in IBD 242 

and not related to inflammation (Tables 1 and S1). Plasma alanine transaminase activity 243 

remained unchanged with DSS treatment (Table 1). As 1% DSS produced severe inflammation, 244 

a reduced dose of 0.5% DSS was chosen with an extended protocol of 12 weeks to examine 245 

whether this dose produced reversible, stable, and moderate chronic IBD in rats. 246 

DSS dose-dependent changes over 12 weeks  247 

 The stool consistency and bleeding scores showed similar changes after 6 or 12 weeks 248 

of treatment with 0.5% DSS (Fig. S1A and S1B). 0.5% DSS reduced the colon length without 249 

changing small intestinal length (Table S2). The ileum and colon of rats with 0.5% DSS for 12 250 

weeks had marked mucosal inflammation, epithelial membrane loss, cryptitis, forked crypts, 251 

and crypt abscesses (Fig. S3A, S3C, and S3E-H). The increase from 6 weeks to 12 weeks with 252 

0.5% DSS increased the inflammation of ileum and colon. The increase from 6 weeks to 12 253 

weeks with 0.5% DSS gave similar species distribution of gut bacteria in fecal samples except 254 

for the decreased counts of Lactobacillus genus and the increased counts of Streptococcus 255 

genus, both belonging to phylum Firmicutes (Fig. 3E).  256 

The total fat mass remained unchanged and other metabolic parameters are mentioned 257 

in Table S2. The cardiovascular parameters, organ weights, and plasma liver enzyme activities 258 

were similar after 6 or 12 weeks DSS intervention except for a decrease in liver weight (Table 259 

S2).  260 

Return to normalcy with replacement of DSS by water    261 
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The stool consistency and bleeding scores improved with replacement of 0.5% DSS 262 

with water for the final 6 weeks (Fig. S2C and S2D). Replacement of 0.5% DSS for the final 6 263 

weeks prevented the shortening of colon but there was no change in small intestinal length 264 

(Table S3). The inflammation of ileum and colon was reversed with replacement of 0.5% DSS 265 

with water for 6 weeks (Fig. S3B and S3D). Replacement of 0.5% DSS with water did not alter 266 

the maximal force of contraction (mN) to acetylcholine in isolated ileum and colon preparations 267 

(ileum:D=31.6 ± 8.6, D+W=13.4 ± 7.3; colon:D=78.2 ± 11.6, D+W=57.9 ± 18.9). 268 

The intestinal permeability test was performed for the two groups in the 12-week study, 269 

the 0.5% DSS group and the replacement of 0.5% DSS with water group. Cumulative percent 270 

recoveries of sucrose (gastroduodenal permeability marker), lactulose, mannitol, and sucralose 271 

(colon permeability marker) at 3, 6, 9, 21, and 24 h were similar in both groups (Fig. S4). For 272 

all four sugars, the 24-h % excretion of the oral dose was similar in both groups. The 273 

lactulose/mannitol ratio (small intestine permeability marker), sucralose/lactulose ratio, and 274 

sucralose/mannitol ratio were similar in both the groups indicating no change in the whole gut 275 

permeability (Fig. S5). 276 

The mean abundances of the phyla Actinobacteria and Bacteriodetes decreased while 277 

phylum Firmicutes increased in the fecal samples of rats treated with DSS for 6 and 12 weeks 278 

(Fig. 3A and 4). Replacement of 0.5% DSS with water at 6 weeks reduced Proteobacteria 279 

compared to DSS rats for 12 weeks (Fig. 3B). Replacement of 0.5% DSS with water at 6 weeks 280 

decreased the populations of Firmicutes phylum comprising of Ruminococcus gnavus of 281 

Lachnospiraceae family and also Ruminococcaceae family including Oscillospira genus (Fig. 282 

3F). After 12 weeks, DSS decreased the number of species compared to control rats while water 283 

replacement of DSS increased the number of species (Fig. 3C). There was no change in 284 

Shannon diversity index, an indicator of alpha diversity (C6=2.1±0.1, D6=2.3±0.1, 285 

D12=2.4±0.1, D+W=1.9±0.3). Heatmaps of relative abundances of bacterial phyla and species 286 
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with dendograms showed variability among the groups of the rats with control and the reversal 287 

DSS groups as one cluster while 0.5% DSS for weeks 6 and 12 groups as one cluster indicating 288 

there was a shift of gut bacteria composition back to normal after replacement of 0.5% DSS 289 

with water at 6 weeks including the family S24-7, Bifidobacterium pseudolongum (Fig. 4 and 290 

5). 291 

Replacement of 0.5% DSS with water at 6 weeks did not alter food, water, energy 292 

intakes, or feed efficiency at 12 weeks; however, during the first four weeks, there was lower 293 

body weight gain even though both the groups had similar diet (Table S3; Fig. S2A and S2B). 294 

Rats fed with 0.5% DSS water for 12 weeks had lesser omental fat, higher total fat mass, and 295 

bone mineral content, with no change in blood glucose area under the curve (Table S3). The 296 

plasma concentrations of non-esterified fatty acids and total cholesterol remained unchanged 297 

but there was a decrease in triglycerides concentrations with the replacement of 0.5% DSS with 298 

water at 6 weeks (Table S3). Replacement of 0.5% DSS with water at 6 weeks did not change 299 

cardiovascular parameters, liver parameters, or organ weights except that the left ventricular 300 

diastolic stiffness constant was higher (Table S3). 301 

Sulfasalazine on 0.5% DSS-induced IBD 302 

The doses of sulfasalazine based on food intake measurements were 346 ± 23 mg/kg in 303 

CS rats and 350 ± 36 mg/kg in DS rats. The stool consistency and stool bleeding scores of CS 304 

rats were minimal and similar to C rats (Fig. 6A and 6B). Sulfasalazine improved stool 305 

consistency and stool bleeding scores in DS rats (Fig. 6A and 6B). The small intestinal length 306 

increased in CS rats compared to C rats (Table 2). However, colon length and gastric transit 307 

remained unchanged in CS group (Table 2). The small intestinal length increased in DS rats 308 

compared to D rats (Table 2) but colon length and gastric transit remained unchanged (Table 309 

2). The histology of ileum and colon showed healthy mucosal layer in CS rats as in C rats (Fig. 310 

7A, 7B, 7E, and 7F). Sulfasalazine improved the ileum of DS rats with increased villi length 311 
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and decreased inflammation compared to D rats (Fig. 7C and 7D), while the colon of DS rats 312 

showed higher crypt numbers, increased crypt heights, and improved epithelial membranes 313 

compared to D rats (Fig. 7G and 7H). The isolated ileum and colon preparations of CS rats 314 

gave similar maximal contractile responses (mN) to acetylcholine when compared to C rats 315 

(ileum: C=27.3 ± 4.9, CS=28.9 ± 5.4; colon: C=64.9 ± 8.8, CS=63.9 ± 15.9). The isolated ileum 316 

preparations of DS rats gave higher maximal contractile responses (mN) to acetylcholine than 317 

the D rats whereas the colon preparations showed no change among the groups (ileum:D=19.9 318 

± 4.1, DS=44.5 ± 6.1; colon: D=68.2 ± 7.8, DS=61.8 ± 11.7). The cumulative percent recovery 319 

of sucrose, mannitol, and sucralose at 3, 6, 9, 21, and 24 h, and whole gut permeability indicator 320 

sucralose/mannitol were unchanged with sulfasalazine treatment (Fig. S6A-S6D). 321 

Mean abundances of the major phyla differed among the groups (Fig. 8A). The 322 

heatmaps for the bacterial phyla showed C and DS rats clustered together whereas D and DS 323 

rats clustered together for species abundance (Fig. 9 & 10). Phylum Proteobacteria increased 324 

with DSS and reversed to normal with sulfasalazine (Fig. 8B). The observed OTUs were lower 325 

in CS and DS rats (Fig. 8C) and there was no difference in Shannon diversity index among the 326 

C, CS, D, and DS rats (C=2.3±0.1, CS=2.2±0.1, D=2.4±0.1, DS=2.5±0.1). Streptococcus genus 327 

was increased with DSS and normalized with sulfasalazine (Fig. 8D). Cluster 2 species of 328 

families S24-7, Lachnospiraceae, order Clostridiales and genus Lactobacuillus were most 329 

abundant among the four groups (Fig. 10). 330 

CS rats had decreased final body weight but no difference in body weight gain, food 331 

intake, water intake, energy intake, or feed efficiency compared to C and D rats (Table S4). 332 

Sulfasalazine resulted in DS rats with lower final body weight but with no difference in body 333 

weight gain, food intake, water intake, energy intake, or feed efficiency compared to D rats 334 

(Table S4). CS rats had decreased abdominal fat pads compared to the C rats, whereas omental 335 

fat decreased in D and CS rats (Table 2 and S4), which was unexpected change with no logical 336 
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explanation. DS rats had decreased retroperitoneal fat pads compared to D rats, whereas 337 

abdominal fat pads, epididymal fat, and omental fat were similar to D rats (Table S4). There 338 

were no changes in blood glucose concentrations or organ weights in CS rats (Table 2 and S4). 339 

Blood glucose concentrations and organ weights remained unchanged in DS rats (Table 2 and 340 

S4). 341 

DISCUSSION 342 

Our initial finding was that 0.5% DSS for 6 or 12 weeks produced stable, moderate, 343 

and chronic symptoms based on the stool characteristics and histological examination. We then 344 

showed that replacement of 0.5% DSS with water for the final 6 weeks of the 12 weeks protocol 345 

normalized the stool characteristics and the ileum and colon tissue damage. Extra-intestinal 346 

effects on glucose tolerance, blood pressure, cardiac and liver function, body weight, and bone 347 

mineral parameters were minimal. The intestinal permeability was not affected by this 0.5% 348 

DSS protocol for up to 12 weeks. However, there were changes in gut microbiota in the 0.5% 349 

DSS rats after 12 weeks with decreased counts of Lactobacillus sp and increased counts of 350 

Streptococcus sp and Proteobacteria phylum. Thus, 0.5% DSS in the drinking water for 12 351 

weeks was the optimal dose in male Wistar rats to reflect human inflammatory bowel disease. 352 

To further validate our model, we examined the responses to sulfasalazine treatment in the 353 

0.5% DSS rats for the final 6 weeks of the 12 week protocol. Sulfasalazine normalized the stool 354 

characteristics, repaired the gut epithelial membrane with reduced inflammation and improved 355 

the gut bacterial profile. Our results suggest that chronic dosage with 0.5% DSS in rats mimics 356 

human IBD, both in symptoms and management. This model should allow relevant results to 357 

be obtained for new treatments before translation studies in humans with IBD.  358 

The major limitation of our study is that, while DSS is the causative agent in this model, 359 

the cause of the human disease is unknown and therefore not mimicked in this study. Further, 360 

we have characterized functional and structural changes, but molecular changes were not 361 
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investigated. In addition, a longer protocol in rats could produce cardiovascular changes as 362 

found in humans with IBD including an increased risk of cardiovascular disease and endothelial 363 

dysfunction (28, 29) and other extra-intestinal changes due to chronic systemic inflammation 364 

following increases in intestinal permeability.   365 

Many rodent models have been used to study the pathogenesis and treatment of IBD of 366 

which chemically-induced IBD with DSS is quite common. The concentration and the duration 367 

of DSS administration determine the severity of the symptoms (30). Most DSS models are 368 

acute with administration of 2-5% DSS ranging from 5 days to 7 weeks in healthy rodents to 369 

produce a rapidly worsening disease state; further, these studies tested prevention of IBD by 370 

dietary interventions with anti-inflammatory and anti-oxidant activity (12-14, 31-33). As these 371 

studies investigated preventive therapy for a short period, this may not be relevant to IBD 372 

patients who have existing chronic disease which requires reversal therapy. Treatment with 373 

0.5% DSS in this study produced a relatively stable gastrointestinal disease state that can test 374 

possible reversal interventions such as functional foods or new drugs. As an example, we 375 

treated rats with sulfasalazine for the final 6 weeks as this drug is widely used in human IBD 376 

patients. Thus, 0.5% DSS for 12 weeks produces a chronic IBD model in male rats with clinical, 377 

physiological, morphological, histological, and dysbiosis symptoms similar to chronic human 378 

IBD that can be treated with sulfasalazine. 379 

DSS causes intestinal inflammation extending from the rectum towards the distal colon 380 

and further to the rest of the colon (34). There was colon repair and re-epithelization with 381 

squamous epithelium due to replacement of 0.5% DSS in drinking water with normal water as 382 

observed in other studies in mice (35). Though the exact mechanism of action of DSS-induced 383 

inflammation is unclear, DSS causes loss of epithelial barrier integrity and leads to disruption 384 

of epithelial membrane which is further aggravated by apoptosis and reduced rate of cell 385 

renewal thereby leading to reduced colon length (36). This compromised epithelial barrier in 386 
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DSS rats is consistent with the changes in gut structure and function indicated by stool 387 

characteristics, gut histology, gut motility and gut bacteria in our study. DSS decreased the 388 

stool consistency causing diarrhea due to inefficient absorption of water and electrolytes (37). 389 

The severely inflamed intestinal wall can be further damaged by internal fissures, fistulae and 390 

increased microvasculature which leads to gastrointestinal bleeding causing bleeding stools, 391 

even anal bleeding at times (38). This leads to movement of gut microbiota from the intestinal 392 

lumen to the intestinal crypts and causes inflammation due to excess innate and adaptive 393 

immune reactions and these symptoms in rats mimic human IBD (39).  394 

Increased intestinal permeability is observed in IBD patients due to the disruption of 395 

tight junctions in the intestinal epithelial membrane, and there is a leakage of LPS or its binding 396 

protein into the systemic circulation triggering the immune system to secrete inflammatory 397 

cytokines leading to systemic inflammation (40). The intestinal permeability was not increased 398 

in our model although the stool characteristics and histology indicate that intestinal architecture 399 

is compromised to some extent, but not sufficient to increase the permeability of large 400 

molecules such as LPS suggesting that there is no systemic inflammatory damage after 12 401 

weeks’ treatment with DSS. Although most IBD patients show increased intestinal 402 

permeability at 10 years after the onset of IBD, there is increased epithelial cell turnover and 403 

tight junctions in the chronic recovery stage as observed in Crohn’s disease patients in 404 

remission or DSS-induced IBD rats after replacing DSS with water (41, 42). The increased 405 

intestinal permeability could be a cause or effect of inflammation and therefore depend on the 406 

severity and extent of inflammation (41, 43). It is not clear whether increased intestinal 407 

permeability precedes intestinal inflammation or is the consequence of inflammation (44). 408 

Decreased intestinal motility is observed in severely inflamed intestine of IBD patients and 409 

also animal models (45) but was not observed after 12 weeks of 0.5% DSS, suggesting that this 410 

change occurs later in the disease progression. Decreased intestinal circular smooth muscle 411 
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contractility is due to dampened activity of L-type Ca2+ channels caused by gut inflammation; 412 

sulfasalazine, an inhibitor of inflammatory NF-ĸB, improved colonic contraction (46), as 413 

observed in our study.  414 

In the normal human gut, Firmicutes and Bacteroidetes are the most abundant phyla 415 

followed by phyla Actinobacteria and Proteobacteria; however, during dysbiosis which is seen 416 

in IBD patients, there are decreases in Firmicutes and increases in Proteobacteria and 417 

Actinobacteria phyla (47), as observed in our study in rats. B. pseudolongum with gut protective 418 

effects was the dominant bifidobacterial population in the healthy adult human intestinal 419 

biopsies and was reduced in IBD patients and 0.5% DSS treated rats (48, 49), as observed in 420 

our study. Lactobaciluus genus, a commensal bacteria that maintains the gut mucosal 421 

homeostasis, was underrepresented in Crohn’s disease and ulcerative colitis patients (50), 422 

which was similar to our observation in 0.5% DSS rats after 12 weeks. Decline of Lactobacillus 423 

may impair the gut barrier leading to invasion of bacteria and inflammation. Consistent with 424 

our results, Streptococcus spp was increased among Iranian IBD patients in active and 425 

remission stage (51). The mucolytic bacteria Ruminococcus gnavus predominated in Crohn’s 426 

disease and ulcerative colitis patients compared to healthy individuals (52). This was reflected 427 

in our study with an increase in 0.5% DSS rats and decrease after replacing 0.5% DSS with 428 

water suggesting that there was a reversal in the gut dysbiosis. Overall, our model showed 429 

changes in the gut bacteria similar to the human IBD dysbiosis condition that could be reversed 430 

with sulfasalazine. 431 

Extra-intestinal parameters were only changed to a minor extent in our IBD model but 432 

obesity could aggravate IBD (53). Hyperplasia of fat around inflamed intestine in Crohn’s 433 

disease may allow colonization and translocation of intestinal bacteria but we found reduced 434 

omental fat in DSS rats (54). This topic needs to be explored more as few have studied the link 435 

between visceral adipose tissue and IBD. The plasma lipid inflammatory markers were normal 436 
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in IBD children unlike in IBD adults (55). Unlike in our model, IBD patients after a prolonged 437 

period of disease may be prone to osteopenia and osteoporosis that depends on age, sex, BMI, 438 

and largely corticosteroid therapy (56). Even though it seems to be controversial whether IBD 439 

leads to cardiovascular complications, a recent study concluded that IBD patients did not show 440 

any changes in cardiovascular parameters such as systolic blood pressure and diabetes (57) and 441 

our rats did not show endovascular complications. Abnormality of liver functional tests was 442 

found to be transient in IBD patients and return to normal (58), similar to our study. Absence 443 

of extra-intestinal abnormalities in our model indicates that there is no systemic inflammation 444 

which could occur after a much longer period of disease progression. 445 

In conclusion, we have presented an improved rat model for chronic IBD with relatively 446 

stable disease parameters to allow studies on reversal of symptoms, with no changes in extra-447 

intestinal parameters, reversal after removal of the inflammatory stimulus and therapeutic 448 

effectiveness of the standard drug treatment of sulfasalazine. Thus, this model could be used 449 

to test compounds that may reverse IBD symptoms which could then be further tested in human 450 

clinical trials. Positive trials may eventually lead to an enhanced life-style for IBD patients. 451 
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Table 1. Metabolic, cardiovascular, hepatic, and gastrointestinal parameters in rats treated 618 

with dextran sodium sulfate (DSS) (0%, 0.25%, 0.5%, or 1%) for 6 weeks. 619 

Variables 0% DSS 0.25% DSS 0.5% DSS 1% DSS 

Final body weight, g 491 ± 6ab 503 ± 8a 505 ± 8a 470 ± 8b 

Abdominal fat pads, mg/mm 

tibial length 
575 ± 36 636 ± 51 704 ± 68 536 ± 40 

Total fat mass, g 137 ± 8 158 ± 18 152 ± 16 111 ± 11 

Total lean mass, g 332 ± 10 318 ± 10 308 ± 16 325 ± 12 

Fasting blood glucose 0 

minutes, mmol/L 
4.3 ± 0.2 4.3 ± 0.2 4.3 ± 0.2 4.9 ± 0.3 

Area under the curve, 

mmol/L×minutes 
721 ± 15b 860 ± 29a 810 ± 25a 804 ± 30a 

Plasma non-esterified fatty 

acids, mmol/L 
2.8 ± 0.3 2.6 ± 0.2 3.3 ± 0.4 3.1 ± 0.2 

Plasma triglycerides, mmol/L 0.8 ± 0.2 0.7 ± 0.1 1.2 ± 0.2 1.0 ± 0.1 

Plasma total cholesterol, 

mmol/L 
1.1 ± 0.1b 1.2 ± 0.1b 1.6 ± 0.1a 1.4 ± 0.1ab 

Left ventricular diastolic 

stiffness constant () 
26.8 ± 1.8 25.7 ± 1.3 22.8 ± 2.1 26.7 ± 1.5 

Plasma alanine transaminase 

activity, U/L 
26.1 ± 6.2 20.5 ± 2.6 19.1 ± 1.9 22.1 ± 2.2 

Small intestinal length, cm 124 ± 1 114 ± 6 126 ± 3 124 ± 2 

Colon length, cm 24.4 ± 0.5a 19.7 ± 0.6b 20.2 ± 0.5b 18.1 ± 0.6c 

All values are mean ± SEM, n = 6-10. Mean values within a row with a different superscript 620 

are significantly different, P<0.05.621 
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Table 2. Metabolic and gastrointestinal parameters in rats treated with sulfasalazine 622 

Variables C CS D DS 
P-Value 

DSS Sulfasalazine Interaction 

Fasting blood glucose, mmol/L 4.2 ± 0.1 4.7 ± 0.1 4.5 ± 0.1 4.4 ± 0.2 1.00 0.14 0.031 

Area under the curve, 

mmol/L×minutes 
727 ± 18 725 ± 21 740 ± 9 767 ± 31 0.2 0.56 0.50 

Abdominal fat pads, mg/mm 897 ± 71a 567 ± 72b 775 ± 44ab 675 ± 66ab 0.64 0.0008 0.037 

Small intestine length, cm 114 ± 3b 129 ± 2a 120 ± 2ab 127 ± 4a 0.49 0.0007 0.18 

Colon length, cm 22.6 ± 1.4a 22.9 ± 0.3a 18.9 ± 0.9b 18.4 ± 1.0b 0.003 0.029 0.33 

Gastrointestinal transit, % 76.8 ± 5.2 86.5 ± 3.5 86.6 ± 3.2 87.6 ± 4.4 0.22 0.23 0.32 

All values are mean ± SEM, n = 6-8. Mean values within a row with a different superscript are significantly different, P<0.05. C, control (0% 623 

DSS); D, 0.5% DSS; CS, C + sulfasalazine; DS, D + sulfasalazine; DSS, dextran sodium sulfate; CS and DS rats were treated with sulfasalazine 624 

for the last 6 weeks of the 12 week protocol.625 
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Figure legends 

Fig. 1. Effect of dextran sodium sulfate on stool consistency (A), stool bleeding (B), and body 

weight (C) in rats. Values are mean ± SEM, n =10. Endpoint means without a common letter 

differ, P < 0.05. Stool consistency score, 0-formed, 1-mild-soft, 2-very soft, 3-watery soft 

(diarrhea). Stool bleeding score, 0-normal color, 1-brown color, 2-reddish color, 3-bloody red. 

Fig. 2. Effect of dextran sodium sulfate on inflammation in the intestine. Hematoxylin and 

eosin staining of ileum and distal colon showing infiltration of inflammatory cells “in” (C, D, 

G, and H), epithelial disruption “ed” (C, D, G, and H), crypt distortion “cd” (C, D, G, and H), 

branched crypt “bc” (H), and mucosal atrophy “ma” (C, D, G, and H) (×20). Ileum of rats 

treated with dextran sodium sulfate at 0% (A), 0.25% (B), 0.5% (C), and 1% (D). Colon of rats 

treated with dextran sodium sulfate at 0% (E), 0.25% (F), 0.5% (G), and 1% (H). 

Fig. 3. Taxonomic diversity of fecal microbiota in rats treated with 0% DSS (C), 0.5% DSS 

for 6 weeks (D6), 0.5% DSS for 12 weeks (D12), and 0.5% DSS for 6 weeks and water for 

next 6 weeks (D+W), n=6/group. (A) Mean abundances of the major bacterial phyla as 

percentage of the total population among the four groups of rats, (B) relative abundance of 

Proteobacteria phylum, (C) Venn diagram of observed taxonomic units (OTUs), relative 

abundances of species significantly different among C and D6 rats (D), D6 and D12 rats (E), 

D12 and D+W rats (F). DSS, dextran sodium sulfate. 

Fig. 4. Heatmap of bacterial phyla obtained from fecal microbiota in rats treated with 0% DSS 

(C), 0.5% DSS for 6 weeks (D6), 0.5% DSS for 12 weeks (D12), and 0.5% DSS for 6 weeks 

and water for next 6 weeks (DW), n=6/group. The sample groups are on the horizontal axis 

and the bacterial phyla are on the vertical axis. Dark red- highest value, dark blue- lowest value. 

DSS, dextran sodium sulfate. 
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Fig. 5. Heatmap of bacterial species obtained from fecal microbiota in rats treated with 0% 

DSS (C), 0.5% DSS for 6 weeks (D6), 0.5% DSS for 12 weeks (D12), and 0.5% DSS for 6 

weeks and water for next 6 weeks (DW), n=6/group. The sample groups are on the horizontal 

axis and the bacterial species are on the vertical axis. Dark red- highest value, dark blue- lowest 

value. DSS, dextran sodium sulfate. 

Fig. 6. Effect of sulfasalazine on stool consistency (A) and stool bleeding (B) in rats given 

0.5% DSS water (DS) or normal water (CS) in comparison to control (C) and 0.5% DSS (D) 

rats for twelve weeks. Values are mean ± SEM, n = 6-8/group. Endpoint means with a different 

alphabet differ, P < 0.05. DSS, dextran sodium sulfate. Stool consistency score, 0-formed, 1-

mild-soft, 2-very soft, 3-watery soft (diarrhea). Stool bleeding score, 0-normal color, 1-brown 

color, 2-reddish color, 3-bloody red. 

Fig. 7. Effect of sulfasalazine on inflammation in the intestine. Hematoxylin and eosin staining 

of ileum and distal colon showing infiltration of inflammatory cells “in” (B and F), epithelial 

disruption “ed” (B and F), crypt distortion “cd” (B and F), cryptitis “cy” (F) and mucosal 

atrophy “ma” (B and F) (×20). Ileum of rats treated with normal water, 0.5% DSS water for 12 

weeks (A and B), and ileum of rats treated with normal water and 0.5% DSS water for 12 weeks 

and sulfasalazine in the food for last 6 weeks (C and D). Colon of rats treated with normal 

water and 0.5% DSS water for 12 weeks (E and F) and colon of rats treated with normal water 

and 0.5% DSS water for 12 weeks and sulfasalazine in the food for last 6 weeks (G and H). 

DSS, dextran sodium sulfate. Intestinal inflammation shows signs of Crohn’s disease in ileum 

with cryptitis, mucosal atrophy and also signs of ulcerative colitis in colon with the crypt 

distortion and mucosal atrophy. 

Fig. 8. Taxonomic diversity of fecal microbiota in rats given sulfasalazine with 0.5% DSS 

water (DS) or normal water (CS) in comparison to control (C) and 0.5% DSS (D) rats for twelve 

weeks. (A) Mean abundances of the major bacterial phyla as percentage of the total population 
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among the four groups of rats, (B) relative abundance of Proteobacteria phylum, (C) Venn 

diagram of observed taxonomical units (OTUs) and (D) Relative abundances of species. 

Fig. 9. Heatmap of bacterial phyla obtained from fecal microbiota in rats given sulfasalazine 

with 0.5% DSS water (DS) or normal water (CS) in comparison to control (C) and 0.5% DSS 

(D) rats for twelve weeks, n=6. The sample groups are on the horizontal axis and the bacterial 

phyla are on the vertical axis. Dark red- highest value, dark blue- lowest value. 

Fig. 10. Heatmap of bacterial species obtained from fecal microbiota in rats given sulfasalazine 

with 0.5% DSS water (DS) or normal water (CS) in comparison to control (C) and 0.5% DSS 

(D) rats for twelve weeks, n=6. The sample groups are on the horizontal axis and the bacterial 

species are on the vertical axis. Dark red- highest value, dark blue- lowest value. 
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Table S1. Dietary, metabolic, and organ weight parameters in rats treated with DSS (0%, 

0.25%, 0.5%, or 1%) for 6 weeks 

Variables 0% DSS 0.25% DSS 0.5% DSS 1% DSS 

Initial body weight, g 336 ± 1 337 ± 1 338 ± 2 337 ± 1 

Final body weight, g 491 ± 6ab 503 ± 8a 505 ± 8a 470 ± 8b 

Body weight gain, g 155 ± 6a 166 ± 7a 168 ± 8a 133 ± 7b 

Food intake, g/d 31.9 ± 0.4b 39.5 ± 1a 39.5 ± 1.3a 38.2 ± 1a 

Water intake, g/d 49.1 ± 3.2b 53.7 ± 2.8ab 64.1 ± 4.0a 62.1 ± 4.8ab 

Energy intake, kJ/d 440 ± 5b 544 ± 14a 545 ± 18a 528 ± 13a 

Feed efficiency, g/kJ 0.35 ± 0.01a 0.31 ± 0.01a 0.31 ± 0.02a 0.25 ± 0.01b 

Abdominal circumference, cm 21.2 ± 0.2 21.1 ± 0.2 21.8 ± 0.4 21.3 ± 0.1 

Retroperitoneal fat, mg/mm tibial 

length 
229 ± 15 263 ± 25 293 ± 34 206 ± 16 

Epididymal fat, mg/mm tibial length 157 ± 18 177 ± 19 205 ± 18 156 ± 14 

Omental fat, mg/mm tibial length 190 ± 11 196 ± 14 206 ± 18 175 ± 12 

Bone mineral density, g/cm² 0.168 ± 0.003 0.172 ± 0.003 0.165 ± 0.003 0.165 ± 0.003 

Bone mineral content, g 12.2 ± 0.3 12.9 ± 0.6 12.4 ± 0.5 11.6 ± 0.3 

Blood glucose 30 minutes, mmol/L 6.6 ± 0.2 7.7 ± 0.3 7.5 ± 0.3 7.2 ± 0.5 

Blood glucose 120 minutes, mmol/L 5.5 ± 0.2 6.1 ± 0.3 6.1 ± 0.3 5.6 ± 0.2 

Systolic blood pressure, mmHg 124 ± 3b 126 ± 1b 136 ± 3a 133 ± 2ab 

LV + Septum wet weight, mg/mm 

tibial length 
22.0 ± 0.8 22.7 ± 1.1 20.5 ± 3.5 21.9 ± 0.5 

RV wet weight, mg/mm tibial length 4.75 ± 0.31 4.78 ± 0.35 4.62 ± 0.17 4.12 ± 0.14 

Liver wet weight, mg/mm tibial length 352 ± 17 357 ± 22 390 ± 11 369 ± 8 

Kidney wet weight, mg/mm tibial 

length 
65.9 ± 2.3 65.5 ± 2.5 70.1 ± 1.8 68.9 ± 1.3 

Spleen wet weight, mg/mm tibial 

length 
23.9 ± 0.8b 23.8 ± 1.0b 25.0 ±1.1b 30.0 ± 2.1a 

All values are mean ± SEM, n = 6-10. Mean values within a row with a different superscript 

are significantly different, P<0.05. DSS, dextran sodium sulfate; LV, left ventricle; RV, right 

ventricle. 

  

60



Table S2. Dietary, metabolic, cardiovascular, and liver parameters in rats treated with 0.5% 

DSS for either 6 weeks or 12 weeks 

Variables 
0.5% DSS for 6 

weeks 

0.5% DSS for 12 

weeks 

Initial body weight, g 338 ± 2 340 ± 1 

Body weight at 6 weeks, g 505 ± 8 503 ± 5 

Body weight at 12 weeks, g - 572 ± 9 

Abdominal circumference, cm 21.8 ± 0.4 23.4 ± 0.3* 

Abdominal fat pads, mg/mm tibial length 704 ± 69 513 ± 29* 

Retroperitoneal fat, mg/mm tibial length 293 ± 34 225 ± 17 

Epididymal fat, mg/mm tibial length 205 ± 18 142 ± 8* 

Omental fat, mg/mm tibial length 206 ± 18 146 ± 11* 

Total fat mass, g 152 ± 16 152 ± 8 

Total lean mass, g 308 ± 16 394 ± 10* 

Bone mineral density, g/cm² 0.165 ± 0.003 0.180 ± 0.003* 

Bone mineral content, g 12.4 ± 0.5 14.6 ± 0.3* 

Fasting blood glucose, mmol/L 4.3 ± 0.2 4.1 ± 0.1 

Blood glucose at 30 minutes, mmol/L 7.5 ± 0.3 5.8 ± 0.2* 

Blood glucose 120 minutes, mmol/L 6.1 ± 0.3 4.8 ± 0.2* 

Area under the curve, mmol/L×minutes 810 ± 25 671 ± 20* 

Plasma non-esterified fatty acids, mmol/L 3.3 ± 0.4 3.2 ± 0.2 

Plasma triglycerides, mmol/L 1.2 ± 0.2 1.2 ± 0.1 

Plasma total cholesterol, mmol/L 1.6 ± 0.1 1.7 ± 0.2 

Systolic blood pressure, mmHg 136 ± 3 125 ± 1* 

LV diastolic stiffness constant () 22.8 ± 2.1 22.5 ± 1.0 

LV + Septum wet weight, mg/mm tibial length 20.5 ± 3.5 24.2 ± 1.4 

RV wet weight, mg/mm tibial length 4.62 ± 0.17 4.49 ± 0.30 

Liver wet weight, mg/mm tibial length 390 ± 11 349 ± 11* 

Plasma alanine transaminase activity, U/L 19.1 ± 1.9 24.0 ± 2.4 

Kidney wet weight, mg/mm tibial length 70.1 ± 1.8 66.5 ± 2.1 

Spleen wet weight, mg/mm tibial length 25.0 ± 1.1 24.4 ± 0.6 

Small intestine length, cm 126 ± 3 120 ± 3 

Colon length, cm 20.2 ± 0.5 17.3 ± 0.7* 

All values are mean ± SEM, n = 6-10. Mean values within a row with a different superscript 

are significantly different, P<0.05. DSS, dextran sodium sulfate; LV, left ventricle; RV, right 

ventricle. 
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Table S3. Dietary, metabolic, cardiovascular, liver, and gastrointestinal parameters in rats 

treated with 0.5% DSS or 0.5% DSS + water for 12 weeks 

Variables 
0.5% DSS for 12 

weeks 
DSS + water 

Body weight gain, g 233 ± 10 171 ± 8* 

Feed efficiency, g/kJ 0.46 ± 0.02 0.34 ± 0.01* 

Abdominal circumference, cm 23.4 ± 0.3 22.4 ± 0.3* 

Abdominal fat pads, mg/mm tibial length 513 ± 29 576 ± 11 

Retroperitoneal fat, mg/mm tibial length 225 ± 17 257 ± 7 

Epididymal fat, mg/mm tibial length 142 ± 8 138 ± 4 

Omental fat, mg/mm tibial length 146 ± 11 181 ± 5* 

Total fat mass, g 152 ± 8 118 ± 6* 

Total lean mass, g 394 ± 10 368 ± 10 

Bone mineral density, g/cm² 0.180 ± 0.003 0.176 ± 0.002 

Bone mineral content, g 14.6 ± 0.3 12.6 ± 0.3* 

Fasting blood glucose, mmol/L 4.1 ± 0.1 4.1 ± 0.2 

Blood glucose 30 minutes, mmol/L 5.8 ± 0.2 5.9 ± 0.2 

Blood glucose 120 minutes, mmol/L 4.8 ± 0.2 5.3 ± 0.1* 

Area under the curve, mmol/L×minutes 671 ± 20 697 ± 16 

Plasma non-esterified fatty acids, mmol/L 3.2 ± 0.2 2.6 ± 0.2 

Plasma triglycerides, mmol/L 1.2 ± 0.1 0.7 ± 0.1* 

Plasma total cholesterol, mmol/L 1.7 ± 0.2 1.6 ± 0.1 

Systolic blood pressure, mmHg 125 ± 1 126 ± 2 

LV diastolic stiffness constant () 22.5 ± 1.0 25.8 ± 1.1* 

LV + Septum wet weight, mg/mm tibial length 24.2 ± 1.4 22.8 ± 0.8 

RV wet weight, mg/mm tibial length 4.49 ± 0.3 4.44 ± 0.22 

Liver wet weight, mg/mm tibial length 349 ± 11 336 ± 14 

Plasma alanine transaminase activity, U/L 24.0 ± 2.4 40.8 ± 1.2* 

Kidney wet weight, mg/mm tibial length 66.5 ± 2.1 66.5 ± 1.9 

Spleen wet weight, mg/mm tibial length 24.4 ± 0.6 24.0 ± 0.7 

Small intestine length, cm 120 ± 3 122 ± 2 

Colon length, cm 17.3 ± 0.7 23.2 ± 0.5* 

All values are mean ± SEM, n = 7-10. Mean values within a row with a different superscript 

are significantly different, P<0.05. DSS, dextran sodium sulfate; LV, left ventricle; RV, right 

ventricle; DSS + water, dextran sodium sulfate + water; DSS + water group had replacement 

of DSS with water at 6 weeks.
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Table S4. Physical, dietary, metabolic, and organ weight parameters in rats treated with sulfasalazine 

Variables C CS D DS 
P-Value 

DSS Sulfasalazine Interaction 

Body weight gain, g* 92 ± 7.9 68.1 ± 6.4 88.9 ± 5.7 71.8 ± 5.5 0.96 0.004 0.60 

Energy intake, kJ/d* 511 ± 30 534 ± 34 503 ± 36 542 ± 54 1.00 0.44 0.84 

Feed efficiency, g/kJ* 0.180 ± 0.014 0.131 ± 0.014 0.183 ± 0.017 0.138 ± 0.013 0.73 0.003 0.89 

Blood glucose 30 minutes, mmol/L 6.8 ± 0.2 6.2 ± 0.1 6.6 ± 0.2 6.8 ± 0.5 0.50 0.50 0.18 

Blood glucose 120 minutes, mmol/L 5.4 ± 0.1 5.2 ± 0.3 5.7 ± 0.2 5.8 ± 0.2 0.043 0.82 0.49 

Retroperitoneal fat, mg/mm tibial length 398 ± 25a 243 ± 33b 349 ± 25a 268 ± 29b 0.67 0.0002 0.19 

Epididymal fat, mg/mm tibial length 260 ± 22a 157 ± 25b 209 ± 18ab 214 ± 14ab 0.90 0.037 0.023 

Omental fat, mg/mm tibial length 284 ± 23a 168 ± 17b 216 ± 13b 193 ± 23b 0.28 0.001 0.024 

LV + Septum, mg/mm tibial length 23.5 ± 0.9 21.7 ± 0.8 22.4 ± 0.7 21.4 ± 0.7 0.38 0.08 0.61 

RV, mg/mm tibial length 6.53 ± 0.61a 4.53 ± 0.3b 5.56 ± 0.41ab 4.74 ± 0.42b 0.41 0.004 0.20 

Liver, mg/mm tibial length 403 ± 19 347 ± 17 379 ± 12 347 ± 7 0.42 0.005 0.42 

Kidney, mg/mm tibial length 71.4 ± 1.4 67.4 ± 1.9 73.2 ± 2.6 70.6 ± 1.1 0.19 0.08 0.71 

Spleen, mg/mm tibial length 27.3 ± 1.3a 22.0 ± 1.4b 25.5 ± 1.3ab 24.2 ± 0.7ab 0.87 0.011 0.11 

All values are mean ± SEM, n = 6-8. Mean values within a row with a different superscript are significantly different, P<0.05. *Mean values for 

the last 6 weeks of treatment; C, control (0% DSS); D, 0.5% DSS; CS, C + sulfasalazine; DS, D + sulfasalazine; DSS, dextran sodium sulfate; LV, 

left ventricle; RV, right ventricle.
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Fig. S1. Effect of DSS on stool consistency (A) and stool bleeding (B) on rats given DSS for six 

weeks (0.5% DSS-6W) and for twelve weeks (0.5% DSS-12W). Values are mean ± SEM, n =10-

12. Endpoint means with an asterisk differ, P < 0.05. DSS, dextran sodium sulfate. 
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Fig. S2. Effect of DSS on body weight gain (A), feed efficiency (B), stool consistency (C), and 

stool bleeding (D) on rats given 0.5% DSS or DSS + water for twelve weeks. DSS + water 

group had replacement of DSS with water at 6 weeks. Values are mean ± SEM, n = 12. 

Endpoint means with an asterisk differ, P<0.05. DSS, dextran sodium sulfate. Stool consistency 

score: 0-formed, 1-mild-soft, 2-very soft, 3-watery soft (diarrhea). Stool bleeding score: 0-

normal color, 1-brown color, 2-reddish color, 3-bloody red. 
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Fig. S3. Effect of DSS on inflammation in the intestine. Hematoxylin and eosin staining of 

ileum and distal colon showing infiltration of inflammatory cells “in” (A, C, E, F, G, and H), 

epithelial disruption “ed” (A and C), crypt distortion “cd” (A, C, G, and H), cryptitis “cy” 

(F), crypt abscess “ca” (G), branched crypt “bc” (A), forked crypt “fc” (H), and mucosal 

atrophy (A, C, E, G, and H) (×20). Ileum of rats treated with 0.5% DSS water for 12 weeks (A, 

E, and F) and ileum of rats treated with 0.5% DSS water for 6 weeks and normal water for 

next 6 weeks (B). Colon of rats treated with 0.5% DSS water for 12 weeks (C, G, and H) and 

colon of rats treated with 0.5% DSS water for 6 weeks and normal water for next 6 weeks (D). 

DSS, dextran sodium sulfate. Intestinal inflammation shows signs of Crohn’s disease in ileum 

with cryptitis and also signs of ulcerative colitis in colon with the crypt abscess. 
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Fig. S4. Effect of DSS on intestinal permeability in D and D+W rats. Cumulative percent 

recovery of sucrose (A), mannitol (B), lactulose (C), and sucralose (D) urinary excretion over 

24 hours. DSS, dextran sodium sulfate; D, rats given 0.5% DSS for twelve weeks; D+W, 0.5% 

DSS for first 6 weeks followed by normal water for last 6 weeks. 

67



 

 

Fig. S5. Effect of DSS on intestinal permeability in D and D+W rats. Scattered plot of 24 hour 

lactulose/mannitol ratio shows small intestinal permeability whereas sucralose/lactulose ratio 

and sucralose/mannitol ratio shows whole gut permeability. Values are mean ± SEM, n = 4-6. 

Endpoint means with an asterisk differ, P < 0.05. DSS, dextran sodium sulfate; D, rats given 

0.5% DSS for twelve weeks; D+W, 0.5% DSS for first 6 weeks followed by normal water for 

last 6 weeks. 
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Fig. S6. Effect of sulfasalazine on intestinal permeability in rats. 0.5% DSS was given for 12 

weeks to D and DS rats. Cumulative percent recovery of sucrose (A), mannitol (B), and 

sucralose (C) urinary excretion over 24 hours; scattered plot of 24 hour sucralose/mannitol 

ratio for whole gut permeability (D). DSS, dextran sodium sulfate; D, rats given 0.5% DSS for 

twelve weeks; DS, 0.5% DSS for 12 weeks and last 6 weeks with sulfasalazine, C, rats given 

normal water for twelve weeks; CS, normal water for 12 weeks and last 6 weeks with 

sulfasalazine. 
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Abstract 

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease mainly 

affecting the ileum and colon. Anthocyanins may improve other chronic inflammatory 

states such as metabolic syndrome to reduce signs of the disease. Food sources of 

anthocyanins such as cyanidin 3-glucoside (C3G) include Queen Garnet plums (P) and 

purple carrots (PC). This study has investigated whether the chronic gastrointestinal 

changes in IBD induced in rats by dextran sodium sulphate (DSS) can be ameliorated 

by Queen Garnet plum juice, purple carrot juice or pure C3G powder. Rats were 

randomly divided into eight groups and were given powdered food with either normal 

water (C) or 0.5% DSS (D) in drinking water for 12 weeks to induce IBD. Queen 

Garnet plum juice, purple carrot juice or pure C3G powder at 8 mg C3G/kg body 

weight/day were added to the diet for the final 6 weeks to give CP, DP, CPC, DPC, 

CC and DC rats. No symptoms of IBD were observed in C, CP, CPC and CC rats. D 

rats had bloody diarrhoea and erosion of inner gut lining evident from crypt atrophy, 

and mucosal inflammatory cell infiltration. DP, DPC and DC rats had improved stool 

characteristics (stool consistency: C 0.0±0.0, D 2.4±0.4, DP 0.9±0.3, DPC 0.8±0.4, 

DC 0.6±0.4; stool bleeding: C 0.0±0.0, D 2.4±0.2, DP 0.4±0.2, DPC 0.6±0.4, DC 

0.5±0.3), reduced ileum and colon inflammation. Dysbiosis was observed in D rats 

and C3G improved the gut homeostasis. Thus, supplementation of the diet with C3G-

containing foods may ameliorate the symptoms of IBD by improving the gut 

microbiome. 

Keywords: Inflammatory bowel disease, dextran sodium sulphate, cyanidin 3-

glucoside, Queen Garnet plum, purple carrot, inflammation 
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1. Introduction 

Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation 

of all or part of the digestive tract (1). The gut microbiota is crucial to maintain gut 

health with a pivotal role in the metabolism of carbohydrates, amino acids, lipids, 

nucleotides and xenobiotics (2). IBD is aggravated due to dysbiosis which is one of 

the many interplaying factors in IBD including mucosal barrier disruption, immune 

dysregulation, host genetics and the environment (3). Functional foods may assist in 

reducing chronic inflammatory diseases such as obesity (4) and are now of increasing 

interest in the treatment of IBD (5). Currently, IBD patients rely on conventional drug 

therapy that may have adverse reactions. However, complementary options such as 

foods  could improve control of the disease with fewer adverse effects and reduce cost 

of treatment but not as a sole therapy, despite favorable response seen in the DSS-

model (6). Purple foods obtain their strong colour from natural anthocyanins, including 

cyanidin 3-O-β-D-glucoside (C3G), which have potential therapeutic responses in IBD 

due to their antioxidant and anti-inflammatory actions especially in intestinal cells, and 

also by modulation of the gut bacteria (7, 8). We have selected the C3G-containing 

purple foods, Queen Garnet plums and purple carrots, for comparison with pure C3G 

in this investigation.  

The Queen Garnet plum (Prunus salicina Lindl.) is a Japanese variety 

developed by breeding techniques conducted by the Department of Primary Industry, 

Queensland Government, Australia (9). These plums contain C3G up to 272mg/100g 

of fresh fruit, around seven times higher than other anthocyanin-containing plums and 

berries (10). Our group reported that Queen Garnet plum juice given to diet-induced 

obese rats at 8mgC3G/kg bw/day reversed the symptoms of metabolic syndrome 

including inflammation of heart and liver (11). Our earlier studies on purple carrots 

(Daucus carota subsp sativus), another source of C3G, showed improved structural 

and functional changes of the heart and liver due to its anti-inflammatory action in rats 

with diet-induced metabolic syndrome as a model of chronic low-grade inflammation 

(12).  

We hypothesize that purple foods with increased C3G can attenuate intestinal 

inflammation in a rat model of DSS-induced chronic IBD. We analysed the structure 

and function of the intestine including the gut bacteria from faecal samples following 
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treatment with either Queen Garnet plum juice, purple carrot juice or pure C3G powder 

given as food additives using a reversal protocol in these rats.  

2. Materials and Methods 

2.1 Diets and measurements in living rats 

All experiments were approved by the University of Southern Queensland 

Animal Ethics Committee (approval no 14REA005) under the guidelines of the 

National Health and Medical Research Council of Australia. Male Wistar rats (8-9 

weeks old, weighing 335.1 ± 0.4 g, n = 64) were purchased from the Animal Resource 

Centre, Perth. All rats were provided with free access to food and water and were 

individually housed in temperature-controlled (20 ± 2°C), 12-hour light-dark 

conditions at the University of Southern Queensland animal house.  

The rat diet consisted of powdered rat food (Specialty Feeds, Glen Forest, WA, 

Australia). The rats were randomly divided into eight experimental groups (n=8 each). 

One group served as control (C) with normal drinking water and another group (D) 

with 0.5% dextran sodium sulphate (DSS, molecular weight: 36,000-50,000 Da, MP 

Biomedicals) in drinking water for 12 weeks of the protocol. Six groups of rats were 

fed with interventions in their diet for the last 6 weeks. Three groups of rats with 

normal drinking water were fed with Queen Garnet plum (CP) (65 ml/kg food with 

C3G 1.9 mg/ml of juice), purple carrot (CPC) (11.3 g/kg food with C3G 10.9 g/kg of 

juice) and cyanidin 3-glucoside (CC) (123 mg/kg food) and similarly three groups of 

rats with 0.5% DSS drinking water were fed with these interventions as DP, DPC and 

DC. The Queen Garnet purple plum juice was a gift from Nutrafruit, Australia. Purple 

carrot juice was a gift from Dr Red Nutraceuticals, Australia. Pure C3G was a gift 

from Biosynth AS, Sandnes, Norway. 

Energy intake was calculated from the following values: powdered rat food, 

13.8 kJ/g; purple plum juice, 0.243 kJ/g, purple carrot juice, 0.44 kJ/g. The energy 

density was calculated for powdered food diet, 13.8 kJ/g; purple plum juice diet, 

14.043 kJ/g; purple carrot juice diet, 14.24 kJ/g. Rats were monitored daily for body 

weight, and food and water intakes. Daily anthocyanin intake was calculated from the 

daily food intake. 
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Rats were food-deprived for 12 hours and oral glucose tolerance tests were 

performed using Medisense Precision Q.I.D glucose meter (Abbott Laboratories, 

Bedford, USA) at 0, 6 and 12 weeks (13). 

Stool characteristics were examined to assess the disease activity every day for 

12 weeks. The stool consistency was scored as 0-formed, 1-mild-soft, 2-very soft, 3-

watery soft (diarrhoea). The stool bleeding was scored as 0-normal colour, 1-brown 

colour, 2-reddish colour, 3-bloody red (14). 

A cocktail of sucrose, mannitol, lactulose and sucralose (Sigma-Aldrich 

Australia, Sydney, Australia) was used to test the intestine permeability of the rats 

from their urine samples collected at various time points after 12 weeks of the study 

as mentioned in chapter 3. 

Gastric transit was performed by charcoal method for the Queen Garnet plum 

study as described in chapter 3. The purple carrot and C3G groups had gastric 

emptying and gastric transit experiments performed by phenol red method. After 12 

hours starvation, each rat was gavaged 3 mL of 0.05% phenol red solution (Sigma-

Aldrich, Australia). After 20 min, the rat was euthanized and the stomach was ligated 

on the pyloric and cardiac ends and removed. The stomach was placed in 100 mL 0.1 

M NaOH and was homogenized in a tissue homogenizer for 2 min at moderate speed. 

The homogenized mixture was kept aside for 1 hour. To 5 mL of the supernatant 1 mL 

of 33% trichloroacetic acid was added and centrifuged at 2500g for 20 min. The 

supernatant was mixed with 0.5M NaOH and the absorbance was recorded at 565 nm 

to determine the intensity of the colour that correlated to the intensity of the compound 

that remained in the stomach (15). Gastric emptying (%) = (1 − absorbance of test 

sample/absorbance of baseline control) × 100%. 

The total intestine length was recorded and it was cut along its length 

longitudinally. Few drops of 0.5M NaOH were dropped on the lumen of the intestine 

from duodenum to ileum and the end point of the change to the pink colour was 

recorded. The length of intestine with pink colour divided by the total small intestine 

length was expressed as percentage of gastric transit (15).  

2.2 Measurements after euthanasia 

The rats were induced with terminal anaesthesia via i.p. injection of 

pentobarbitone sodium (Lethabarb, 100 mg/kg,Virbac, Milperra, Australia). Heparin 
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(200 IU; Sigma-Aldrich Australia, Sydney, Australia) was administered into the right 

femoral vein. The rats were dissected and the organs were excised (13).  

The isolation and the preparation of the small intestine and large intestine to 

obtain distal ileum and distal colon (~1.5 cm) for histological examination and organ 

bath studies were performed as described in chapter 3.  

As in chapter 3, after the blood collection from the abdominal aorta, the left 

ventricle along with septum and the right ventricle, kidney, spleen, liver and abdominal 

fat pads were collected, blotted dry and weighed from each rat. The organ weights 

were normalized to the tibial length at the time of organ isolation and expressed as 

mg/mm (13). 

Examination of rat urine samples for sugars was performed at the Central 

Analytical Research Facility (CARF) of the Queensland University of Technology, 

Gardens Point, Brisbane, with the assistance of Dr Rajesh Gupta. The GCMS method 

as described in chapter 3 was used for the sugar analysis. The rat faecal samples 

collected at euthanasia were stored at -80 °C and later examined for gut microbiota 

diversity profiling at Australian Genomic Research Facility (AGRF), Adelaide, 

Australia, where the gDNA extraction of faecal samples and sequencing were 

performed (16). Venn diagrams for observed taxonomical units (OTUs) indicating 

richness of species, in not less than 50% of the samples of each group were prepared 

using the online plotting tool Venny 2.1.0 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). Complex heatmaps of the 

bacterial phyla and species greater than 1% in abundance were generated by R 

software using R/bioconductor package (17). 

2.3 Statistics 

All data were expressed as mean ± SEM. Results from all the groups C, CP, 

CPC, CC, D, DP, DPC and DC were analysed for variance by using 1-way and 2-way 

ANOVA. The data were tested with Neumann-Keuls multiple comparison post hoc 

test and P<0.05 was considered as significant. The statistical analyses were run by 

using GraphPad Prism version 6 for Windows (GraphPad Software, San Diego, CA, 

USA) (13). 
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3. Results 

3.1 Effects of Queen Garnet Plum 

 The stool consistency and stool bleeding scores of C and CP rats were minimal 

whereas D rats had increased stool consistency and bleeding which was reversed in 

DP rats indicating positive outcome of the intervention (Figure 1A & B). The small 

intestinal and colon lengths, and gastric transit of CP rats was unchanged to C rats 

(Table 1). These parameters of DP rats did not differ to D rats. The histology of ileum 

and colon of C and CP rats were normal (Fig. 2A & C; Fig. 3A & C). The ileum of D 

rats showed inflammation with inflammatory cells, epithelial disruption, crypt 

distortion and mucosal atrophy (Fig. 2B). The ileum of the DP rats showed 

regeneration of crypt and epithelial membrane with fewer inflammatory cells 

compared to D rats (Fig. 2D). The colon of D rats showed inflammation with 

inflammatory cells, epithelial disruption, crypt distortion, crypt atrophy and mucosal 

atrophy (Fig. 3B). The colon of DP rats improved when compared to the D rats with 

reduced inflammation, healthy crypts and mucosa (Fig. 3D). The forces of contraction 

of the isolated ileum and colon preparations in response to acetylcholine were not 

different among the C and CP rats (Ileum-C=27.3 ± 4.9, CP=39.1 ± 1.6; colon- C=64.9 

± 8.8, CP=61.9 ± 5.9). Similarly, D and DP rats did not differ in the ileum and colon 

force of contractions due to acetylcholine (Ileum-D=19.9 ± 4.1, DP=32.4 ± 4.6; colon- 

D=68.2 ± 7.8, DP=80.2 ± 12.3). The cumulative percent urinary recovery of sucrose 

and lactulose did not alter among all groups of rats at all time intervals (Fig 4A & B). 

The cumulative percent urinary recovery of mannitol and sucralose increased at 21 h 

and 24 h in the treatment groups of CP and DP rats (Fig 4C & D). The 

lactulose/mannitol ratio, an indicator of small intestine permeability did not alter 

among all groups whereas sucralose/mannitol ratio an indicator of whole gut 

permeability was decreased by the treatment in CP and DP rats compared to C and D 

rats, respectively (Fig 4E). 

 The final body weight of CP rats was lower than C however energy intake and 

feed efficiency did not differ (Supplementary table 1). D and DP rats did not show any 

difference in final body weight, energy intake and feed efficiency (Supplementary 

table 1). The anthocyanin intake of DP rats was higher than CP rats (Table 1). The 

quercetin intake of CP and DP rats was 1.41 ± 0.05 and 1.64 ± 0.12 (mg/kg/day) 
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respectively. Fasting blood glucose and AUC were similar among all the groups (Table 

1). Total abdominal fat pads reduced in CP rats compared to C rats but not among D 

and DP rats (Table 1). However, retroperitoneal, epididymal and omental fat pads did 

not differ among C and CP rats or D and DP rats (Supplementary table 1). The wet 

weights of liver, left ventricle with septum, and right ventricle reduced in CP rats 

compared to C rats whereas the wet weights of kidney and spleen were similar in both 

groups (Supplementary table 1). The wet weights of left ventricle with septum, right 

ventricle, liver, kidney and spleen were similar in D and DP rats (Supplementary table 

1).  

3.2 Effects of purple carrot 

 The stool consistency and bleeding scores were unchanged among CPC and C 

rats whereas D rats had increased stool consistency and bleeding which was reversed 

in DPC rats (Fig. 1A & B). No change was observed in the small intestinal and colon 

lengths among C and CPC or D and DPC rats (Table 1). The gastric transit times and 

emptying were unchanged in C and CPC or D and DPC rats (Table 1). The histology 

of ileum and colon of C and CPC rats showed healthy mucosa (Fig. 2A & E; Fig. 3A 

& E). The ileum of D rats showed inflammation with inflammatory cells, epithelial 

disruption, crypt distortion and mucosal atrophy (Fig. 2B). The ileum of the DPC rats 

showed increased villi length and epithelial membrane with lesser inflammatory cells 

compared to D rats (Fig. 2F). The colon of D rats showed inflammation with 

inflammatory cells, epithelial disruption, crypt distortion, crypt atrophy and mucosal 

atrophy (Fig. 3B). The colon of the DPC rats improved with lesser inflammation, 

increased crypt number and depth compared to the D rats (Fig. 3F). The maximal 

forces of contraction of the isolated ileum and colon preparations in response to 

acetylcholine were not different in the C and CPC rats (ileum-C=27.3 ± 4.9, CPC= 

16.7 ± 3.5; colon- C=64.9 ± 8.8, CPC=41.4 ± 10.3 mN). Similarly, D and DPC rats 

did not differ in the ileum and colon maximal force of contractions due to acetylcholine 

(ileum-D=19.9 ± 4.1, DPC= 16.0 ± 4.2; colon- D=68.2 ± 7.8, DPC= 58.4 ± 8.6 mN). 

The cumulative percent recovery of sucrose and lactulose did not differ among all 

groups of rats at all time intervals (Fig 4A & B). CPC and DPC rats had increased 

cumulative percent recovery of mannitol and sucralose increased at 21 h and 24 h (Fig 

4C & D). The lactulose/mannitol ratio, an indicator of small intestine permeability and 
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the sucralose/lactulose or sucralose/mannitol ratios, indicators of whole gut 

permeability, did not alter among all groups (Fig 4E). 

 The final body weight, energy intake and feed efficiency of C and CPC rats 

were similar (Supplementary table 1). D rats and DPC rats did not differ in final body 

weight, energy intake and feed efficiency (Supplementary table 1). The anthocyanin 

intake of CPC and DPC rats were similar (Table 1). Fasting blood glucose and AUC 

were unchanged among all the groups (Table 1). Total abdominal fat pads including 

retroperitoneal, epididymal and omental fat pads did not differ among C and CPC rats 

or D and DPC rats (Table 1; Supplementary table 1). The wet weights of liver and right 

ventricle were reduced in CPC rats compared to C rats whereas the wet weights of left 

ventricle with septum, kidney and spleen were similar in both groups (Supplementary 

table 1). The wet weight of liver decreased in DP rats but the wet weights of left 

ventricle with septum, right ventricle, kidney and spleen were similar in D and DPC 

rats (Supplementary table 1).   

3.3 Effects of cyanidin 3-glucoside (C3G) 

The stool consistency and bleeding scores were unchanged in C and CC rats 

whereas D rats had increased stool consistency and bleeding which was reversed with 

C3G treatment in DC rats similar to treatments of Queen Garnet plum and purple carrot 

compared to D rats (Fig. 1A & B). The lengths of small intestine and colon were 

similar among C and CC or D and DC rats (Table 1), though 2-way analysis of variance 

indicated that treatment improved colon length. The gastric transit times and gastric 

emptying were similar in C and CC rats or D and DC rats (Table 1). The histology of 

ileum and colon of C and CC rats had normal mucosa (Fig. 2A & G; Fig. 3A & G). 

The ileum of D rats showed inflammation with inflammatory cells, epithelial 

disruption, crypt distortion and mucosal atrophy (Fig. 2B). In DC rats, C3G restored 

the villi length, epithelial membrane with lesser degree of inflammatory cells 

compared to D rats (Fig. 2H). The colon of D rats showed inflammation with 

inflammatory cells, epithelial disruption, crypt distortion, crypt atrophy and mucosal 

atrophy (Fig. 3B). Similarly, C3G also improved the colon of the DC rats with reduced 

inflammation, increased crypt number and depth compared to the D rats which had 

severely inflamed colons with crypt and mucosal atrophy (Fig. 3H). The maximal 

forces of contraction of the isolated ileum and colon preparations in response to 
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acetylcholine were not different among the C and CC rats (ileum-C=27.3 ± 4.9, CC= 

13.1 ± 3.0; colon- C=64.9 ± 8.8, CC=43.5 ± 6.0 mN). Similarly, D and DC rats did not 

differ in the ileum and colon maximal force of contractions due to acetylcholine 

(Ileum-D=19.9 ± 4.1, DC= 14.0 ± 3.0; colon- D=68.2 ± 7.8, DC= 37.3 ± 5.8 mN). The 

cumulative percent recovery of sucrose and lactulose did not differ among all groups 

of rats at all time intervals (Fig 4A & B). The cumulative percent recovery of mannitol 

and sucralose increased at 21 h and 24 h in CC and DC rats compared to C and D rats, 

respectively (Fig 4C & D). The lactulose/mannitol ratio, an indicator of small intestine 

permeability and the sucralose/lactulose or sucralose/mannitol ratios, indicators of 

whole gut permeability, did not alter among all the groups (Fig 4E). Table 2 

summarizes the intestinal effects of the interventions. 

The gut bacterial diversity is shown in Fig. 5. The abundance of different phyla 

did not differ except for the increase in Cyanobacteria and Proteobacteria in DC rats 

compared to C, CC and D rats (Fig. 5A & B). The ratio of Firmicutes and Bacteroidetes 

and the Shannon diversity index, an indicator of alpha diversity did not differ among 

the groups (F/B ratio: C 4.96±1.45, CC 6.97±0.68, D 5.78±0.61, DC 3.89±0.40; 

Shannon diversity index (H): C 2.3±0.1, CC 2.4±0.1, D 2.4±0.1, DC 2.6±0.1). The 

observed taxonomical units (OTUs) representing number of species exclusively in C 

and CC rats were higher than D and DC rats (C-96, CC-110, D-51, DC-17), however 

239 (26.8%) OTUs were common among all groups which constituted the maximum 

OTUs among the combinations of rat groups in Venn diagram (Fig. 5C). The relative 

abundances of order YS2 was higher in DC rats compared to C and CC rats; family 

Peptostreptococcacea was absent in C group and present in remaining groups; and 

genus Sutteralla was higher in DC rats (Fig. 5D). The heatmaps of species abundance 

clustered C and DC rats together, however CC and D rats were closer in the abundance 

of phyla (Fig. 6). C3G-treated DC and CC rats were clustered together and were closer 

to C rats than to D rats (Fig. 7). The cluster 1 of species showed increased abundance 

of , genus Allobaculum and order YS2 in DC rats compared to D rats whereas the 

cluster 2 showed C3G-treated rats had decreased abundance of family 

Lachnospiraceae and increased abundance of family S24-7 (Fig 8). Table 3 

summarizes the metagenomics effects of C3G. 

 There was no difference in the final body weight, energy intake and feed 

efficiency in C and CC rats (Supplementary table 1). Similarly, D and DC rats did not 
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differ in final body weight, energy intake and feed efficiency (Supplementary table 1). 

The C3G intake of DC and CC rats were similar (Table 1). Fasting blood glucose and 

AUC were unchanged among all groups (Table 1). Total abdominal fat pads including 

retroperitoneal, epididymal and omental fat pads didn’t differ among CC and C rats or 

DC and D rats, though 2-way analysis of variance indicated treatments reduced 

abdominal fat pads including retroperitoneal fat (Table 1; Supplementary table 1). The 

wet weights of right ventricle and liver reduced in CC rats compared to C rats whereas 

left ventricle with septum, kidney and spleen were similar in both groups 

(Supplementary table 1). D and DC rats had similar wet weights of left ventricle with 

septum, right ventricle, kidney and spleen but decreased wet weight of liver in DC rats 

(Supplementary table 1). 
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Table 1. Physical, dietary, metabolic, and gastrointestinal parameters in rats treated with Queen Garnet plum, purple carrot and C3G. 

Variable C CP CPC CC D DP DPC DC 

P-Value 

DSS Treatment Interaction 

Fasting blood 

glucose, mmol/L 

4.2 ± 

0.1 

4.3 ± 

0.1 

4.1 ± 

0.1 

4.1 ± 

0.2 

4.5 ± 

0.1 

 4.1 ± 

0.2 

 4.0 ± 

0.2 

4.3 ± 

0.2 
0.6540 0.3116 0.3367 

Blood glucose AUC, 

mmol/L/120 min  

727 ± 

18 

768 ± 

30 

680 ± 

32 

702 ± 

25 

 740 ± 

9 

 730 ± 

28 

 689 ± 

28 

709 ± 

34 
0.9057 0.0863 0.7525 

Abdominal fat pads, 

mg/mm tibial length  

942 ± 

66a 

656 ± 

46ab 

759 ± 

52ab 

768 ± 

70ab 

775 ± 

44ab 

711 ± 

56ab 

661 ± 

74ab 

743 ± 

86ab 
0.1944 0.0396 0.3415 

Small intestinal 

length, cm 

 114 

± 3 

114 ± 

7 

 120 ± 

1 

121 ± 

2 

120 ± 

2 

 120 ± 

3 

118 ± 

2 

 119 ± 

4 
0.4236 0.7781 0.4639 

Colon length, cm 
22.6 

± 1.4a 

21.6 ± 

1.3a 

20.9 ± 

0.7ab 

22.3 ± 

0.6a 

18.9 ± 

0.9ab 

19.8 ± 

0.6ab 

17.3 ± 

0.9b 

19.2 ± 

0.7ab 
<0.0001 0.2203 0.7327 

Gastric transit 

(charcoal), % 

76.8 

± 5.2 

84.4 ± 

3.0 - - 
86.6 ± 

3.2 

86.0 ± 

3.2 
- - 0.3522 0.1382 0.2782 

Gastric transit 

(phenol red), % 

71.4 

± 3.9 
- 

70.9 ± 

3.0 

74.0 ± 

4.9 

69.6 ± 

2.5 - 

75.6 ± 

1.4 

74.2 ± 

4.7 0.7242 0.5766 0.6491 
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Gastric emptying, % 

46.8 

± 5.9 - 

48.5 ± 

6.7 

50.8 ± 

7.2 

56.7 ± 

6.6 - 

51.0 ± 

7.7 

49.8 ± 

8.2 
0.4177 0.8922 0.7405 

Anthocyanin intake, 

mg/kg bw/day 
- 

8.92 ± 

0.32b 

8.33 ± 

0.51b 

7.43 ± 

0.36b 
- 

10.33 ± 

0.78a 

8.62 ± 

0.34b 

7.83 ± 

0.19b 
0.0658 0.0004 0.4171 

All values are mean ± SEM, n = 4-8. Mean values within a row with a different superscript are significantly different, P<0.05. DSS, 

dextran sodium sulphate; C, normal water; CP, normal water + Queen Garnet plum; CPC, normal water + purple carrot; CC, Normal water 

+ C3G; D, 0.5% DSS in drinking water; DP, 0.5% DSS in drinking water + Queen Garnet plum; DPC, 0.5% DSS in drinking water + 

purple carrot; DC, 0.5% DSS in drinking water + C3G; AUC, area under curve.
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Fig.1. Effect of Queen Garnet plum, purple carrot and C3G on stool consistency (A) 

and stool bleeding (B) in rats given 0.5% DSS water (DP, DPC, DC) or normal water 

(CP, CPC, CC) in comparison to control (C) and 0.5% DSS (D) rats for twelve weeks. 

Values are mean ± SEM, n =8. Endpoint means with a different alphabet differ, p < 

0.05. DSS, dextran sodium sulphate; C, normal water; CP, normal water + Queen 

Garnet plum; CPC, normal water + purple carrot; CC, normal water + cyanidin 3-

glucoside (C3G); D, 0.5% DSS in drinking water; DP, 0.5% DSS in drinking water + 

Queen Garnet plum; DPC, 0.5% DSS in drinking water + purple carrot; DC, 0.5% DSS 

in drinking water + C3G. Stool consistency score: 0-formed, 1-mild-soft, 2-very soft, 

3-watery soft (diarrhoea). Stool bleeding score: 0-normal colour, 1-brown colour, 2-

reddish colour, 3-bloody red. 

 

 

Fig. 2. Effect of anthocyanin on inflammation in the ileum. Haematoxylin and eosin 

staining of ileum showing infiltration of inflammatory cells “in” (B), epithelial 

disruption “ed” (B), crypt distortion “cd” (B), and mucosal atrophy “ma” (B) (×20). 
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Ileum of rats (n = 4) treated with normal water, 0.5% DSS water for 12 weeks (A and 

B); rats treated with normal water and 0.5% DSS water for 12 weeks with Queen 

Garnet plum juice (8mgC3G/kg BW/d) in the food for last 6 weeks (C and D), with 

purple carrot juice (8mgC3G/kg BW/d) in the food for last 6 weeks (E and F), with 

pure C3G powder (8mgC3G/kg BW/d) in the food for last 6 weeks (G and H). DSS, 

dextran sodium sulphate; C3G, cyanidin 3-glucoside. Intestinal inflammation in B 

shows signs of inflammatory bowel disease with epithelial disruption, crypt distortion 

and mucosal atrophy. 

 

 

Fig. 3. Effect of anthocyanin on inflammation in the distal colon. Haematoxylin and 

eosin staining of distal colon showing infiltration of inflammatory cells “in” (B), 

epithelial disruption “ed” (B), crypt distortion “cd” (B), crypt atrophy “ca” (B) and 

mucosal atrophy “ma” (B) (×20). Colon of rats (n = 4) treated with normal water, 0.5% 

DSS water for 12 weeks (A and B); rats treated with normal water and 0.5% DSS water 

for 12 weeks with Queen Garnet plum juice (8mgC3G/kg BW/d) in the food for last 6 

weeks (C and D), with purple carrot juice (8mgC3G/kg BW/d) in the food for last 6 

weeks (E and F), with pure C3G powder (8mgC3G/kg BW/d) in the food for last 6 

weeks (G and H). DSS, dextran sodium sulphate; C3G, cyanidin 3-glucoside. Intestinal 

inflammation in B shows signs of inflammatory bowel disease with epithelial 

disruption, crypt distortion, crypt atrophy and mucosal atrophy. 

Table 2. Intestinal effects of Queen Garnet plum juice, purple carrot juice and C3G. 

 DSS Queen Garnet 

Plum juice 

Purple carrot 

juice 

C3G 
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Stool 

consistency 

    

Stool bleeding     

Inflammation     

Epithelial 

disruption 

    

Crypt distortion     

Mucosal atrophy     

DSS, dextran sodium sulphate; C3G, cyanidin 3-glucoside 

 

Fig. 4. Effect of Queen Garnet plum, purple carrot and C3G on the cumulative percent 

recovery of sucrose (A), lactulose (B), mannitol (C), sucralose (D) and whole gut 

permeability (E) over 24 h percent excretion of sugar probes in rats given 0.5% DSS 

water (DP, DPC, DC) or normal water (CP, CPC, CC) in comparison to control (C) 

and 0.5% DSS (D) rats for twelve weeks. Values are mean ± SEM, n =6. Endpoint 

means with a different alphabet differ, p < 0.05. DSS, dextran sodium sulphate; C, 

normal water; CP, normal water + Queen Garnet plum; CPC, normal water + purple 

carrot; CC, normal water + cyanidin 3-glucoside (C3G); D, 0.5% DSS in drinking 
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water; DP, 0.5% DSS in drinking water + Queen Garnet plum; DPC, 0.5% DSS in 

drinking water + purple carrot; DC, 0.5% DSS in drinking water + C3G. 

 

 

Fig. 5. Taxonomic diversity of faecal microbiota in rats given C3G with 0.5% DSS 

water (DC) or normal water (CC) in comparison to control (C) and 0.5% DSS (D) rats 

for twelve weeks. (A) Mean abundances of the major bacterial phyla as percentage of 

the total population among the four groups of rats. (B) Relative abundance of 

Proteobacteria phylum. (C) Venn diagram of observed taxonomical units (OTUs) 

among C, CC, D and DC rats. (D) Relative abundances of order YS2, family 

Peptostreptococcaceae and genus Sutterella among C, CC, D and DC rats. 
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Fig. 6. Heat-map of bacterial phyla obtained from faecal microbiota in rats given C3G 

with 0.5% DSS water (DC) or normal water (CC) in comparison to control (C) and 

0.5% DSS (D) rats for twelve weeks, n=6. The sample groups are on the horizontal 

axis and the bacterial phyla are on the vertical axis. Dark red- highest value, dark blue- 

lowest value. 
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Fig. 7. Heat-map of bacterial species obtained from faecal microbiota in rats given 

C3G with 0.5% DSS water (DC) or normal water (CC) in comparison to control (C) 

and 0.5% DSS (D) rats for twelve weeks, n=6. The sample groups are on the horizontal 

axis and the bacterial species are on the vertical axis. Dark red- highest value, dark 

blue- lowest value. 
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Table 3. Metagenomics effects of C3G in DSS rats. 

 Control DSS DSS+C3G 

Cyanobacteria 

phylum 

   

Proteobacteria 

phylum 

   

YS2 order    

S24-7 family    

Lachnospiraceae 

family 

   

Allobaculum 

genus 

   

Sutterella genus    

DSS, dextran sodium sulphate; C3G, cyanidin 3-glucoside 

4. Discussion 

Anthocyanins, a major class of flavonoids abundant in fruits and vegetables, 

have shown anti-inflammatory activity in vitro, in vivo, and in clinical studies (18). 

One of the major anthocyanins, C3G, showed anti-inflammatory effects in human 

intestinal cell lines and thus could have a potential role in the treatment of IBD, a 

chronic inflammatory disease (7, 19-21). In this study, we showed that the C3G-

containing foods, Queen Garnet plums and purple carrot, as well as pure C3G 

improved the stool characteristics in a rat model of chronic IBD. C3G and the C3G-

containing foods reduced inflammation and induced regeneration of epithelial 

membranes, crypts and mucosal architecture in the ileum and colon of rats given 0.5% 

DSS. The gut bacteria in the C3G-treated DSS rats closely clustered to the control 

group in the heat-map of species abundance. The improvement in inflammation, ileal 

and colonic structure and gut bacteria was associated with improved clinical symptoms 
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of IBD, which as effective as the standard drug, sulphasalazine, as observed in chapter 

3. 

The limitations of our study include that only one dose of C3G was used for 

chronic treatment, thus no concentration-response curve was generated, and we did 

not analyse anthocyanins and their metabolites in intestinal, plasma or urine samples. 

The bioavailability of the C3G in the intestinal cells could give us a better 

understanding of the active ingredients of the foods available for the cell uptake and 

metabolism in vivo to deliver its pharmacological effect. Fecal samples from rats fed 

with QC juice and PC juice were not analyzed for microbiota composition and there 

could be synergistic effects of dietary fiber and other bio-actives with the C3G. 

Further, faecal samples were collected from the colon, rather than intestinal fluid, so 

we cannot define the products that reached the colon. Molecular markers of 

inflammation such as cytokines and cell adhesion molecules were not examined in this 

study which could have indicated the molecular mechanism of the treatments in 

attenuating IBD. 

Functional foods are defined as foods that can prevent or reverse disease states 

in addition to providing nutrition; they may be useful to treat signs of metabolic 

syndrome such as obesity [22]. Anthocyanins extracted from blueberries showed 

protective effects on trinitrobenzene sulphonic acid (TNBS)-induced IBD model of 

mice (22). These blueberry anthocyanins at 40mg/kg bw/day reduced colonic 

neutrophil infiltration and histological score but were not effective at 10 mg/kg/day; 

however, both doses normalised stool characteristics and anti-inflammatory cytokine 

IL-10 concentrations and effectively inhibited the pro-oxidant and pro-inflammatory 

concentrations of nitric oxide (NO), tumour necrosis factor-alpha (TNF-α), interferon-

gamma (IFN-γ) and interleukin-12 (IL-12) (22). This suggests that anthocyanin doses 

of 10 mg/kg bw/day induced anti-inflammatory responses but did not restore the tissue 

damage as the survival rate was 40% in 4 days of acute colitis induction, whereas the 

colitis control (TNBS 5mg/ml) had survival rate of 30% in 4 days. To test reversal of 

DSS-induced IBD, we treated rats with a low dose of 0.5% DSS for up to 12 weeks 

(chapter 3). Gastrointestinal symptoms were reversible with a replacement of the DSS 

solution with water for the final 6 weeks, or treatment for the final 6 weeks with 

approximately 300mg/kg sulphasalazine (chapter 3). We used C3G dose at 8 mg/kg 

bw/day which reduced the intestinal inflammation effectively as did sulphasalazine. 
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Quercetin can improve IBD symptoms as observed in acetic acid colitis model and the 

dose was 50 mg/kg  and 100 mg/kg (23). However the amount of quercetin glycosides 

present in Queen Garnet plum juice is 0.3mg/ml (11), and the dose of quercetin 

glycosides in our study was around 1.5mg/kg so it is unlikely to show its effects at 

such low dose. Therefore, C3G, the main bioactive compound in Queen Garnet plum 

could improve the gut structure and function including whole gut permeability in our 

study. 

Our previous studies on purple carrots (Daucus carota subsp sativus) at a C3G 

dose of 15 mg/kg showed improvement in the structural and functional changes of 

heart and liver in rats with diet-induced metabolic syndrome, a model of chronic low-

grade inflammation (12). We have also reported that pure C3G and the juice of Queen 

Garnet plums (Prunus salicina) at a C3G dose of 8 mg/kg reversed the symptoms of 

metabolic syndrome in obese rats, including the structure and function of heart and 

liver (11). Further, anthocyanins in purple maize (Zea mays) and black chokeberry 

(Aronia melanocarpa) prevented heart and liver damage in diet-induced obese rats 

(24). C3G prevented heart and liver damage by inhibiting the infiltration of 

inflammatory cells. Moreover, both foods reduced body weight, abdominal fat pads 

including retroperitoneal fat, and weights of left ventricle with septum and liver in the 

metabolic syndrome rats. These results suggest that C3G has anti-inflammatory action 

indicating similar effects in IBD model too.  

There are many potential benefits of C3G due to their anti-oxidant, anti-

inflammatory and anti-carcinogenic effects (18). The severely inflamed colon in IBD 

can lead to colon cancer and C3G can attenuate symptoms in IBD or even in cancerous 

cells and tissues (25, 26). Different fruits and vegetables containing C3G such as 

purple carrot, bilberry, grape, purple corn and chokeberry inhibited the proliferation 

of human colorectal adenocarcinoma (HT29) cells (27). The reduction of colon length 

in inflammatory conditions and increased length due to the C3G and C3G-containing 

purple carrot and Queen Garnet plum suggests that C3G in foods can increase the 

healthy cells renewal against oxidative stress induced apoptosis as in inflammatory 

conditions (28). The oxidative colonic DNA damage was inhibited by the anti-oxidant 

activity of the purple carrot anthocyanins extract, quenching reactive oxygen species 

(ROS) in the human colonic mucosa cells (29). C3G rather than it’s metabolites, 

phloroglucinol aldehyde and protocatechuic acid, inhibited DNA damage in colon 
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carcinoma cells (25). This could be the reason for the increase in colon length due to 

C3G and C3G-containing foods as seen in the current study. Moreover, it was also 

found that anthocyanin extract of purple carrot attenuated oxidative damage with 

reduction in the concentrations of malondialdehyde and carbonyl protein and increase 

in the activities of superoxide dismutase, glutathione peroxidase and total antioxidant 

capacity in liver, kidney, blood and heart of rats with D-galactose (400 mg/kg) induced 

oxidative stress (30).  

The oral bioavailability of the anthocyanins is a major factor to consider when 

determining the anti-inflammatory activity in the tissues, especially the intestinal 

lining. C3G is rapidly and efficiently absorbed in jejunum and ileum (31), and its anti-

inflammatory effects were seen in our ileum histology. It was observed that the 

digested purple carrot extract had less potency to quench ROS than the extract before 

digestion [13]. This suggests that sufficient anthocyanins were absorbed by the 

intestinal cells to induce their anti-oxidant activity and improve the gut structure and 

function as observed in the histology of DPC rats.  

The anti-oxidant effect of anthocyanins from purple carrot attenuated liver 

damage due to cadmium toxicity by reducing the DNA destruction and oxidative stress 

(32). This shows that C3G could repair the DNA in the intestine of DSS-treated rats 

and increase the crypts, villi, goblet cells and epithelial membrane as seen in our study. 

C3G had cytoprotective properties when tested against cell damage induced by 

mycotoxins such as aflatoxin B1 (AFB1) and ochratoxin A (OTA) (33). The study 

highlighted the free radical scavenging property of anthocyanins which prevented 

DNA and protein damage in HepG2 and CaCo-2 cell lines (33). The role of C3G in 

promoting healthy tissue turnover is affirmed by their role in curbing tissue damage 

due to free radicals or antigens that can induce inflammation or even carcinogenesis. 

Dysbiosis could be the causative factor or the consequence of gut inflammation 

depending on the interplaying factors (34). DSS induced imbalance of gut microbiota 

and mimicked human gut bacterial changes in IBD (35) as observed in our IBD model 

(chapter 3). C3G is readily absorbed in small intestine, and in colon is metabolized by 

gut microflora by cleavage of glycosidic linkages to produce protocatechuic acid, 

which has antioxidant and antimicrobial activities (8, 36, 37). In our study, C3G 

treatment groups clustered together suggesting that C3G had interaction with gut 
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microflora that could have improved the symptoms of inflammation. Family 

Peptostreptococcaceae of Firmicutes phylum increased in DSS-induced colitis mice 

fed with high cellulose diet (38), as seen in C3G-treated rats in our study; however, 

this family also increased in IBD patients (39), similar to our D rats indicating that gut 

microbiome is in a complex dynamic state that could be affected by many host and 

environmental factors other than DSS or treatment. Though Proteobacteria phylum 

increased in our DC rats as seen in IBD patients, the non-pathogenic genus Sutterella 

of the same phylum also increased in DC rats (40). Genus Sutterella are human gut 

commensal bacteria bound to epithelial barrier especially in duodenum, producing 

immunomodulatory effects (40). In DSS-induced colitis mice, gut commensal 

bacterial families Lachnospiraceae (butyrate-producing) and S24-7 decreased (41), 

and they increased when phenolics-containing lettuce were given to high fat diet-

induced obese mice and in mice with remission of colitis mice during treatment phase, 

respectively (42, 43), as observed in our C3G-treated DSS rats (Fig. 7). This shows 

that C3G is efficient in modulation of gut microflora to reinstall homeostasis from 

dysbiosis, thus ameliorating IBD in DSS rats.  

One of the possible mechanisms of C3G to modulate inflammation is that, after 

they are taken up by the cell by hexose transporters, they can inhibit NF-κB and 

MAPK-mediated inflammatory cell signalling pathways as observed in an inflamed 

Caco-2 BBe1/THP-1 co-culture cell model (44). Thereby, they reduce the 

concentrations of pro-inflammatory cytokines such as TNF-α and IL-8, and attenuate 

inflammation in the tissues. Gut microbial degradation of anthocyanins including C3G 

resulted in phenolic acids which are demethylated to release the hydroxyl group that 

imparts the antioxidant property (36, 46). This suggests that the metabolites of C3G 

could be the active molecules that exert their beneficial activity on the intestinal 

tissues. Though we showed DSS induced intestinal tissue damage, there was no effect 

on glucose uptake which is higher in duodenum and jejunum and declines in ileum 

under carbohydrate diet (47), indicating that, in our study, small intestinal 

inflammation is not continuous and we did not observe histology of duodenum and 

jejunum to confirm the tissue damage. Absorption of C3G in small intestine also 

depends on activities of sodium-dependent glucose transporter 1 and glucose 

transporter 2 (48), and the normal glucose tolerance in our study suggests that C3G 

absorption was not compromised. A recent study stated that intervention at early stage 
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of disease is better than later at a serious critical stage because high fibre diet did not 

reverse but prevented the DSS-induced intestinal damage (49). However, our study 

with C3G and C3G-containing foods with low fibre could reverse the intestinal 

damage and restore the gut environment towards normalcy. 

In conclusion, the current study supports the role of C3G in attenuation of IBD 

symptoms. This study emphasizes the relevance of functional foods in treating chronic 

diseases such as IBD, which can be future clinical therapy with prospective clinical 

trials on these C3G-containing foods. 
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Supplementary Table S1. Physical, dietary, metabolic, and organ weight parameters in rats treated with Queen Garnet plum, purple carrot or 

C3G. 

Variable C CP CPC CC D DP DPC DC 
P-Value 

DSS Treatment Interaction 

Final body 

weight, g 

632 ± 

19a 

552 ± 

15b 

584 ± 

12ab 

597 ± 

14ab 

612 ± 

13ab 

558 ± 

17b 

551 ± 

18b 

571 ± 

15ab 
0.1024 0.0004 0.6182 

Energy intake, 

kJ/d 

 511 ±  

30 

 486 ± 

20 

504 ± 

26 

 468 ± 

22 

503 ± 

36 

564 ± 

41 

498 ± 

28 

473 ± 

13 
0.39 0.29 0.38 

Feed efficiency, 

g/kJ 

0.18 ± 

0.014 

0.169 

± 0.01 

0.16 ± 

0.018 

0.17 ± 

0.01 

0.183 ± 

0.017 

0.141 ± 

0.012 

0.139 ± 

0.016 

0.158 ± 

0.018 
0.17 0.16 0.74 

Retroperitoneal 

fat, mg/mm tibial 

length  

398 ± 

25 

272 ± 

20 

321 ± 

28 

335 ± 

35  

349 ± 

22 

298 ± 

28 

277 ± 

33 

326 ± 

43 
0.3756 0.0237 0.5727 

Epididymal fat, 

mg/mm tibial 

length  

260 ± 

22 

179 ± 

17 

190 ± 

14 

211 ± 

16 

209 ± 

18 

206 ± 

17 

172 ± 

22 

199 ± 

32 
0.3546 0.0660 0.3099 

Omental fat, 

mg/mm tibial 

length  

284 ± 

23 

204 ± 

16 

249 ± 

16 

222 ± 

22 

216 ± 

13 

207 ± 

18 

212 ± 

23 

218 ± 

16 
0.0501 0.1243 0.2177 

LV + Septum wet 

weight, mg/mm 

tibial length  

23.5 ± 

0.9a 

19.7 ± 

1.2b 

20.2 ± 

0.9ab 

20.4 ± 

0.6ab 

22.4 ± 

0.7ab 

21.9 ± 

0.8ab 

20.3 ± 

0.5ab 

21.3 ± 

0.6ab 
0.3592 0.0076 0.2271 
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RV wet weight, 

mg/mm tibial 

length  

6.53 ± 

0.61a 

4.2 ± 

0.52b 

4.85 ± 

0.31b 

4.68 ± 

0.26b 

5.56 ± 

0.41ab 

4.3 ± 

0.36b 

3.91 ± 

0.3b 

4.02 ± 

0.4b 
0.0382 <0.0001 0.5364 

Liver wet weight, 

mg/mm tibial 

length 

403 ± 

19a 

326 ± 

10b 

335 ± 

9b 

330 ± 

16b 

379 ± 

12a 

372 ± 

17a 

326 ± 

10b 
348 ± 9b 0.4129 0.0001 0.0544 

Kidney wet 

weight, mg/mm 

tibial length 

71.4 ± 

1.4ab 

62.9 ± 

1.6 b 

70.9 ± 

1.9ab 

69.2 ± 

2ab 

73.2 ± 

2.6a 

69 ± 

2.1ab 

67 ± 

2.7ab 

70.8 ± 

2.8ab 
0.3702 0.0433 0.1677 

Spleen wet 

weight, mg/mm 

tibial length 

27.3 ± 

1.3 

22.6 ± 

1.4 

25.7 ± 

1.1 

22.9 ± 

1.4 

25.5 ± 

1.3 

23.2 ± 

1.2 

24.4 ± 

2.5 

25.6 ± 

2.1 
0.9650 0.1843 0.4920 

All values are mean ± SEM, n = 8. Mean values within a row with a different superscript are significantly different, P<0.05. DSS, dextran sodium sulphate; C, 

normal water; CP, normal water + Queen Garnet plum; CPC, normal water + purple carrot; CC, normal water + Cyanidine-3-glucoside (C3G); D, 0.5% DSS 

in drinking water; DP, 0.5% DSS in drinking water + Queen Garnet plum; DPC, 0.5% DSS in drinking water + purple carrot; DC, 0.5% DSS in drinking water 

+ C3G; LV, left ventricle; RV, right ventricle. 
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Abstract 

The global prevalence of inflammatory bowel disease (IBD), mainly ulcerative colitis 

and Crohn’s disease affecting primarily the colon and small intestine, is increasing. 

There is a need for complementary treatments to improve the effectiveness and adverse 

effect profile of current drug therapy. Functional foods can prove beneficial for the 

treatment of chronic diseases. Pelargonidin 3-glucoside (P3G), the major anthocyanin 

in strawberry, has anti-inflammatory and antioxidant effects. Therefore, we tested 

P3G-containing strawberry in our chronic IBD rat model induced by dextran sodium 

sulphate (DSS). Rats were randomly placed into four groups and were given powdered 

food with either normal water (C) or 0.5% DSS (D) in drinking water for 12 weeks to 

induce IBD. Strawberry (SB) as freeze-dried powder  was added to the diet for the 

final 6 weeks to give a dose of 8 mg P3G/kg body weight/day in CSB and DSB rats. 

Body weight and stool characteristics were assessed daily for 12 weeks. C and CSB 

rats had no symptoms of IBD. D rats had severe diarrhoea, bloody stools, erosion of 

mucosal epithelium, crypt atrophy, loss of villi and goblet cells, and inflammatory cell 

infiltration. P3G-containing strawberry treatment in DSS rats reversed the observed 

symptoms of IBD with healthy stools (stool consistency: C 0.0±0.0, D 2.5±0.2, DSB 

1.3±0.3; stool bleeding: C 0.0±0.0, D 2.4±0.2, DSB 0.6±0.2) and mucosal lining of 

ileum and colon including increased villi, crypts and goblet cells and reduced 

inflammation compared to standard drug, sulphasalazine. Our study suggests that 

addition of P3G in diet from strawberry may help mitigate the symptoms of IBD and 

improve the quality of life in IBD patients. 

Keywords: Inflammatory bowel disease, dextran sodium sulphate, pelargonidin 3-

glucoside, strawberry, inflammation 
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1. Introduction 

Inflammatory bowel disease (IBD) is a chronic intestinal disease affecting 

people in both the developed and developing world (1, 2). IBD therapy requires 

chronic administration of drugs, and this increases the risk of adverse effects (3-5). 

Moreover, treatment with biologics and even surgery can be expensive (6). An 

effective, cheaper and non-toxic therapy is always sought for chronic diseases 

including IBD. Therefore, functional foods that prevent or reverse disease as well as 

providing nutrition may be a valuable complementary chronic treatment for IBD (7). 

Anthocyanins from berries and other foods are well-known for their anti-oxidant and 

anti-inflammatory activities which may be potential therapeutic mechanisms in 

treating chronic diseases (2, 8). Strawberry (Fragaria × ananassa) contains 

pelargonidin 3-glucoside (P3G) which is an important anthocyanin present in many 

fruits (9, 10). P3G has anti-inflammatory actions and radical scavenging properties as 

shown in human whole blood cell cultures (11). In human skin cells, strawberry extract 

improved regeneration of cells, decreased cell and DNA damage and reduced reactive 

oxygen species (ROS) in the cell after exposure to pro-oxidant stimuli demonstrating 

the anti-oxidant properties of P3G (12). Another study in which ethanol was used to 

induce damage in the lining of the stomach (also known as gastric mucosa) in rats 

showed that strawberry in food was able to increase anti-oxidant enzymes in the 

stomach lining (13). There was a correlation between anthocyanin intake and reduction 

of gastric damage (13). Inflammatory bowel disease is a gastrointestinal disease 

involving any part of the gut, predominantly the small and large intestine, so that 

strawberry could prove to be a beneficial product in reducing gastric mucosal erosion 

that leads to bleeding and diarrhoea. Freeze-dried strawberry powder intake by adults 

improved insulin sensitivity for those resistant to insulin (14). A study using human 

colon cancer cells showed that a  crude strawberry extract as well as pure anthocyanin 

including P3G decreased the proliferation of cancer cells (15). These studies 

strengthen the potential of P3G-containing strawberry as a possible intervention for 

IBD. 

Our laboratory has conducted rat studies on cyanidin 3-glucoside (C3G), a 

major anthocyanin in purple-coloured foods, at a C3G dose of 8mg/kg body 

weight/day following addition to the food. In these studies, C3G attenuated 

inflammatory bowel disease in DSS-induced IBD rats (chapter 4) and metabolic 
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syndrome in diet-induced obese rats (16, 17). We hypothesized that P3G at the same 

dose will also have efficacy and therapeutic potential in IBD. This dose is not toxic for 

the rats as other studies have used a much higher dose of 100mg/kg body weight (18). 

The present study aims to understand the responses to pelargonidin 3-glucoside 

(P3G) in the chronic IBD rat model. P3G showed anti-carcinogenic effects on colonic 

cells (19) suggesting its responses in IBD are worth exploring. A comparison of P3G 

with C3G and sulphasalazine from our earlier studies was made. We will be able to 

ascertain the  therapeutic effects of P3G-containing strawberry in chronic IBD rats, 

which could suggest a dietary intervention to improve the gut health of IBD patients. 

2. Materials and Methods 

2.1 Diets and measurements in living rats 

The animal experiments conducted in this study were authorized by the 

University of Southern Queensland Animal Ethics Committee under the guidelines of 

the National Health and Medical Research Council of Australia. Male Wistar rats (8-

9 weeks old, weighing 335 ± 1 g, n = 32) were purchased from the Animal Resource 

Centre, Perth. All rats were provided free access to food and water and were 

individually housed in temperature-controlled (20 ± 2°C), 12-hour light-dark 

conditions at the University of Southern Queensland animal house.  

The rats were given standard diet of powdered rat food (Specialty Feeds, Glen 

Forest, WA, Australia). They were randomly divided into four experimental groups 

(n=8 each). The first group served as healthy control (C) with normal drinking water 

and the second group was IBD control (D) with 0.5% dextran sodium sulphate (DSS, 

molecular weight: 36,000-50,000 Da, MP Biomedicals) in drinking water. P3G-

containing strawberry powder was given as treatment for last 6 weeks to the third 

group of rats with normal water (CSB) and the fourth group of rats with 0.5% DSS 

drinking water (DSB). The concentration of pelargonidin 3-glucoside (P3G) was 108 

mg/kg of food. The freeze-dried strawberry powder with its anthocyanin content 

analysis was prepared and analysed by Queensland Department of Agriculture and 

Fisheries (DAF), Brisbane, Australia (Table 1). 

Table 1. Anthocyanin content of freeze-dried strawberry powder . 

Anthocyanin Content – mg/100 g powder 
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Cyanidin 3-glucoside 33 

Pelargonidin 3-glucoside  1048 

Pelargonidin 3-rutinoside 66 

Pelargonidin 3-malonylglucoside 58 

Total 1205 

 87% pelargonidin 3-glucoside 

 97% pelargonidin-based anthocyanins 
 

Energy intake was calculated from the value of powdered rat food of 13.8 kJ/g. 

Rats were monitored daily for body weight, and food and water intakes. Daily 

anthocyanin (P3G in strawberry powder) intake was calculated from the daily food 

intake. 

Rats were food-deprived overnight for 12 hours and oral glucose tolerance tests 

were performed with Medisense Precision Q.I.D glucose meter (Abbott Laboratories, 

Bedford, USA) at 0, 6 and 12 weeks (20). 

Rat stools were examined to assess the disease activity daily for 12 weeks. The 

stool consistency was scored as 0-formed, 1-mild-soft, 2-very soft, 3-watery soft 

(diarrhoea). The stool bleeding was scored as 0-normal colour, 1-brown colour, 2-

reddish colour, 3-bloody red (21). 

A cocktail of sucrose, lactulose, mannitol and sucralose (Sigma-Aldrich 

Australia, Sydney, Australia) was utilized to assess the rats’ intestinal permeability 

after 12 weeks of the study as described in chapters 3 and 4. Gastric transit and gastric 

emptying experiments were performed using 0.05% phenol red solution (Sigma-

Aldrich, Australia) as described in chapter 3. 

2.2 Measurements after euthanasia 

Terminal anaesthesia was induced in the rats via intraperitoneal injection of 

pentobarbitone sodium (Lethabarb, 100 mg/kg,Virbac, Milperra, Australia). Heparin 

(200 IU; Sigma-Aldrich Australia, Sydney, Australia) was injected into the right 

femoral vein. Further, the rats were dissected and the organs were collected (20). 

The lengths of small intestine and colon were measured. Distal ileum and distal 

colon (~1.5 cm) were collected for histological examination and organ bath studies as 

described in chapter 3. The tissues were formalin-fixed, processed, embedded in 

paraffin wax, and 5 µm sections were cut. The tissues were stained with haematoxylin 

and eosin as well as Periodic acid–Schiff (PAS) stains and combined Alcian blue-PAS 
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stain. All stained slides were digitally scanned at 20x magnification using the Leica 

SCN400 slide autoscanner.  Images were viewed in Image Scope  with software 

provided by Leica Biosystems to determine the infiltration of inflammatory cells and 

damage to the intestinal tissue (20). 

As in chapter 3, following the blood collection from the abdominal aorta, the 

left ventricle along with septum and the right ventricle, kidney, spleen, liver and 

abdominal fat pads were isolated, blotted dry and weighed for each rat. The organ 

weights were  normalised to the tibial length at the time of organ isolation and 

expressed as mg/mm (20). 

Examination of rat urine samples for sugars was performed at the Central 

Analytical Research Facility (CARF) of the Queensland University of Technology, 

Gardens Point, Brisbane, with the assistance of Dr. Rajesh Gupta. The GCMS method 

as described in chapters 3 and 4 was used for the sugar analysis, which was modified 

from other study (22). Cumulative percent urinary recovery of each sugar and small 

intestine and whole gut permeability were calculated (23-25).  

The whole blood analysis was performed by collecting blood in EDTA tubes. 

The samples were sent to The University of Queensland, Gatton where they were 

analysed using an autoanalyser. The parameters tested were WBC, RBC, 

haemoglobin, platelets, haematocrit, MCV, MCH and MCHC. 

2.3 Statistics 

The data were expressed as mean ± SEM. Results from all groups C, CSB, D and DSB 

were analysed for variance by using 1-way and 2-way ANOVA. The data were tested 

with Neumann-Keuls multiple comparison post hoc test and P<0.05 was considered as 

significant. Statistical analyses was performed using GraphPad Prism version 6 for 

Windows (GraphPad Software, San Diego, CA, USA) (20).            

3. Results  

The stool consistency and stool bleeding scores of C and CSB rats were zero and D 

rats increased the stool consistency and stool bleeding scores, which were reduced in 

DSB rats indicating a positive outcome of the intervention (Fig. 1A & B). The small 

intestinal and gastric transit did not differ among C and CSB rats or DSB and D rats. 

DSS treated rats had reduced colon length and gastric emptying was reduced in 

109



strawberry-treated rats (Table 2). The histology of ileum and colon of C and CSB rats 

showed healthy mucosal epithelium and goblet cells (Fig. 2A, B, E & F; Fig. 3A, B, E 

& F; Fig. 4A, B, E & F). The ileum and colon of the D rats had crypt and mucosal 

atrophy, loss of goblet cells and villi whereas the DSB rats improved with reduced 

infiltration of inflammatory cells, villi and crypts and regeneration of epithelial 

membrane compared to D rats (Fig. 2C, D, G & H). D rats had decreased number of 

goblet cells leading loss of the protective mucus layer in ileum and colon (Fig. 3C & 

G; Fig. 4C & G). P3G-containing strawberry increased the presence of goblet cells in 

ileum and colon which helps to maintain mucous membranes in DSB rats (Fig. 3D & 

H). The forces of contraction of the isolated ileum and colon preparations in response 

to acetylcholine were not different among the C and CSB rats (Ileum-C=10.9 ± 3.1, 

CSB=19.9 ± 5.9; colon- C=48.7 ± 5.6, CSB=68.0 ± 3.9) (Fig. 1C &D). D rats had 

lower acetylcholine-induced force of contraction of ileum than DSB rats but not of 

colon (ileum-D=11.0 ± 2.2, DSB=31.0 ± 4.3; colon- D=45.7 ± 6.5, DSB=58.1 ± 8.2 

mN) (Fig. 1C &D). Overall the strawberry treatment increased the ileum and colon 

force of contraction compared to C and D rats. The cumulative percent recovery of 

sucrose did not differ among C or CSB rats or D and DSB rats (Fig. 5A), however 

CSB rats had higher value than C and DSB rats at 12h and 24h. Lactulose cumulative 

percent recovery was higher in CSB rats than in C, D, DSB rats at 6 h, 9 h, 21 h and 

24h but was unaltered among D and DSB rats (Fig. 5B). The cumulative percent 

recovery of mannitol was similar among C and CSB rats or D and DSB rats but DSB 

rats had lower value than C and CSB rats at 24 h (Fig. 5C). Sucralose cumulative 

percent recovery of strawberry treated rats at 21 h and 24 h increased compared to C 

and D rats (Fig 5D). The lactulose/mannitol ratio, an indicator of small intestine 

permeability increased in CSB rats compared to C rats but did not alter among C, D 

and DSB rats (Fig. 5E). The indicators of whole gut permeability, sucralose/lactulose 

ratio was similar among all the groups of rats whereas the sucralose/mannitol ratio 

increased in DSB rats compared to D rats but did not alter among C, CSB and D rats 

(Fig. 5E). Table 3 summarises the intestinal effects of the interventions. 

None of the groups of rats showed any difference in final body weight, energy 

intake and feed efficiency (Table S1). Total abdominal fat, retroperitoneal fat, 

epididymal fat, omental fat, fasting blood glucose and blood glucose AUC also 

remained unchanged among the four groups of rats (Table 2 & S1). The wet weights 
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of left ventricle with septum, right ventricle, liver, kidney and spleen were similar 

among all the groups of rats (Table S1). WBC, RBC, haemoglobin, platelets, 

haematocrit, MCV, MCH and MCHC had no change either due to DSS or the 

intervention on the rats (Table S1). 
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Table 2. Metabolic and gastrointestinal parameters in rats treated with strawberry. 

Variable C CSB D DSB 

P-Value 

DSS Treatment Interaction 

Fasting blood glucose, 

mmol/L 
4.3 ± 0.1 3.8 ± 0.2 4.3 ± 0.2 4.0 ± 0.1 0.0173 0.5322 0.5322 

Blood glucose AUC, 

mmol/L/120 min 
700 ± 14 674 ± 28 688 ± 22 709 ± 21 0.5958 0.9080 0.2823 

Abdominal fat pads, 

mg/mm tibial length 
555 ± 26 585 ± 85 473 ± 27 556 ± 45 0.2914 0.2830 0.6117 

Small intestine length, 

cm 
111 ± 4 113 ± 4 113 ± 3 108 ± 4 0.6941 0.6941 0.3618 

Colon length,  

cm 
21.0 ± 1.0 18.5 ± 0.7 19.0 ± 1.0 17.9 ± 0.6 0.0419 0.1348 0.4140 

Gastric transit,  

% 
80.0 ± 3.0 77.0 ± 3.0 73.1 ± 3.8 77.8 ± 4.5 0.4248 0.8230 0.3155 

Gastric emptying,  

% 
63.9 ± 4.8 53.5 ± 5.7 67.0 ± 2.8 55.7 ± 6.3 0.6053 0.0417 0.9299 

Anthocyanin intake, 

mg/kg bw/day 
0.0 ± 0.0 6.9 ± 0.2 0.0 ± 0.0 7.1 ± 0.1 0.3787 <0.0001 0.3787 
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All values are mean ± SEM, n = 8. Mean values within a row with a different superscript are significantly different, P<0.05. C, control 

(0% DSS); D, 0.5% DSS; CSB, C + strawberry; DSB, D + strawberry; DSS, dextran sodium sulphate; AUC, area under curve; CSB and 

DSB rats were treated with strawberry for last 6 weeks of the 12 weeks’ protocol. 
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Figure 

P-Value 

DSS Treatment Interaction 

A <0.0001* 0.0025 0.0025 

B <0.0001* <0.0001 <0.0001 

C 0.1633 0.0011 0.1729 

D 0.3143 0.0192 0.5869 

 

Fig. 1. Effect of P3G-containing strawberry powder on stool consistency (A), stool 

bleeding (B), acetylcholine-induced force of contraction on ileum (C) and colon (D) 

preparations, on rats. Values are mean ± SEM, n =8. Endpoint means with an asterisk 

differ, p < 0.05. DSS, dextran sodium sulphate. Stool consistency score, 0-formed, 1-

mild-soft, 2-very soft, 3-watery soft (diarrhoea). Stool bleeding score, 0-normal 

colour, 1-brown colour, 2-reddish colour, 3-bloody red. Interventions in the diet from 

week 7-12. 
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Fig. 2. Effect of anthocyanin P3G-containing strawberry powder on inflammation in 

the ileum and distal colon. Haematoxylin and eosin staining of ileum and distal colon 

showing infiltration of inflammatory cells “in” (C, G), epithelial and villi disruption 

“evd” (C, G), crypt distortion “cd” (C, G), and mucosal atrophy “ma” (C, G) (×20). 

Ileum of rats treated with normal water and 0.5% DSS water for 12 weeks (A and C 

respectively); rats treated with normal water and 0.5% DSS water for 12 weeks with 

P3G-containing strawberry powder (8mgP3G/kg BW/d) in the food for last 6 weeks 

(B and D respectively. Colon of rats treated with normal water and 0.5% DSS water 

for 12 weeks (E and G respectively); rats treated with normal water and 0.5% DSS 

water for 12 weeks with P3G-containing strawberry powder (8mgP3G/kg BW/d) in 

the food for last 6 weeks (F and H respectively). DSS, dextran sodium sulphate; P3G, 

Pelargonidin-3-glucoside. Intestinal inflammation in C shows signs of inflammatory 

bowel disease with epithelial disruption, crypt distortion and mucosal atrophy and in 

G shows signs of ulcerative colitis with sever colon inflammation. The treatment with 

P3G-containing strawberry powder improved epithelial membrane and crypts in ileum 

(D) and colon (H). 

 

 

Fig. 3. Effect of P3G-containing strawberry powder on mucin-secreting goblet cells in 

the ileum and distal colon. Periodic acid–Schiff (PAS) staining of ileum and distal 

colon showing decreased number of goblet cells stained dark pink for neutral mucin. 

D rats had few goblet cells “gc” (C, G) (×20). Ileum of rats treated with normal water 

and 0.5% DSS water for 12 weeks (A and C respectively); rats treated with normal 

water and 0.5% DSS water for 12 weeks with P3G-containing strawberry powder 

(8mgP3G/kg BW/d) in the food for last 6 weeks (B and D respectively). Colon of rats 

treated with normal water and 0.5% DSS water for 12 weeks (E and G respectively); 

rats treated with normal water and 0.5% DSS water for 12 weeks with P3G-containing 
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strawberry powder (8mgP3G/kg BW/d) in the food for last 6 weeks (F and H 

respectively). DSS, dextran sodium sulphate; P3G, Pelargonidin-3-glucoside. 

Intestinal inflammation and loss of goblet cells in C and G indicates active  

inflammatory bowel disease. The treatment with P3G-containing strawberry powder 

improved goblet cells and epithelial membrane in ileum (D) and colon (H). 

 

Fig. 4. Effect of P3G-containing strawberry powder on mucin-secreting goblet cells in 

the ileum and distal colon. Alcian Blue-Periodic acid–Schiff staining of ileum and 

distal colon showing decreased number of goblet cells stained purple indicating 

presence of neutral mucin (dark pink) stained by PAS and acidic mucin (light blue) 

stained by Alcian Blue. D rats had few goblet cells “gc” (C, G) (×20). Ileum of rats 

treated with normal water and 0.5% DSS water for 12 weeks (A and C respectively); 

rats treated with normal water and 0.5% DSS water for 12 weeks with P3G-containing 

strawberry powder (8mgP3G/kg BW/d) in the food for last 6 weeks (B and D 

respectively). Colon of rats treated with normal water and 0.5% DSS water for 12 

weeks (E and G respectively); rats treated with normal water and 0.5% DSS water for 

12 weeks with P3G-containing strawberry powder (8mgP3G/kg BW/d) in the food for 

last 6 weeks (F and H respectively). DSS, dextran sodium sulphate; P3G, Pelargonidin-

3-glucoside. Intestinal inflammation and loss of goblet cells in C and G indicates active 

inflammatory bowel disease. The treatment with P3G-containing strawberry powder 

improved goblet cells and epithelial membrane in ileum (D) and colon (H). 

Table 3. Intestinal effects of strawberry powder. 

 DSS DSS + strawberry 

powder 
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Stool consistency   

Stool bleeding   

Inflammation   

Epithelial 

disruption 

  

Crypt distortion   

Mucosal atrophy   

Goblet cells with 

acidic and neutral 

mucin 

  

 

 

Fig. 5. Effect of P3G-containing strawberry powder on the cumulative percent urinary 

recovery of sucrose (A), lactulose (B), mannitol (C), sucralose (D) and whole gut 

permeability (E) over 24 h percent excretion of sugar probes in rats given 0.5% DSS 

water (DSB) or normal water (CSB) in comparison to control (C) and 0.5% DSS (D) 

rats for twelve weeks. Values are mean ± SEM, n =6. Endpoint means with a different 

alphabet differ, p < 0.05. DSS, dextran sodium sulphate; C, Normal water; CSB, 

Normal water + strawberry; D, 0.5% DSS water; DSB, 0.5% DSS water + strawberry. 

117



Discussion 

In our study, the strawberry freeze-dried powder enriched with P3G improved 

the stool characteristics by reducing diarrhoea and bleeding. The treatment improved 

gastric smooth muscle contractility and gastric emptying. The histology of ileum and 

colon also showed reduced infiltration of inflammatory cells. Further, there were 

increases in goblet cells, mucin layer, epithelial and crypt cell turnover. Overall, the 

mucosal layer of ileum and colon improved from the inflammatory insult caused by 

DSS. The limitations of this study are that the mechanistic investigations with regard 

to inflammatory cytokines and gut bacteria were not conducted.  

DSS causes epithelial membrane breakdown which encourages bacterial 

pathogens to invade the intestinal tissue (26). This stimulates a cascade of events that 

attracts innate immune cells and antigen-presenting cells. Neutrophils and 

lymphocytes are the major inflammatory cells that invade the intestinal tissue and they 

release cytokines including TNFα and IL-1β which further trigger the release of other 

pro-inflammatory cytokines (27). Thus, the DSS model mimics human IBD (28). 

Anthocyanins and C3G in particular are well-known for their antioxidant and anti-

inflammatory activity by inhibiting the production of TNFα, IL-6 and IL-1β (29). We 

wanted to ascertain the responses to P3G, a closely-related anthocyanin to C3G, in an 

inflammatory condition such as IBD in our DSS rat model. We observed that P3G had 

considerable effect in similar fashion as C3G as observed in chapter 4 in reducing the 

intestinal inflammation. P3G is found in strawberries, unlike C3G which is quite low 

as in our sample (Table 1). Therefore, the positive effects of strawberry powder to 

counterattack the action of DSS could be due to P3G. Similarly, from our previous 

experiments in chapter 3, P3G was as effective as sulphasalazine, the standard drug 

for IBD. 

The health benefits of P3G from strawberry have been reported. Strawberry 

extract acted as free radical scavenger in human skin cells and promoted regeneration 

of cells (12). P3G and one of its metabolites, phloroglucinaldehyde, increased the 

concentrations of IL-10 in diluted whole blood cells after the cells were stimulated 

with lipopolysaccharide (11). IL-10 is known for its anti-inflammatory activity and is 

a vital cytokine to prevent intestinal inflammation (30). Promotion of IL-10 and 

inhibition of free radicals prevents DNA damage, in turn promoting cell turnover. This 
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further enhances the cell proliferation in nontoxic environment and this was observed 

in our study by the increase in mucosal epithelium, villi length, crypt depth and also 

goblet cells. Increase in goblet cells promotes the mucin secretion which forms a 

protective layer on the intestinal lining that prevents infiltration of gut microbiota that 

induces inflammation (31). DSS rats without treatment had extensive loss of epithelial 

membrane goblet cells which led to loss of protective barrier thus the gut microbiota 

may invade and induce inflammation leading to intestinal tissue inflammation. The 

P3G-containing strawberry powder reversed these changes owing to its anti-oxidant 

and anti-inflammatory activity and it is supported by another study on hydroalcoholic 

extract of strawberry treatment in acetic acid-induced colitis in rats (32).  Though DSS 

can cause increased intestine permeability (27), we did not observe such effects 

indicating the inflammation was not severe enough to damage intestinal wall function.  

Strawberry extract also elevated the activities of anti-oxidant enzymes in the 

stomach lining thus reducing gastric damage (13). We observed that there was 

improvement of gastric emptying which suggests that the strawberry powder had better 

absorption. One study reported that the absorption of C3G and P3G, with different 

aglycones but similar sugars, was different however they both had high conversion to 

metabolites with the total urinary recovery of P3G and its metabolites much higher 

than that of C3G (33). This suggests that P3G has better bioavailability than C3G. The 

main metabolite of P3G is pelargonidin monoglucuronide which had higher urinary 

excretion in humans than the sulpho-conjugate of pelargonidin and the parent 

compound, P3G itself which was the least (34). Not long after the above studies, 

another group published a study on pelargonidin with regard to its absorption, 

distribution and excretion in rats (35). They reported that pelargonidin was 

predominantly present in the stomach after 2h of ingestion and dropped down to 1.2% 

only after 18h of ingestion. This supports our results on gastric emptying and 

emphasises the role of P3G in ameliorating intestinal damage by increased absorption 

to enhance the systemic antioxidant and anti-inflammatory activity.  

Further down the intestine, the P3G passes to the colon where it undergoes 

microbial fermentation to release one of the major metabolites, 4-hydroxybenzoic acid 

(36). 4-hydroxybenzoic acid was also observed in plasma and urine of rats after 2h and 

18h of pelargonidin ingestion (35). In a randomised, crossover, controlled 

interventional trial testing red wine or dealcoholized wine or gin, it was observed that 
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Bifidobacteria increased with increases in 4-hydroxybenzoic acid in the urine of 

participants that took red wine and dealcoholized wine (37). We observed improved 

ileum and colon smooth muscle contractility due to the P3G-containing strawberry 

powder in healthy and DSS rats. It is understood that this improves intestinal function 

to allow the treatment to reach the colon and be metabolised by gut bacteria. Moreover, 

the above studies indicate that anthocyanins can act as prebiotics and modulate gut 

microbiota towards gut homeostasis as observed in our previous C3G study in IBD. 

The gastric emptying can also be delayed when strawberry is taken with cream 

as observed by researchers from UK and Italy. The excretion of P3G metabolites, 

mainly pelargonidin-O-glucuronide, was delayed in the first two hours of ingestion 

and increased during 5 to 8 h after ingestion in participants that had strawberry with 

cream and the opposite effect was seen with participants that had only strawberry (38). 

This suggests that the bioavailability of P3G in strawberry can be enhanced by 

ingesting with cream and this allows greater absorption which in turn will promote 

higher anti-inflammatory activity in the intestinal tissue. Strawberry when taken with 

yogurt was tested for in vitro gastrointestinal digestion to determine its stability and 

bio-accessibility of the anthocyanin metabolites in the gastrointestinal tract (39). The 

study highlighted that the anti-oxidant activity of the strawberry yogurt was higher 

than the undigested yogurt suggesting that the P3G is more active in vivo. However, 

these anthocyanins, primarily pelargonidin 3-glucoside and pelargonidin 3-rutinoside, 

were more prevalent in the gastric compartment with lesser amounts in the small 

intestine comparatively and this correlated with decreased gastric emptying as 

observed in treatment groups in our study. 

The health benefits of strawberry have been reported in cardiovascular disease 

and cancer due to its anti-oxidant and anti-carcinogenic activity (2, 40). In a healthy 

group of individuals, frozen strawberry intake reduced the lipid peroxidation in their 

serum and highlighted the anti-oxidant activity of strawberry (41). In human umbilical 

vein endothelial cells, it was observed that pelargonidin showed antithrombotic 

activity by prolonging activated partial thromboplastin time, prothrombin time, and 

inhibited the thrombin and activated factor X (FXa) indicating its benefits in 

preventing thrombus formation and thereby enhancing blood circulation (42). DSS or 

the strawberry treatments did not affect haematological parameters in our study. To 

test the antitumor effect of strawberry, rats were fed for 5 weeks with N-
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nitrosomethylbenzylamine (NMBA) to induce tumorigenesis in the rat oesophagus. 

For the next 25 weeks, the rats were fed with freeze-dried strawberries which reduced 

the tumorigenesis (43). Similarly, other studies on strawberry, blueberry, blackberry, 

red raspberry, black raspberry and cranberry extracts showed anti-carcinogenic effects 

on cervical (CaSki, SiHa), breast (MCF-7, T47-D), human oral (KB, CAL-27), colon 

(HT-29, HCT116), and prostate (LNCaP) tumour cell lines (44, 45). These properties 

of strawberries could be of benefit for IBD patients who may suffer from 

cardiovascular diseases or are at increased risk of colon cancer which may manifest in 

advanced stages of IBD. Based on these observations, we are currently investigating 

its effects on metabolic syndrome at the same dose in our diet-induced obesity. 

In conclusion, P3G-enriched strawberry powder can be considered as a 

treatment choice for IBD. There is a clear need for clinical trials and more mechanistic 

studies to understand the role of P3G in curbing the inflammatory insult at a molecular 

level. Strawberry, rich in nutrition, can also be labelled as a cost-effective functional 

food. 
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Table S1. Metabolic and gastrointestinal parameters in rats treated with strawberry. 

Variable C CSB D DSB 
P-Value 

DSS Treatment Interaction 

Final body weight, g 562 ± 8 551 ± 18 537 ± 9 550 ± 14 0.3220 0.9387 0.3600 

Energy intake, kJ/d 475 ± 22 456 ± 14 469 ± 15 474 ± 15 0.7238 0.6802 0.4812 

Feed efficiency, g/kJ 0.146 ± 0.009 0.156 ± 0.012 0.145 ± 0.009 0.145 ± 0.011 0.5661 0.6322 0.6322 

Retroperitoneal fat, mg/mm 

tibial length 
266 ± 17 294 ± 47 214 ± 10 275 ± 29 0.2361 0.1403 0.5781 

Epididymal fat, mg/mm 

tibial length 
118 ± 8 122 ± 20 107 ± 8 121 ± 7 0.6213 0.4599 0.6804 

Omental fat, mg/mm tibial 

length 
171 ± 7 169 ± 20 151 ± 14 160 ± 12 0.3107 0.8050 0.6983 

LV + Septum wet weight, 

mg/mm tibial length 
23.4 ± 1.1 24.1 ± 1.4 23.2 ± 1.3 22.1 ± 0.7 0.3497 0.8639 0.4430 

RV wet weight, mg/mm 

tibial length 
4.33 ± 0.22 4.47 ± 0.31 3.70 ± 0.31 4.19 ± 0.26 0.1124 0.2661 0.5335 

Liver wet weight, mg/mm 

tibial length 
287 ± 9 299 ± 11 288 ± 10 312 ± 7 0.4661 0.0649 0.5270 

Kidney wet weight, mg/mm 

tibial length 
65.8 ± 1.1 71.7 ± 3.5 68.8 ± 1.5 72.2 ± 1.7 0.4239 0.0398* 0.5668 

Spleen wet weight, mg/mm 

tibial length 
19.8 ± 1.1 23.5 ± 2.0 21.1 ± 1.0 22.4 ± 1.2 0.9429 0.0814 0.3929 
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WBC, 

x 109/L 
4.23 ± 0.81 4.09 ± 0.76 4.72 ± 0.7 2.75 ± 0.6 0.5626 0.1594 0.2194 

RBC, 

x 109/L 
7.90 ± 0.20 8.40 ± 0.23 8.05 ± 0.27 7.89 ± 0.12 0.4064 0.4326 0.1357 

Haemoglobin, g/L 143 ± 3 149 ± 4 143 ± 4 141 ± 3 0.2713 0.5779 0.2713 

Haematocrit, L/L 0.41 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.41 ± 0.00 1.0000 1.0000 0.2618 

MCV, 

fL 
51.5 ± 0.6 50.2 ± 0.7 51.7 ± 0.7 51.3 ± 0.6 0.3306 0.2071 0.4980 

MCH, 

Pg 
18.0 ± 0.3 17.8 ± 0.2 17.8 ± 0.3 18.0 ± 0.4 1.0000 1.0000 0.5238 

MCHC, 

g/L 
348 ± 1 354 ± 2 345 ± 2 347 ± 6 0.1516 0.2470 0.5577 

Platelets, x 109/L 906 ± 30 860 ± 41 910 ± 28 943 ± 84 0.3849 0.8956 0.4292 

All values are mean ± SEM, n = 6-8. Mean values within a row with a different superscript are significantly different, P<0.05. C, control (0% 

DSS); D, 0.5% DSS; CSB, C + strawberry; DSB, D + strawberry; DSS, dextran sodium sulfate; WBC, white blood cell; RBC, red blood cell; 

MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin, MCHC, mean corpuscular hemoglobin concentration. CSB and DSB 

rats were treated with strawberry for last 6 weeks of the 12 weeks’ protocol. 
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1. Summary of results 

My thesis investigated functional foods that may be used as therapeutic 

interventions in IBD. With regard to this, I started my thesis with the first chapter on 

introduction of IBD followed by review on nutraceuticals in IBD and, in the following 

chapters, I validated a chronic IBD rat model and tested prospective functional foods 

for their ability to attenuate IBD in my rat model.  Here I summarise the key take-

home messages from each of the chapters, followed by the limitations of my study and 

future directions of my study. 

Chapter 1 titled “Introduction” discussed briefly the overview of IBD, the 

possible molecular players in the development of IBD and the role of diet in IBD. I 

emphasized the need to develop a chronic IBD rat model, along with possible 

nutraceuticals that may be used to test in that rat model.  

Chapter 2 titled “Nutraceuticals in rodent models as potential treatments for 

human Inflammatory Bowel Disease” discussed the functional role of naturally 

occurring bioactive compounds such as polyphenols in attenuating IBD. Initially, I 

briefly discussed the epidemiology of IBD which has increased in incidence from 

western developed countries to developing countries in east. Further, the current drug 

treatments with their adverse effects and cost is a real burden for IBD patients. So the 

need to validate new therapeutics led to natural products owing to their reduced 

adverse effects and relatively lower cost. These advantages are only useful if the 

natural products are effective in reducing IBD symptoms. Natural products showed 

their efficacy in modulating the key pathogenic pathways of IBD, such as dysbiosis, 

oxidative stress, pro-inflammatory cytokines, immune system dysregulation and 

inflammatory cell signalling pathways. Fructo-oligosaccharides and fibre-rich foods 

such as germinated barley act as prebiotics that increased the commensal gut bacteria 

pre-clinical and clinical studies proving to be prospective component of IBD therapy. 

Curcumin, anthocyanins, punicalagin, 6-gingerol and 6-shoagol inhibited pro-

inflammatory cytokines and inflammation. Curcumin modulated several of these 

pathways including oxidative stress, pro-inflammatory cytokines, immune system 

dysregulation and inflammatory cell signalling pathways to inhibit the production of 

pro-inflammatory cytokines. The NF-κB inflammatory cell signalling pathway is 
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linked to the production of TNF which is suppressed by many functional foods, thereby 

improving the intestinal homeostasis and ameliorating the inflammation. 

Chapter 3 titled “An improved rat model for chronic inflammatory bowel 

disease” discussed the development of a rat model for chronic IBD. To validate the 

potential of the natural products in IBD treatment, a well-established animal model is 

needed. I conducted this study to develop a chronic reversible IBD model as the 

literature abounds in acute and prevention therapy animal models of IBD, however 

IBD is a chronic lifelong disease. So I tested low concentrations of dextran sodium 

sulphate (DSS; 0, 0.25, 0.5 and 1%) for 6 weeks of which 0.5% DSS was selected for 

the development of relatively stable changes in the stool consistency and bleeding 

characteristics, including the ileum and colon histology. Further, I extended the 

timeline to 12 weeks with 0.5% DSS and also replaced 0.5% DSS with normal water 

after 6 weeks. This study established that 0.5% DSS for 12 weeks is a good model of 

chronic IBD mimicking human IBD with characteristics of diarrhoea, bloody stools, 

impaired ileum and colon tissue architecture including mucosal inflammation, loss of 

epithelial layer, villi and crypts, infiltration of inflammatory cells and dysbiosis 

including increases in phylum Proteobacteria, Ruminococcus gnavus, Oscillospira sp 

and Streptococcus sp. Further, DSS-induced changes were limited to the 

gastrointestinal system, with minor changes in cardiovascular, liver and metabolic 

parameters. These gastrointestinal symptoms were improved in the DSS replacement 

group suggesting that my model was suitable for testing treatments for reversal 

therapy. Therefore, I tested sulphasalazine, a standard first line of drug therapy for IBD 

patients, in my rat IBD model. Sulphasalazine treatment also improved the 

gastrointestinal IBD symptoms. 

Chapter 4 titled “Cyanidin 3-glucoside attenuates inflammatory bowel disease 

in rats” discussed the findings of my study on anthocyanin-containing foods in my 

chronic IBD rat model. Considering that functional foods containing anthocyanins 

have anti-inflammatory activity, I investigated the effects of Queen Garnet plum and 

purple carrot juices as sources of the anthocyanin, cyanidin 3-glucoside (C3G). 

Further, I tested pure C3G as well as the functional foods. The key findings are that 

the 0.5% DSS rats on Queen Garnet plum, purple carrot and C3G had improved 

gastrointestinal symptoms of IBD. During the treatment phase, the stool consistency 

and bleeding scores reduced dramatically and the gut histology supported the physical 

131



characteristics. The ileum and colon had improved epithelial membrane, villi and 

crypts. These changes correlated with the gut bacteria analysis for the C3G-treated rats 

which clustered closer to healthy control rats, including increases in family 

Lachnospiraceae and genus Sutterella. The responses to the functional foods and C3G 

treatments was comparable to sulphasalazine of my previous chapter, suggesting that 

C3G is efficient in ameliorating IBD. 

Chapter 5 titled “Pelargonidin 3-glucoside from strawberry improves chronic 

inflammatory bowel disease in rats” discussed the responses to the anthocyanin, 

pelargonidin 3-glucoside (P3G) with its anti-inflammatory action on the intestine. I 

examine whether P3G has similar effects to C3G on my IBD model. The freeze-dried 

strawberry powder enriched with P3G when added to the diet of the 0.5% DSS rats for 

the last six weeks of the 12 resulted in improved gut motility observed through 

increased ileum and colon force of contraction and improved gastric emptying. 

Reduction of watery and bloody stools, improved epithelium lining of ileum and colon, 

increased villi height, crypt depth and goblet cells were key observations with the 

treatment. P3G powder improved gut characteristics in chronic IBD rat model through 

its anti-inflammatory activity. The P3G treatment was comparable with the C3G and 

sulphasalazine treatments as well indicating that C3G and P3G at optimum doses can 

attenuate IBD as well as the standard drug. 

2. Limitations 

Limitations of my investigations are that systematic and meta-analysis reviews 

of the functional foods in the treatment of chronic diseases in pre-clinical and clinical 

trials was not done. This may provide deeper understanding on the impact of functional 

foods on our health and how to effectively benefit with their positive features(1). 

Although DSS is the causative agent in my IBD model, the cause of the human disease 

is unknown (2). Therefore, the cause of IBD is not mimicked in my rat IBD model. 

Moreover, the IBD model was specific to gut inflammation and no systemic 

inflammation was observed. So, a longer protocol in rats could manifest extra-

intestinal changes due to chronic systemic inflammation following increased intestinal 

permeability and produce cardiovascular changes as observed in IBD patients (3, 4). 

Though functional and structural changes have been characterised in my IBD model 

and the treatment groups, the molecular changes were not investigated. Molecular 
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mechanisms by which the bioactive food-derived compounds modulated the intestinal 

inflammation would give an in-depth understanding of the key signal transduction 

pathways that trigger cytokines to improve or worsen inflammation (5). My studies 

used only a single dose of C3G and P3G (8 mg/kg bw/d) and higher doses can have 

more efficacy as in blueberry anthocyanin extract (6). Heat maps generated for the gut 

microbiota in my studies were limited with taxonomic relative abundance. However, 

metagenomics analysis for microbial function would give information on the 

metabolic pathways altered based on the relative abundance of the gut microflora due 

to the treatments in healthy or IBD rats (7-9). In my studies, faecal samples were 

analysed for gut bacteria abundance rather than mucosal bacteria. Many bacteria are 

in close proximity to mucosal lining of the gut and the mucosal inflammation is key in 

IBD, so there are differences in the composition of faecal and mucosal bacteria 

between healthy and IBD patients (10). It may be worth collecting both faecal and 

mucosal samples for gaining a better understanding of the gut bacteria and estimate 

the short chain fatty acids produced by gut bacteria. Fecal lipocalin, a marker for 

inflammation caused by DSS was not evaluated but it could be done in future to 

confirm the histology that showed gut inflammation. 

3. Future directions 

The incidence of IBD is growing around the world, inflicting a younger 

population than ever before, who are at higher risk of colorectal cancer and the growing 

need of biological drug therapy is taking a huge toll on the lower socio-economic 

populations especially in developing countries (11). Thus there is a growing need for 

complementary therapies for IBD. There is growing evidence that functional foods 

with anti-inflammatory and anti-oxidant activities can ameliorate IBD (12, 13). The 

outcome of my research provides the evidence for Queen Garnet plum, purple carrot 

rich in C3G and strawberry rich in P3G as functional foods that mitigate intestinal 

inflammation. However, more mechanistic studies need to be done with regard to the 

absorption, bioavailability, absorption, distribution, metabolism and excretion of the 

bioactive compounds from the tested foods.  

Anthocyanins activate anti-oxidant transcription factor nuclear factor E2-

related factor 2 (Nrf2) and lead to improved cell survival (14, 15). However, they can 

also inhibit NF-κB proinflammatory signalling pathways independent of Nrf2 
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mechanism (16). Therefore, a better understanding of the effect of C3G and P3G on 

Nrf2 and NF-κB signalling pathways will enrich our understanding on their anti-

oxidant and anti-inflammatory activities. Three dimensional co-culture cell models 

with epithelial cells, macrophages and bacteria may be helpful to determine the 

molecular mechanisms of inflammation regulation with treatment of different 

concentrations of C3G and P3G (17). Nrf2-deficient mice are more sensitive to DSS-

induced colitis (18) and testing these anthocyanins in such a model may give an idea 

of their Nrf2-independent anti-inflammatory activity. NOD2 and ATG16L1 are the 

major IBD susceptible genes which regulate intracellular bacteria sensing and 

elimination, respectively (19). The NLRP3 inflammasome, (NLRP3, an IBD 

susceptible gene), interlinked with NOD2 and ATG16L1, has mucosal protective 

effects against pathogenic bacteria (20, 21). It will be worthwhile to test the C3G and 

P3G foods for their responses on these key players in intestinal inflammation. A novel 

cytokine, IL-38, reduced IL-17A and IL-22 secreted by Th17 cells but not IFN-gamma 

secreted by Th1 cells in human PBMCs infected by C. albicans that induces production 

of IL-17 (22). Th17 is known to be involved in the pathogenesis of IBD for 1L-17A 

which makes it interesting to explore the role of IL-38 in intestinal cells as well (23). 

IFN-gamma has negative feedback regulation by PTPN2, an IBD susceptible gene, in 

absence of which IFN-gamma increases the expression of claudin-2 leading to 

increased intestine permeability (24). However, IFN-gamma selectively increased the 

porosity for large molecules such as E. coli-derived LPS that leads to systemic 

inflammation as well and not to small molecules across the barrier (25). Localized 

effects of DSS caused inflammation of the gut, gut bacterial changes but did not cause 

permeability changes. These bacterial changes are likely to lower production of short 

chain fatty acids as protectors of the gut mucosa, and probably increase LPS 

production, causing local damage, rather than systemic responses. The gut bacterial 

changes due to P3G will be studied as we did with C3G. In the interventions study, I 

can correlate the effect of intestinal permeability results with not only physiology of 

the gut relating to which part of it is more permeable and damaged/inflamed but also 

why it could have happened by analysing the tight junction proteins, occludin and 

claudin 2, along with molecular regulators of these proteins IFN-gamma and PTPN2 

including STAT1 and STAT3. Before venturing into clinical trials, pharmacokinetic 

and mechanistic studies in preclinical trials are necessary to ensure safety and efficacy 

of the treatments (26). Different IBD animal models including those deficient in the 
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IBD susceptible genes have gut inflammation and anthocyanins are anti-inflammatory 

compounds so they are expected to produce symptomatic relief in genetic models as 

well. Therefore, these animal models may be treated with C3G and P3G to further 

evaluate their antioxidant and anti-inflammatory activities, mucosal barrier protection, 

gut homeostasis and modulation of cell signalling pathways. 

In future, the C3G concentrate of Queen Garnet plum and purple carrot and 

P3G concentrate of strawberry could be combined at optimum concentrations based 

on the results of the studies mentioned earlier; this mixture may be able to be patented. 

This anthocyanin cocktail of C3G and P3G could be tested in a prospective randomised 

placebo-controlled double-blind multicentre crossover clinical trials in healthy and 

IBD people including those who have single nucleotide polymorphisms (SNPs) of 

NOD2, ATG16L1, NLRP3, PTPN2 of different age groups to ascertain the potential 

as IBD treatment. Since dysbiosis is a major player in IBD, the human biopsies or 

tissue samples can be studied for genetic and molecular markers to have better idea on 

the molecular mechanisms that can lead to better therapy. My PhD research would be 

fruitful in long run by paving way for cost-effective treatments for millions of IBD 

patients across the globe to improve their health and well-being. 

4. Conclusions 

 A stable reversible chronic IBD rat model was established with low dose of 

0.5% DSS for 12 weeks unlike in other published studies. This is the first research to 

evaluate Queen Garnet plum, purple carrot and strawberry in as reversal treatment in 

a model of chronic IBD. Queen Garnet plum and purple carrot attenuated the 

gastrointestinal IBD symptoms similar to C3G and sulphasalazine in this IBD rat 

model. Further P3G-containing strawberry powder also ameliorated IBD similar to 

C3G and sulphasalazine, suggesting that both anthocyanins are efficient in treating 

IBD. The take-home message of my PhD research is that optimum intake of 

anthocyanins such as C3G and P3G restores intestinal homeostasis and thereby may 

be helpful in chronic IBD management.    
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