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A B S T R A C T

Background and objective: Many people find that the emotional and mental strain of labor and delivery is
greater than they anticipated. However, there are few reports on stress levels during pregnancy, and there
is limited research into stress observation during delivery. Prenatal depression during the delivery has to be
monitored continuously without disturbing the mothers during the childbirth.
Methods: We explore the potential of employing EDA for Prenatal Depression prediction. The proposed model
applies a novel method for motion artifacts followed by data labeling using PHQ-9 score values and LOOCV
applied to train robustly. This culminated in the development of a novel EBDL model to accurately predict
stress levels.
Results: We subsequently applied the ensemble based deep learning model on a testing dataset and our method
proved to be 93.87 percent accurate, proving its superiority over the standard supervised classification models.
The accuracy of this approach applied to three benchmark datasets produced better results compared to all
commonly applied machine learning models, including an Ensemble based Deep Learning model.
Conclusion: The preliminary results are promising, and indicate a superior utility of EDA for monitoring
stress levels in real-life scenarios. This approach should be applied to a clinical setting, it potentially could
continuously monitor stress levels in pregnant women and provide real-time feedback of clinically important
data for clinicians.
1. Introduction

Every person goes through stressful times, and those experiences
help them become more equipped to handle future challenges. As a
time of profound transformation, pregnancy places the mother un-
der considerable strain, whether she is aware of it or not. How-
ever, persistent stress has been associated with unfavorable health
implications such as depression which is detrimental to the health
of the mother, infant and can even have a significant impact on
family dynamics (Gopalakrishnan et al., 2023; Roberts et al., 2006).
Some research indicates that depression during pregnancy can cause
premature labor and postpartum depression can slow baby develop-
ment (Gopalakrishnan, Venkataraman, Gururajan, Zhou and Zhu, 2022;
Grace, Evindar, & Stewart, 2003; McMahon, Barnett, Kowalenko, &
Tennant, 2006). Uterine contractions, cervical dilation, and effacement
cause some of the most excruciating pain a woman will ever feel.

∗ Corresponding author at: School of Business, University of Southern Queensland, Springfield, 4300, Queensland, Australia.
E-mail address: abinayag2@srmist.edu.in (A. Gopalakrishnan).

Knowing what to expect during labor and delivery can help alleviate
anxiety and boost confidence, all of which are important for a smooth
delivery. Anger during labor increases awareness of pain, lengthens the
process, and triggers the release of stress hormones that block oxygen
supply to the uterus. Subsequently, uterine contractions can slow down,
resulting in extended labor. The severity of labor pain varies from
woman to woman and the degree of discomfort can range from mild to
severe, corresponding to the mother’s level of anxiety.

Recent advancements in measuring techniques, including hardware
and software technologies, have pave the way for remote patient mon-
itoring (Gopalakrishnan, Venkataraman, Gururajan, Zhou and Genrich,
2022). An individual’s emotional and physical health, interpersonal
dynamics, and general happiness have been studied using wireless sens-
ing technologies. Various mobile applications have also been utilized
for self-response psychological questionnaires. However, it is crucial to
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remember that, while some stress cannot be avoided in our daily lives,
untreated stress can have harmful consequences. Understanding the
early stages of increased stress levels is an effective stress management
method. Early detection allows mitigation steps to be implemented,
reducing severity and making it easier to manage.

Reducing the intensity of the stress reaction produced by delivery
as the potential to improve post-delivery health states, shorten hospi-
al stays, in relation to labor length, pain levels, and improve patient

care (Hobel, Goldstein, & Barrett, 2008). Women’s mental health can
be improved if they are exposed to less anxiety during the labor
nd delivery process (Federenko & Wadhwa, 2004). Therefore, less
bstetric difficulties, longer gestation, a drop in the number of cesarean
ections, and fewer post-partum complications, all of which contributed
o an improvement in pregnancy outcomes. Masoudi, Kasraeian, and
kbarzadeh (2022) found that there was a drop in both the fetal heart

rate and the fetal level of motor activity after relaxation, which was
onsidered a good result.

Perinatal depression is commonly measured with one of three in-
truments: the Postpartum Depression Screening Scale (PDSS), the Pa-
ient Health Questionnaire PHQ-9 (Gopalakrishnan, Venkataraman, Gu-

rurajan, Zhou, Zhu, 2022), the Beck Anxiety Inventory (BAI). Most
stress questionnaires are self-administered and have been shown to be
accurate, but still require the respondent’s full attention and partici-
pation. In addition, these options do not provide real-time feedback or
the ability to monitor continuously. So, it is worthwhile exploring other
alternative disruptive technologies to achieve the same goals. Electro-
dermal activity (EDA) is an all-encompassing term used to indicate the
electrical properties of the skin. Unlike other organs of the human body,
which are connected to the sympathetic and parasympathetic nervous
systems, the skin with sweat glands and blood vessels is exclusively
innervated by the sympathetic branch [9]. This makes EDA an ideal
and unperturbed measure of sympathetic activation and therefore, the
stress response, compared to other physiological measures like heart
rate variability or blood pressure. Hence, this study focuses on an EDA
based scheme for stress detection.

Whilst it is important to measure depression during pregnancy, as
it can predict the level of depression postpartum (Beck, 1998; Nielsen,
Videbech, Hedegaard, Dalby, Secher, 2000) there is some research that
epression can also be exacerbated with high levels of stress (Sandman,
lynn, & Davis, 2016). Measurement and assessment of the level of

depression during pregnancy is relatively straightforward using sur-
vey instruments such as PHQ-9; however, traditionally stress levels
are measured using invasive techniques to assess levels of cortisol
from urine, saliva, blood, or amniotic fluid samples (Caparros-Gonzalez
et al., 2017). There is a clinical need to monitor physiological and
sychological stress responses to labor not only as a reference to
valuate complicated pregnancies (Miller et al., 2019), but also because
his can also predict future postpartum depression (Ayers, 2004). How-

ever, using cortisol as a measure of stress during labor may not be
he best measure of psychological stress due to confounding natural
hysiological increases in cortisol. When a person experiences stress,
he hypothalamic-pituitary-adrenal (HPA) axis is activated, which in
urn triggers the creation of cortisol in the body. This is viewed as
rotective of the mother and child and promotes normal labor pro-
ression (Benfield, Newton, Tanner, & Heitkemper, 2014). What is

warranted is an alternative non-invasive technique to continuously
onitor stress levels during labor as a method to predict the future

nset of postpartum depression.
The objective of this study is to predict the severity of depression

n prenatal women using the ensemble-based deep learning model. The
ontributions of this study can be classified into four main entities as

follows: (1) A wrist-wearable Ensemble Based Deep Learning (EBDL)
odel for stress level prediction. (2) A noise reduction technique that

achieves 97. 83% accuracy, which employs an autoregressive model to
identify motion artifacts in wrist EDA signal data. (3) A Leave One Out

f Cross-Validation (LOOCV) method used during the training phase on
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a partitioned dataset to create a hybrid subject-dependent and subject-
ndependent model with EDA to address individual differences sweat
land density and skin thickness. (4) Comparison of the accuracy of the

cleaned EDA signal collected dataset with various EDA signals from the
benchmark datasets such as CLAS, VerBIO, and WESAD datasets using
the traditional as well as the EBDL model

The following sections of this paper are structured as follows: the
elated work will be briefly discussed in Section 2. In Section 3, the

collected datasets that were used in the trials are discussed. These
datasets include the PHQ-9 questionnaire that was given to mothers
with symptoms of depression. Section 4 describes the proposed Ensem-
ble Based Deep Learning (EBDL) model with a motion artifact detection
architecture. The findings and a discussion of the suggested architecture
or the assessment of prenatal depression are presented in Section 5. In

Section 6, the conclusion is presented.

2. Related works

There are two main types of research that have been carried out to
quantify stress in the field of human studies: laboratory studies and out-
door studies. The term ‘‘lab experiments’’ is commonly used to describe
conventional stress studies in a laboratory setting. Stress tests carried
out in a natural setting are known as ‘‘field experiments’’ (Salkind,
2010). The most important field studies published in the last ten years
are summarized in Table 1. Research has shown that the majority of
efforts to detect stress in daily life or at the workplace have relied on
umerous physiological and behavioral data collected from participants

in their everyday surroundings. However, stress monitoring based on
hysiological or behavioral abnormalities in a clinical population has

not yet been investigated. Most of these studies used wearable technol-
ogy to covertly record a variety of physiological signs in real time. Such
atasets are always dense with information and may yield substantial
nderstandings of stress’s effects on everyday life and the workplace.
owever, the signals from these wearable sensors are susceptible to
lectrical noise and aberrations, which could impact the validity of any
ubsequent data analysis. As can be seen in the Table 1, most studies

did not elaborate on how they handled motion.
Any wearable on the wrist carries the risk of introducing motion

artifacts (MA) into EDA data for a variety of reasons. These include
alterations in wrist rotation or hand movement, modifications in the
tightness of the wearable device on the skin, and fluctuations in the
amount of pressure given to the EDA sensors. Filtering, exponential
smoothing, and wavelet-based adaptive de-noising have all been inves-
tigated by researchers as potential methods to remove artifacts (Chen
et al., 2015; Hernandez, Riobo, Rozga, Abowd, & Picard, 2014; Poh,
Swenson, & Picard, 2010). One major limitation of MA suppression
methods is that they corrupt the entire time series, not just parts
with artifacts, because they filter the data without any specificity. To
address this, the MA detection approach was developed. Using machine
learning, this method attempts to precisely encode the domain experts’
understanding of MA detection within a classifier model.

Many MA detection algorithms (Taylor et al., 2015; Xia, Jaques,
Taylor, Fedor, & Picard, 2015; Zhang, Haghdan, & Xu, 2017) have been
ublished in the literature as supervised, semi-supervised, or unsuper-
ised. When using only EDA attributes as input to the classifier, Taylor

et al. (2015) supervised MA detection strategy based on SVM achieved
an accuracy of 95 7%. The accuracy of an unsupervised technique
using a k-NN clustering heuristic on the characteristics of the EDA was
reported to be 89.8 percent by Zhang et al. who compared supervised
and unsupervised MA identification systems (Zhang et al., 2017). Xia
t al. show that semi-supervised learning processes can outperform
upervised learning algorithms, which is a huge improvement over

manually discovering the MA time periods in the EDA data (Xia et al.,
2015). The supervised approach yielded an accuracy of 95.2%, while
their test accuracy obtained was 95.8% is marginally higher.
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Table 1
Performance comparison of stress related studies.

Ref No Observing factor Analysis (Best result**) Highlights

Saylam and Incel
(2024)

Daily life Multivariate analysis with logistic regression Multitask learning relieves
depression and stress but not
anxiety with RF and XGBoost.

Ma, Liu, and Yang
(2024)

Work stress Multimodal fusion model based on EEG, ECG and
EDA reached 85.72%

Biased data collection; study
cannot be universally applicable

Rykov et al. (2024) Daily life stress Data from a wearable HR and EDA utilized to
determine the effects of stress on the user’s uses a
random differential GWO algorithm for feature
extraction and ML algorithm called RF 95.6 percent.

User specific models are into
consideration

Oubrahim, Amirat,
Benbouzid, and
Ouassaid (2023)

Daily life stress EMAs and passive mobile logging is used for
prediction; Binary classification; F1 score of 70% with
RF classifier using PPG & contextual data

No MA removal; ISV is not
considered

Zhu et al. (2023) Daily life stress Data from EDA systems are gathered, and SVM is
found to be the most effective machine learning
technique for predicting stress, with an accuracy of
92.9%.

Manual MA removal; ISV is not
considered

Naegelin et al.
(2023)

Work stress The 10-fold cross-validation of the characteristics
extracted from the mouse, keyboard, and HRV results
in an average F1 rating of 0.775 for recognizing the
three phases of emotional stress, valence, and
alertness using support vector machines, random
forests, and gradient boosting models.

No MA removal; ISV is not
considered
(

g

The most helpful physiological indicator for the identification of
stress and anxiety is the variation of heart rate (HRV) (Hong et al.,
2010). Most existing devices measure stress using average Heart rate
HR), which is not as precise as Heart Rate Variability (HRV) param-
ters but still useful. While adjunctive Electroencephalogram (EEG)
mproves stress detection accuracy (Ahn, Ku, & Kim, 2019), it will be
mportant for future research to determine whether dual technologies
re useful for monitoring chronic stress over the long term. Kim, Park,
nd Park (2020) found that ElectroDermal Activity (EDA) was the best
ortable measure for stress detection because of its easy way to set up
nd use; EDA is a generalized information for the electrical charac-
eristics of the skin. Unlike other organs in the human body that are
onnected to the parasympathetic and sympathetic nervous systems,
he sympathetic branch of the nervous system totally innervates the
kin, which contains sweat glands and blood arteries (Roy, Boucsein,

Fowles, & Gruzelier, 2012). As a result of being an ideal and unaltered
measure of sympathetic activation and the depression response, EDA
stands out among other psychological metrics like variability in heart
rate or blood pressure. Consequently, the emphasis of this research
is placed on an EDA-based technique for the detection of depression.
Therefore, electrodermal activity, also known as EDA, was recorded
from the wrist of mothers to predict an automatic measurement of
depression experienced during delivery. When it comes to detecting
Alzheimer’s disease, the deep model is more accurate and efficient
(Gao & Lima, 2022). An accuracy of 64.15% was established by the
generalizability of existing emotion detection systems that employ elec-
troencephalography. These approaches were able to recognize positive,
neutral and negative emotional states in individuals (Huangfu & Cheng,
2025).

2.1. Summary of research gaps

Recording electrodermal activity (EDA) is a strong and commonly
used approach to study arousal in the mind or body. However, EDA’s
sensitivity to motion artifacts makes analysis difficult. When using
physiological data to train machine learning algorithms, the high de-
gree of inter-subject heterogeneity in physiological signals is a substan-
tial barrier. The majority of the research on multilevel stress classifi-
cation is founded on a generic, one-size-fits-all paradigm that assumes
that people’s responses to varied degrees of stress are constant across
the board. Table 1 shows that in order to overcome this problem,
tudies have focused on developing topic-specific models. Classification
269 
accuracy may be guaranteed by such models for one topic, but may not
work for others. The strategy requires building many models for each
subject, making it difficult to choose the most appropriate classification
for new data sets. This study presents an Ensemble-Based Deep Learning
EBDL) model that is based on signals to handle both subject depen-

dency and independency in EDA data caused by factors such as sweat
gland density and skin thickness. The method was created to address a
problem that had been identified in earlier studies.

3. System overview

An overview of the dataset utilized for the study’s experiments is
iven in this section. Details the main features of the dataset, the task

with which it is associated, and the evaluation criteria.

3.1. Dataset collection

All eligible study participants were those admitted to the hospital
after experiencing pain prior to the onset of labor or an adverse event
had occurred such as an amniotic sac rupture. All who had a delivery
and were predicted to have a history of depression were invited to
participate in the study. This time slot was chosen to reduce the
potential for diurnal changes such as feeling more intense symptoms
of melancholic depression in the morning and to notice a gradual
improvement as the day goes on. Physiological data was collected from
each individual patient upon arrival at the delivery ward and after
receiving their first administration of dilation treatment, as shown in
Fig. 1. The practical aspects of the implementation, such as integration
with existing healthcare systems, were quite easy, since the data was
collected from a mobile device, so it does not require any special
consideration.

3.2. Ethical clearance

The data collection for this research was authorized by the In-
stitutional Ethics Committee (IEC) of the SRM Medical College and
Research Center (SRMC & RC), Chennai, India. Ethical standards and
regulations were followed throughout all phases of data collection. By
signing a consent form, each participant confirmed her understanding
and acceptance of participating in the study. Data were collected in
2022, between April and December.



A. Gopalakrishnan et al. International Journal of Cognitive Computing in Engineering 6 (2025) 267–279 
Fig. 1. Survey based personal, socioeconomic and depression data collection.
s,
3.3. Participants selection

Women admitted to SRMC & RC were chosen for the study using
a sequential participant selection technique. This made it possible to
collect information from women at a crucial point in the delivery
process. This also improved the chances of early detection of symptoms
of elevated stress and provided effective treatment by clinicians.

3.3.1. Criteria for acceptance of subjects
Participants were informed about the purpose of the study and

all met the following inclusion criteria before giving their informed
consent:

• women who have given birth between the ages of 19 and 35.
• The patient’s information and consent form were acknowledged

by the participants as being understood.
• The number of pregnancies a mother has is not related to the

method of birth (spontaneous vs. induced).

The objectives of the criteria were to ensure the best opportunity to
identify the range of mothers with varying ages and to include mothers
with a range of parity and delivery styles.

3.3.2. Exclusion criteria
The following conditions precluded mothers from taking part in the

study:

• Mothers carrying more than one baby.
• Mothers who had undergone in vitro fertilization (IVF) treatment.
• Mothers with a history of complications or adverse events in

obstetrics.
• Mothers whose pregnancies were deemed high-risk by clinicians

were also not eligible to participate in the study. The present
conditions included those with preeclampsia, chronic disease,
gestational diabetes mellitus, or fetal abnormalities.

Unfortunately, this may have included those who had an increased
known risk of postpartum depression or who had atypical responses
to elevated stress. These mothers may also have had additional needs
that could prevent them from dedicating the time and effort required
to complete the investigation.

3.3.3. Patient Health Questionnaire PHQ-9
The Patient Health Questionnaire’s PHQ-9 is a quick self-report

test that incorporates a depression rating scale and DSM-IV depression
diagnostic criteria. The patient can complete the PHQ-9 in under ten
minutes, and the clinician can quickly grade it. It is also possible to
administer it multiple times to capture fluctuations in the severity
of depression as a result of treatment. To quantify the intensity of
depression symptoms, a raw score is used, which can vary between 0
and 27 (He et al., 2020). The following is a description of the different
severity levels: Mild depression — 5 to 9 Moderate depression — 10 to
14 Moderately severe depression — 15 to 19 Severe depression — 20
to 27
270 
3.3.4. Cortisol in saliva as a biomarker
When a person experiences stress, the hypothalamic-pituitary-

adrenal axis (HPA) is activated, which in turn triggers the creation
of cortisol in the body. Salivary cortisol is widely accepted to be a
biomarker for stimulation of the sympathetic system during times of
stress (Anusha et al., 2019). To determine the levels of cortisol that
were present in the systems of mothers before and after birth, several
samples of their saliva were obtained throughout delivery.

3.4. EDA signal and characteristics

Electrodermal activity is a human property that causes the electrical
characteristics of the skin to change constantly. Sweat secretion causes
fluctuations in skin conductivity, which can be monitored with an
EDA sensor. An EDA signal is characterized by its tonic and phasic
values. Both the tonic and phasic levels have characteristics that are
polar opposites of each other. The moisture of the skin of each person
and the innate adaptability of the person affect the tonic level, which
varies gradually and smoothly in the EDA. The tonic level, often known
as the skin conductance level (SCL), is the first parameter measured
in the analysis of electrical dynamics. In EDA, the phasic level is
the component with the fastest reaction time and the most robust
response to stimuli (Bogomolov, Lepri, Ferron, Pianesi, & Pentland,
2014). The skin conductance response (SCR) is a biphasic indication of
the physiological state. Changes in skin conductance (SCR variations)
are caused by perspiration that forms when a person experiences a
problem. Phasic level shifts in SCR are typically more pronounced and
rapid than tonic level fluctuations in SCL. Data show spikes or bursts
indicative of SCR variations. Skin conductance responses can be event-
or stimulus-specific. In most cases, ER-SCRs appear between 1 and 5
s after stimulation. However, NS-SCRs occur in the absence of any
external trigger or awareness. The presence of NS-SCRs in the EDA raw
signal makes direct quantification of the SCL challenging, regardless
of whether people receive planned stimuli or not. Filters are used to
separate the SCL and SCR components of the raw EDA signal during
processing. SCR amplitudes and timings of onset and offset.

Fig. 2. A signal with EDA has two parts and four characteristics. (1)
Latency: The time it takes for the stimulus to begin and for the phasic
burst to begin. (2) Extreme magnitude: The magnitude of the transition
from the beginning to the highest point. (3) Rise time: How long does
it take before the peak occurs after the start? (4) Rest time: How long
does it take to get back to peak performance?

3.5. Hardware description

The recording of physiological data was carried out with the help of
a battery operated wrist wearable developed by Analog Devices (Broeder
2017), hereafter referred to as Analog Device Vital Sign Monitoring
(ADI-VSM). This wristwatch is capable of constantly recording electro-
cardiogram (ECG) signals, skin temperature (ST), photoplethysmogram
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Fig. 2. An EDA signal can be broken down into two components and four characteristics.
(PPG), and electrodermal activity at 25, 500, 50, and 1 Hz inter-
vals, respectively. VSM WaveTool, a program that runs on a personal
computer, was used to record data, start and stop, and adjust other
parameters of the logging. It is also possible to save synchronized
multiparameter data on the internal memory of the ADI-VSM, and then
retrieve it at a later time for offline analysis. The battery in the device
has a capacity of 140 mAh, and its typical run time is 18 h with all of
the sensors active. The battery may be recharged.

3.6. Benchmark datasets

Physiological signals from a variety of experiments are available in
publicly available datasets. Signals are collected from several locations
on the skin in these studies, as required by the devices and the questions
being asked. Our stress detection method was built using three pub-
licly available datasets: CLAS (Markova, Ganchev, & Kalinkov, 2019),
VerBIO (Zhu et al., 2022), and WESAD (Schmidt, Reiss, Duerichen,
Marberger, & Van Laerhoven, 2018), which contain EDA signals and a
physiological questionnaire. Categorizing models are trained and tested
using physiological signals included in the three datasets. Currently,
EDA signals are used to analyze depression as an important factor (Ahn
et al., 2019; Hong et al., 2010; Kim et al., 2020; Roy et al., 2012).

1. CLAS: Markova et al. (2019) Intelligent human–computer in-
teraction (HCI) led to the development of the CLAS dataset.
Emotion and stress detection are just two examples of the many
automated human psychological and physiological assessments
included in this data set.

2. WESAD: Schmidt et al. (2018) WESAD was developed to inves-
tigate whether or not it is possible to recognize emotional states
based on physiological markers.

3. VerBIO: Zhu et al. (2022) The VerBIO data set was constructed
with the intention of determining whether or not stress could
have an effect on physiological signals present during public
speaking.

The reasons for choosing these three datasets for comparison can be
broken down into two main categories. (1) EDA data that are included
in all three datasets. For VerBIO and WESAD, the Empatica E4 wrist-
band was used to collect data. (2) These three datasets were used
to predict emotions and stress. For these reasons, there were more
opportunities to compare the data.
271 
4. Methodology

Time spent gathering the data could thus vary from a few minutes
to several hours, or possibly days. Given the high processing costs
and uneven sample sizes, it is especially advantageous if the EDA
data has a longer lifespan, which could make analysis easier. The
pattern of pain experienced during labor is unique to each individual
woman. Fig. 3 depicts the proposed structure from data acquisition
to classification. The subject’s EDA signals are gathered via a wrist-
worn device, like a smartwatch. The data is transmitted wirelessly to an
accessible computer or smartphone. The signal then passes through a
series of signal processing steps, with the retrieved attributes ultimately
being put to use in a classification process. The above process can be
carried out within the framework using data prepossessing, artifact
detection, data labeling, and classification using the novel ensemble
model with neural networks to effectively predict prenatal depression.

• Data Pre-processing
During the pre-processing stage of the data, there are primarily
three phases that are carried out, as depicted in Fig. 3. This
pre-processing is carried out using following steps such as Data
segmentation, Components separation, and Attribute extraction.

(1) Data Segmentation: In most cases, EDA data is gathered
during various stages of the labor. Time spent gathering
the data could thus vary from a few minutes to several
hours, or possibly days. Given the high processing costs
and uneven sample sizes, it is especially advantageous if
EDA data has a longer lifespan, which could make analysis
easier. As a consequence of this, EDA data have to be
segmented to a particular length in order to maintain a
consistent format for the samples and to lessen the amount
of computing effort required. For the subsequent step of
processing, this research divided all of the data and labels
based on a non-overlapping sliding window of five seconds.

(2) Components Separation: Further data processing is nec-
essary after passing the continuously recorded EDA signal,
raw-EDA, through a 5-Hz Butterworth low pass filter to
remove high-frequency noise and redundant information.
Typically, an EDA signal consists of two parts: (i) the SCL,
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Fig. 3. The overall structure of the ensemble based deep learning model for depression detection.
or tonic EDA, which shows constant changes when no out-
side factors are present, and (ii) phasic EDA, which shows
sudden changes when something is happening, either inter-
nally or externally. Skin conductance levels are the name
given to both kinds of EDA. A phasic response known as the
specific or event-related skin conductance response (SCR)
happens in reaction to a singular and distinct external stim-
ulus, like a startle event like a gunshot. The Event-Related
Skin Conductance Response ER-SCR is another name for
this reaction. Nonspecific phasic responses, also known as
NS.SCRs, are responses that take place spontaneously and
unprompted by any external stimuli, in contrast to SCRs. In
human beings, the SCL and NS.SCR are taken into consider-
ation as indicators of psychological activation. Therefore,
in order to ensure accurate analysis in the future, it is
necessary to first separate SCR and SCL components from
the data and then apply artifact removal procedures. The
cvxEDA model (Xia et al., 2015) is used to analyze the SCR
and SCL parts. The foundations of this model are sparsity,
convex optimization, and MAP. Additionally, the raw EDA
signals are cleaned up of motion artifacts.

(3) Attribute extraction & selection: We calculated charac-
teristics from each 5-s EDA window segment. Estimating
statistical properties from the initial EDA and its first and
272 
second derivatives was the first stage. Two AR variables
(n1 and n2) and the AR noise variance were used as
features in a AR model that was employed to simulate the
EDA sequence. When noise is introduced into EDA data,
the amount of noise that remains in the AR model is larger
compared to clean data, which is reason AR modeling is
being used. This results in higher values for both AR pa-
rameters and free from motion artifacts. A high-resolution
temporal frequency decomposition approach, VFCDM, was
employed to enhance the dynamic aspects of both clean
and damaged EDA (Wang, Siu, Ju, & Chon, 2006).
Using VFCDM for biosignal applications has shown use-
ful in analyzing signal properties and reducing noise and
artifacts (Hossain et al., 2021; Posada-Quintero, Florian,
Orjuela-Cañon, & Chon, 2016). We separated EDA data
segments into 12 distinct frequency bands that did not
overlap using VFCDM. We used VFCDM to determine the
two signals’ ranges (max–min), as well as their mean,
variance, and ratio of variances. In order to train the
data, an attribute vector was constructed utilizing statisti-
cal attributes and additional SCR attributes. This was done
because processing the signals with all of their properties
would raise the computing cost. The data was subsequently
trained using this attribute vector. According to Chen et al.
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(2015) and Zhang et al. (2017), seven attributes are chosen
for inclusion in the attribute vector. For example, the
attribute vector can be expressed as:

AttributeVector =
[

mean𝐸 𝐷 𝐴,min𝐸 𝐷 𝐴, max𝐸 𝐷 𝐴, st d𝐸 𝐷 𝐴,
mean𝑆 𝐶 Ronsets , mean 𝑆 𝐶 𝑅𝑎𝑚𝑝,
mean 𝑆 𝐶 𝑅 recovery

]

(1)

where the actual EDA value in each signal frame is used
to calculate the mean, minimum, maximum, and standard
deviation of EDA (Chen et al., 2015).

Attribute selection was accomplished by the use of the RF ma-
chine learning method (Breiman, 2001). The RF method’s inter-
pretable, low over fitting, and excellent prediction accuracy make
it a popular choice as an attribute selection algorithm. Embedded
approaches, which include RF for attribute selection, are a hybrid
of filter and wrapper methods. The embedded methods work well,
are easy to generalize, and can be understood via the lens of
attribute selection.

• Data Labeling:
Data from each person’s time-synchronized EDA and speedometer
was manually sorted using a Matlab-based data visualization tool.
A total of 125 observations were made using non-overlapping
windows, and each one was categorized as either mild depression
(mild), moderate depression (MOD), moderately severe (MOD-
S), or high depression (HIGH). A comprehensive experimental
evaluation that included five distinct window sizes (5 s, 10 s,
15 s, 30 s, and 60 s) led to the selection of the window as the
optimal option. The MA sections were extracted from all of the
signals, but the depression classes were only derived from the 10-
min EDA data collected just before the two PHQ-9 surveys. When
the following conditions were met during a 5-s epoch: (i) the
skin conductivity level was zero or negative; (ii) the EDA signal
showed a sudden maximum related to movement as indicated by
accelerometer data; or (iii) the quantization error surpassed 5% of
the signal amplitude, the epoch was designated as MA by Taylor
et al. (2015).
The depression components of the questionnaire were determined
with the use of the scores that were received from the PHQ-9-Y1.
The average score on the PHQ-9-Y1 for subject i throughout both
surveys is represented by the notation SStextsubscriptij (where i
can be any number from 1 to N and j can be either 1 or 2). The
first poll used a j value of 1, whereas the second survey used a
j value of 2. For this study, the total number of participants is
represented by the letter M. On the PHQ-9-Y1, the available score
range for each question extends from 5 to 27, with 27 being the
highest possible score. In light of this, the formula SS ij = (SS ij-
5)/27 was performed in order to calculate subject i’s normalized
depression indices. This was done in order to determine subject
i’s normalized depression indices. After the scores were calcu-
lated, the depression sections were categorized as ‘LOW’ (scores
between 0.0 and 0.25) ‘MOD’ (scores between 0.26 and 0.50),
’MOD-S’ (scores between 0.51 and 0.74), and ‘HIGH’ (scores be-
tween 0.75 and 1) according to the normative values given in the
PHQ-9 handbook (Srisurapanont, Oon-Arom, Suradom, Luewan,
& Kawilapat, 2023). Table 2 displays a summary of the gleaned
characteristics.
In the meantime, the data with all attributes is utilized to train
the models and to compare the classification results with the
extracted attribute vector, even if no attribute extraction is con-
ducted on this data.

• Training & Testing: subject-independent validation strategy
During the process of extracting attributes and ensemble model
based classification, we used a validation technique that was
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independent of the subject (mothers). We used a method known
as LOOCV for validation, which implies that for every fold, we
withdrew one mother’s data from testing and kept the others for
training. We used a group M-fold validation to pick features. For
each fold of the LOOCV validation, the training data was used
for this validation. To ensure that the classifiers were completely
subject-agnostic, we once again used a group M-fold. Using the
group k-fold, we carried out a grid-search cross-validation ap-
proach in order to determine which parameter was the most
suitable for each fold.
In order to avoid the over fitting and test the model’s efficacy on
new data, the LOOCV validation approach is used while the model
is being trained. The LOOCV validation method is said to be one
of the most well-known and commonly utilized approaches. It
is appropriate for use with very limited datasets and results in
a model that is objective. Additionally, in comparison to other
technologies, this one requires a comparatively shorter amount of
time for calculation. The dataset is randomly split into M equal-
sized pieces, D1, D2, D3, . . . , DM, using the LOOCV validation
method. Afterwards, the model undergoes 𝑁 rounds of training
and testing, with a testing set consisting of one of the independent
components. for some dataset where 𝑁 is the number of samples.
As seen in Fig. 4, the data is subsequently processed using an
oversampling strategy. It is well-known that bootstrapping is one
of the most used resampling processes, among numerous others
that employ the replacement strategy to generate new samples
or resamples from existing ones. By using the bootstrapping tech-
nique (Jain & Moreau, 1987), a total of 4900 records are obtained
from the data instances of 189 moms. Next, the bootstrapped
dataset is split into three sections: the training set (composing
70% of the total), the validation set (20%), and the test set
(composing 10% of the total). A tenfold cross-validation strategy
is then utilized. Additionally, the grid search approach has to
be used in order to maximize the model’s performance (Sun,
Xue, Zhang, & Yen, 2018), other parameters, which are shown in
Table 3, are also modified during each iteration. Once the training
of the model has been completed successfully, the accuracy that
was acquired in each fold is mathematically calculated using
Eq. (3).

𝐴𝑐 𝑐𝑁𝑐 𝑣 = 1
𝑁

∑

(𝑥𝑖 ,𝑦𝑖)𝜀𝐹𝑖
𝜎
(

𝐼
(

𝐹𝑆(𝑖), 𝑥𝑖
)

, 𝑦𝑖
)

(2)

where 𝜎
(

𝐼
(

𝐹𝑆(𝑖), 𝑥𝑖
)

, 𝑦𝑖
)

denotes the accuracy observed for each
fold.

• Methods for classifications
This section provides detail description of the proposed ensemble
model and four different classification algorithms which is used
to compare he effectiveness of the ensemble model for predicting
the severity levels of the prenatal depression mothers.

(A) Artificial Neural Networks ANN
Designing a ANN or a MLP is inspired by the way infor-
mation is processed in the human nervous system (Zhang,
2016). Each of these layers is classified into one of three
groups: input, concealed, or output. While the output layer
is in charge of assigning each input class to its correspond-
ing input pattern, the input layer is in charge of defining
that pattern. According to Karadeniz (2021), hidden lay-
ers are given weights to help fine-tune the network and
decrease the amount of mistake.

(B) K-Nearest Neighbor (KNN):
By evaluating the distance between the values of charac-
teristics, KNN can categorize data. Specifically, we want
to find out, from a training dataset, which K training
examples closely resemble the input instance. We will use
the majority distribution of the preceding K instances to
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determine the categorization of the input case. Our cross-
validated grid-search method determined that 3 is the
optimal K value (Machhale, Nandpuru, Kapur, & Kosta,
2015). The model can be scored with a variety of parame-
ters, and the best-performing parameter will be chosen as
the final one by the technique.

(C) Decision Tree
The decision tree is an example of supervised learning,
which is a type of learning that may be used to problems
involving classification as well as regression. Although
decision trees are straightforward and show promise for
managing high-dimensional data, they are quite unstable.
Even a little change to the data may have a big impact
on the overall structure. Another drawback of the decision
tree is the extensive training time it requires. Sing (2015)
made a decision. When building the decision tree, entropy
and information gain are used as measures for selecting
attributes. For data categorization purposes, at each level,
the attribute with the lowest entropy is picked. When the
entropy of a branch drops to zero, it is called a leaf node;
otherwise, it will keep branching out. Mathematically, en-
tropy for different qualities may be calculated using the
following formula:

𝐸 = −
𝑛
∑

𝑖=1
𝑝𝑖 × log2 𝑝𝑖 (3)

(D) Random Forest
Additional supervised machine learning algorithms include
the random forest approach. For this method, the decision
tree is the backbone of the forest construction process.
Several separate decision trees are combined into one en-
semble to form the random forest method (Liaw, Wiener,
et al., 2002). This is where random forest comes in handy;
it uses replacement to train each tree on a random sample,
so it can avoid decision trees’ instability and data sensi-
tivity. This method is sometimes called bagging. Decision
trees and random forests differ in another respect: the
attributes they provide are not uniformly random. As it
builds its hierarchical structure, the decision tree considers
all features. The random forest, in contrast, trains each tree
using a subset of really random features.

(E) Stacked Ensemble based Deep Learning (EBDL)
The ensemble learning method is a combination of many
machine learning approaches that uses the predictions of
several base models to enhance predictive performance
(Wang, Hao, Ma, & Jiang, 2011). The groundwork model
might have been built using any of the available ma-
chine learning methods. Homogeneous ensemble learning
models are those that are trained utilizing identical basis
learners. However, an ensemble is considered heteroge-
neous if its base learners vary from one another. There
are three different kinds of algorithms that make up en-
semble learning: bagging, boosting, and stacking. Stacking
approach involves training the basic classifiers on the same
dataset and then using an extra classifier called a meta-
learner to boost the model’s performance. A single-level
stacking strategy is used in the present inquiry, and several
deep learning models, referred to as the Ensemble based
Deep Learning model, are used in the first phases of the
process. In the end, the predictions for the presence or
absence of prenatal depression are provided by a Logit-
Boost that has been fitted using the predictions of the
separate classification models, as explained in Algorithm
1. The stacking ensemble seen in 3 is constructed using
deep neural networks. As stacking based models provides
model diversity (Barton & Lennox, 2022), Flexibility (Lu
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Fig. 4. Subject-independent validation strategy.

et al., 2023), interpretability (Alarfaj & Khan, 2023) among
other models. There are 14 nodes in the input layer and 4
nodes in the output layer of the artificial neural network
(ANN) being built for the proposed research. Using the
intra-user variability as a basis, this ANN aims to predict
the severity levels. By using an activation function called
ReLU and three hidden layers, a neural network may be
built as shown in Table 3

Algorithm 1 Ensemble based Deep learning (EBDL) model’s Algorithm
Require: Training dataset D, where 𝐷 =

{

𝐷1, 𝐷2, 𝐷3 …𝐷𝑚
}

Ensure: Prediction of stress level from the stacking ensemble classifier

1: Divide D into M equal halves at random in a way that 𝐷 =
𝐷1, 𝐷2, 𝐷3, ..., 𝐷𝑀

2: for 𝑚 = 1 to 𝑀 do
3: Make use of D to train base classifiers, and then repeat steps

4–7.
4: Determine the weighted total and include bias into every hidden

layer node by
Info =

∑𝑛
𝑖 𝑥𝑖 ×𝑊𝑖 + bias

5: Calculate the values of 𝛥𝑊 = 𝑊 − 𝜂 𝜕 𝐸
𝜕 𝑊 and 𝐸 =

1
2
∑𝑛

𝑝=1
∑𝑚

𝑜=1
(

𝑇𝑖𝑜 − 𝐴𝑖𝑜
)2

6: To obtain the lowest mistake rate, tweak the values of the
learning parameters and weights.

7: Apply a ReLU activation function f(Info)= max(0, Info) at each
base classifier.

8: end for
9: Formulating the training set for meta-classifier.

10: for 𝑡 = 1𝑡𝑜𝑇 do
11: 𝐷𝐸 =

{

𝐱𝑖′, 𝑦𝑖
}

, where 𝐱′𝑖 =
{

ℎ𝑘1 (𝐱𝑖) , ℎ𝑘2 (𝐱𝑖) ,… , ℎ𝑘𝑇
(

𝐱𝑖
)}

12: end for
13: Develop LogistBoost, a meta-learning classifier, by using 𝐷𝐸
14: Return Predictions 𝑦𝑖 =

{

𝑦1, 𝑦2, 𝑦3 … 𝑦𝑛
}

from the derived EBDL
model

In addition, the depression prediction scheme associated with that
group is involved. Consequently, the proposed system classifies the
incoming test instances into relevant subgroups and then activates
the related classifier to forecast the amount of depression. Fig. 3
shows the hierarchical structure of the multilevel depression detection
method, which begins with an artifact detection phase and then uses a
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Table 2
Dataset statistics.

Variable Train dataset Test dataset Total dataset

No of subjects 100 89 189

5s Epochs

LOW 4646 2721 7367
MOD 4321 3256 7577
MOD-S 4047 3217 7264
HIGH 4756 4117 8873
Total 17 770 13 311 31 081

% Epochs 76% 24% 100%
Age (years) 34.4 ± 19.8 34.2 ± 19.7 34.3 ± 19.5
Height (cm) 154.9 ± 8.2 156.2 ± 7.4 155.55 ± 7.8
Weight (kg) 66.6 ± 8.2 62.7 ± 9.7 64.65 ± 8.9

depression classification framework to partition data. This framework
is based on the suggestion that the multilevel depression detection
method should be used. There will be motion artifacts, because the EDA
sensors will shift somewhat on the skin due to both the body’s motion
and the skin’s moisture.

4.1. Evaluation metrics

One of the most important factors that determines the effectiveness
of an ensemble model is its ability to produce correct results. In order
to determine how well the proposed model works, a wide variety of
performance assessment metrics are used.

• Precision: Precision is defined as the degree to which measure-
ments are in close proximity to each other.

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(𝑇 𝑢𝑟𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙 𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒) (4)

• Recall:The ability of the model to identify true positives for each
of the given classes is measured by the recall mechanism.

𝑅𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(𝑇 𝑢𝑟𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙 𝑠𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒) (5)

• Specificity: The capability of the model to determine the actual
negatives associated with each possible class is measured by
specificity.

𝑆 𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 =
𝑇 𝑟𝑢𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒

(𝑇 𝑢𝑟𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙 𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒) (6)

• Accuracy: Accuracy takes into account the frequency with which
the proposed machine learning model properly classifies an in-
stance of data that has not yet been observed.

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦
=

𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒
(𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑢𝑟𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙 𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙 𝑠𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒)

(7)

• RMSE:The difference between the actual values and the antici-
pated values is what the RMSE evaluates.

RMSE =
√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − �̂�𝑖
)2 (8)

• MAE:It is the absolute variation between the actual values and
the expected values that is measured by the mean absolute error.

MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑥𝑖 − �̂�𝑖|| (9)

The predicted and actual values are denoted by 𝑥𝑖 and 𝑥𝑖, respectively,
in this context, where 𝑁 is the number of occurrences. In the previously
given equations, the letters TP, TN, FP, and FN denote true positives,
 t
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Table 3
Hyperparameters.

Parameter Values

Input layer 14
Output layer 4
Hidden layer 6
Activation function ReLU
Learning rate 0.01
Optimizer Adam
#epochs 100

true negatives, false positives, and false negatives, respectively. Prena-
al depression of a mother can be accurately predicted by looking at
he number of true positives and true negatives. By contrast, the sum
f the ensemble model’s false positive and false negative rates is what
ltimately decides how many erroneous predictions it produces.

5. Results

This section describes the experimental step-up along with the
esults obtained from the model to predict prenatal depression based

on the EDA signals from the wearable wrist device. It is subdivided
into six subsections as follows:

5.1. Experimental set up

The experimental implementation and performance analysis of the
uggested model are the topics that are presented in this Simulation
etup. Experiments are carried out on a system as follows: an Intel(R)
ore(TM) i7-9050H processor, a primary memory capacity of 8 GB,
 clock frequency of 2.60 GHz, an NVIDIA GeForce GTX 1050 GPU,

and a 64 bit Windows-10 operating system. The proposed model is
implemented using various application programming interfaces (API)
that are available in the most recent version of Python, which is 3.9.

5.2. Statistical data analysis

The activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis
that occurs when an individual is exposed to a stressor causes the body
to begin producing cortisol. Salivary cortisol has emerged as a valid
biomarker of sympathetic activation during times of depression, as a
result of research conducted in recent years. To determine the levels of
cortisol in the individuals’ systems prior to delivery, repeated samples
of their saliva were taken during the delivery period. The SOMA
Bioscience salivary cortisol test kit (Anusha et al., 2019) was used for
both the collection of samples and their subsequent measurement

At a high level, this section summarizes the data that will be
onsidered in the following. See Fig. 5 for box plots of the moms going

through labor pains and the cortisol levels of 189 people. A common
trend during the active stage of labor is a gradual increase in cortisol
levels, which signals a rising stress level. The only way salivary cortisol
was used to support the claim that respondents felt more stressed was as
an objective measure. The high degree of subject-to-subject variability
revented its use for purposes such as generating a more nuanced range
f stress levels.

Cortisol concentrations at different stages of work are displayed as
ox plots for 189 patients. 𝑇 bars show the spread of the data for each
ox plot. Within the box is the median, while the vertical line denotes
he interquartile range. The center is shown by the red dot.
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Fig. 5. Box plot of cortisol level varying.

Table 4
Ensemble models’ relative performances.

Algorithm Precision Recall Specificity Accuracy RMSE MAE

Decision tree 0.7765 0.7736 0.8369 0.7482 0.52 0.36
KNN 0.7436 0.7234 0.8126 0.7319 0.50 0.34
Random forest 0.8752 0.8154 0.8791 0.8159 0.44 0.32
ANN 0.9367 0.8596 0.9052 0.8876 0.41 0.28
EBDL model 0.9578 0.9254 0.9523 0.9387 0.31 0.24

Fig. 6. Comparative analysis of ensemble model.

5.3. Comparative analysis of stacking based EBDL model with others clas-
sification algorithms

In order to prove that our work on prenatal depression prediction
is worthwhile, we will compare how well the suggested EBDL model
performs against the baseline machine learning techniques. To begin, a
LOOCV validation strategy is utilized for LOOCV to perform training
and validation of all baseline machine learning and ANN models.
The baseline machine learning algorithms include DT, RF, KNN, and
ANN.As mentioned in Subsection named data labeling, we compare the
results of these algorithms’ testing with our suggested ensemble model,
which is derived from a range of performance assessment measures.
Table 4 contains the stated results of the calculations.

Moreover, Fig. 6 shows the findings of a bar graph comparing the
different performance metrics achieved by the strategies that were
considered.

5.4. Evaluation of accuracy of ensemble based deep learning model on
benchmark datasets

Tables 5, 6, 7 display the accuracy of the ensemble-based Deep
Learning model on benchmark datasets such as CLAS, WESAD and
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Table 5
Detection accuracy for EDA modality of CLAS benchmark dataset.

Method Accuracy F1 score AUC

KNN (Radhika & Oruganti, 2021) 0.699 0.7026 0.6959
ANN (Radhika & Oruganti, 2021) 0.7261 0.7434 0.7321
RNN (Radhika, Subramanian, & Oruganti, 2022) 0.889 0.8262 0.7914
CRNN (Radhika et al., 2022) 0.8925 0.7831 0.7216
EBDL 0.912 0.935 0.914

Table 6
Detection accuracy for EDA modality of WESAD benchmark dataset.

Method Accuracy F1 score AUC

KNN (Zhu et al., 2022) 0.664 0.412 –
ANN (Zhu et al., 2022) 0.857 0.785 –
RNN (Radhika et al., 2022) 0.8652 0.8309 0.7982
CRNN (Bobade & Vani, 2020a) 0.8432 0.8071 0.7654
EBDL 0.8962 0.8234 0.8126

Table 7
Detection accuracy for EDA modality of VerBIO benchmark dataset.

Method Accuracy F1 score AUC

KNN (Zhu et al., 2022) 0.5882 0.5421 0.5268
DCNN (Zhu et al., 2022) 0.6175 0.5987 0.5628
RNN (Zhu et al., 2022) 0.8011 0.7967 0.8074
CRNN (Zhu et al., 2022) 0.8643 0.8071 0.8106
EBDL 0.8957 0.8724 0.8214

VerBIO respectively. Importantly, the Ensemble-based Deep Learning
model predicts stress accurately in the CLAS, VerBIO, and WESAD
datasets when compared to previous researches. Using EDA from the
collected dataset, the Ensemble-based deep learning model maintains
its optimal overall result at 93.87%. It appears that EDA has the
potential to mirror the emotional changes that occur in mothers during
delivery. Furthermore, unlike SCR, variations in ECG and PPG might
not be as sensitive to minor mood changes. Therefore, when it comes
to emotion-related detection, EDA should be the first choice with the
Ensemble-based Deep Learning model.

5.5. Evaluation based on ablation concepts

The use of ablation principles was done to guarantee the signif-
icance of the innovations of stacking Ensemble-based deep learning
procedures in this model. The novelties of this model were: (1) removal
of motion artifacts. (2) Include depression levels based on the severity
score of the women undergo delivery of the child. (3) Ensemble-
based deep learning model based on both subject dependent & subject
independent validation strategy. For this purpose, the above three
strategies are combined into one offered, which then produces a variety
of different combinations and is executed using the collected datasets
and the accuracy, accuracy, recall and F1 score were evaluated as
presented in Table 8. These combinations include: (1) without artifact
removal + without LOOCV (2) artifacts removal + without LOOCV (3)
artifacts removal + with LOOCV. It is very clear from the Table 8 that
artifacts removal with LOOCV subject dependent & subject independent
validation strategy provides better results with the proposed ensemble-
based Deep Learning model that provides the best accuracy of all
baseline classifiers.

6. Discussion

The discussion section is divided into four different subsections
based on the evaluation results obtained by executing the Ensemble-
based Deep Learning model with both subject dependent & subject
independent validation strategy with the collected data set to predict
prenatal depression in women. This section elaborates the necessity
of the proposed method, which helps to solve existing problems such
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Table 8
Evaluation based on Ablation concepts.

Methods Criteria Random Forest ANN EBDL

Without artifacts
removal+ without
LOOCV

F1 score 57.12 52.42 52.17
Precision 51.68 47.15 52.35
Recall 42.67 42.36 49.77
Accuracy 52.37 50.84 48.62

Without Artifacts
removal+ with
LOOCV

F1 score 52.74 51.62 58.12
Precision 56.74 49.82 52.68
Recall 48.61 47.96 51.76
Accuracy 56.47 59.96 59.21

Artifacts removal+
without LOOCV

F1 score 52.74 51.62 58.12
Precision 53.74 52.36 60.24
Recall 42.61 57.42 59.01
Accuracy 58.47 62.89 62.37

artifacts removal+
LOOCV

F1 score 81.64 87.28 92.19
Precision 86.48 82.51 91.54
Recall 82.34 80.94 94.62
Accuracy 81.59 88.76 93.87

as removal of motion artifacts and generality of the subject. It also
provides better prediction with deep learning models.

6.1. Interpretation of ensemble based deep learning model with collected vs.
tandard three benchmark datasets

Compared to ECG, PPG, and signal combinations, EDA provides a
ore accurate prediction of depression before surgery (Anusha et al.,

2019). As a result, we used EDA as a useful signal to predict depression
evels in women during labor. One EDA signal serves as the foundation
or all other benchmark datasets, which provides the best performance
ith the ensemble-based deep learning model compared to baseline

earning models. The datasets collected to analyze prenatal depression
produce better classification results in all classifiers. One possible in-
terpretation of this finding is that due to the efficient motion artifacts
removal model as well as the hybrid subject dependent & subject
independent validation strategy. Moreover, when the different classi-
fiers are assembled, it produces better results than traditional baseline
models. It also provides the severity level of prenatal depression in
women rather than without including severity levels it classifies as
binary classification models. However, if the severity levels segregated
by the PDSS score from the collected data set provides better accurate
classification levels with prenatal depressed mothers.

6.2. Interpretation based on ensemble based deep learning classification
model

Think about it: Compared to other baseline algorithms, the
nsemble-based Deep Learning stacking method that was suggested
oes the best job and has the highest predicted accuracy of 93.79%.
t should be noted that the suggested technique outperforms DT, RF,
VM, and ANN based on the findings of the F1 score (92. 19%),
recision (91. 54%) and recall (94. 62%). In addition, two statistical
pproaches are used, namely the RMSE and MAE, to compare the

results. You may calculate the mean absolute error using any of these
pproaches. With RMSE (0.31) and MAE (0.24) values that are lower

than any of the baseline algorithms, the suggested technique stands
out. After comparing the two sets of data, one may conclude that the
stacking Ensemble-based Deep Learning used in this work outperforms
the baseline models in every way.

6.3. Interpretation based on ablation concepts

For the purpose of ensuring that the innovative approaches in
this model are given the importance they deserve, ablation concepts

ere utilized. (1) The elimination of motion artifacts was one of the
 i
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notable innovations of this model. (2) Include the levels of depression
according to the severity of the women who are going through the
rocess of giving birth. (3). Ensemble-based deep learning model with
eural networks based on both subject dependent & subject indepen-
ent validation strategy. From Table 8, it becomes evident that the
emoval of artifacts, incorporating severity levels, and the Ensemble-

based Deep Learning model based on both subject dependent & subject
ndependent validation strategy yields the highest level of accuracy
mong all classifiers.

From the Table 8 without artifact removal, thought, and without
a combined validation model the accuracy results are not more than
0%, which means that without cleaned EDA signals it is very difficult
o predict vital clues about prenatal depression effectively. In view
f the combination of the inclusion of artifacts removal, and without
ubject dependent & subject independent validation strategy provides
 slightly better prediction since the analysis is carried out with cleaned

EDA signals. The artifacts removal, including subject dependent &
subject independent validation strategy does not provide classification
as binary classification (Taylor et al., 2015) each and every mother
has their own specific characteristics such as sweat gland density and
skin thickness, so all these factors contribute much to the prediction of
prenatal depression.

6.4. Advantages & disadvantages

This proposed method contains the following metrics:
• As it predicts the degrees of severity of depression, this study

functions similarly to multiclassification.
• It is also possible to predict different mood disorders using this

EBDL model.
• This model can be considered for horizontal deployment to re-

construct the diagnostic process of other mental disorders (such
as major depressive disorder, schizophrenia, bipolar disorder, and
dementia) provided that suitable attribute extraction methods are
employed.

Some notable drawbacks of this study are listed as follows.

• In this study, we focus on EDA to detect changes in maternal
prenatal depression. Active continuous monitoring is needed to
make this prediction accurately.

• Limitation of a wrist-worn wearable device in terms of accessible
modalities and assessment of the possible contribution of various
psychological signals to stress detection.

• Furthermore, as spectrum information in the frequency domain
might reflect oscillation information, frequency-domain charac-
teristics may provide higher discriminating ability of the psy-
chological responses than time-domain features for nonstationary
psychological signals.

6.5. Future work

The same categorization algorithms can also be used with the
arious modalities included in a wearable wrist computer. As a result,

we were able to evaluate how various psychological signals may have
contributed to the identification of stress. As most smartwatches have
hese sensors, we focus on ECG, PPG, and EDA to identify emotional
hanges in the wearer. Adopting Explainable AI (XAI) techniques to
nterpret our model prediction is our future direction, which could
ncrease the trust of the results produced by deep-leaning models.
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7. Conclusion

The results of this research imply that prenatal depression is pre-
dicted using a stacking ensemble learning model based on deep neural
networks for the early prediction of prenatal depression. It is imple-

ented during childbirth using the wrist EDA. The two-stage approach,
hich involves artifact identification first and then a subject-dependent
nd independent validation strategy along with the ensemble model,
as able to successfully classify 93.79 percent of the new dataset.
everal baseline machine learning techniques are used to evaluate
he suggested model’s performance. One way to assess performance
s through evaluation metrics. Common metrics include recall, accu-
acy, specificity, and precision. Beyond that, two statistical metrics
re tested, the MAE and the RMSE, are tested. The suggested stacking
nsemble method predicts depression severity levels with a accuracy
ate of 93. 79%. The results for precision (91. 54%), F1 score (92.

19%), and recall (94. 62%), compared to baseline learning methods,
demonstrate that the suggested method outperforms them. Further-
more, the suggested model is robust, as shown by the minimal values
of RMSE (0.31) and MAE (0.24). Therefore, this model can be used
to forecast the severity of prenatal depression based on EDA signals.
These preliminary results are intriguing because they suggest that EDA
will be more helpful than previously thought for stress monitoring
n actual settings. Intriguingly, this study found that the association

between EDA and depression was higher among first-time mothers than
among mothers who had previously given birth. Other case studies,
including daily activity tracking, senior care, fitness assistance, and
telemonitoring programs, can be implemented around this prenatal
mental health monitoring.
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