
Faculty Reviews 2020 9:(8)Faculty Opinions

Plasticity in perception: insights from color vision deficiencies
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Abstract

Inherited color vision deficiencies typically result from a loss or alteration of the visual photopigments absorbing light and thus 
impact the very first step of seeing. There is growing interest in how subsequent steps in the visual pathway might be calibrated 
to compensate for the altered receptor signals, with the possibility that color coding and color percepts might be less severely 
impacted than the receptor differences predict. These compensatory adjustments provide important insights into general questions 
about sensory plasticity and the sensory and cognitive processes underlying how we experience color.
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Introduction
Plasticity is a hallmark of sensory processing. Environments 
vary widely over space and time, and sensory systems must 
continuously recalibrate to optimize coding for the current  
context1,2. Importantly, the sensory apparatus also varies 
widely among individuals, and even within an individual 
there are dramatic changes over time (e.g. development and 
aging) and space (e.g. between central and peripheral vision).  
Plasticity must therefore correct for the properties not only 
of the world but also of the observer. These adjustments 
can arise at many structural levels, from large-scale cortical  
reorganization (e.g. when cortical areas normally devoted to 
one sense are recruited by other modalities when that sense is  
lost)3 to local synaptic dynamics4 and sensitivity regulation 
within cells5–7 and networks8,9. They can also occur over many  
timescales10, from rapid response changes within milliseconds11 
to experience-dependent development12,13. Finally, they occur 
throughout the processing hierarchy, from adjusting receptor 
sensitivity to tuning cognition and learning. A major  
unresolved issue in neuroscience is defining the actual number 
of distinct mechanisms underlying neural plasticity, how  
they are manifest, and how they interact.

Here we discuss general issues and insights about plasticity 
within the specific context of common inherited color vision  
deficiencies. Recent studies have highlighted the potential for 
compensating for a color vision deficiency so that the world is  
described as richer in color than the sensory losses would  
predict. However, the nature of these compensations and  
whether they reflect perceptual or conceptual adjustments14  
remain poorly understood. For example, a perceptual adapta-
tion could reflect changes in the sensory signals encoding color, 
while a conceptual adjustment might be learning to label the 
percept with the same color name that others use15–18. Exploring  
plasticity through the lens of color vision provides a rich and 
unique opportunity for revealing how and how far neural cod-
ing and perceptual experience can be calibrated to discount  
natural physiological variations within and between observers 
and one that can also provide new insights into longstanding 
questions and controversies about the processes mediating  
human color vision.

Human color vision
Most animal species have the capacity for color vison, and in 
all known cases it is based on detecting light with two or more  
photoreceptor classes that differ in the wavelength sensitiv-
ity of their photopigments19–22. However, having more types of  
receptors does not necessarily confer a higher dimensional-
ity of color vision23. Most humans have three classes of cone  
receptors maximally sensitive to short (S), medium (M), or long 
(L) wavelengths, and thus normal (or, more aptly, routine) color 
vision is trichromatic. Encoding color further depends on the 
neural machinery for comparing the relative cone responses,  
for example to determine whether the L cones or M cones are 
more excited by a light spectrum. These comparisons begin in 
the retina, in post-receptoral neurons that receive inputs of the  
same or opposite sign from different receptor types, and are  

carried within three “cardinal” mechanisms24 with distinct cell 
types and pathways, named for their projections to different  
layers of the lateral geniculate nucleus25–28. Cells in the  
magnocellular (M) pathway sum the L and M cones’ signals and 
are the substrate of our luminance sensitivity (L+M)29. Chromatic  
information is instead carried by two cone-opponent cell types 
that receive opposing signals from the L and M cones (L-M,  
the parvocellular or P pathway) or from S cones opposed by 
both L and M (S-LM, the koniocellular or K pathway). Figure 1  
illustrates the colors as defined by these two chromatic dimen-
sions. However, these mechanisms describe only the initial 
steps of color coding. There are major further transformations 
of the cone-opponent signals in the cortex, and different trans-
formations may arise at several different cortical stages30–32.  
Moreover, even within the retina, there is a possibility that color  
percepts are carried within pathways that combine the cones in  
different ways than the cardinal mechanisms33,34.

Inherited color vision deficiencies
Inherited color vision deficiencies primarily reflect alterations 
in the genes coding the cone photopigment opsins. The genes  
coding the L and M opsins lie in tandem on the X chromosome35. 
Errors in the L or M genes can lead to a loss of one recep-
tor class (dichromacy) or to shifts in the spectral sensitivity 
(anomalous trichromacy) (Figure 1). The latter reduces the spec-
tral separation between the L and M cones and thus reduces 
the difference signals (L-M) conveying chromatic informa-
tion, resulting in reduced discrimination for this chromatic  
dimension. As an X-linked recessive trait, color vision defi-
ciencies of this type are the most common and affect about 6% 
of males but are rare in females. Instead, female carriers for 
color vision deficiencies (with a normal gene on one X chromo-
some and modified gene on the other) might express both to  
develop a fourth dimension for color36. However, whether 
and when this leads to functional tetrachromacy has been  
challenging to resolve37.

Simulations of color vision deficiencies are common and work 
by filtering the image to remove or alter the chromatic informa-
tion that should be lost or weakened by their altered sensors  
(Figure 1). These illustrations are often closer to depict-
ing what a trichromat would experience if they suddenly lost 
one class of receptors but have also incorporated comparisons  
from rare individuals with a color loss in only one eye to  
better simulate a dichromat’s experience38. However, few simu-
lations have tried to capture the impact of compensation for the  
receptor losses39.

Characterizing compensatory processes for inherited color 
vision deficiencies provides an ideal natural experiment for  
exploring the types and limits of plasticity in neural process-
ing and perception. First, the deficit arises from only a single 
discrete change in the visual system that is restricted to the first 
step of vision, when the light is captured by the receptor35. This  
allows characterizing how the rest of the system can reor-
ganize given a simple and highly stable change in its inputs.  
Second, each individual has had a lifetime experiencing the world  
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Figure 1. Simulations of color vision deficiencies. A. Routine trichromatic color vision is based on three classes of receptors with different 
but overlapping sensitivities. Most inherited deficiencies affect the L (protan) or M (deutan) cones, leading to their loss (dichromacy) or a 
shifted peak toward the unaffected cone (anomalous trichromacy). B. A space defined by the color differences signaled by comparing L vs. 
M cones or the S vs. LM. Reducing the L-M signal collapses the color space toward the S vs. LM axis but could be compensated by a post-
receptoral amplification. C. Filtering an image to remove the L-M contrasts removes the distinctions between reddish and greenish colors. 
Reports from unilateral dichromats suggest they may experience the residual colors as blue-yellow variations38.



Faculty Reviews 2020 9:(8)Faculty Opinions

through their receptor complement. Thus, their perceptual 
capacities can reveal adaptations over timescales that are orders  
of magnitude longer than are typically studied in a lab, poten-
tially revealing different mechanisms as well as the ultimate  
limits of sensory plasticity. Third, the spectral sensitivity  
differences between observers can be very precisely quantified, 
allowing precise predictions about their color perception and  
sensitive tests for any adaptive changes. Finally, a wide variety 
of techniques have been developed to probe color vision and to 
try to isolate different stages of processing, from the photopig-
ments and early sensory coding to cognition and consciousness.  
Thus, different measurements can be deployed to target  
different levels or properties of the system in order to assess at  
what stages or in what tasks a compensation for the color vision 
deficiency occurs and what this implies about the underlying  
mechanisms.

Compensation for color vision deficiencies
Because dichromats completely lose one cone class, in prin-
ciple there is no signal that the visual system could restore.  
Yet dichromats can reliably use a wide range of color terms 
that map onto color naming patterns for trichromats, and 
these abilities have been attributed to both sensory processing  
and learning how colors are communicated14,40–42. Dichromats 
also can become trichromatic for large fields by taking advan-
tage of the changes in spectral sensitivity across the retina or 
information provided by rod receptors43. The rods are a fourth  
receptor class specialized for sensing under dim light  
levels. The rod system is typically described as “color blind”, 
yet there are many examples of rod contributions to color  
vision44 and color can be experienced even at low light lev-
els at which only rods are active, perhaps because of learned  
associations with cone-mediated percepts45. Another intrigu-
ing possibility is the recruitment of signals arising from the 
intrinsically photosensitive retinal ganglion cells (ipRGCs). 
These recently discovered cells are in the output neural layer 
of the eye but directly absorb light using melanopsin as the  
photopigment46,47. The ipRGC pathway may primarily serve non-
image forming, or non-perceptual, visual function, including 
regulating circadian rhythms, sleep, mood, and cognition48. How-
ever, ipRGCs also receive inputs from cones and rods and project  
to visual pathways49,50. Their contributions to color perception 
remain difficult to isolate, but excitation of this pathway has 
been found to influence both brightness and color percepts51–55.  
To our knowledge, the possible role of these signals in color 
vision deficiencies remains unexplored. However, dichromats 
may offer a more powerful test case for probing color coding  
and ipRGCs because these observers may be more dependent 
on their signals and also because the signals themselves may  
be easier to isolate from the cone responses.

Recently, several theoretical and empirical studies have also  
explored compensation for anomalous trichromacy56. In this 
case, the smaller differences in the L and M cone sensitivities 
could in principle be discounted simply by amplifying the gain 
in the post-receptoral neurons that compare these signals39,57. As 
noted, this comparison is initially carried out in cone-opponent  
cells that receive opposite inputs from the L and M cones and 

is carried through the parvocellular pathway25,26. The ration-
ale for amplifying their responses when the inputs are weaker  
is grounded in information theory, which predicts that each 
cell should center and scale its limited operating range for 
the distribution of inputs in order to maximize the informa-
tion it can transmit58–61. Rescaling responses to the magnitude  
of luminance or chromatic variation (or contrast) is a  
well-established form of visual adaptation documented in count-
less behavioral and physiological studies6,7,62,63. Typically, 
these involve stimulating the system with high contrast and 
measuring the resulting sensitivity losses. Yet a small number  
of studies have also shown that when observers are exposed 
to weaker-than-normal luminance contrasts, the responses 
instead increase64–66, suggesting that perceived saturation should 
also increase in an observer habitually exposed to low L-M  
contrasts.

There are a number of unsolved puzzles about the impact of 
such post-receptoral gain adjustments. For example, adaptation  
could amplify not only the signal but also the noise, and thus 
the consequences for perception depend on where in the  
system sensitivity regulation and the limiting noise occur39,58,67.  
In addition, while color contrast adaptation is readily observed 
in the visual cortex, color-opponent cells at the level of the ret-
ina and LGN show substantially less adaptation68,69 (but see 70).  
This raises the possibility that the system could restore  
optimal coding in the cortex even though the chromatic signals 
in the retina and LGN remain weak and thus poorly calibrated 
to the natural environment. One potential rationale for this is 
that P cells encode both color and lightness information (because 
the weights of the L and M cone inputs vary substantially25 
and because the cone inputs are segregated into different spa-
tial subregions of the cell’s receptive field71). This means that  
gain changes at this level not only would amplify the weakened 
chromatic signal but also could “over-amplify” the better pre-
served lightness signals. In the cortex, lightness and chromatic 
information may become decoupled72,73, and it may therefore  
be more advantageous to adapt at this stage in order to sepa-
rately calibrate these signals. A still further possibility is that 
the retina and LGN can adjust in different ways or over longer 
timescales than are revealed by short-term adaptation experi-
ments. Adaptation to color can occur over many timescales74–77.  
However, it remains uncertain whether adjustments with differ-
ent time constants reflect similar processes and consequences  
but tracking different rates of change or if they reflect funda-
mentally different mechanisms that calibrate different aspects  
of the system.

Empirically, the primary evidence for compensation has  
come from studies comparing the perceptual reports of anoma-
lous trichromats. For example, in a perceptual grouping task, 
some anomalous observers perceived L-M color differences 
as more salient than expected78. Similarly, estimates of the 
color responses from multidimensional scaling79,80 or contrast 
scaling81 have found that the L-M percepts are stronger 
than predicted from the observer’s detection thresholds and 
can come close to the responses for routine trichromatic  
observers.
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However, here again there are many unresolved questions. 
First, these studies rely on observers’ subjective reports, and  
thus it is difficult to infer from these reports what they actu-
ally “see.” For example, individuals could learn to interpret or 
label the same stimuli with the same scale or terms that others 
use even if they perceive them very differently, and they  
might base their reports on very different stimulus cues14,41,82.  
As noted, even dichromats can exhibit nearly normal  
patterns of basic color naming but might rely on different cues 
for this, such as luminance variations or rod signals. As such,  
some putative measures of color appearance and compensa-
tion may reflect more cognitive stages (such as how the sensory 
signals are interpreted or categorized) rather than the strength 
of the sensory signals themselves. Objective measures of the 
chromatic contrast responses in anomalous trichromacy remain  
lacking. However, recent studies have begun to probe com-
pensation for color vision deficiencies with neuroimaging. For 
example, an fMRI study83 found that the BOLD response to  
L-M contrast was amplified within but not before early visual 
cortical areas, implicating V1 or V2 as the earliest site of the 
gain compensation. Another study using visual evoked poten-
tials (VEPs) also found amplified signals, but only when the 
stimuli were viewed binocularly, again implicating a corti-
cal locus for the response gains84. For monocular viewing, 
VEP amplitudes are substantially reduced and diagnostic of the  
deficiency85.

A second question is under what conditions the compensation 
is manifest. Clearly, the sensitivity losses are not completely  
discounted because anomalous trichromats fail color screening 
tests, which measure the ability to discriminate small color  
differences. Similarly, the simple loss hypothesis closely  
predicts their color matching behavior (i.e. when two lights with 
different physical spectra will look the same), and the color 
matches of dichromats have played a central role in deriving  
the cone spectral sensitivities86. The presumed amplification 
instead occurs above the detection threshold, when the system 
“knows” a signal is there. A related example is the phenomenon 
of contrast constancy. Thresholds for detecting spatial contrast  
(e.g. in spatial sinewave gratings) are lowest for medium spatial 
scales, forming the characteristic bandpass contrast sensitivity 
function. However, when the gratings are slightly above thresh-
old, the perceived contrast is nearly independent of spatial  
frequency87,88. With regard to color, greater constancy or  
compensation may also be manifest when the task reflects  
cognitive factors (e.g. learning color categories) rather than early  
sensory signals14.

A further challenge for interpreting these studies is that anoma-
lous trichromacy is itself a very heterogeneous condition56.  
Observers can vary widely in the separation of their longer 
wave cones, as well as which cone class is altered, and this 
separation does not always predict even their performance at  
threshold89,90. For example, some anomalous observers who are 
revealed by their altered color matches nevertheless have fine 
color discrimination. How these individual differences impact 
the form and extent of compensatory adjustments remains an  
important question to address.

Finally, it should be emphasized that even in measures of  
color appearance or salience, the degree of compensation 
is rarely complete. That is, suprathreshold percepts may be 
amplified relative to threshold sensitivity but, in most anoma-
lous observers, still fall short of the L-M responses of routine  
trichromats78,79,81,91. Understanding why compensation is incom-
plete is as important as understanding why it occurs at all.  
In the case of color, there may again be many factors limit-
ing plasticity, from the problems of amplifying noise to the  
possibility that anomalous observers are basing their judg-
ments on different cues (e.g. lightness variations) that may be 
inherently weaker. Another potential limit is that the L and 
M cones are thought to differ only in their opsins and thus do 
not have a unique physiological signature. The visual system 
must therefore learn the identity of each cone from the patterns  
of their responses to the spectra the observer experiences92,93.  
Misclassifications are more likely the smaller the differences 
between these responses, and this could introduce errors in post-
receptoral coding that cannot be undone by simply amplifying 
those differences.

Restoring color vision
We have emphasized the advantage of assessing plasticity 
when the adjustment is to a stable and permanent property of  
the visual system. But what if that property suddenly changes? 
There is now the prospect for viral vector-mediated gene  
therapy to introduce the missing photopigment in the retina33.  
Dichromatic adult monkeys whose eyes were injected with 
a missing L pigment gene expressed the pigment over time 
and became trichromatic in their color discriminations94. This  
suggests that even in the adult, the post-receptoral machinery can  
exploit the added input signals, though the extent to which this 
involves tapping into existing pathways versus recalibration  
remains uncertain. Beyond the expanded capacity to detect colors, 
it is also unknown how the added receptor type will impact the 
perceptual experience of color95 and what forms of plasticity  
might adjust for these.

Techniques have also been developed to optically enhance  
reddish-greenish contrasts for color-anomalous observers by 
using notch filters. These cannot restore normal color vision96  
but can alter the relative salience of different colors. A recent 
study found that after wearing these glasses for just a few days, 
the participants reported experiencing stronger L-M contrasts, 
even with the glasses removed97. This is surprising given that the  
observers had a lifetime to adjust to their cone sensitivi-
ties and because the changes are in the opposite direction to 
the effects predicted by adaptation (since adapting to stronger 
colors should have resulted in reduced sensitivity). However,  
similar effects have been found in perceptual training for other 
visual deficits (e.g. amblyopia)98–100, where requiring the observer 
to attend to the weakened visual signals allows them to process 
them more effectively. An implication of such results is that the 
visual system is capable of even greater plasticity when the stimu-
lus or task demands it, and these effects have been widely stud-
ied in the context of perceptual learning101–104. How this learning  
interacts with other forms of plasticity like adaptation remains 
poorly understood but is being actively investigated105–109.
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Implications for routine trichromatic color vision
Importantly, the processes compensating for a color vision 
deficiency are also at play in calibrating the sensitivity and  
perception of individuals with routine trichromacy. For exam-
ple, many authors have noted that because of the spectral 
overlap in the L and M cones (and, to a lesser extent, the S  
cones), their responses are very similar and for natural spec-
tra are very highly correlated110–112. This means that the L-M  
chromatic signal is many times weaker than the L+M signal, 
which underlies our luminance sensitivity. Based on these cone 
contrasts, the world should appear to vary much more in bright-
ness than color. However, post-receptoral sensitivity is corre-
spondingly much higher for the chromatic cone contrasts57,113,  
to an extent that roughly matches the gamut of color signals we 
are exposed to in our environment114. From this perspective, 
then, the gain adjustments in the anomalous observers are  
simply the same adjustments that operate in every observer.

A further important point is that color vision deficiencies are 
just a more extreme case of the enormous variability inherent  
in human color vision. Individuals who are all classified as  
“normal” trichromats nevertheless differ widely in their spec-
tral sensitivities because of differences in the lens and macular  
screening pigments, the specific absorption spectra of the cones, 
and the relative number of the L and M cones115–117. Spectral  
sensitivity differences influence an observer’s color matches 
(i.e. which physically different spectra appear identical) but 
have surprisingly little impact on measurements of color  
appearance118,119. For example, what looks gray does not vary 
with age despite the yellowing lens120,121 and does not vary with 
space despite the drop in macular screening pigment outside 
the central fovea122,123, and the relative sensitivities of the differ-
ent cone classes also show little change with age124,125. Similarly,  
the L to M cone ratios strongly impact luminance sensitiv-
ity but have little influence on color percepts126–128. Again, this is 
because each individual’s visual system is calibrated for their 
environment63,118. Thus, what looks gray is as much a property  
of the environment (e.g. the average spectral stimulus) as the  
visual system representing it129,130.

Comparing different stages of color coding in routine and  
color-deficient observers could continue to help resolve some 

of the ongoing challenges of understanding the bases for human 
color vision and what different measurements of color percep-
tion actually reflect. Traditional models of color vision assume  
that subjective color appearance depends on two chromatic 
opponent processes signaling red vs. green or blue vs. yellow  
sensations. Yet, while opponency is well established by both  
behavioral and physiological measures131, the red-green and 
blue-yellow axes of color appearance do not agree with the early  
precortical dimensions along which color is encoded (i.e. the  
L-M and S-LM mechanisms)24. This has suggested that the  
red-green and blue-yellow processes arise at later stages132 or are  
carried along different pathways33,34. However, there is also 
growing uncertainty around whether these canonical hue proc-
esses exist at all118. A clear neural signature for these perceptual  
processes has yet to be identified, and the special colors they  
predict (e.g. pure red-green or blue-yellow) do not appear  
special in many behavioral tasks133–135. Thus, the visual represen-
tation of color—at stages closer to our conscious percepts—is,  
in reality, very poorly understood. Measurements with color-
anomalous observers can be used to test which aspects of these 
percepts can be equated across observers with fundamentally 
different receptor constraints, and this may in turn elucidate  
the basis for this equivalence. For example, neuroimaging stud-
ies have attempted to identify different stages of color coding  
and the cortical sites at which the neural representation of color 
begins to resemble the perceptual organization of color136–138.  
If these representations look different for routine and anomalous 
observers, yet their color reports agree, then we would need to 
look elsewhere to understand the nature of these reports. More 
generally, tests of plasticity and compensation in color vision  
deficiencies may reveal which types of measurements uncover 
intrinsic signals within our senses versus the cognitive  
strategies involved in their readout.

Conclusion
While color vision deficiencies are often modeled as a reduced 
form of standard trichromatic color vision, many lines of  
evidence point to compensatory adjustments that can partially 
discount the consequences of the receptor loss or change. 
Understanding these adjustments—their number, nature, and  
limits—can shed important light on general principles of adap-
tation and plasticity in sensory systems and on the still poorly  
understood basis of human color experience.
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